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HIGHLIGHTS

® An all-in-one modification strategy was developed by introducing a multifunctional complex ammonia borane (BNHy) into the buried

and upper interfaces simultaneously.

e BNH; uniquely realizes dual-interfacial defect passivation and iodide oxidation suppression by interacting with SnO, through hydroly-

sis, coordinating with Pb** and inhibiting the oxidation of I~

e The optimized perovskite solar cells achieve a champion efficiency of 26.43% (certified, 25.98%) with negligible current density—volt-
age hysteresis and significantly improved thermal and light stability.

ABSTRACT Perovskite solar cells have achieved remarkable progress
in photovoltaic efficiency. However, interfacial defects at the buried and ™25 A %
upper interfaces of perovskite layer remain a critical challenge, leading to g X »bw »;}f Amn;}‘;l;i];b;“ane
charge recombination, ion migration, and iodine oxidation. To address this, < 20 - ¢
we propose a novel all-in-one modification strategy employing ammonia é (7
borane (BNHg) as a multifunctional complex. By incorporating BNH, ~ 2» 15 - 11X e
at both buried and upper interfaces simultaneously, we achieve dual- é’ v/
. . L Lo S . 5}
interfacial defect passivation and iodide oxidation suppression through 5 10 A 4 K PCE = 26.43%

. . . . . . - 34 o -0 4 [+ : 0
three key mechanisms: (1) hydrolysis-induced interaction with SnO,, (2) g 4+ F iﬁ( % BOy
coordination with Pb>*, and (3) inhibition of I~ oxidation. This approach g 5 - ! ' Qs @rb o1 s 00
significantly enhances device performance, yielding a champion power O V' Oxygen vacancy OB ON oH
conversion efficiency (PCE) of 26.43% (certified 25.98%). Furthermore, 0 T T T T T T
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the unencapsulated device demonstrates prominent enhanced operation
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illumination. Notably, our strategy eliminates the need for separate interface treatments, streamlining fabrication and offering a scalable route

stability, maintaining 90% of its initial PCE after 500 h under continuous

toward high-performance perovskite photovoltaics.
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1 Introduction

Organic—inorganic hybrid perovskite solar cells (PSCs) have
become one of the most attractive fields due to their excel-
lent optoelectronic properties [1-5]. The power conversion
efficiency (PCE) of PSCs has rapidly reached 27.0% in the
past few years [6—8]. This continuous progress is attrib-
uted to various attempts, including bandgap modulation
[9-11], crystallization behavior regulation [12-17], and
interface modification [18-27]. The low-temperature solu-
tion method is prevalent for preparing state-of-the-art PSCs.
However, perovskite films prepared through such rapid low-
temperature approach are liable to generate large numbers of
interfacial defects, which serve as nonradiative recombina-
tion centers to hinder charge transport [28-31]. To address
this, various strategies have been explored. For example, Yi
et al. employed 1-[3-(Trimethoxysilyl)propylJurea (TMPU)
at SnO,/perovskite interface and trimethoxy (3,3,3-trif-
luoropropyl)silane (TMFS) at perovskite/Spiro-OMeTAD
interface to passivate detrimental interface defects and
facilitate faster carrier extraction [32]. Zheng et al. reported
a strategy to dense the hole transport layer (HTL) by intro-
ducing (aminomethyl)phosphonic acid (AMP) into the pre-
cursor solution, concurrently modifying the top surface of
the perovskite with 2-(3-fluorophenyl)ethylamine iodide
(mF-PEAI) and piperazinium diiodide (PDI) [33]. These
effective interface modification strategies are summarized
in Table S1. However, the applying of excessive types of
additives is unfavorable to the rapid device manufacturing,
as well as the commercial fabrication.

Besides, iodide ions (I7) in the perovskite layer can
migrate under the influence of environmental factors due
to their lower formation energy [34]. This migration can
lead to an uneven ion distribution at the interfaces, and the
accumulation of iodine ions at the interfaces may induce
adverse redox reactions, which frequently involve the gen-
eration of iodine defects (I°) [35-37]. I’ is volatile and can
easily escape from the perovskite layer, accelerating the deg-
radation of perovskite. Nevertheless, only a few additives
were used to address this issue, such as benzylhydrazine
hydrochloride (BHC) [38], the redox pairs of Eu**-Eu**
[35], and fluoroN,N,N",N"-tetramethylformamidinium hex-
afluorophosphate (TFFH) [39], serving as reducing agents
effectively reduced I° back to I~ In spite of these attempts
have been made in improving the performance of PSCs,
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these works are all achieved by improving the stability of
perovskite precursor solutions. However, when perovskite
film is exposed to ambient environment, ™ at the interface is
more likely to be oxidized and result in defects, making the
elimination of interface defects still challenging.

In this work, an all-in-one modification strategy was devel-
oped to address these issues. This strategy is achieved by
incorporating ammonia borane (BNHg) into the buried (SnO,/
BNHj) and upper (PVK/BNHy) interfaces of perovskite layer,
respectively (Fig. 1a) to realize dual-interfacial defect passi-
vation and iodide oxidation suppression. BNHg is a unique
molecular complex composed of electron-rich nitrogen ele-
ments and electron-poor boron elements that determine its
multifunctionality. BNH, enables the interaction with SnO,
through hydrolysis, passivates the uncoordinated Pb*" to real-
ize dual-interfacial optimization, and acts as a reducing agent
to reduce I° back to I” to inhibit iodide oxidation (Fig. 1b).
These unique properties enable BNHj to play an effective role
under different treatment conditions (Fig. 1c). Consequently,
a typical n-i-p PSC (Fig. 1d) with BNHy all-in-one modifi-
cation achieved a champion efficiency of 26.43% (certified,
25.98%) with negligible current density — voltage (J— V) hys-
teresis. Furthermore, the unencapsulated device demonstrates
prominent enhanced operation stability, maintaining 90% of
its initial PCE after 500 h under continuous illumination. This
work presents a simple and highly effective strategy to address
dual-interface defects in perovskite films and eliminate the
complexity of multi-additive systems, offering a promising
pathway to enhance the compatibility with rapid manufactur-
ing and commercialization.

