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HIGHLIGHTS

e A high-strength ceramic-gel electrolyte enables efficient stress transfer, achieving a compressive strength of 20.1 MPa (20 times that

of conventional gel electrolytes) while maintaining excellent ionic conductivity and effectively suppressing sodium dendrite growth.

® The Na;Zr,Si,PO,, framework acts as a thermal barrier, imparting the ceramic-gel composite electrolytes with superior flame retar-

dancy and maintaining structural integrity after 30 s of burning.

e The structural-functional integration ensures efficient Na* conduction (3.37x 10~ S cm™) and stable performance from — 20 to 60 °C.

ABSTRACT Ceramic-gel composite electrolytes (CGEs) attract significant attention

?s sholid-state.el.ectroly.tes (SSES) for SO(.iilAIIAI’I metal batteries owi‘ng to their favorable Discharge ﬁ Charge
ionic conductivity and interfacial compatibility. However, conventional CGEs generally

feature insufficient mechanical strength and consequent uncontrollable dendrite growth, ] &
remaining long-standing fundamental challenges that severely limit practical applica- Cathode
tions. Herein, this study presents a high-strength CGE that enables efficient stress trans-

fer, achieving a compressive strength of 20.1 MPa (20 times higher than conventional gel 5 Na* "Q-o
electrolytes), while maintaining excellent ionic conductivity and effectively suppressing ~ AN

sodium dendrites. The 3D-Na;Zr,Si,PO,, framework further serves as a thermal barrier, Discharge

imparting the CGE with superior flame retardancy. Additionally, Na/CGE/NVP-K| o5
cells exhibit 75.9% capacity retention after 10,000 cycles at 5C (25 °C) and deliver

Na metal
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"V\/\/\

Na, o5Ko 05V2(PO,);

3 »
78.5 mAh g~! at 30C (60 °C). Remarkably, the CGE exhibits excellent low-temperature oS ,}. Charge :’\
adaptability, retaining nearly 100% capacity at =20 °C. These results highlight a viable ‘} q’, s
strategy for designing safe and high-performance solid-state sodium metal batteries i"{

toward practical deployment.
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1 Introduction

Sodium metal batteries, which utilize sodium metal anodes
with a low redox potential (=2.71 V vs. standard hydrogen
electrode) and a high theoretical capacity (1165 mAh g™'),
have emerged as promising candidates for next-generation
rechargeable batteries and potential alternatives to lithium-
ion batteries [1-5]. Liquid sodium metal batteries have
been widely investigated due to their high ionic conduc-
tivity (> 107 S cm™) and favorable electrode/electrolyte
interfaces [6—12]. However, the use of conventional organic
liquid electrolytes presents significant safety hazards stem-
ming from their flammability, volatility, and potential for
leakage. Moreover, these electrolytes often facilitate den-
drite growth during cycling, resulting in short circuits and
decreased cycle stability.

Solid-state electrolytes (SSEs) have been actively
explored to overcome these issues by offering improved
safety, better thermal stability, and resistance to dendrite
propagation [13-19]. Among various SSE systems, gel
polymer electrolytes (GPEs), comprising polymer networks
that encapsulate liquid electrolyte components to form a sta-
ble gel matrix [20-23], have shown promise due to their
relatively high ionic conductivity and enhanced interfacial
contact with electrodes. The incorporation of liquid phases
enables Na* transport via polymer segmental motion and
diffusion within the swollen gel or liquid domains, achieving
ionic conductivities and interfacial properties comparable
to those of liquid electrolytes [24]. Additionally, the highly
cross-linked polymer framework imparts flexibility while
effectively minimizing the risk of liquid leakage [25]. Never-
theless, their inherent mechanical weakness and insufficient
thermal stability remain bottlenecks, limiting their applica-
tion in metal batteries [26].

