



Cite as

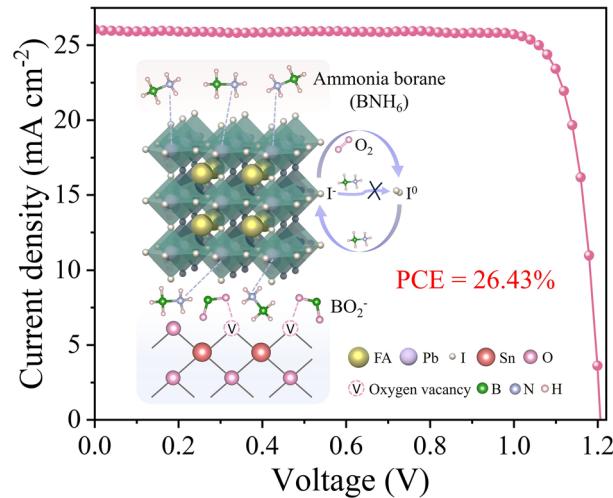
Nano-Micro Lett.  
(2025) 18:93

Received: 19 June 2025

Accepted: 16 September 2025

Published online: 2 January 2026

© The Author(s) 2026


## Ammonia Borane All-In-One Modification Strategy Enables High-Performance Perovskite Solar Cells

Jixin Ma<sup>1,2</sup>, Cong Shao<sup>1,2</sup>, Yirong Wang<sup>2,3</sup>, Guosheng Niu<sup>1,2</sup>, Kaiyi Yang<sup>1,2</sup>, Yao Zhao<sup>4</sup>, Fuyi Wang<sup>2,4</sup>, Zongxiu Nie<sup>2,4</sup>, Jizheng Wang<sup>1,2</sup>

### HIGHLIGHTS

- An all-in-one modification strategy was developed by introducing a multifunctional complex ammonia borane ( $\text{BNH}_6$ ) into the buried and upper interfaces simultaneously.
- $\text{BNH}_6$  uniquely realizes dual-interfacial defect passivation and iodide oxidation suppression by interacting with  $\text{SnO}_2$  through hydrolysis, coordinating with  $\text{Pb}^{2+}$  and inhibiting the oxidation of  $\text{I}^-$ .
- The optimized perovskite solar cells achieve a champion efficiency of 26.43% (certified, 25.98%) with negligible current density–voltage hysteresis and significantly improved thermal and light stability.

**ABSTRACT** Perovskite solar cells have achieved remarkable progress in photovoltaic efficiency. However, interfacial defects at the buried and upper interfaces of perovskite layer remain a critical challenge, leading to charge recombination, ion migration, and iodine oxidation. To address this, we propose a novel all-in-one modification strategy employing ammonia borane ( $\text{BNH}_6$ ) as a multifunctional complex. By incorporating  $\text{BNH}_6$  at both buried and upper interfaces simultaneously, we achieve dual-interfacial defect passivation and iodide oxidation suppression through three key mechanisms: (1) hydrolysis-induced interaction with  $\text{SnO}_2$ , (2) coordination with  $\text{Pb}^{2+}$ , and (3) inhibition of  $\text{I}^-$  oxidation. This approach significantly enhances device performance, yielding a champion power conversion efficiency (PCE) of 26.43% (certified 25.98%). Furthermore, the unencapsulated device demonstrates prominent enhanced operation stability, maintaining 90% of its initial PCE after 500 h under continuous illumination. Notably, our strategy eliminates the need for separate interface treatments, streamlining fabrication and offering a scalable route toward high-performance perovskite photovoltaics.



**KEYWORDS** Ammonia borane; All-in-one modification; Multifunctional complex; Perovskite solar cells

Jizheng Wang, [jizheng@iccas.ac.cn](mailto:jizheng@iccas.ac.cn)

<sup>1</sup> Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

<sup>2</sup> School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

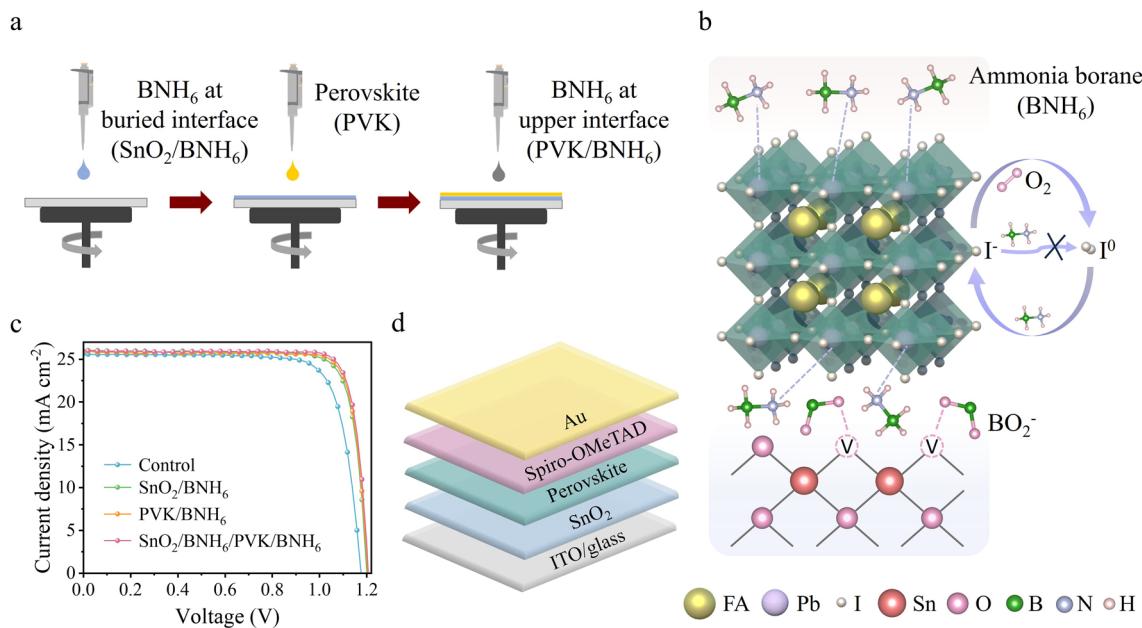
<sup>3</sup> CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China

<sup>4</sup> Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Chinese Academy of Sciences, Beijing, People's Republic of China

## 1 Introduction

Organic–inorganic hybrid perovskite solar cells (PSCs) have become one of the most attractive fields due to their excellent optoelectronic properties [1–5]. The power conversion efficiency (PCE) of PSCs has rapidly reached 27.0% in the past few years [6–8]. This continuous progress is attributed to various attempts, including bandgap modulation [9–11], crystallization behavior regulation [12–17], and interface modification [18–27]. The low-temperature solution method is prevalent for preparing state-of-the-art PSCs. However, perovskite films prepared through such rapid low-temperature approach are liable to generate large numbers of interfacial defects, which serve as nonradiative recombination centers to hinder charge transport [28–31]. To address this, various strategies have been explored. For example, Yi et al. employed 1-[3-(Trimethoxysilyl)propyl]urea (TMPU) at  $\text{SnO}_2$ /perovskite interface and trimethoxy (3,3,3-trifluoropropyl)silane (TMFS) at perovskite/Spiro-OMeTAD interface to passivate detrimental interface defects and facilitate faster carrier extraction [32]. Zheng et al. reported a strategy to dense the hole transport layer (HTL) by introducing (aminomethyl)phosphonic acid (AMP) into the precursor solution, concurrently modifying the top surface of the perovskite with 2-(3-fluorophenyl)ethylamine iodide (mF-PEAI) and piperazinium diiodide (PDI) [33]. These effective interface modification strategies are summarized in Table S1. However, the applying of excessive types of additives is unfavorable to the rapid device manufacturing, as well as the commercial fabrication.

Besides, iodide ions ( $\text{I}^-$ ) in the perovskite layer can migrate under the influence of environmental factors due to their lower formation energy [34]. This migration can lead to an uneven ion distribution at the interfaces, and the accumulation of iodine ions at the interfaces may induce adverse redox reactions, which frequently involve the generation of iodine defects ( $\text{I}^0$ ) [35–37].  $\text{I}^0$  is volatile and can easily escape from the perovskite layer, accelerating the degradation of perovskite. Nevertheless, only a few additives were used to address this issue, such as benzylhydrazine hydrochloride (BHC) [38], the redox pairs of  $\text{Eu}^{3+}$ – $\text{Eu}^{2+}$  [35], and fluoroN,N,N",N"-tetramethylformamidinium hexafluorophosphate (TFFH) [39], serving as reducing agents effectively reduced  $\text{I}^0$  back to  $\text{I}^-$ . In spite of these attempts have been made in improving the performance of PSCs,


these works are all achieved by improving the stability of perovskite precursor solutions. However, when perovskite film is exposed to ambient environment,  $\text{I}^-$  at the interface is more likely to be oxidized and result in defects, making the elimination of interface defects still challenging.

In this work, an all-in-one modification strategy was developed to address these issues. This strategy is achieved by incorporating ammonia borane ( $\text{BNH}_6$ ) into the buried ( $\text{SnO}_2$ / $\text{BNH}_6$ ) and upper (PVK/ $\text{BNH}_6$ ) interfaces of perovskite layer, respectively (Fig. 1a) to realize dual-interfacial defect passivation and iodide oxidation suppression.  $\text{BNH}_6$  is a unique molecular complex composed of electron-rich nitrogen elements and electron-poor boron elements that determine its multifunctionality.  $\text{BNH}_6$  enables the interaction with  $\text{SnO}_2$  through hydrolysis, passivates the uncoordinated  $\text{Pb}^{2+}$  to realize dual-interfacial optimization, and acts as a reducing agent to reduce  $\text{I}^0$  back to  $\text{I}^-$  to inhibit iodide oxidation (Fig. 1b). These unique properties enable  $\text{BNH}_6$  to play an effective role under different treatment conditions (Fig. 1c). Consequently, a typical *n-i-p* PSC (Fig. 1d) with  $\text{BNH}_6$  all-in-one modification achieved a champion efficiency of 26.43% (certified, 25.98%) with negligible current density – voltage ( $J$ – $V$ ) hysteresis. Furthermore, the unencapsulated device demonstrates prominent enhanced operation stability, maintaining 90% of its initial PCE after 500 h under continuous illumination. This work presents a simple and highly effective strategy to address dual-interface defects in perovskite films and eliminate the complexity of multi-additive systems, offering a promising pathway to enhance the compatibility with rapid manufacturing and commercialization.

## 2 Experimental Section

### 2.1 Materials

All the chemicals were purchased from commercial vendors without further purification.  $\text{SnO}_2$  colloid precursor (tin (IV) oxide, 15% in  $\text{H}_2\text{O}$ ), N,N-dimethylformamide (DMF, 99.8%) and dimethyl sulfoxide (DMSO, 99.8%) were purchased from Alfa Aesar. Chlorobenzene (99.8%) and isopropanol (99.5%) were purchased from Sigma-Aldrich. Acetonitrile (99.9%) was purchased from Acros. CsI (99.999%) was purchased from Sigma-Aldrich.  $\text{PbI}_2$  (99.999%), FAI (99.9%) and MACl (99.9%) were purchased from Advanced Election Technology Co., Ltd.