2 Experimental Section
2.1 Materials

All the chemicals were purchased from commercial ven-
dors without further purification. SnO, colloid precursor
(tin (IV) oxide, 15% in H,0), N,N-dimethylformamide
(DMF, 99.8%) and dimethyl sulfoxide (DMSO, 99.8%)
were purchased from Alfa Aesar. Chlorobenzene (99.8%)
and isopropanol (99.5%) were purchased from Sigma-
Aldrich. Acetonitrile (99.9%) was purchased from Acros.
CsI (99.999%) was purchased from Sigma-Aldrich. Pbl,
(99.999%), FAI (99.9%) and MACI (99.9%) were pur-
chased from Advanced Election Technology Co., Ltd.

https://doi.org/10.1007/s40820-025-01951-6
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Fig. 1 Structure and preparation of BNH in perovskites. a Schematic of device fabrication processes. SnO,/BNHg and PVK/BNH are defined
as BNHg at the buried and upper interfaces of perovskite layer, respectively. b Mechanism diagram of BNH¢ modification at different positions. ¢
J—V curves of PSCs under various BNH, treatment conditions. d Device structure diagram of a typical n-i-p PSC

MeO-PEAI (99%), Spiro-OMeTAD (99.9%), 4-tert-butyl-
pyridine (96%) and LiTFSI (99%) were purchased from
Xi’an Polymer Light Technology. Ammonia borane was
purchased from Aladdin Bio-Chem Technology Co., Ltd.

2.2 Solution Preparation

Tin (IV) oxide colloid solution (15 wt%) was diluted with
deionized water (volume ratio: 1:2). The BNH solution
(1 mg mL™!) coated at the buried interface of perovskite
was prepared by dissolving 1.0 mg BNH, in 1 mL deion-
ized water. For the Cs; ;sFA, osPbl; precursor solution,
1.4 M FAI 0.07 M Csl, 1.58 M Pbl, and 0.49 M MACI
were mixed in the solvent of DMF and DMSO (volume
ratio: 8:1) and stirred at room temperature for 6 h. The
BNH; solution (1 mg mL™!) coated at the upper interface
of perovskite was prepared by dissolving 1.0 mg BNH;
in 1 mL IPA. The MeO-PEAI solution (3 mg mL™") was
prepared by dissolving 3 mg MeO-PEAI in 1 mL IPA.
The Spiro-OMeTAD solution was prepared by dissolving
72.3 mg of Spiro-OMeTAD, 28.8 pL of t-BP, and 35 pL of
Li-TFSI solution (260 mg mL~!, in acetonitrile) in 1 mL
chlorobenzene.

:/\ SHANGHAI JIAO TONG UNIVERSITY PRESS

2.3 Device Fabrication

The ITO substrate was cleaned in deionized water, acetone,
and ethanol in sequence, followed by being treated with
oxygen plasma for 10 min. Next, the SnO, colloid solution
was spin-coated onto the substrate at 4000 rpm for 30 s and
annealed at 150 °C for 30 min in ambient to form the SnO,
film. Then the BNHj solution (dissolved in deionized water)
was spin-coated on the SnO, film at 4,000 rpm for 30 s and
annealed at 150 °C for 10 min in ambient to form the SnO,/
BNHg film. After cooling down, the SnO, or SnO,/BNHg
films were treated with oxygen plasma (60 W) for 5 min.
Then the perovskite solution (60 pL) was spin-coated at
1000 rpm for 10 s and 5000 rpm for 30 s. At 20 s from the
last, 700 pL diethyl ether (DEE) as an antisolvent was rap-
idly dropped onto the substrate. Then the perovskite precur-
sor film was annealed at 120 °C for 1 h under an ambient
atmosphere with~25% RH. After the perovskite film was
cooled down, the sample was transferred to a nitrogen-filled
glove box for further processing. The BNH, solution (dis-
solved in IPA) was spin-coated on the perovskite film at
4000 rpm for 30 s. Then the MeO-PEALI solution (100 pL)
was spin-coated for passivation at 4000 rpm for 30 s. Then
the perovskite film was annealed at 100 °C for 5 min. The
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Spiro-OMeTAD solution (50 pL) was spin-coated onto the
perovskite layer at 4000 rpm for 30 s. Finally, 80 nm Au
electrode was deposited by thermal evaporation.

2.4 Density Functional Theory Calculation

Theoretical calculations were performed with the Vienna
ab initio simulation package (VASP). The exchange—corre-
lation energy is described by the Perdew-Burke-Ernzerhof
(PBE) form of generalized-gradient approximation (GGA)
exchange—correlation energy functional. The structure opti-
mizations of systems of BH;NH; before and after adsorption
on Pbl, and FAI terminal FAPbI; (100) surfaces have been
carried out by allowing top layer atomic positions to vary and
fixing lattice parameters and bottom layer atomic positions
until the energy difference of successive atom configurations
was less than 107 eV. The force on each atom in the relaxed
structures was less than 0.015 eV A~". The cutoff energy for
the plane-wave basis set was set to 400 eV. The k-point spacing
was set to be smaller than 0.03 A~" over Brillouin zone (B2).