To address these challenges, ceramic-gel composite
electrolytes (CGEs) are expected to address the poor ther-
mal stability and dendrite growth issues of GPEs [27-30].
To this end, non-conductive fillers such as SiO, [31] and
commercial glass fiber (GF) membranes [27] have been
embedded to enhance the dimensional stability of GPEs.
The SiO,-reinforced composite gel electrolytes developed
by Yin et al. [32] combine high mechanical strength (hard-
ness 0.41 GPa), effectively suppressing dendrite penetra-
tion and display a capacity retention of 98% at 0.2C after
400 cycles. However, these materials often introduce
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undesirable interfacial resistance due to their non-ionic
nature, limiting their effectiveness in facilitating uniform
Na plating/stripping. Incorporating ionically conductive
Lig sLasZr; sTay, sO, (LLZTO) particles into a polymer
gel, Wu et al. [33] obtained a composite gel electrolyte
with a tensile strength of 9.9 MPa, albeit with a reduced
ionic conductivity (7.89 x 10* S cm™!). Lei et al. [34]
employed an ionically conductive ceramic framework
(B/B"-Al,05) to establish a continuous Na*-transport net-
work that enhances the mechanical strength of the gel elec-
trolyte, suppresses dendrite growth, and enables uniform
sodium deposition. As a result, the NVP/ANs—GPE/Na
cell demonstrates excellent capacity retention of 78.8%
after 1000 cycles at 1C and 60 °C. Despite these advances,
the random dispersion of ceramic particles or disordered
ceramic framework within composite gel electrolytes often
leads to localized stress concentrations rather than uniform
load distribution, resulting in mechanically weak struc-
tures (Fig. 1). Consequently, the insufficient mechanical
strength of CGEs and the consequent uncontrollable den-
drite growth remain long-standing fundamental challenges
that severely limit practical applications. Therefore, devel-
oping a homogeneous inorganic ionic conductor/gel com-
posite with a compact structure is crucial for enhancing
the mechanical strength and battery stability of ceramic-
gel composite electrolytes.

In this work, we report a high-strength ceramic-gel
composite electrolyte. The core structural design of this
composite electrolyte is based on a three-dimensional (3D)
vertically aligned Na;Zr,Si,PO,, framework. Notably, the
3D ceramic framework exhibits a highly ordered verti-
cal alignment characteristic. This regular spatial structure
not only further enhances the mechanical support effect
but also guides the directional transport of sodium ions
along the vertical direction. Meanwhile, a pore struc-
ture with uniform size and regular distribution is formed
between the frameworks. This pore structure also provides
sufficient space for the filling of the gel phase, as shown
in Fig. S1. The framework is infiltrated with an organic
gel electrolyte precursor that fills its ordered channels
(Fig. 2a). The vertical alignment of the framework pre-
vents inorganic filler agglomeration and mitigates stress
concentration caused by the disordered ceramic frame-
work. This architecture enables efficient stress transfer in
the 3D-Na;Zr,Si,PO,/gel CGE, achieving a compressive
strength of 20.1 MPa (20 times higher than conventional
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Fig. 1 Comparison of conventional composite gel electrolytes and disordered and ordered three-dimensional framework-filled composite gel

electrolytes

gel electrolytes), while maintaining excellent ionic con-
ductivity (3.37 x 103 S cm™! at room temperature, RT)
and effectively suppressing sodium dendrites growth. The
NasZr,Si,PO1, framework also acts as a thermal barrier,
endowing the CGE with superior flame retardancy. Addi-
tionally, the structural-functional integration strategy
delivers efficient Na* conduction and overcomes tempera-
ture sensitivity, ensuring stable performance from — 20 to
60 °C. These results highlight a viable strategy for design-
ing safe and high-performance solid-state sodium metal
batteries toward practical deployment.