**Fig. 1** Structure and preparation of BNH<sub>6</sub> in perovskites. **a** Schematic of device fabrication processes. SnO<sub>2</sub>/BNH<sub>6</sub> and PVK/BNH<sub>6</sub> are defined as BNH<sub>6</sub> at the buried and upper interfaces of perovskite layer, respectively. **b** Mechanism diagram of BNH<sub>6</sub> modification at different positions. **c** *J*–*V* curves of PSCs under various BNH<sub>6</sub> treatment conditions. **d** Device structure diagram of a typical *n*-*i*-*p* PSC

MeO-PEAI (99%), Spiro-OMeTAD (99.9%), 4-tert-butylpyridine (96%) and LiTFSI (99%) were purchased from Xi'an Polymer Light Technology. Ammonia borane was purchased from Aladdin Bio-Chem Technology Co., Ltd.

## 2.2 Solution Preparation

Tin (IV) oxide colloid solution (15 wt%) was diluted with deionized water (volume ratio: 1:2). The BNH<sub>6</sub> solution (1 mg mL<sup>-1</sup>) coated at the buried interface of perovskite was prepared by dissolving 1.0 mg BNH<sub>6</sub> in 1 mL deionized water. For the Cs<sub>0.05</sub>FA<sub>0.95</sub>PbI<sub>3</sub> precursor solution, 1.4 M FAI, 0.07 M CsI, 1.58 M PbI<sub>2</sub> and 0.49 M MACl were mixed in the solvent of DMF and DMSO (volume ratio: 8:1) and stirred at room temperature for 6 h. The BNH<sub>6</sub> solution (1 mg mL<sup>-1</sup>) coated at the upper interface of perovskite was prepared by dissolving 1.0 mg BNH<sub>6</sub> in 1 mL IPA. The MeO-PEAI solution (3 mg mL<sup>-1</sup>) was prepared by dissolving 3 mg MeO-PEAI in 1 mL IPA. The Spiro-OMeTAD solution was prepared by dissolving 72.3 mg of Spiro-OMeTAD, 28.8  $\mu$ L of t-BP, and 35  $\mu$ L of Li-TFSI solution (260 mg mL<sup>-1</sup>, in acetonitrile) in 1 mL chlorobenzene.

## 2.3 Device Fabrication

The ITO substrate was cleaned in deionized water, acetone, and ethanol in sequence, followed by being treated with oxygen plasma for 10 min. Next, the SnO<sub>2</sub> colloid solution was spin-coated onto the substrate at 4000 rpm for 30 s and annealed at 150 °C for 30 min in ambient to form the SnO<sub>2</sub> film. Then the BNH<sub>6</sub> solution (dissolved in deionized water) was spin-coated on the SnO<sub>2</sub> film at 4,000 rpm for 30 s and annealed at 150 °C for 10 min in ambient to form the SnO<sub>2</sub>/BNH<sub>6</sub> film. After cooling down, the SnO<sub>2</sub> or SnO<sub>2</sub>/BNH<sub>6</sub> films were treated with oxygen plasma (60 W) for 5 min. Then the perovskite solution (60  $\mu$ L) was spin-coated at 1000 rpm for 10 s and 5000 rpm for 30 s. At 20 s from the last, 700  $\mu$ L diethyl ether (DEE) as an antisolvent was rapidly dropped onto the substrate. Then the perovskite precursor film was annealed at 120 °C for 1 h under an ambient atmosphere with ~25% RH. After the perovskite film was cooled down, the sample was transferred to a nitrogen-filled glove box for further processing. The BNH<sub>6</sub> solution (dissolved in IPA) was spin-coated on the perovskite film at 4000 rpm for 30 s. Then the MeO-PEAI solution (100  $\mu$ L) was spin-coated for passivation at 4000 rpm for 30 s. Then the perovskite film was annealed at 100 °C for 5 min. The

Spiro-OMeTAD solution (50  $\mu$ L) was spin-coated onto the perovskite layer at 4000 rpm for 30 s. Finally, 80 nm Au electrode was deposited by thermal evaporation.

## 2.4 Density Functional Theory Calculation

Theoretical calculations were performed with the Vienna ab initio simulation package (VASP). The exchange–correlation energy is described by the Perdew–Burke–Ernzerhof (PBE) form of generalized-gradient approximation (GGA) exchange–correlation energy functional. The structure optimizations of systems of  $\text{BH}_3\text{NH}_3$  before and after adsorption on  $\text{PbI}_2$  and FAI terminal  $\text{FAPbI}_3$  (100) surfaces have been carried out by allowing top layer atomic positions to vary and fixing lattice parameters and bottom layer atomic positions until the energy difference of successive atom configurations was less than  $10^{-6}$  eV. The force on each atom in the relaxed structures was less than 0.015 eV  $\text{\AA}^{-1}$ . The cutoff energy for the plane-wave basis set was set to 400 eV. The k-point spacing was set to be smaller than 0.03  $\text{\AA}^{-1}$  over Brillouin zone (BZ).

## 2.5 Measurements

The current density – voltage ( $J – V$ ) characteristics of the devices were measured using a Keithley 2420 under AM 1.5 sunlight at an irradiance of 100 mW  $\text{cm}^{-2}$  provided by a solar simulator (Newport, Oriel Sol3A Class AAA, 94043A). Light intensity was calibrated using a monocrystalline silicon reference cell with a KG5 window (Newport, Oriel 91,150). The  $J – V$  curves were obtained with a scan rate of 100 mV  $\text{s}^{-1}$  and a scan step of 20 mV from 1.22 to 0.00 V (reverse) or from 0.00 to 1.22 V (forward). The area of the cell is 0.1225  $\text{cm}^2$  and a mask of 0.09881  $\text{cm}^2$  (certified by NIM, China. The certificate No.: CDjc2023 – 08390) was used to determine the effective area of the device before the test. Heating acceleration: Unencapsulated devices were heated at  $65 \pm 3$  °C in a nitrogen atmosphere (ISOS-T-1). Long-term light stability tests: Unencapsulated devices were treated by white light-emitting diode (LED) with an intensity of 100 mW  $\text{cm}^{-2}$  at  $23 \pm 3$  °C in a nitrogen atmosphere (ISOS-L-1). EQE measurements were recorded by an Enli Technology EQE system, which was calibrated by a certified silicon solar cell. The scan interval was 5 nm, and there was no bias light and mask used during the measurement. The top-view and cross-sectional SEM images were obtained using Hitachi S-4800

at the accelerating voltage of 5.0 kV. The surface roughness of perovskite film was measured by an AFM (Nanoscope V, Vecco) in tapping mode under the ambient atmosphere. The XRD patterns were taken on PANalytical Empyrean with a Cu K $\alpha$  radiation ( $\lambda = 1.5406 \text{ \AA}$ ) and a scanning rate of 5°  $\text{min}^{-1}$  in the 2 $\theta$  range of 5°–50° at a step size of 0.02 s. 2D-XRD spectra were measured using a Rigaku SmartLab X-ray diffractometer with Cu K $\alpha 1$  (1.54060  $\text{\AA}$ ) and a HyPix-3000 2D hybrid pixel array detector. All samples for XRD testing were prepared on quartz glass substrates. The steady PL spectra was recorded by Horiba FluoroMax + fluorescence spectrometer with an excitation at 490 nm. Time-resolved PL was carried out by the FLS980 fluorescence spectrometer with excitation wavelength at 485 nm. ToF–SIMS profiling measured the depth distributions of the negative ions with perovskite on the ITO substrate. The samples were analyzed using a ToF–SIMS 5 instrument (IONTOF) with a Bi + primary beam (10 keV and 1 pA) and Cs + sputter beam (3 keV and 5 nA). The sputter size was 100  $\mu\text{m} \times 100 \mu\text{m}$ . The UV absorption spectra of perovskite films and FAI solutions were measured using a Hitachi U3900 spectrophotometer. XPS/UPS measurements were obtained using an XPS/UPS system (ESCALAB250XI, Thermo Fisher Scientific). LEIPS measurement was performed on a customized ULVAC-PHI LEIPS instrument with Bremsstrahlung isochromatic mode. FTIR were performed on a HITACHI F-4500IR spectrometer with samples prepared as KBr tablets. The mass ratio of the sample to KBr is 1:100. Raman spectra were recorded using an NT-MDT NTEGRA Spectra system. EIS and M-S tests were measured with an electrochemical workstation (Modulab XM, USA).  $^1\text{H}$  NMR spectra were recorded on a Bruker Avance 400 Spectrometer. The concentration of the sample is 10 mg  $\text{mL}^{-1}$  in  $\text{DMSO}-d_6$ .

## 2.6 Calculation Methods

### 2.6.1 Conductivity and Electron Mobility

The conductivity ( $\sigma$ ) was calculated using Eq. (1):

$$\sigma = \frac{I}{V} \quad (1)$$

where  $I$  is the current,  $V$  is the voltage.

The electron mobility ( $\mu_e$ ) was calculated using Eq. (2):

$$J = \frac{9}{8} \epsilon \epsilon_0 \mu \frac{V^2}{L^3} \quad (2)$$

where  $J$  is the current density,  $\epsilon$  is the relative dielectric constant,  $\epsilon_0$  is vacuum permittivity,  $V$  is the voltage, and  $L$  is the film thickness.

### 2.6.2 Residual Stress

The residual stress ( $\sigma$ ) was calculated using Eq. (3):

$$\sigma = -\frac{E}{2(1+\nu)} \frac{\pi}{180^\circ} \cot \theta_0 \frac{\partial(2\theta)}{\partial(\sin^2 \psi)} \quad (3)$$

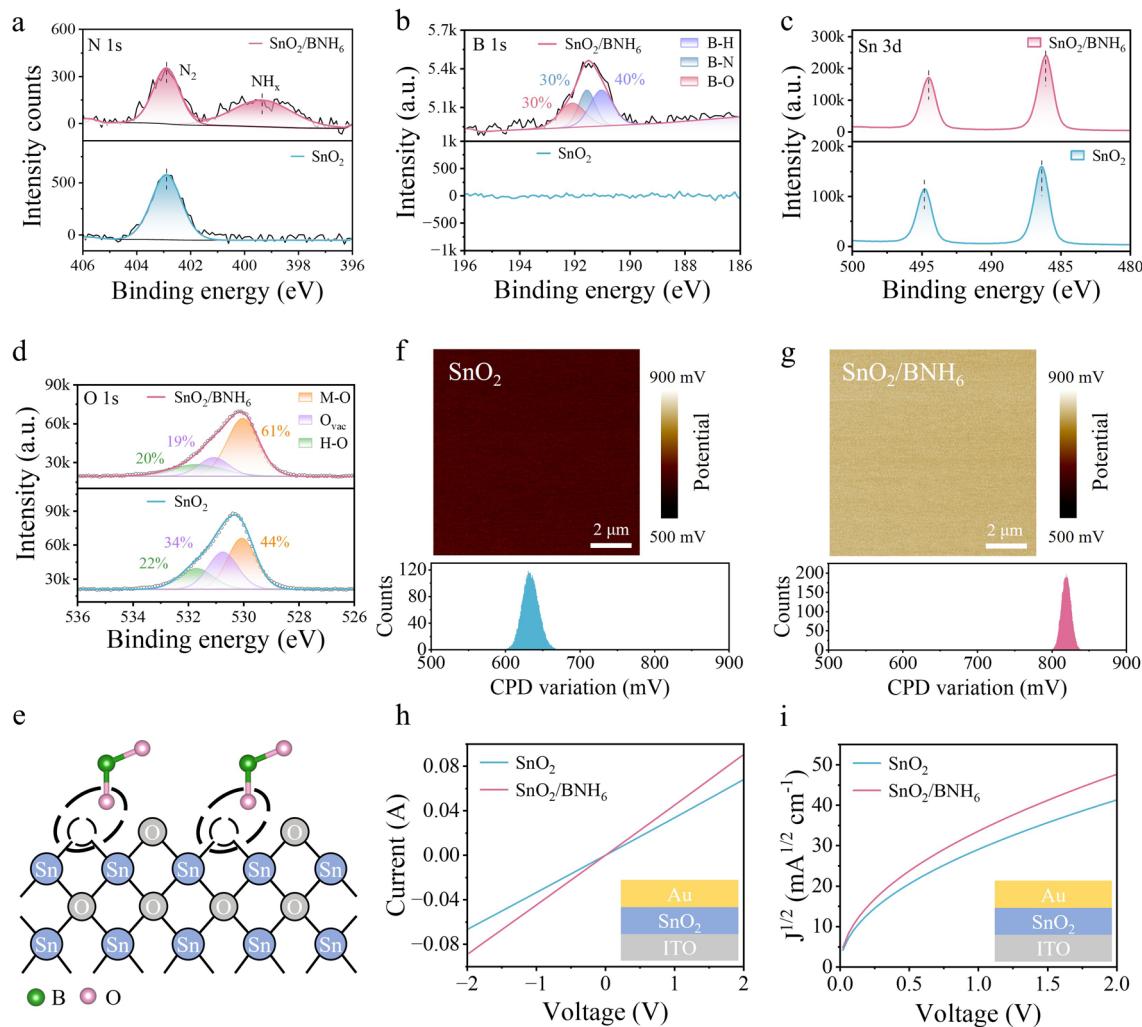
where  $E$  is the perovskite modulus (10 GPa), and  $\nu$  is the Poisson's ratio of perovskite (0.3).