2.5 Measurements

The current density — voltage (J — V) characteristics of the
devices were measured using a Keithley 2420 under AM 1.5
sunlight at an irradiance of 100 mW cm ™2 provided by a solar
simulator (Newport, Oriel Sol3A Class AAA, 94043A). Light
intensity was calibrated using a monocrystalline silicon refer-
ence cell with a KG5 window (Newport, Oriel 91,150). The
J—V curves were obtained with a scan rate of 100 mV s~
and a scan step of 20 mV from 1.22 to 0.00 V (reverse) or
from 0.00 to 1.22 V (forward). The area of the cell is 0.1225
cm? and a mask of 0.09881 cm? (certificated by NIM, China.
The certificate No.: CDjc2023 —08390) was used to deter-
mine the effective area of the device before the test. Heat-
ing acceleration: Unencapsulated devices were heated at
65 +3 °C in a nitrogen atmosphere (ISOS-T-1). Long-term
light stability tests: Unencapsulated devices were treated by
white light-emitting diode (LED) with an intensity of 100 mW
em2at23+3°Cina nitrogen atmosphere (ISOS-L-1). EQE
measurements were recorded by an Enli Technology EQE
system, which was calibrated by a certified silicon solar cell.
The scan interval was 5 nm, and there was no bias light and
mask used during the measurement. The top-view and cross-
sectional SEM images were obtained using Hitachi S-4800
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at the accelerating voltage of 5.0 kV. The surface roughness
of perovskite film was measured by an AFM (Nanoscope V,
Vecco) in tapping mode under the ambient atmosphere. The
XRD patterns were taken on PANalytical Empyrean with a Cu
Ko radiation (A=1.5406 A) and a scanning rate of 5° min~!
in the 20 range of 5°-50° at a step size of 0.02 s. 2D-XRD
spectra were measured using a Rigaku SmartLab X-ray dif-
fractometer with Cu Kal (1.54060 A) and a HyPix-3000 2D
hybrid pixel array detector. All samples for XRD testing were
prepared on quartz glass substrates. The steady PL spectra was
recorded by Horiba FluoroMax + fluorescence spectrometer
with an excitation at 490 nm. Time-resolved PL was carried
out by the FLS980 fluorescence spectrometer with excitation
wavelength at 485 nm. ToF-SIMS profiling measured the
depth distributions of the negative ions with perovskite on the
ITO substrate. The samples were analyzed using a TOF-SIMS
5 instrument (IONTOF) with a Bi+ primary beam (10 keV
and 1 pA) and Cs + sputter beam (3 keV and 5 nA). The sput-
ter size was 100 pm X 100 pm. The UV absorption spectra of
perovskite films and FAI solutions were measured using a
Hitachi U3900 spectrophotometer. XPS/UPS measurements
were obtained using an XPS/UPS system (ESCALAB250X],
Thermo Fisher Scientific). LEIPS measurement was per-
formed on a customized ULVAC-PHI LEIPS instrument with
Bremsstrahlung isochromatic mode. FTIR were performed on
a HITACHI F-4500IR spectrometer with samples prepared
as KBr tablets. The mass ratio of the sample to KBr is 1:100.
Raman spectra were recorded using an NT-MDT NTEGRA
Spectra system. EIS and M-S tests were measured with an
electrochemical workstation (Modulab XM, USA). 'H NMR
spectra were recorded on a Bruker Avance 400 Spectrometer.
The concentration of the sample is 10 mg mL~" in DMSO-d.

2.6 Calculation Methods
2.6.1 Conductivity and Electron Mobility

The conductivity (o) was calculated using Eq. (1):

o=y o)

where [ is the current, V is the voltage.
The electron mobility (y,) was calculated using Eq. (2):

9 V2
J = cegou s (2)
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where J is the current density, € is the relative dielectric
constant, g, is vacuum permittivity, V is the voltage, and L
is the film thickness.

2.6.2 Residual Stress

The residual stress (o) was calculated using Eq. (3):

E = 0 4(20)
2(1+v) 180° 09(sin’y) €

where E is the perovskite modulus (10 GPa), and v is the
Poisson’s ratio of perovskite (0.3).

2.6.3 Ideality Factor

The diode ideality factor (n) was determined by fitting V. as
a function of light intensity using Eq. (4):

v =W-FC @

oc

where n represents the ideality factor to single-molecule
recombination, /j,y, is the light intensity, k is Boltzmann’s
constant, 7' is temperature, and ¢ is the elementary charge.

3 Results and Discussion
3.1 Interaction Between BNH¢ and SnO,

The hydrolysis characteristic of BNH{ leads to the produc-
tion of BO,™ (Fig. S1) [40], which can interact with SnO,.
To further investigate the interaction between BNH, and
SnO,, X-ray photoelectron spectroscopy (XPS) was car-
ried out for the SnO, film (SnO,) and BNH, treated SnO,
film (SnO,/BNHy). In the N 1s spectra (Fig. 2a), the peaks
around 403 eV originate from molecular N, adsorbed on the
surface of SnO,, and the occurrence of NH, around 399 eV
in the SnO,/BNHg film confirms that BNHg was success-
fully introduced and hydrolyzed to produce NH,* during
annealing process. In the B 1s spectra (Fig. 2b), the sig-
nal of the SnO,/BNHg film can be divided into three peaks.
The peak around 192.1, 191.6, and 191.0 eV represents
the B—O peak, B—N peak and B-H peak, respectively. To
investigate the proportion of BO,™ produced by hydrolysis
of BNHy, the value obtained by the integrated areas ratio
of Sg_o/(Sg_o+ Sg_n+ Sp_p) is 30%, indicating that 30%
of BNH molecules hydrolyze to produce BO,™. Besides,

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

the above results indicate that most BNH molecules are
not hydrolyzed and still exist in the form of B-N and B-H
bonds, which will be beneficial for the subsequent film for-
mation and defects passivation of perovskite. The Sn 3d
peaks at 486.4 and 494.8 eV for the SnO, film shift to 486.1
and 494.5 eV for the SnO,/BNH, film, respectively, which
indicates the electron density increased after BNHj treated
owing to the negative charge on BO,™ (Fig. 2c). As revealed
by O 1s spectra (Fig. 2d), the signals of the SnO, and SnO,/
BNHj films can be fitted into three peaks. The peak at about
530 eV is assigned to the lattice oxygen (M—O), representing
the fully coordinated oxygen atoms within the SnO, crystal
lattice. The peak at about 531 eV is attributed to oxygen

vacancies (O,,.), which is associated with defect-related

vac
states. And the peak at about 532 eV corresponds to surface
hydroxyl groups or adsorbed water [41, 42]. It is easily found
that the relative intensities of M—O increased (from 44% to
61%), as well as O, (from 34% to 19%) and H-O (from
22% to 20%) decreased after BNH, modification, indicating
suppressed nonradiative recombination and enhanced elec-
tron mobility [43], which is attributed to the occupation of
BO, " on O
fabrication process, the O 1s XPS spectra of SnO, and SnO,/

vac (Fig. 2e). In addition, during the actual device
BNH; films treated by oxygen plasma exhibit higher M—O
relative intensity and lower O,,. and H-O relative intensities
compared to the untreated films (Fig. S2). Correspondingly,
the performance of the resulting devices is also enhanced
(Fig. S3 and Table S2). These features suggest a strong
interaction between BNH, and SnO, due to the hydrolysis
product of BNH¢ (BO, "), interacting with the uncoordinated
Sn** by filling Oy, through adsorption. In addition, the SnO,
and SnO,/BNH, films were subjected to X-ray diffraction
(XRD) characterization. As shown in Fig. S4, the position
and diffraction intensity of peaks are almost the same after
BNH¢ modification, illustrating that BNH, does not damage
the structure of the pristine SnO,.

To investigate the energy band structure of the SnO, and
SnO,/BNHg films, ultraviolet photoelectron spectroscopy
(UPS) and low energy inverse photoemission spectroscopy
(LEIPS) were carried out. As shown in Fig. S5, the sec-
ondary electron cutoff edges (E_, ) shifts from 16.72 to
16.82 eV after BNH, modification, resulting in a decrease
work function from 4.50 to 4.40 eV. Meanwhile, the con-
duction band (E) shifts from — 4.44 to — 4.29 eV after
the introduction of BNH,, (Fig. S6). The better matching of
energy levels with perovskite for SnO,/BNHy is expected

@ Springer
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Fig. 2 Interaction between BNH, and SnO,. a N 1s, b B 1s, ¢ Sn 3d, d O 1s XPS spectra of the SnO, and SnO,/BNH films. e Schematic illus-
tration of the occupation of BO,™ on Oy KPFM images of the f SnO, film and g SnO,/BNH film. The statistical potential distributions of film
surfaces are shown at the bottom. CPD, contact potential difference. h The electrical conductivity and i the electron mobility of the SnO, and

SnO,/BNH films. Inset shows the architecture of devices

to reduce interface energy barrier and thus suppress inter-
face recombination. Then Kelvin probe force microscopy
(KPFM) was measured to study the electrical charge distri-
bution on the film surface, with contact potential difference
(CPD) spectra shown in Fig. 2f, g. The SnO,/BNH; film
showed a higher CPD (819 mV) compared with the SnO,
film (634 mV), indicating a decrease in the work function
and an increase of the Fermi level, which is consistent with
the result of UPS.

In addition, the transmittance of SnO, layer coated on
indium doped tin oxide (ITO) glass is not affected with
BNH{ modification (Fig. S7). And the absorption edge of
SnO, nearly does not change after BNH¢ modificated (Fig.

© The authors

S8). The conductivity of the SnO,/BNH film (3.37 x 107~
mS cm™!) is significantly higher than that of the SnO, film
(2.53 %1072 mS cm™!) (Fig. 2h), and the electron mobility
of the SnO,/BNHj film (3.18 x 1072 cm? V~! $71) is also
greater than that of the SnO, film (2.43 X 103 cm? v-!sh
(Fig. 21). The enhanced charge transport provides preferable
electron diffusion and charge extraction, achieving higher
open circuit voltage (V) and fill factor (FF) of PSCs. The
atomic force microscope (AFM) measurement was carried
out to study the root mean square (RMS), which is 1.21 and
0.80 nm for the SnO, and SnO,/BNHj films, respectively
(Fig. S9). The reduced roughness of the SnO,/BNH, film
is attributed to the reduction in Oy, which is conducive to

https://doi.org/10.1007/s40820-025-01951-6
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Fig. 3 Interaction between BNH¢ and FAI/PbI,. a The color change process of fresh FAI solution without BNH, additive after ambient aging. b
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with BNHg after ambient aging. g Pb 4f XPS spectra of Pbl, powders with and without BNH¢. h FTIR spectra of Pbl,, BNH, and Pbl, with

BNH; films. i 'H NMR spectra of BNH, and BNH, with Pbl,

facilitating optimal contact with perovskite film [44]. Addi-
tionally, the contact angle of the SnO,/BNH film (4.8°), is
obviously smaller than that of the SnO, film (7.2°), meas-
uring by dropping perovskite precursor solution on the
SnO, and SnO,/BNH films, respectively (Fig. S10). The
improved wettability indicates the better coverage for per-
ovskite, which is consistent with the RMS results.