### 2.6.3 Ideality Factor

The diode ideality factor ( $n$ ) was determined by fitting  $V_{oc}$  as a function of light intensity using Eq. (4):

$$V_{oc} = \frac{n k T \ln(I_{light})}{q} + C \quad (4)$$

where  $n$  represents the ideality factor to single-molecule recombination,  $I_{light}$  is the light intensity,  $k$  is Boltzmann's constant,  $T$  is temperature, and  $q$  is the elementary charge.

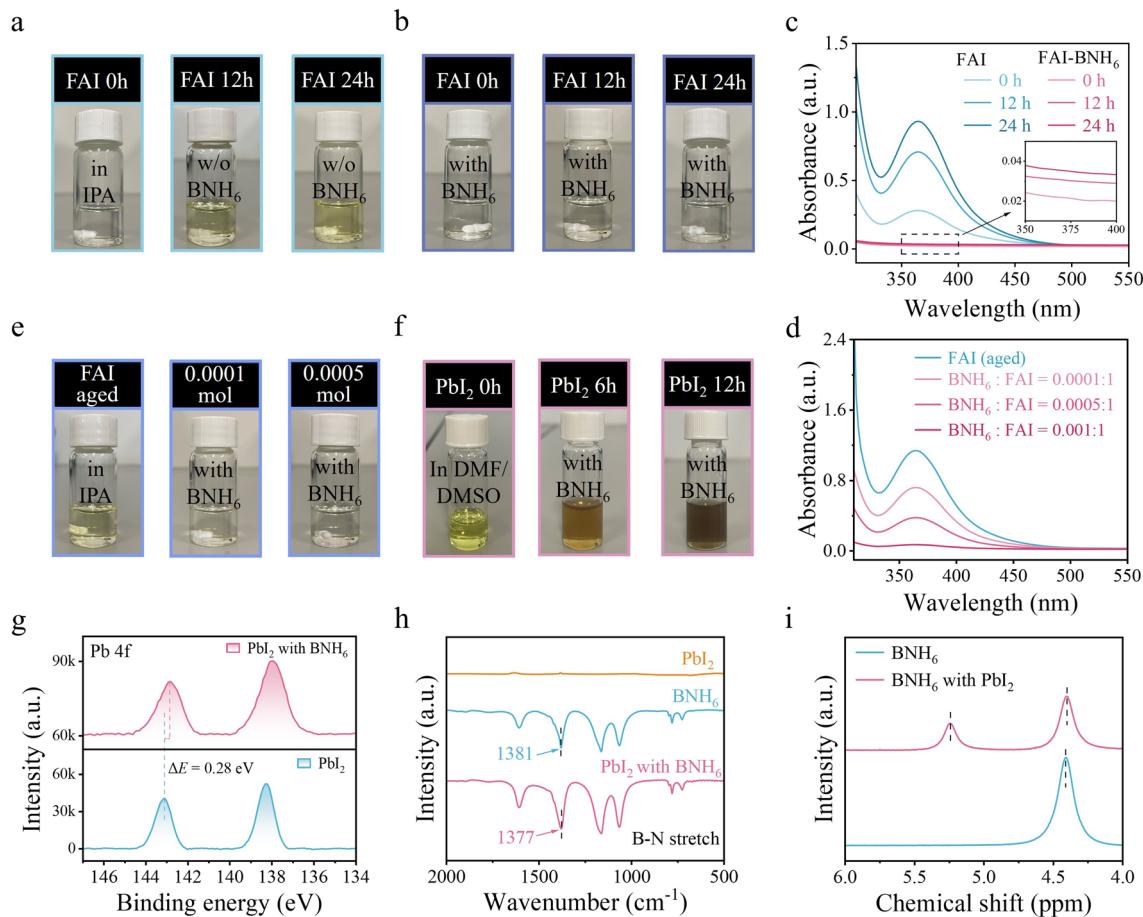

## 3 Results and Discussion

### 3.1 Interaction Between BNH<sub>6</sub> and SnO<sub>2</sub>

The hydrolysis characteristic of BNH<sub>6</sub> leads to the production of BO<sub>2</sub><sup>-</sup> (Fig. S1) [40], which can interact with SnO<sub>2</sub>. To further investigate the interaction between BNH<sub>6</sub> and SnO<sub>2</sub>, X-ray photoelectron spectroscopy (XPS) was carried out for the SnO<sub>2</sub> film (SnO<sub>2</sub>) and BNH<sub>6</sub> treated SnO<sub>2</sub> film (SnO<sub>2</sub>/BNH<sub>6</sub>). In the N 1s spectra (Fig. 2a), the peaks around 403 eV originate from molecular N<sub>2</sub> adsorbed on the surface of SnO<sub>2</sub>, and the occurrence of NH<sub>x</sub> around 399 eV in the SnO<sub>2</sub>/BNH<sub>6</sub> film confirms that BNH<sub>6</sub> was successfully introduced and hydrolyzed to produce NH<sub>4</sub><sup>+</sup> during annealing process. In the B 1s spectra (Fig. 2b), the signal of the SnO<sub>2</sub>/BNH<sub>6</sub> film can be divided into three peaks. The peak around 192.1, 191.6, and 191.0 eV represents the B–O peak, B–N peak and B–H peak, respectively. To investigate the proportion of BO<sub>2</sub><sup>-</sup> produced by hydrolysis of BNH<sub>6</sub>, the value obtained by the integrated areas ratio of  $S_{B-O}/(S_{B-O} + S_{B-N} + S_{B-H})$  is 30%, indicating that 30% of BNH<sub>6</sub> molecules hydrolyze to produce BO<sub>2</sub><sup>-</sup>. Besides,

the above results indicate that most BNH<sub>6</sub> molecules are not hydrolyzed and still exist in the form of B–N and B–H bonds, which will be beneficial for the subsequent film formation and defects passivation of perovskite. The Sn 3d peaks at 486.4 and 494.8 eV for the SnO<sub>2</sub> film shift to 486.1 and 494.5 eV for the SnO<sub>2</sub>/BNH<sub>6</sub> film, respectively, which indicates the electron density increased after BNH<sub>6</sub> treated owing to the negative charge on BO<sub>2</sub><sup>-</sup> (Fig. 2c). As revealed by O 1s spectra (Fig. 2d), the signals of the SnO<sub>2</sub> and SnO<sub>2</sub>/BNH<sub>6</sub> films can be fitted into three peaks. The peak at about 530 eV is assigned to the lattice oxygen (M–O), representing the fully coordinated oxygen atoms within the SnO<sub>2</sub> crystal lattice. The peak at about 531 eV is attributed to oxygen vacancies (O<sub>vac</sub>), which is associated with defect-related states. And the peak at about 532 eV corresponds to surface hydroxyl groups or adsorbed water [41, 42]. It is easily found that the relative intensities of M–O increased (from 44% to 61%), as well as O<sub>vac</sub> (from 34% to 19%) and H–O (from 22% to 20%) decreased after BNH<sub>6</sub> modification, indicating suppressed nonradiative recombination and enhanced electron mobility [43], which is attributed to the occupation of BO<sub>2</sub><sup>-</sup> on O<sub>vac</sub> (Fig. 2e). In addition, during the actual device fabrication process, the O 1s XPS spectra of SnO<sub>2</sub> and SnO<sub>2</sub>/BNH<sub>6</sub> films treated by oxygen plasma exhibit higher M–O relative intensity and lower O<sub>vac</sub> and H–O relative intensities compared to the untreated films (Fig. S2). Correspondingly, the performance of the resulting devices is also enhanced (Fig. S3 and Table S2). These features suggest a strong interaction between BNH<sub>6</sub> and SnO<sub>2</sub> due to the hydrolysis product of BNH<sub>6</sub> (BO<sub>2</sub><sup>-</sup>), interacting with the uncoordinated Sn<sup>4+</sup> by filling O<sub>vac</sub> through adsorption. In addition, the SnO<sub>2</sub> and SnO<sub>2</sub>/BNH<sub>6</sub> films were subjected to X-ray diffraction (XRD) characterization. As shown in Fig. S4, the position and diffraction intensity of peaks are almost the same after BNH<sub>6</sub> modification, illustrating that BNH<sub>6</sub> does not damage the structure of the pristine SnO<sub>2</sub>.

To investigate the energy band structure of the SnO<sub>2</sub> and SnO<sub>2</sub>/BNH<sub>6</sub> films, ultraviolet photoelectron spectroscopy (UPS) and low energy inverse photoemission spectroscopy (LEIPS) were carried out. As shown in Fig. S5, the secondary electron cutoff edges ( $E_{cutoff}$ ) shifts from 16.72 to 16.82 eV after BNH<sub>6</sub> modification, resulting in a decrease work function from 4.50 to 4.40 eV. Meanwhile, the conduction band ( $E_C$ ) shifts from –4.44 to –4.29 eV after the introduction of BNH<sub>6</sub> (Fig. S6). The better matching of energy levels with perovskite for SnO<sub>2</sub>/BNH<sub>6</sub> is expected




**Fig. 2** Interaction between  $\text{BNH}_6$  and  $\text{SnO}_2$ . **a** N 1s, **b** B 1s, **c** Sn 3d, **d** O 1s XPS spectra of the  $\text{SnO}_2$  and  $\text{SnO}_2/\text{BNH}_6$  films. **e** Schematic illustration of the occupation of  $\text{BO}_2^-$  on  $\text{O}_\text{V}$ . KPFM images of the **f**  $\text{SnO}_2$  film and **g**  $\text{SnO}_2/\text{BNH}_6$  film. The statistical potential distributions of film surfaces are shown at the bottom. CPD, contact potential difference. **h** The electrical conductivity and **i** the electron mobility of the  $\text{SnO}_2$  and  $\text{SnO}_2/\text{BNH}_6$  films. Inset shows the architecture of devices

to reduce interface energy barrier and thus suppress interface recombination. Then Kelvin probe force microscopy (KPFM) was measured to study the electrical charge distribution on the film surface, with contact potential difference (CPD) spectra shown in Fig. 2f, g. The  $\text{SnO}_2/\text{BNH}_6$  film showed a higher CPD (819 mV) compared with the  $\text{SnO}_2$  film (634 mV), indicating a decrease in the work function and an increase of the Fermi level, which is consistent with the result of UPS.

In addition, the transmittance of  $\text{SnO}_2$  layer coated on indium doped tin oxide (ITO) glass is not affected with  $\text{BNH}_6$  modification (Fig. S7). And the absorption edge of  $\text{SnO}_2$  nearly does not change after  $\text{BNH}_6$  modified (Fig.

S8). The conductivity of the  $\text{SnO}_2/\text{BNH}_6$  film ( $3.37 \times 10^{-3} \text{ mS cm}^{-1}$ ) is significantly higher than that of the  $\text{SnO}_2$  film ( $2.53 \times 10^{-3} \text{ mS cm}^{-1}$ ) (Fig. 2h), and the electron mobility of the  $\text{SnO}_2/\text{BNH}_6$  film ( $3.18 \times 10^{-3} \text{ cm}^2 \text{ V}^{-1} \text{ S}^{-1}$ ) is also greater than that of the  $\text{SnO}_2$  film ( $2.43 \times 10^{-3} \text{ cm}^2 \text{ V}^{-1} \text{ S}^{-1}$ ) (Fig. 2i). The enhanced charge transport provides preferable electron diffusion and charge extraction, achieving higher open circuit voltage ( $V_{\text{OC}}$ ) and fill factor (FF) of PSCs. The atomic force microscope (AFM) measurement was carried out to study the root mean square (RMS), which is 1.21 and 0.80 nm for the  $\text{SnO}_2$  and  $\text{SnO}_2/\text{BNH}_6$  films, respectively (Fig. S9). The reduced roughness of the  $\text{SnO}_2/\text{BNH}_6$  film is attributed to the reduction in  $\text{O}_\text{V}$ , which is conducive to



**Fig. 3** Interaction between BNH<sub>6</sub> and FAI/PbI<sub>2</sub>. **a** The color change process of fresh FAI solution without BNH<sub>6</sub> additive after ambient aging. **b** The color change process of fresh FAI solution with BNH<sub>6</sub> additive after ambient aging. **c** UV-vis absorption spectra of fresh FAI solution with and without BNH<sub>6</sub> after ambient aging. **d** UV-vis absorption spectra of aged FAI solution after introducing different concentrations of BNH<sub>6</sub>. **e** The color change process of aged FAI solution after introducing different concentrations of BNH<sub>6</sub>. **f** The color change process of PbI<sub>2</sub> solution with BNH<sub>6</sub> after ambient aging. **g** Pb 4f XPS spectra of PbI<sub>2</sub> powders with and without BNH<sub>6</sub>. **h** FTIR spectra of PbI<sub>2</sub>, BNH<sub>6</sub>, and PbI<sub>2</sub> with BNH<sub>6</sub> films. **i** <sup>1</sup>H NMR spectra of BNH<sub>6</sub> and BNH<sub>6</sub> with PbI<sub>2</sub>

facilitating optimal contact with perovskite film [44]. Additionally, the contact angle of the SnO<sub>2</sub>/BNH<sub>6</sub> film (4.8°), is obviously smaller than that of the SnO<sub>2</sub> film (7.2°), measuring by dropping perovskite precursor solution on the SnO<sub>2</sub> and SnO<sub>2</sub>/BNH<sub>6</sub> films, respectively (Fig. S10). The improved wettability indicates the better coverage for perovskite, which is consistent with the RMS results.

### 3.2 Interaction Between BNH<sub>6</sub> and FAI/PbI<sub>2</sub>

The reaction between I<sup>-</sup> and O<sub>2</sub> has a thermodynamic tendency when the perovskite precursor solution is exposed

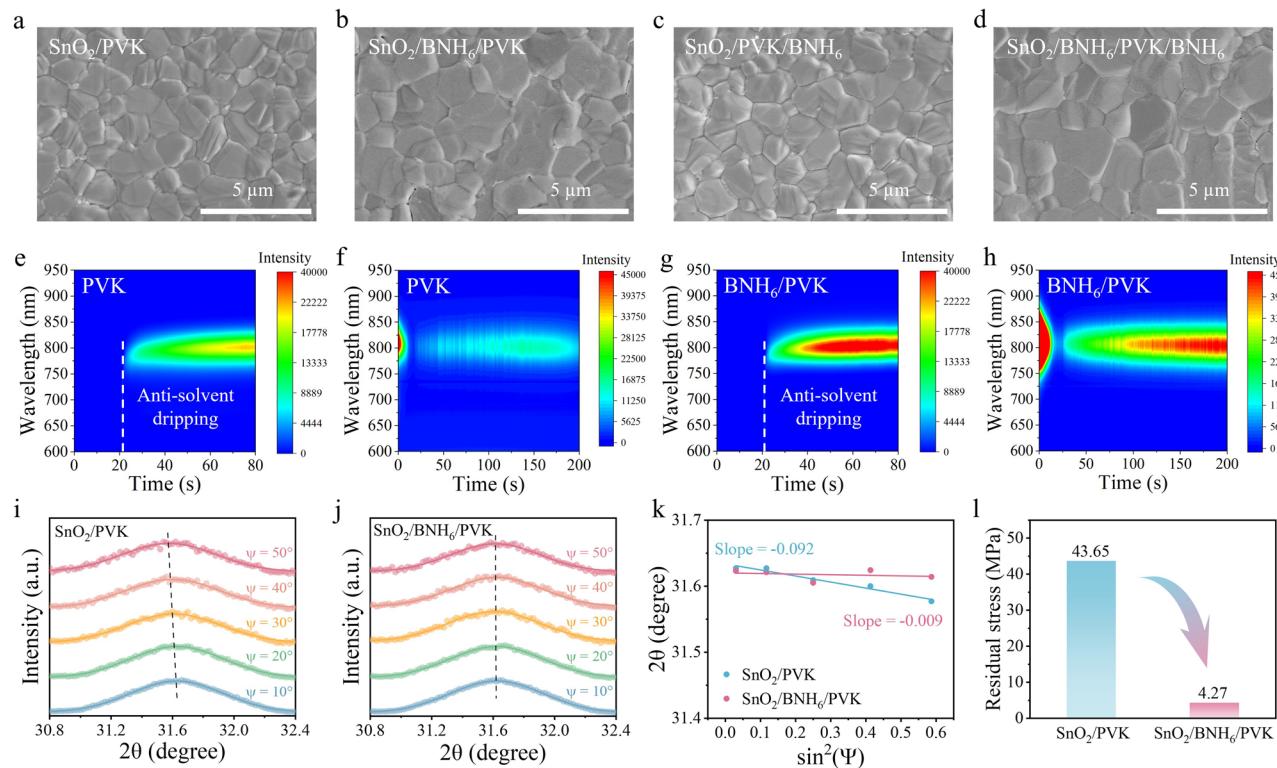
to air, leading to the degradation of the precursor solution, thus seriously affecting the performance of devices [38]. Meanwhile, the depletion of I<sup>-</sup> generates iodine interstitials accessibly, which is prone to form deep trapping states, causing more nonradiative recombination. To address this issue, BNH<sub>6</sub> is applied and its function can be expressed by Fig. S11. We first attempted to mix BNH<sub>6</sub> (0.001 mol) and FAI (1 mol) in 1 mL DMF to investigate the interaction between BNH<sub>6</sub> and FAI. After continuous stirring along with 60 °C heating and air exposure, the transparent FAI solution without BNH<sub>6</sub> turned to light yellow after 12 h aging and became bright yellow after 24 h aging (Fig. 3a). An absorption peak at 365 nm in the

ultraviolet visible absorption spectroscopy (UV-vis) spectra gradually increased with aging time (Fig. 3c), which is ascribed to the oxidation of  $I^-$  into  $I^0$ . Surprisingly, the color of FAI solution mixed with  $BNH_6$  remained transparent after 24 h aging (Fig. 3b), which is consistent with the result of almost no peak at 365 nm in the UV-vis spectra (Fig. 3c), demonstrating  $BNH_6$  can suppress the oxidation from  $I^-$  to  $I^0$ . Importantly, yellow returned to transparent when  $BNH_6$  with increased concentrations were added to the aged FAI solution, accompanied by a notable reduction in the absorption peak observed at 365 nm (Fig. 3d, e). This result proves that the formed  $I^0$  can be reduced to  $I^-$  with the  $BNH_6$  addition. To further quantitatively demonstrate the effectiveness of  $BNH_6$  in inhibiting  $I^-$  oxidation, we have supplemented ion chromatography (IC) measurements. Specifically, we dissolved 8 mg of FAI in 100 mL of deionized water at ambient conditions and monitored the concentration of  $I^-$  at different aging times. As shown in Fig. S12, the  $I^-$  concentration gradually decreased with time, indicating progressive oxidation of  $I^-$  to  $I_2$ . In contrast, after adding  $BNH_6$  to the solution, the  $I^-$  concentration remained almost unchanged over the same aging period, and was significantly higher than that in the control sample without  $BNH_6$ . After 72 h, the  $I^-$  concentration in the sample without  $BNH_6$  decreased by 5.0%, while the  $I^-$  concentration in the sample with  $BNH_6$  addition decreased by only 0.7%. These results provide clear and quantitative evidence that  $BNH_6$  can effectively suppress the oxidation of  $I^-$  and thus mitigate the formation of elemental iodine. The reducibility of  $BNH_6$  is due to the H atom connected to the B atom can lose electrons and be oxidized to  $H_2$ . The chemical reaction equation for  $BNH_6$  reducing  $I^0$  to  $I^-$  is speculated as follows:



To explore the coordination between  $BNH_6$  and Pb–I framework, density functional theory (DFT) was employed to calculate the adsorption energies of  $BNH_6$  on the surface of  $FAPbI_3$  both with  $PbI_2$  and FAI terminations (Fig. S13). DFT calculations show that  $BNH_6$  is likely to bind to the FAI–terminated surface more stable with the adsorption energy of  $-2.15$  eV compared with the  $PbI_2$ -terminated surface with the adsorption energy of  $-1.03$  eV.