3.2 Interaction Between BNH¢ and FAI/PbI,

The reaction between I™ and O, has a thermodynamic ten-
dency when the perovskite precursor solution is exposed

SHANGHAI JIAO TONG UNIVERSITY PRESS

to air, leading to the degradation of the precursor solu-
tion, thus seriously affecting the performance of devices
[38]. Meanwhile, the depletion of I~ generates iodine
interstitials accessibly, which is prone to form deep trap-
ping states, causing more nonradiative recombination. To
address this issue, BNHy is applied and its function can
be expressed by Fig. S11. We first attempted to mix BNH¢
(0.001 mol) and FAI (1 mol) in 1 mL DMF to investigate
the interaction between BNH¢ and FAI. After continuous
stirring along with 60 °C heating and air exposure, the
transparent FAI solution without BNHg turned to light
yellow after 12 h aging and became bright yellow after
24 h aging (Fig. 3a). An absorption peak at 365 nm in the
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ultraviolet visible absorption spectroscopy (UV-vis) spec-
tra gradually increased with aging time (Fig. 3c), which
is ascribed to the oxidation of I~ into I°. Surprisingly, the
color of FAI solution mixed with BNH, remained transpar-
ent after 24 h aging (Fig. 3b), which is consistent with the
result of almost no peak at 365 nm in the UV—-vis spectra
(Fig. 3c), demonstrating BNH can suppress the oxidation
from I™ to I°. Importantly, yellow returned to transparent
when BNH¢ with increased concentrations were added to
the aged FAI solution, accompanied by a notable reduc-
tion in the absorption peak observed at 365 nm (Fig. 3d,
e). This result proves that the formed I° can be reduced
to I with the BNH addition. To further quantitatively
demonstrate the effectiveness of BNHg in inhibiting
I™ oxidation, we have supplemented ion chromatography
(IC) measurements. Specifically, we dissolved 8 mg of
FAI in 100 mL of deionized water at ambient conditions
and monitored the concentration of I™ at different aging
times. As shown in Fig. S12, the I concentration gradu-
ally decreased with time, indicating progressive oxidation
of I” to I,. In contrast, after adding BNH, to the solu-
tion, the I~ concentration remained almost unchanged over
the same aging period, and was significantly higher than
that in the control sample without BNHg. After 72 h, the
I” concentration in the sample without BNH decreased by
5.0%, while the I concentration in the sample with BNH
addition decreased by only 0.7%. These results provide
clear and quantitative evidence that BNH, can effectively
suppress the oxidation of I” and thus mitigate the forma-
tion of elemental iodine. The reducibility of BNH, is due
to the H atom connected to the B atom can lose electrons
and be oxidized to H,. The chemical reaction equation for
BNH reducing I° to I~ is speculated as follows:

2NH; - BH, + 2I° - 2NH, - BH,I + H, 5)

To explore the coordination between BNHg and Pb-I
framework, density functional theory (DFT) was employed
to calculate the adsorption energies of BNH, on the surface
of FAPbI; both with Pbl, and FAI terminations (Fig. S13).
DFT calculations show that BNHy is likely to bind to the
FAI —terminated surface more stable with the adsorption
energy of — 2.15 eV compared with the Pbl,-terminated
surface with the adsorption energy of — 1.03 eV.

Then BNH, was added to Pbl, solution resulted in
a noticeable color change after stirring for 6 h at room
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temperature. The color of the solution deepened signifi-
cantly after 12 h (Fig. 3f) while the pristine Pbl, solu-
tion displayed no obvious alteration (Fig. S14), which
is derived from the coordination between the N atom in
BNH, and Pb**. To further testify this coordination, XPS,
Fourier transform infrared spectroscopy (FTIR) and 'H
nuclear magnetic resonance (NMR) were employed. In
the XPS spectra (Fig. 3g), the Pb 4f peaks of Pbl, pow-
ders shift to lower binding energy after the introduction
of BNHy, which is originated from the electron transfer
from BNH, to Pb?*, indicating the coordination of Pb—N.
Additionally, FTIR analysis revealed shifts in the stretch-
ing vibration peaks of N-H (Fig. S15) and B-N (Fig. 3h)
after mixing with Pbl,, suggesting potential coordination
interactions between BNH, and Pb>*. Furthermore, in the
"H NMR spectra (Fig. 3i), the peak at 4.41 ppm, corre-
sponding to the H atoms connected to B atoms in pure
BNHg, splits into two peaks at 5.24 and 4.40 ppm upon the
addition of Pbl,. This shift suggests a strong interaction
between BNH, and Pbl,, which alters the chemical envi-
ronments of the H atoms in the BH; group. This behavior
is likely due to the breaking of B—N bonds in some BNH
molecules allowing the N atom with lone pair electrons to
coordinate with Pb>* [45-47]. To quantify the extent of
B-N bond breakage in BNH¢ molecules during interaction
with Pb>* from the 'H NMR spectra, the following formula
was applied:

BNH breakage% = S . (6)

Spb-N+SB_N

where Spy_y represents the integrated area of the Pb—N peak,
and Sp_y represents the integrated area of the B-N peak. The
calculation result suggests that 29% of BNH, molecules can
additionally coordinate with Pb**.

3.3 Film Characterization

The morphology of perovskite films with and without
BNH, modification was investigated by scanning electron
microscopy (SEM) and atomic force microscopy (AFM).
SEM images (Fig. 4a—d) show that the perovskite film with
BHN, buried modification (SnO,/BNH/PVK) exhibits
significantly much larger grain size, indicating that BNH,
positively affects the crystallization of perovskite. While the
grain size of the perovskite film with BNH, upper modifica-
tion (SnO,/PVK/BNHy) does not increase significantly. This

https://doi.org/10.1007/s40820-025-01951-6
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is because BNH¢ mainly plays the role of passivating Pb**
and reducing I° at the upper interface rather than regulating
crystallization. The grain-size distributions of these films
are displayed in Fig. S16. The pristine perovskite (SnO,/
PVK) film has an average grain size of 1.59 um, while the
SnO,/BNH¢/PVK, SnO,/PVK/BNHg and the dual-interface
modified (SnO,/BNH/PVK/BNHg) films reveal larger size
of 2.26, 1.70, and 2.15 pm, respectively. Meanwhile, the
root mean square (RMS) roughness of SnO,/PVK film meas-
ured by AFM (Fig. S17) is 27.8 nm, and the reduced rough-
ness in the SnO,/BNH/PVK (23.5 nm), SnO,/PVK/BNH;
(24.7 nm) and SnO,/BNH/PVK/BNH; (19.0 nm) films is
beneficial for defects suppression and charge extraction [47].

2D X-ray diffraction (2D-XRD) was conducted to explore
the crystallization of perovskite film with and without BNH¢
modification (Fig. S18). The results show that the (001)
and (002) crystal planes of a-FAPbI; are aligned parallel
to the substrate normal, with no noticeable change across
all the samples. Besides, the diffraction peaks of (001) and

SHANGHAI JIAO TONG UNIVERSITY PRESS

(002) crystal planes significantly enhanced for the SnO,/
BNH/PVK film, while no obvious changes are found for the
SnO,/PVK/BNH film. The same phenomenon is observed
from XRD patterns (Fig. S19). By comparison, the SnO,/
BNH/PVK/BNH; film exhibits better crystal orientation of
a-FAPbI; for facilitating charge transfer. To further clarify
the impact of BNHg modification on the crystallization of
perovskite, in situ photoluminescence (PL) measurement
was performed during perovskite fabrication process. Fig-
ure 4e—h depicts the in situ PL spectra of perovskite films
during spin coating and thermal annealing processes. Dur-
ing the spin coating stage, the BNH/PVK film displays a
stronger PL intensity in a shorter time upon anti-solvent
dripping (Fig. 4e, g), implying the faster nucleation of
a-FAPbI; for the BNH/PVK film [48, 49]. During the
thermal annealing process (Fig. 4f, h), rapidly increasing
PL intensities of the both films arise due to the generation
of a-FAPDI;, and the subsequent sharp decrease can be
mainly attributed to solvent volatilization and crystallization
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restructuring [50-52]. Then the re-enhanced and gradually
stabilized PL intensity exhibits the dissolution—recrystal-
lization equilibrium of a-FAPbI; on the surface. The PL
intensity of the BNH/PVK film begins to sharply increase at
27 s, later than 19 s of the PVK film, indicating BNHj effec-
tively slows down the crystal growth. The rapid nucleation
and delayed crystal growth of the BNH/PVK film signifies
higher quality perovskite with less nonradiative recombina-
tion, which is attributed to the ability of BNH{ to regulate
the crystallization of perovskite.

The remarkable improvement in the crystallinity of the
perovskite also affects the release of residual stress. Graz-
ing-incidence X-ray diffraction (GIXRD) was investigated
at various angles to assess the residual stress in perovskite
films. The diffraction peaks of (012) crystal plane for the
SnO,/PVK progressively shift to the lower 20 by varying
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y from 10° to 50° (Fig. 441, j), indicating the increase in the
crystal plane distance d g, and the presence of tensile stress
in the film. In contrast, the SnO,/BNH¢/PVK film exhibits
negligible shifts across different angles, suggesting that the
do12) remains nearly constant at different depths of the per-
ovskite film, indicating released residual stress. The slopes
of the fitted lines by fitting 20 as a function of sin’y and
the residual stress are shown in Fig. 4k, 1. The SnO,/BNH,/
PVK film exhibited smaller negative slope (— 0.009) and
residual stress (4.27 MPa) compared with the negative slope
(= 0.092) and residual stress (43.65 MPa) for the SnO,/PVK
film, suggesting BNH, buried modification can significantly
release residual tensile stress in perovskite film, which is
favorable for the efficiency and stability of PSCs [53].
Time-of-flight secondary-ion mass spectrometry
(ToF-SIMS) reveals that the emergence of BO,™ proves

https://doi.org/10.1007/s40820-025-01951-6
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BNH had been successfully introduced into the buried
and the upper interfaces of perovskite film (Fig. 5a). FTIR
was then applied to study the interactions between BNH{
and perovskite. As shown in Fig. 5b, c, the C=N stretching
peak shifts from 1713 to 1709 cm™!, the N-H stretching
peak shifts from 3390 to 3394 cm™!, and the C—H stretch-
ing peak shifts from 3351/3259 to 3327/3264 cm™! on add-
ing BNH, suggesting the generation of the hydrogen bonds
between BNH and FAI The interactions between BNH
and perovskite were further validated by XPS (Fig. S20).
It is found that Pb 4f, I 3d, and N 1s from the PVK/BNH¢
film all exhibit certain red-shift compared to the PVK film,
further proving the strong interactions between BNH, and
FAI/Pbl,. UPS and LEIPS were employed to illustrate the
energy band alignment of perovskite with BNH, modifica-
tion. Figure S21 exhibits that BNH, treatment decreases the
E, o from 17.00 to 16.92 eV, resulting in the work function
of the perovskite film shifts from 4.22 to 4.30 eV. Mean-
while, the valence band (Ey) calculated from UPS shifts
from — 5.74 to — 5.65 eV, and the E- measured from LEIPS
shifts from — 4.25 to — 4.10 eV (Fig. S22), demonstrating
better energy alignment between perovskite layer and hole
transport layer for extracting holes and blocking electrons
(Fig. 5d). UV-vis absorption spectra show that the perovs-
kite films incorporating BNH{ exhibit stronger absorption
compared with the SnO,/PVK film, with SnO,/BNH/PVK/
BNH film exhibiting the strongest absorption, which can
be attributed to the enhanced film quality after introducing
BNHg. In addition, the bandgap is determined to be 1.53 eV,
which has negligible influence with BNH, modification (Fig.
S23). Moreover, Urbach energies (E,) were also compared
from UV-vis absorption spectra (Figs. S24 and S25). The
lowest E, of SnO,/BNH¢/PVK/BNH film represents the
highest structural quality during the crystal formation of
perovskites [54], which is attributed to the multifunctional
role of the BNH, molecule in passivating various defects.
Then we recorded photoluminescence (PL), time-
resolved photoluminescence (TRPL) and PL mapping to
track the film quality and charge recombination dynam-
ics. In order to eliminate the decrease in PL intensity and
lifetime caused by SnO, as a transport layer [55, 56], we
have prepared the PVK, BNH,/PVK, PVK/BNH,, BNH/
PVK/BNHg films to explore the role of BNHj at the bur-
ied and upper interfaces of perovskite. Compared with the