Then  $BNH_6$  was added to  $PbI_2$  solution resulted in a noticeable color change after stirring for 6 h at room

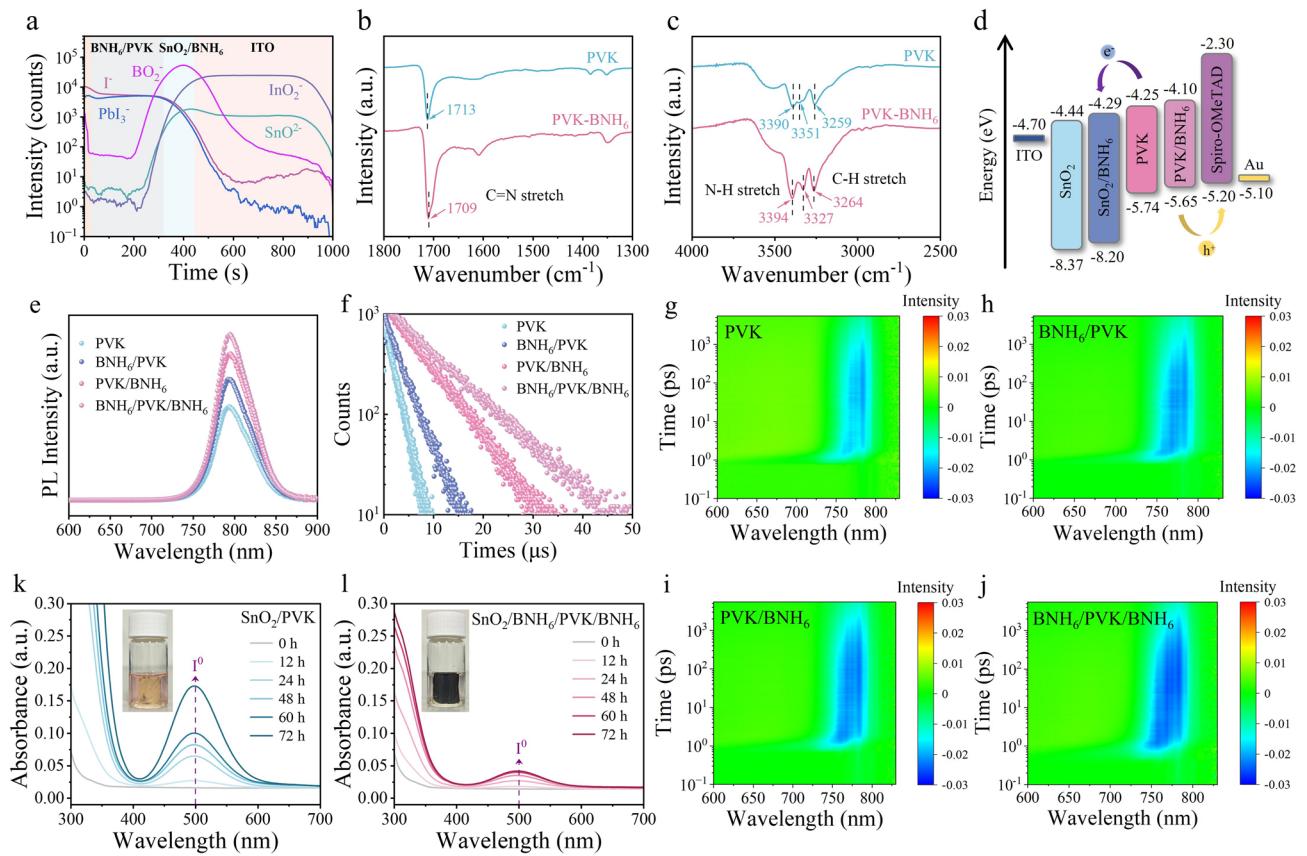

temperature. The color of the solution deepened significantly after 12 h (Fig. 3f) while the pristine  $PbI_2$  solution displayed no obvious alteration (Fig. S14), which is derived from the coordination between the N atom in  $BNH_6$  and  $Pb^{2+}$ . To further testify this coordination, XPS, Fourier transform infrared spectroscopy (FTIR) and  $^1H$  nuclear magnetic resonance (NMR) were employed. In the XPS spectra (Fig. 3g), the  $Pb 4f$  peaks of  $PbI_2$  powders shift to lower binding energy after the introduction of  $BNH_6$ , which is originated from the electron transfer from  $BNH_6$  to  $Pb^{2+}$ , indicating the coordination of  $Pb$ –N. Additionally, FTIR analysis revealed shifts in the stretching vibration peaks of N–H (Fig. S15) and B–N (Fig. 3h) after mixing with  $PbI_2$ , suggesting potential coordination interactions between  $BNH_6$  and  $Pb^{2+}$ . Furthermore, in the  $^1H$  NMR spectra (Fig. 3i), the peak at 4.41 ppm, corresponding to the H atoms connected to B atoms in pure  $BNH_6$ , splits into two peaks at 5.24 and 4.40 ppm upon the addition of  $PbI_2$ . This shift suggests a strong interaction between  $BNH_6$  and  $PbI_2$ , which alters the chemical environments of the H atoms in the  $BH_3$  group. This behavior is likely due to the breaking of B–N bonds in some  $BNH_6$  molecules allowing the N atom with lone pair electrons to coordinate with  $Pb^{2+}$  [45–47]. To quantify the extent of B–N bond breakage in  $BNH_6$  molecules during interaction with  $Pb^{2+}$  from the  $^1H$  NMR spectra, the following formula was applied:

$$BNH_6 \text{ breakage\%} = \frac{S_{Pb-N}}{S_{Pb-N} + S_{B-N}} \quad (6)$$

where  $S_{Pb-N}$  represents the integrated area of the Pb–N peak, and  $S_{B-N}$  represents the integrated area of the B–N peak. The calculation result suggests that 29% of  $BNH_6$  molecules can additionally coordinate with  $Pb^{2+}$ .

### 3.3 Film Characterization

The morphology of perovskite films with and without  $BNH_6$  modification was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM images (Fig. 4a–d) show that the perovskite film with  $BNH_6$  buried modification ( $SnO_2/BNH_6/PVK$ ) exhibits significantly much larger grain size, indicating that  $BNH_6$  positively affects the crystallization of perovskite. While the grain size of the perovskite film with  $BNH_6$  upper modification ( $SnO_2/PVK/BNH_6$ ) does not increase significantly. This




**Fig. 4** Characteristics of perovskite films. SEM images of **a**  $\text{SnO}_2/\text{PVK}$ , **b**  $\text{SnO}_2/\text{BNH}_6/\text{PVK}$ , **c**  $\text{SnO}_2/\text{PVK}/\text{BNH}_6$  and **d**  $\text{SnO}_2/\text{BNH}_6/\text{PVK}/\text{BNH}_6$  films. In situ PL spectra of the PVK film during the **e** spin-coating and **f** annealing process. In situ PL spectra of the  $\text{BNH}_6/\text{PVK}$  film during the **g** spin-coating and **h** annealing process. GIXRD spectra at different  $\Psi$  angles (from  $10^\circ$  to  $50^\circ$ ) of **i**  $\text{SnO}_2/\text{PVK}$  and **j**  $\text{SnO}_2/\text{BNH}_6/\text{PVK}$  films. **k** Linear fit of  $2\theta - \sin^2\psi$  for the  $\text{SnO}_2/\text{PVK}$  and  $\text{SnO}_2/\text{BNH}_6/\text{PVK}$  films. **l** Comparison of residual stress of the  $\text{SnO}_2/\text{PVK}$  and  $\text{SnO}_2/\text{BNH}_6/\text{PVK}$  films

is because  $\text{BNH}_6$  mainly plays the role of passivating  $\text{Pb}^{2+}$  and reducing  $\text{I}^0$  at the upper interface rather than regulating crystallization. The grain-size distributions of these films are displayed in Fig. S16. The pristine perovskite ( $\text{SnO}_2/\text{PVK}$ ) film has an average grain size of  $1.59\ \mu\text{m}$ , while the  $\text{SnO}_2/\text{BNH}_6/\text{PVK}$ ,  $\text{SnO}_2/\text{PVK}/\text{BNH}_6$  and the dual-interface modified ( $\text{SnO}_2/\text{BNH}_6/\text{PVK}/\text{BNH}_6$ ) films reveal larger size of  $2.26$ ,  $1.70$ , and  $2.15\ \mu\text{m}$ , respectively. Meanwhile, the root mean square (RMS) roughness of  $\text{SnO}_2/\text{PVK}$  film measured by AFM (Fig. S17) is  $27.8\ \text{nm}$ , and the reduced roughness in the  $\text{SnO}_2/\text{BNH}_6/\text{PVK}$  ( $23.5\ \text{nm}$ ),  $\text{SnO}_2/\text{PVK}/\text{BNH}_6$  ( $24.7\ \text{nm}$ ) and  $\text{SnO}_2/\text{BNH}_6/\text{PVK}/\text{BNH}_6$  ( $19.0\ \text{nm}$ ) films is beneficial for defects suppression and charge extraction [47].

2D X-ray diffraction (2D-XRD) was conducted to explore the crystallization of perovskite film with and without  $\text{BNH}_6$  modification (Fig. S18). The results show that the (001) and (002) crystal planes of  $\alpha\text{-FAPbI}_3$  are aligned parallel to the substrate normal, with no noticeable change across all the samples. Besides, the diffraction peaks of (001) and

(002) crystal planes significantly enhanced for the  $\text{SnO}_2/\text{BNH}_6/\text{PVK}$  film, while no obvious changes are found for the  $\text{SnO}_2/\text{PVK}/\text{BNH}_6$  film. The same phenomenon is observed from XRD patterns (Fig. S19). By comparison, the  $\text{SnO}_2/\text{BNH}_6/\text{PVK}/\text{BNH}_6$  film exhibits better crystal orientation of  $\alpha\text{-FAPbI}_3$  for facilitating charge transfer. To further clarify the impact of  $\text{BNH}_6$  modification on the crystallization of perovskite, in situ photoluminescence (PL) measurement was performed during perovskite fabrication process. Figure 4e–h depicts the in situ PL spectra of perovskite films during spin coating and thermal annealing processes. During the spin coating stage, the  $\text{BNH}_6/\text{PVK}$  film displays a stronger PL intensity in a shorter time upon anti-solvent dripping (Fig. 4e, g), implying the faster nucleation of  $\alpha\text{-FAPbI}_3$  for the  $\text{BNH}_6/\text{PVK}$  film [48, 49]. During the thermal annealing process (Fig. 4f, h), rapidly increasing PL intensities of the both films arise due to the generation of  $\alpha\text{-FAPbI}_3$ , and the subsequent sharp decrease can be mainly attributed to solvent volatilization and crystallization