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

PVK film, the BNHs/PVK and PVK/BNH; films exhibit
enhanced intensity of PL and PL mapping (Figs. 5e and
S26), as well as the lifetime (Fig. 5f and Table S3), indi-
cating the suppressed nonradiative recombination with
BNHg passivation. Meanwhile, the BNH,/PVK/BNH,
film modified with dual interfaces exhibits the highest
intensity of PL and PL mapping, with the lifetime up to
9.1 ps. These results suggest that the BNH all-in-one
modification strategy can suppress the defect-induced
nonradiative recombination to improve the quality of
perovskite. Subsequently, femtosecond transient absorp-
tion spectroscopy (fs-TAS) was applied to determine the
charge transfer behaviors of the four perovskite films
mentioned above. The characteristic pseudo-color TAS
plots (Fig. 5g—j) show that the BNH,/PVK/BNH, film
exhibits the least faded ground state bleaching (GSB) sig-
nal, as well as the strongest GSB peak intensity among the
four samples (Fig. S27), which represent the longest car-
rier lifetime. This result agrees with the lifetimes gained
from the GSB decay kinetic of fs-TAS at 783 nm (Fig.
S28) [57-60]. The longer carrier lifetime after BNH, all-
in-one modificated implies the trap state elimination and
suppressed nonradiative recombination, which is benefi-
cial for the performance of device.

We further investigated the stability of perovskite
films. After immersing the perovskite films into toluene
solution while simultaneous exposing them to light expo-
sure and applying 60 °C thermal treatment for 72 h, the
control film shows noticeable yellowing and significant
degradation. The related toluene solution turns pink as
well as a strong I° characteristic absorption peak appears
at # 500 nm in the UV-vis spectrum (Fig. 5k, 1). By
comparison, the SnO,/BNH¢/PVK/BNH{ film exhib-
its no significant color change, and the I° characteristic
absorption peak is much weaker compared to the SnO,/
PVK film, indicating that BHN significantly suppressed
the oxidation of I~ to I° and the formation of 1 and V,
defects. In addition, XRD results (Fig. S29) show that
after accelerated aging, the I° characteristic peak intensity
of the control film is much higher than that of the target
film, further proving that the improved stability of per-
ovskite films with BNH{ all-in-one modification, as well
as BNH, can effectively prevent the oxidation of I” to °
and reduce the formation of related defects.
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3.4 Device Performance and Characterization

To evaluate the impact of BNHg all-in-one modification
strategy on photovoltaic performance, we fabricated a
typical n-i-p PSC with the architecture of glass/ITO/SnO,/
Cs.05FA( 9sPbL;/Spiro-OMeTAD/Au (Fig. 6a). We recorded
the J—V characteristics under simulated 1 sun irradiation
with an intensity of 100 mW cm™2 (AM 1.5 spectrum). In
order to regulate the concentrations of BNH, at the buried
and upper interfaces of perovskite film separately, we made
devices under each condition for comparison, as shown in
Fig. S30 and Table S4. After optimization, the best con-
centrations of BNHg are both 1 mg mL™" at the buried and
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upper interfaces of perovskite film. Thus, 15 PSCs were
prepared under control and target (BNHg all-in-one modi-
fication) conditions to study the statistical distribution of
current density (J.), V,., FF and PCE (Figs. 6b and S31).
By contrast, the average PCE of target is higher than that of
control. In addition, the champion PCE of the target PSCs
significantly increases from 23.62% to 26.43% (the pink dot
in Fig. 6b), with the V, of 1.206 V, J,, of 26.05 mA cm™2,
and FF of 84.12%, showing a negligible hysteresis (Fig. 6¢
and Table S5). The significant improvement in PCE can
be attributed to the reduction of I° related defects and the
passivation of the buried and upper interfaces of perovskite
film. Some devices were sent to an independent photovoltaic
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testing laboratory (Institute of Electrical Engineering, Chi-
nese Academy of Sciences) for certification, with a certified
PCE of 25.98% (the blue dot in Fig. 6b, certificate attached
in Fig. S32). Additionally, the device exhibits a high stabi-
lized power output (SPO) of 26.18% (biased at 1.06 V), as
shown in Fig. 6d. Meanwhile, Fig. 6e shows the external
quantum efficiency (EQE) spectrum, with the integrated J,
of 25.36 mA cm™2 for the target device, which is closed to
the J,. determined from the J—V curves. The analysis of
EQE spectrum shows that the bandgap of perovskite is about
1.53 eV (Fig. S33), which is consistent with the bandgap
measured from UV-vis absorption spectrum (Fig. S23).
We further utilized space charge-limited current
(SCLC) to measure the trap density of the perovskite
films (Fig. S34 and Table S6). In electron-only devices
(ITO/SnO,/perovskite/PCBM/Ag), the trap density
drops from 2.79 X 10'> cm™ for the SnO,/PVK device
to 1.59x 10" cm™ for the SnO,/BNH/PVK device.
In hole-only devices (ITO/PEDOT:PSS/perovskite/
Spiro-OMeTAD/Au, the trap densities are reduced
from 1.77 x 10" ¢cm™> for the PVK/Spiro device to
1.29x 10" ¢cm™ for the PVK/BNH,/Spiro device. These
results confirm that BNHg all-in-one modification effec-
tively reduces the trap density in perovskites, which is
crucial for minimizing nonradiative recombination and
improving device performance. Electrical impedance
spectroscopy (EIS) results (Fig. S35 and Table S7) further
demonstrate that the target device shows larger recombina-