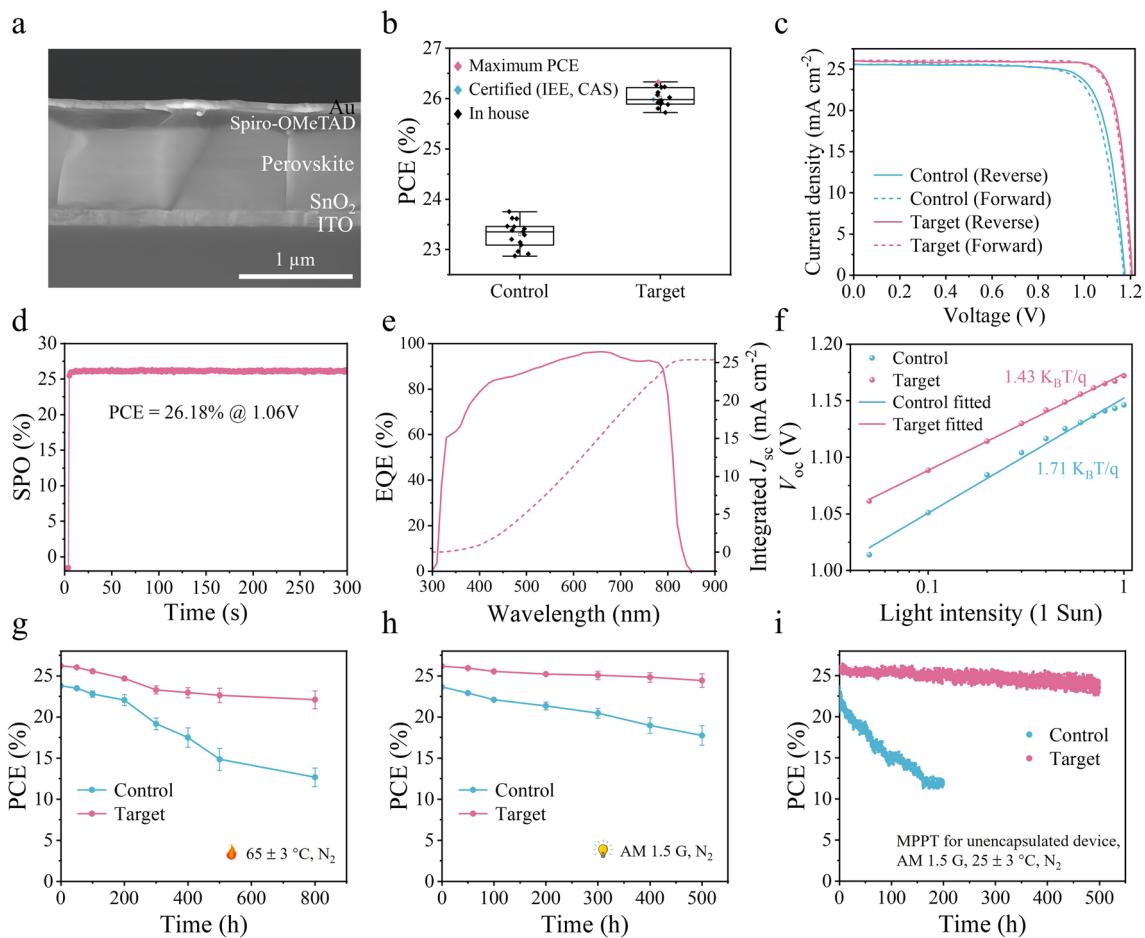


**Fig. 5** Characteristics of perovskite films. **a** ToF-SIMS depth profiles of  $I^-$ ,  $PbI_3^-$ ,  $InO_2^-$ ,  $SnO_2^-$  and  $BO_2^-$  for ITO/ $SnO_2/BNH_6/PVK/BNH_6$ . **b**, **c** FTIR spectra of the PVK and PVK-BNH<sub>6</sub> films. **d** The schematic diagram of the energy level arrangement of the components with and without BNH<sub>6</sub>. **e** PL and **f** TRPL spectra of the PVK, BNH<sub>6</sub>/PVK, PVK/BNH<sub>6</sub> and BNH<sub>6</sub>/PVK/BNH<sub>6</sub> films. Characteristic pseudo-color TAS plots of the **g** PVK, **h** BNH<sub>6</sub>/PVK, **i** PVK/BNH<sub>6</sub> and **j** BNH<sub>6</sub>/PVK/BNH<sub>6</sub> films. UV-vis spectra of the toluene immersed with the **k** SnO<sub>2</sub>/PVK and **l** SnO<sub>2</sub>/BNH<sub>6</sub>/PVK/BNH<sub>6</sub> films under light and heat exposure at different times. Inset photographs are the samples after light and heat aging for 72 h

restructuring [50–52]. Then the re-enhanced and gradually stabilized PL intensity exhibits the dissolution–recrystallization equilibrium of  $\alpha$ -FAPbI<sub>3</sub> on the surface. The PL intensity of the BNH<sub>6</sub>/PVK film begins to sharply increase at 27 s, later than 19 s of the PVK film, indicating BNH<sub>6</sub> effectively slows down the crystal growth. The rapid nucleation and delayed crystal growth of the BNH<sub>6</sub>/PVK film signifies higher quality perovskite with less nonradiative recombination, which is attributed to the ability of BNH<sub>6</sub> to regulate the crystallization of perovskite.

The remarkable improvement in the crystallinity of the perovskite also affects the release of residual stress. Grazing-incidence X-ray diffraction (GIXRD) was investigated at various angles to assess the residual stress in perovskite films. The diffraction peaks of (012) crystal plane for the SnO<sub>2</sub>/PVK progressively shift to the lower  $2\theta$  by varying

$\psi$  from 10° to 50° (Fig. 4i, j), indicating the increase in the crystal plane distance  $d_{(012)}$  and the presence of tensile stress in the film. In contrast, the SnO<sub>2</sub>/BNH<sub>6</sub>/PVK film exhibits negligible shifts across different angles, suggesting that the  $d_{(012)}$  remains nearly constant at different depths of the perovskite film, indicating released residual stress. The slopes of the fitted lines by fitting  $2\theta$  as a function of  $\sin^2\psi$  and the residual stress are shown in Fig. 4k, l. The SnO<sub>2</sub>/BNH<sub>6</sub>/PVK film exhibited smaller negative slope ( $-0.009$ ) and residual stress (4.27 MPa) compared with the negative slope ( $-0.092$ ) and residual stress (43.65 MPa) for the SnO<sub>2</sub>/PVK film, suggesting BNH<sub>6</sub> buried modification can significantly release residual tensile stress in perovskite film, which is favorable for the efficiency and stability of PSCs [53].


Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) reveals that the emergence of  $BO_2^-$  proves

$\text{BNH}_6$  had been successfully introduced into the buried and the upper interfaces of perovskite film (Fig. 5a). FTIR was then applied to study the interactions between  $\text{BNH}_6$  and perovskite. As shown in Fig. 5b, c, the C=N stretching peak shifts from 1713 to 1709  $\text{cm}^{-1}$ , the N-H stretching peak shifts from 3390 to 3394  $\text{cm}^{-1}$ , and the C-H stretching peak shifts from 3351/3259 to 3327/3264  $\text{cm}^{-1}$  on adding  $\text{BNH}_6$ , suggesting the generation of the hydrogen bonds between  $\text{BNH}_6$  and FAI. The interactions between  $\text{BNH}_6$  and perovskite were further validated by XPS (Fig. S20). It is found that Pb 4f, I 3d, and N 1s from the PVK/ $\text{BNH}_6$  film all exhibit certain red-shift compared to the PVK film, further proving the strong interactions between  $\text{BNH}_6$  and FAI/ $\text{PbI}_2$ . UPS and LEIPS were employed to illustrate the energy band alignment of perovskite with  $\text{BNH}_6$  modification. Figure S21 exhibits that  $\text{BNH}_6$  treatment decreases the  $E_{\text{cutoff}}$  from 17.00 to 16.92 eV, resulting in the work function of the perovskite film shifts from 4.22 to 4.30 eV. Meanwhile, the valence band ( $E_{\text{V}}$ ) calculated from UPS shifts from  $-5.74$  to  $-5.65$  eV, and the  $E_{\text{C}}$  measured from LEIPS shifts from  $-4.25$  to  $-4.10$  eV (Fig. S22), demonstrating better energy alignment between perovskite layer and hole transport layer for extracting holes and blocking electrons (Fig. 5d). UV-vis absorption spectra show that the perovskite films incorporating  $\text{BNH}_6$  exhibit stronger absorption compared with the  $\text{SnO}_2/\text{PVK}$  film, with  $\text{SnO}_2/\text{BNH}_6/\text{PVK}/\text{BNH}_6$  film exhibiting the strongest absorption, which can be attributed to the enhanced film quality after introducing  $\text{BNH}_6$ . In addition, the bandgap is determined to be 1.53 eV, which has negligible influence with  $\text{BNH}_6$  modification (Fig. S23). Moreover, Urbach energies ( $E_{\text{u}}$ ) were also compared from UV-vis absorption spectra (Figs. S24 and S25). The lowest  $E_{\text{u}}$  of  $\text{SnO}_2/\text{BNH}_6/\text{PVK}/\text{BNH}_6$  film represents the highest structural quality during the crystal formation of perovskites [54], which is attributed to the multifunctional role of the  $\text{BNH}_6$  molecule in passivating various defects.

Then we recorded photoluminescence (PL), time-resolved photoluminescence (TRPL) and PL mapping to track the film quality and charge recombination dynamics. In order to eliminate the decrease in PL intensity and lifetime caused by  $\text{SnO}_2$  as a transport layer [55, 56], we have prepared the PVK,  $\text{BNH}_6/\text{PVK}$ , PVK/ $\text{BNH}_6$ ,  $\text{BNH}_6/\text{PVK}/\text{BNH}_6$  films to explore the role of  $\text{BNH}_6$  at the buried and upper interfaces of perovskite. Compared with the

PVK film, the  $\text{BNH}_6/\text{PVK}$  and PVK/ $\text{BNH}_6$  films exhibit enhanced intensity of PL and PL mapping (Figs. 5e and S26), as well as the lifetime (Fig. 5f and Table S3), indicating the suppressed nonradiative recombination with  $\text{BNH}_6$  passivation. Meanwhile, the  $\text{BNH}_6/\text{PVK}/\text{BNH}_6$  film modified with dual interfaces exhibits the highest intensity of PL and PL mapping, with the lifetime up to 9.1  $\mu\text{s}$ . These results suggest that the  $\text{BNH}_6$  all-in-one modification strategy can suppress the defect-induced nonradiative recombination to improve the quality of perovskite. Subsequently, femtosecond transient absorption spectroscopy (fs-TAS) was applied to determine the charge transfer behaviors of the four perovskite films mentioned above. The characteristic pseudo-color TAS plots (Fig. 5g–j) show that the  $\text{BNH}_6/\text{PVK}/\text{BNH}_6$  film exhibits the least faded ground state bleaching (GSB) signal, as well as the strongest GSB peak intensity among the four samples (Fig. S27), which represent the longest carrier lifetime. This result agrees with the lifetimes gained from the GSB decay kinetic of fs-TAS at 783 nm (Fig. S28) [57–60]. The longer carrier lifetime after  $\text{BNH}_6$  all-in-one modified implies the trap state elimination and suppressed nonradiative recombination, which is beneficial for the performance of device.

We further investigated the stability of perovskite films. After immersing the perovskite films into toluene solution while simultaneous exposing them to light exposure and applying 60 °C thermal treatment for 72 h, the control film shows noticeable yellowing and significant degradation. The related toluene solution turns pink as well as a strong  $\text{I}^0$  characteristic absorption peak appears at  $\approx 500$  nm in the UV-vis spectrum (Fig. 5k, l). By comparison, the  $\text{SnO}_2/\text{BNH}_6/\text{PVK}/\text{BNH}_6$  film exhibits no significant color change, and the  $\text{I}^0$  characteristic absorption peak is much weaker compared to the  $\text{SnO}_2/\text{PVK}$  film, indicating that  $\text{BNH}_6$  significantly suppressed the oxidation of  $\text{I}^-$  to  $\text{I}^0$  and the formation of  $\text{I}^0$  and  $\text{V}_1$  defects. In addition, XRD results (Fig. S29) show that after accelerated aging, the  $\text{I}^0$  characteristic peak intensity of the control film is much higher than that of the target film, further proving that the improved stability of perovskite films with  $\text{BNH}_6$  all-in-one modification, as well as  $\text{BNH}_6$  can effectively prevent the oxidation of  $\text{I}^-$  to  $\text{I}^0$  and reduce the formation of related defects.



**Fig. 6** Performance and stability of the devices. **a** Cross-sectional SEM image of the device structure. **b** Efficiency statistics of both solar cells including the certified value obtained at the Institute of Electrical Engineering Chinese Academy of Sciences (IEE, CAS) and lab measured efficiencies. **c** J-V curves of the control and target devices. **d** SPO curve of the target device. **e** EQE curve and integrated current density of the target device. **f** Dependence of  $V_{oc}$  on light intensity of the unencapsulated control and target devices. Long-term stability of the unencapsulated control and target devices stored **g** in glove box with  $N_2$  atmosphere under  $65 \pm 3$  °C heat, **h** in glove box with  $N_2$  atmosphere under AM 1.5 G illumination. **i** MPPT values recorded for the control and target devices with unencapsulation under AM 1.5 G illumination at  $25 \pm 3$  °C with  $N_2$  atmosphere

### 3.4 Device Performance and Characterization

To evaluate the impact of  $BNH_6$  all-in-one modification strategy on photovoltaic performance, we fabricated a typical *n-i-p* PSC with the architecture of glass/ITO/ $SnO_2$ / $Cs_{0.05}FA_{0.95}PbI_3$ /Spiro-OMeTAD/Au (Fig. 6a). We recorded the  $J-V$  characteristics under simulated 1 sun irradiation with an intensity of  $100\text{ mW cm}^{-2}$  (AM 1.5 spectrum). In order to regulate the concentrations of  $BNH_6$  at the buried and upper interfaces of perovskite film separately, we made devices under each condition for comparison, as shown in Fig. S30 and Table S4. After optimization, the best concentrations of  $BNH_6$  are both  $1\text{ mg mL}^{-1}$  at the buried and

upper interfaces of perovskite film. Thus, 15 PSCs were prepared under control and target ( $BNH_6$  all-in-one modification) conditions to study the statistical distribution of current density ( $J_{sc}$ ),  $V_{oc}$ , FF and PCE (Figs. 6b and S31). By contrast, the average PCE of target is higher than that of control. In addition, the champion PCE of the target PSCs significantly increases from  $23.62\%$  to  $26.43\%$  (the pink dot in Fig. 6b), with the  $V_{oc}$  of  $1.206\text{ V}$ ,  $J_{sc}$  of  $26.05\text{ mA cm}^{-2}$ , and FF of  $84.12\%$ , showing a negligible hysteresis (Fig. 6c and Table S5). The significant improvement in PCE can be attributed to the reduction of  $I^0$  related defects and the passivation of the buried and upper interfaces of perovskite film. Some devices were sent to an independent photovoltaic

testing laboratory (Institute of Electrical Engineering, Chinese Academy of Sciences) for certification, with a certified PCE of 25.98% (the blue dot in Fig. 6b, certificate attached in Fig. S32). Additionally, the device exhibits a high stabilized power output (SPO) of 26.18% (biased at 1.06 V), as shown in Fig. 6d. Meanwhile, Fig. 6e shows the external quantum efficiency (EQE) spectrum, with the integrated  $J_{sc}$  of 25.36 mA cm<sup>-2</sup> for the target device, which is closed to the  $J_{sc}$  determined from the  $J - V$  curves. The analysis of EQE spectrum shows that the bandgap of perovskite is about 1.53 eV (Fig. S33), which is consistent with the bandgap measured from UV-vis absorption spectrum (Fig. S23).

We further utilized space charge-limited current (SCLC) to measure the trap density of the perovskite films (Fig. S34 and Table S6). In electron-only devices (ITO/SnO<sub>2</sub>/perovskite/PCBM/Ag), the trap density drops from  $2.79 \times 10^{15}$  cm<sup>-3</sup> for the SnO<sub>2</sub>/PVK device to  $1.59 \times 10^{15}$  cm<sup>-3</sup> for the SnO<sub>2</sub>/BNH<sub>6</sub>/PVK device. In hole-only devices (ITO/PEDOT:PSS/perovskite/Spiro-OMeTAD/Au, the trap densities are reduced from  $1.77 \times 10^{15}$  cm<sup>-3</sup> for the PVK/Spiro device to  $1.29 \times 10^{15}$  cm<sup>-3</sup> for the PVK/BNH<sub>6</sub>/Spiro device. These results confirm that BNH<sub>6</sub> all-in-one modification effectively reduces the trap density in perovskites, which is crucial for minimizing nonradiative recombination and improving device performance. Electrical impedance spectroscopy (EIS) results (Fig. S35 and Table S7) further demonstrate that the target device shows larger recombination resistance ( $R_{rec}$ ), suggesting the charge recombination was greatly suppressed with BNH<sub>6</sub> all-in-one modification. This is further corroborated by transient photovoltage (TPV) measurement (Fig. S36), where the lifetime of the target device increases to 69.57  $\mu$ s compared to 57.72  $\mu$ s for the control device, which reflects the efficiency of BNH<sub>6</sub> treatment. Capacitance–voltage ( $C - V$ ) measurement (Fig. S37) shows that the built-in electric field ( $V_{bi}$ ) increases from 1.01 to 1.09 V with BNH<sub>6</sub> modification. The enhanced  $V_{bi}$  promotes better charge separation and carrier transport, contributing to the improved  $V_{oc}$  and FF in PSCs. Besides, the  $V_{oc}$  variation of PSCs under different light intensities shows that the slope reduced from  $1.71 k_B T/q$  for the control device to  $1.43 k_B T/q$  for the target device (Fig. 6f). The lower slope value of the target device indicates a decrease in trap-assisted recombination in PSCs, further supporting the effectiveness of BNH<sub>6</sub> in enhancing charge transport and device performance.

The unencapsulated devices under thermal conditions and illumination were evaluated according to the Organic Photovoltaic Stability (ISOS) protocols [61]. Devices aged under thermal stress ( $65 \pm 3$  °C, N<sub>2</sub> atmosphere) were investigated to monitor the heat stability (ISOS-T-1, Fig. 6g). After continuous heating for around 800 h, the target devices still maintain 84% of the initial PCE, which is remarkably higher than that of the control devices (53%). Furthermore, the light stability was investigated under continuous white LED illumination (100 mV cm<sup>-2</sup>) in N<sub>2</sub> atmosphere for 500 h (ISOS-L-1, Fig. 6h). The target devices preserve 93% of the initial PCE, which is higher than the 75% for the control devices. Meanwhile, the heat and light stability were further researched by XRD to track the degradation of the control and target films (Fig. S38). The control film exhibits distinct degradation after 500 h, as evidenced by the increased intensity of PbI<sub>2</sub> peak and the appearance of  $\delta$ -FAPbI<sub>3</sub> peak, whereas the target film shows lower intensity of PbI<sub>2</sub> peak and no obvious undesired peaks. In addition, we have evaluated the stability of the unencapsulated devices under ambient air conditions (50–60% RH, 25 °C) (ISOS-D-1, Fig. S39). After 500 h, the control device retained only 85% of the initial PCE, whereas the target device maintained 96% of the initial PCE. These results further demonstrate the effectiveness of the all-in-one modification strategy under more practical conditions.

The operational stability of PSCs was also examined by maximum power point tracking (MPPT) under AM 1.5 G illumination at  $25 \pm 3$  °C with N<sub>2</sub> atmosphere (ISOS-L-1, Fig. 6i). After continuous monitoring for 500 h, the target device displays outstanding stability, maintaining 90% of the initial PCE, while the control device only maintains 51% of the initial PCE after 200 h. It suggests that the defects caused by ion migration and organic component volatilization in the target device have been significantly suppressed. To further validate the stability of BNH<sub>6</sub>, we conducted chemical stability tests on both BNH<sub>6</sub> powders and SnO<sub>2</sub>/BNH<sub>6</sub> films under accelerated aging conditions (AM 1.5 G illumination at  $25 \pm 3$  °C with N<sub>2</sub> atmosphere, 7 days), as shown in Figs. S40 and S41. The results demonstrate excellent chemical stability, with no significant changes observed in the characteristic signals after aging. These findings confirm that the incorporation of BNH<sub>6</sub> does not induce chemical or electrical degradation. Moreover, as shown in Fig. S42, the contact angle for the control film is 53.8°, which increases to 75.9° for the target film, implying the improved hydrophobicity of perovskite film. These results

strongly indicate that the PSCs exhibit improved device performance via BNH<sub>6</sub> all-in-one modification.

## 4 Conclusion

In summary, an all-in-one modification strategy was proposed by introducing the multifunctional complex BNH<sub>6</sub> to simultaneously address critical challenges at both the buried and upper interfaces of perovskite film. This approach enables BNH<sub>6</sub> to uniquely realize dual-interfacial defect passivation and iodide oxidation suppression by interacting with SnO<sub>2</sub> through hydrolysis, coordinating with Pb<sup>2+</sup> and inhibiting the oxidation of I<sup>-</sup>. These synergistic features enhance perovskite film quality, lead to better energy level alignment, reduce defects, and extend carrier lifetime. As a result, the BNH<sub>6</sub> all-in-one modification strategy significantly improves the PCE to 26.43%. Furthermore, the BNH<sub>6</sub>-modified devices exhibit enhanced operational stability, preserving 90% of the initial PCE after continuous tracking for 500 h, a bright contrast to 51% of the control device for 200 h. Thus, the all-in-one strategy streamlines device fabrication by eliminating the need for separate interface treatments, offering a scalable and practical pathway toward high-performance perovskite photovoltaics for practical applications.

**Acknowledgements** This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 22334007).

**Author Contributions** Jiaxin Ma: Investigation, original draft writing. Cong shao: Investigation, visualization. Yirong Wang, Guosheng Niu, Kaiyi Yang, Yao Zhao, Fuyi Wang: Conceptualization. Zongxiu Nie, Jizheng Wang: Funding acquisition, review, supervision.

## Declarations

**Conflict of interest** The authors declare no interest conflict. They have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

**Supplementary Information** The online version contains supplementary material available at <https://doi.org/10.1007/s40820-025-01951-6>.

## References

1. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. *Nature* **517**(7535), 476–480 (2015). <https://doi.org/10.1038/nature14133>
2. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. *Science* **338**(6107), 643–647 (2012). <https://doi.org/10.1126/science.1228604>
3. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. *Nature* **499**(7458), 316–319 (2013). <https://doi.org/10.1038/nature12340>
4. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. *Nature* **501**(7467), 395–398 (2013). <https://doi.org/10.1038/nature12509>
5. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. *Nat. Photon.* **8**(7), 506–514 (2014). <https://doi.org/10.1038/nphoton.2014.134>
6. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO<sub>2</sub> electrodes. *Nature* **598**(7881), 444–450 (2021). <https://doi.org/10.1038/s41586-021-03964-8>
7. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. *J. Am. Chem. Soc.* **131**(17), 6050–6051 (2009). <https://doi.org/10.1021/ja809598r>
8. National Renewable Energy Laboratory (NREL). Research Cell Efficiency Records. <http://www.nrel.gov/ncpv/images/efficiencychart.jpg> (Accessed: June 2025).
9. Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. *Energy Environ. Sci.* **12**(5), 1495–1511 (2019). <https://doi.org/10.1039/C8EE03559H>
10. J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber et al., Low-temperature processed electron collection layers of graphene/TiO<sub>2</sub> nanocomposites in thin film perovskite solar cells. *Nano Lett.* **14**(2), 724–730 (2014). <https://doi.org/10.1021/nl403997a>
11. D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. *Nat. Photon.* **8**(2), 133–138 (2014). <https://doi.org/10.1038/nphoton.2013.342>