tion resistance (R,..), suggesting the charge recombination

TeC
was greatly suppressed with BNH{ all-in-one modifica-
tion. This is further corroborated by transient photovoltage
(TPV) measurement (Fig. S36), where the lifetime of the
target device increases to 69.57 ps compared to 57.72 us
for the control device, which reflects the efficiency of
BNH; treatment. Capacitance—voltage (C — V) measure-
ment (Fig. S37) shows that the built-in electric field (V};)
increases from 1.01 to 1.09 V with BNH¢ modification.
The enhanced Vy; promotes better charge separation and
carrier transport, contributing to the improved V. and FF
in PSCs. Besides, the V. variation of PSCs under dif-
ferent light intensities shows that the slope reduced from
1.71 kzT /q for the control device to 1.43 kzT/q for the
target device (Fig. 6f). The lower slope value of the target
device indicates a decrease in trap-assisted recombination
in PSCs, further supporting the effectiveness of BNHg in
enhancing charge transport and device performance.
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The unencapsulated devices under thermal conditions and
illumination were evaluated according to the Organic Photo-
voltaic Stability (ISOS) protocols [61]. Devices aged under
thermal stress (65 + 3 °C, N, atmosphere) were investigated
to monitor the heat stability (ISOS-T-1, Fig. 6g). After con-
tinuous heating for around 800 h, the target devices still
maintain 84% of the initial PCE, which is remarkably higher
than that of the control devices (53%). Furthermore, the
light stability was investigated under continuous white LED
illumination (100 mV ¢cm™?) in N, atmosphere for 500 h
(ISOS-L-1, Fig. 6h). The target devices preserve 93% of
the initial PCE, which is higher than the 75% for the control
devices. Meanwhile, the heat and light stability were further
researched by XRD to track the degradation of the control
and target films (Fig. S38). The control film exhibits dis-
tinct degradation after 500 h, as evidenced by the increased
intensity of Pbl, peak and the appearance of 8-FAPbI;
peak, whereas the target film shows lower intensity of Pbl,
peak and no obvious undesired peaks. In addition, we have
evaluated the stability of the unencapsulated devices under
ambient air conditions (50-60% RH, 25 °C) (ISOS-D-1, Fig.
S39). After 500 h, the control device retained only 85% of
the initial PCE, whereas the target device maintained 96% of
the initial PCE. These results further demonstrate the effec-
tiveness of the all-in-one modification strategy under more
practical conditions.

The operational stability of PSCs was also examined by
maximum power point tracking (MPPT) under AM 1.5 G illu-
mination at 25 +3 °C with N, atmosphere (ISOS-L-1, Fig. 61).
After continuous monitoring for 500 h, the target device dis-
plays outstanding stability, maintaining 90% of the initial
PCE, while the control device only maintains 51% of the ini-
tial PCE after 200 h. It suggests that the defects caused by ion
migration and organic component volatilization in the target
device have been significantly suppressed. To further validate
the stability of BNH¢, we conducted chemical stability tests
on both BNH, powders and SnO,/BNHg films under acceler-
ated aging conditions (AM 1.5 G illumination at 25+ 3 °C
with N, atmosphere, 7 days), as shown in Figs. S40 and S41.
The results demonstrate excellent chemical stability, with no
significant changes observed in the characteristic signals after
aging. These findings confirm that the incorporation of BNH
does not induce chemical or electrical degradation. Moreover,
as shown in Fig. S42, the contact angle for the control film is
53.8°, which increases to 75.9° for the target film, implying
the improved hydrophobicity of perovskite film. These results
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strongly indicate that the PSCs exhibit improved device per-
formance via BNHg all-in-one modification.

4 Conclusion

In summary, an all-in-one modification strategy was proposed
by introducing the multifunctional complex BNHj to simulta-
neously address critical challenges at both the buried and upper
interfaces of perovskite film. This approach enables BNH to
uniquely realize dual-interfacial defect passivation and iodide
oxidation suppression by interacting with SnO, through hydrol-
ysis, coordinating with Pb?* and inhibiting the oxidation of I".
These synergistic features enhance perovskite film quality, lead
to better energy level alignment, reduce defects, and extend
carrier lifetime. As a result, the BNH all-in-one modification
strategy significantly improves the PCE to 26.43%. Further-
more, the BNH¢-modified devices exhibit enhanced operational
stability, preserving 90% of the initial PCE after continuous
tracking for 500 h, a bright contrast to 51% of the control device
for 200 h. Thus, the all-in-one strategy streamlines device fab-
rication by eliminating the need for separate interface treat-
ments, offering a scalable and practical pathway toward high-
performance perovskite photovoltaics for practical applications.
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