12. Y. Wu, Q. Wang, Y. Chen, W. Qiu, Q. Peng, Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. *Energy Environ. Sci.* **15**(11), 4700–4709 (2022). <https://doi.org/10.1039/D2EE02277J>
13. W. Shao, H. Wang, F. Ye, C. Wang, C. Wang et al., Modulation of nucleation and crystallization in  $\text{PbI}_2$  films promoting preferential perovskite orientation growth for efficient solar cells. *Energy Environ. Sci.* **16**(1), 252–264 (2023). <https://doi.org/10.1039/D2EE03342A>
14. H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency  $\text{FAPbI}_3$ -based perovskite solar cells over 24. *Adv. Mater.* **34**(36), e2204366 (2022). <https://doi.org/10.1002/adma.202204366>
15. P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. *Nature* **620**(7973), 323–327 (2023). <https://doi.org/10.1038/s41586-023-06208-z>
16. C. Shao, J. He, G. Niu, Y. Dong, K. Yang et al., 2D  $\text{BA}_2\text{PbI}_4$  regulating  $\text{PbI}_2$  crystallization to induce perovskite growth for efficient solar cells. *Small* **20**(22), 2309009 (2024). <https://doi.org/10.1002/smll.202309009>
17. Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive  $(\text{PbI}_2)_2\text{RbCl}$  stabilizes perovskite films for efficient solar cells. *Science* **377**(6605), 531–534 (2022). <https://doi.org/10.1126/science.abp8873>
18. K. Wojciechowski, S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala et al., Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. *ACS Nano* **8**(12), 12701–12709 (2014). <https://doi.org/10.1021/nn505723h>
19. L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu et al., Enhanced photovoltaic performance of  $\text{CH}_3\text{NH}_3\text{PbI}_3$  perovskite solar cells through interfacial engineering using self-assembling monolayer. *J. Am. Chem. Soc.* **137**(7), 2674–2679 (2015). <https://doi.org/10.1021/ja512518r>
20. J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. *Nat. Commun.* **9**(1), 3021 (2018). <https://doi.org/10.1038/s41467-018-05454-4>
21. H. Hysmith, S.Y. Park, J. Yang, A.V. Ievlev, Y. Liu et al., The role of  $\text{SnO}_2$  processing on ionic distribution in double-cation–double halide perovskites. *ACS Appl. Mater. Interfaces* **15**(30), 36856–36865 (2023). <https://doi.org/10.1021/acsmami.3c03520>
22. C. Li, X. Wang, E. Bi, F. Jiang, S.M. Park et al., Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. *Science* **379**(6633), 690–694 (2023). <https://doi.org/10.1126/science.adc3970>
23. S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multi-functional polymer-regulated  $\text{SnO}_2$  nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. *Adv. Mater.* **32**(43), 2003990 (2020). <https://doi.org/10.1002/adma.202003990>
24. T. Duan, S. You, M. Chen, W. Yu, Y. Li et al., Chiral-structured heterointerfaces enable durable perovskite solar cells. *Science* **384**(6698), 878–884 (2024). <https://doi.org/10.1126/science.adc5172>
25. S. You, F.T. Eickemeyer, J. Gao, J.-H. Yum, X. Zheng et al., Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. *Nat. Energy* **8**(5), 515–525 (2023). <https://doi.org/10.1038/s41560-023-01249-0>
26. H. Zhu, B. Shao, Z. Shen, S. You, J. Yin et al., *In situ* energetics modulation enables high-efficiency and stable inverted perovskite solar cells. *Nat. Photon.* **19**(1), 28–35 (2025). <https://doi.org/10.1038/s41566-024-01542-8>
27. S. You, H. Zhu, Z. Shen, X. Wang, B. Shao et al., C(60)-based ionic salt electron shuttle for high-performance inverted perovskite solar modules. *Science* **388**(6750), 964–968 (2025). <https://doi.org/10.1126/science.adv4701>
28. W. Xiang, Y. Gao, B. Yuan, S. Xiao, R. Wu et al., Surface-deprotonated ultra-small  $\text{SnO}_2$  quantum dots for high-performance perovskite solar cells. *Energy Environ. Sci.* **18**(1), 406–417 (2025). <https://doi.org/10.1039/d4ee03193h>
29. S. Xiao, J. Gao, B. Ding, B. Yuan, Y. Gao et al., Multi-hydroxyl and chloric buried interface bridges enable synergistically high-efficiency perovskite solar cells. *Small* **21**(17), 2500174 (2025). <https://doi.org/10.1002/smll.202500174>
30. R. Wu, B. Ding, S. Xiao, W. Xiang, Y. Gao et al., Eco-friendly small molecule with polyhydroxyl ketone as buried interface *chelator* for enhanced carrier dynamics toward high-performance perovskite solar cells. *Sci. China Mater.* **68**(4), 1249–1258 (2025). <https://doi.org/10.1007/s40843-024-3228-1>
31. Z. Wang, C. Shi, Z. Wang, L. Xiao, T. Wu et al., Solution-processed  $\text{Fe}_{2-x}\text{Mg}_x\text{O}_3$  ternary oxides for interface passivation in efficient perovskite solar cells. *Chem. Eng. J.* **441**, 136118 (2022). <https://doi.org/10.1016/j.cej.2022.136118>
32. Z. Yi, X. Li, B. Xiao, Q. Jiang, Y. Luo et al., Dual-interface engineering induced by silane coupling agents with different functional groups constructing high-performance flexible perovskite solar cells. *Chem. Eng. J.* **469**, 143790 (2023). <https://doi.org/10.1016/j.cej.2023.143790>
33. Y. Zheng, C. Tian, X. Wu, A. Sun, R. Zhuang et al., Dual-interface modification for inverted methylammonium-free perovskite solar cells of 25.35% efficiency with balanced crystallization. *Adv. Energy Mater.* **14**(20), 2304486 (2024). <https://doi.org/10.1002/aenm.202304486>
34. X. Gu, W. Xiang, Q. Tian, S. Liu, Rational surface-defect control *via* designed passivation for high-efficiency inorganic perovskite solar cells. *Angew. Chem. Int. Ed.* **60**(43), 23164–23170 (2021). <https://doi.org/10.1002/anie.202109724>
35. L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun et al., A  $\text{Eu}^{(3+)}\text{-}\text{Eu}^{(2+)}$  ion redox shuttle imparts operational durability to  $\text{Pb-I}$  perovskite solar cells. *Science* **363**(6424), 265–270 (2019). <https://doi.org/10.1126/science.aau5701>
36. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong et al., Giant switchable photovoltaic effect in organometal trihalide perovskite devices. *Nat. Mater.* **14**(2), 193–198 (2015). <https://doi.org/10.1038/nmat4150>
37. C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O'Regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite

solar cells. *Nat. Commun.* **6**, 7497 (2015). <https://doi.org/10.1038/ncomms8497>

38. S. Chen, X. Xiao, H. Gu, J. Huang, Iodine reduction for reproducible and high-performance perovskite solar cells and modules. *Sci. Adv.* **7**(10), eabe8130 (2021). <https://doi.org/10.1126/sciadv.abe8130>

39. N. Wu, T. Yang, Z. Wang, Y. Wu, Y. Wang et al., Stabilizing precursor solution and controlling crystallization kinetics simultaneously for high-performance perovskite solar cells. *Adv. Mater.* **35**(44), 2304809 (2023). <https://doi.org/10.1002/adma.202304809>

40. H.-L. Jiang, Q. Xu, Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. *Catal. Today* **170**(1), 56–63 (2011). <https://doi.org/10.1016/j.cattod.2010.09.019>

41. K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham et al., Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’ process. *Nat. Mater.* **10**(1), 45–50 (2011). <https://doi.org/10.1038/nmat2914>

42. J. Liu, S. Li, S. Liu, Y. Chu, T. Ye et al., Oxygen vacancy management for high-temperature mesoporous  $\text{SnO}_2$  electron transport layers in printable perovskite solar cells. *Angew. Chem. Int. Ed.* **61**(26), e202202012 (2022). <https://doi.org/10.1002/anie.202202012>

43. Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22. *Adv. Mater.* **34**(21), e2109879 (2022). <https://doi.org/10.1002/adma.202109879>

44. C. Gong, H. Li, Z. Xu, Y. Li, H. Wang et al., Efficient and stable inverted perovskite solar cells enabled by homogenized PCBM with enhanced electron transport. *Nat. Commun.* **15**(1), 9154 (2024). <https://doi.org/10.1038/s41467-024-53283-5>

45. F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. *Nat. Photon.* **17**(6), 478–484 (2023). <https://doi.org/10.1038/s41566-023-01180-6>

46. Y. Lu, H. Zhu, S. Tan, R. Zhang, M.-C. Shih et al., Stabilization of organic cations in lead halide perovskite solar cells using phosphine oxides derivatives. *J. Am. Chem. Soc.* **146**(32), 22387–22395 (2024). <https://doi.org/10.1021/jacs.4c05398>

47. M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite *via* hydrogen-bonded polymer network for efficient and stable solar cells. *Nat. Commun.* **14**(1), 573 (2023). <https://doi.org/10.1038/s41467-023-36224-6>

48. B. Yu, K. Wang, Y. Sun, H. Yu, Minimizing buried interface energy losses with post-assembled chelating molecular bridges for high-performance and stable inverted perovskite solar cells. *Adv. Mater.* **37**(14), 2500708 (2025). <https://doi.org/10.1002/adma.202500708>

49. Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. *Joule* **8**(4), 1120–1141 (2024). <https://doi.org/10.1016/j.joule.2024.01.021>

50. T. Huang, S. Tan, S. Nuryyeva, I. Yavuz, F. Babbe et al., Performance-limiting formation dynamics in mixed-halide perovskites. *Sci. Adv.* **7**(46), eabj1799 (2021). <https://doi.org/10.1126/sciadv.abj1799>

51. K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang et al., Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. *Phys. Chem. Chem. Phys.* **16**(41), 22476–22481 (2014). <https://doi.org/10.1039/c4cp03573a>

52. G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. *Nat. Mater.* **13**(5), 476–480 (2014). <https://doi.org/10.1038/nmat3911>

53. Y. Gao, F. Ren, D. Sun, S. Li, G. Zheng et al., Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. *Energy Environ. Sci.* **16**(5), 2295–2303 (2023). <https://doi.org/10.1039/D3EE00293D>

54. J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. *Nature* **616**(7958), 724–730 (2023). <https://doi.org/10.1038/s41586-023-05825-y>

55. R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. *Science* **366**(6472), 1509–1513 (2019). <https://doi.org/10.1126/science.aay9698>

56. S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging  $\text{SnO}_2$  and perovskite in planar solar cells. *Angew. Chem. Int. Ed.* **59**(28), 11573–11582 (2020). <https://doi.org/10.1002/anie.202003502>

57. Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. *Nature* **624**(7992), 557–563 (2023). <https://doi.org/10.1038/s41586-023-06784-0>

58. R. Chen, J. Wang, Z. Liu, F. Ren, S. Liu et al., Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. *Nat. Energy* **8**(8), 839–849 (2023). <https://doi.org/10.1038/s41560-023-01288-7>

59. L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures *via* inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. *Nat. Energy* **8**(3), 294–303 (2023). <https://doi.org/10.1038/s41560-023-01205-y>

60. Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang et al., Efficient and stable perovskite solar cells with regulated depletion region. *Nat. Photon.* **18**(5), 450–457 (2024). <https://doi.org/10.1038/s41566-024-01383-5>

61. M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. *Nat. Energy* **5**(1), 35–49 (2020). <https://doi.org/10.1038/s41560-019-0529-5>

**Publisher’s Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.