2 Experimental Sections

2.1 Materials

All chemical reagents used in material preparation were
of analytical grade, including Na,CO; (>99.0%, Aladdin),

NH,H,PO, (=99.0%, Aladdin), SiO, (>99.99%, Aladdin),
ZrO, (299. 99%, Aladdin), anhydrous acetonitrile

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

(>99.8%, Aladdin), NaH,PO, (>99.0%, Aladdin),
KH,PO, (>99.0%, Aladdin), NH,VO; (>99.0%, Aladdin),
glycolic acid (>99.0%, Aladdin), tripropylene glycol
diacrylate (TPGDA, >90.0%, Aladdin), 2,2’-azobis(2-
methylpropionitrile) (AIBN, >99.0%, Aladdin), and
NaClO,/EC:PC + 5%FEC (Guangdong Canrd New Energy
Technology Co., Ltd.).

2.2 Synthesis of Composite Gel Electrolyte

2.2.1 Preparation of the 3D-Na;Zr,Si,PO,, Inorganic
Framework (3D/ISE)

Stoichiometric amounts of precursors, including Na,COj;,
NH,H,PO,, SiO, and ZrO,, were mixed with anhydrous
ethanol via a mixing machine for 12 h. To compensate for
the loss of volatility during sintering, a 10 wt% excess of
Na or P was added to the original compound. The obtained
Na;Zr,S1,PO,, precursor powders were heated at 80 °C

@ Springer
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overnight to remove the anhydrous ethanol. The samples
were then sintered at 1,100 °C for 3 h at a rate of 3 °C min~!
in a muffle furnace. After sintering, the Na;Zr,Si,PO,, pow-
ders were ball-milled for 24 h.

The ordered Na;Zr,Si,PO,, inorganic framework was
fabricated using a freeze-drying technique. Initially, the
pre-synthesized Na;Zr,Si,PO,, powder was dispersed to
form an aqueous slurry with a volume fraction of 25%. The
selection of the molds and the demolding method is criti-
cal for the forming and maintaining of the final material
structure. This study employed cylindrical polypropylene
molds (diameter ~25 mm, height 4 cm) to ensure uniform
samples morphology. To facilitate subsequent demolding,
a thin layer of Vaseline was uniformly applied to the inner
wall of the molds as a release agent before freezing. Sub-
sequently, the degassed ceramic slurry was slowly injected
into the molds and rapidly frozen on a copper plate cooled
by liquid nitrogen. After the samples were completely solidi-
fied at -196 °C, the demolding operation was performed.
With the assistance of Vaseline’s lubricating properties, the

© The authors

intact frozen samples could be smoothly released by gen-
tly pressing the bottom of the molds. Finally, the samples
were promptly transferred to a freeze-dryer and continuously
dried at —40 °C for 72 h to completely remove the solvent,
ultimately obtaining a porous Na;Zr,Si,PO,, green body
with a three-dimensionally ordered structure. The resulting
structure was then sintered at 650 °C for 2 h with a heating
rate of 2 °C min~!, followed by a second sintering step at
1,200 °C for 5 h at a heating rate of 3 °C min~!, yielding an
ordered 3D-Na;Zr,Si,PO,, inorganic framework.

The disordered Na;Zr,Si,PO,, inorganic framework
was synthesized via a sacrificial template method. Specifi-
cally, Na;Zr,Si,PO,, powder was mixed with 20 pm diam-
eter poly(methyl methacrylate) (PMMA) microspheres at a
defined volume ratio. The mixture was uniaxially pressed
into 18 mm diameter pellets under 3 MPa. To remove the
PMMA template, the green bodies were first heat-treated at
700 °C for 3 h in a muffle furnace. Subsequently, the pellets
were sintered at 1,200 °C for 5 h using a controlled heating
program: 2 °C min ™! to 650 °C, then 3 °C min! to 1,200 °C.

https://doi.org/10.1007/s40820-025-02032-4
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The resulting sample with a disordered porous structure was
obtained.

2.2.2 Preparation of the 3D-Na;Zr,Si,PO,;, Composite
Gel Electrolyte

The ordered 3D-Na;Zr,Si,PO, CGE was prepared via
in situ polymerization of a precursor within the 3D-Na;Z-
r,S51,P0O,, framework. To evaluate the impact of thick-
ness, the Na;Zr,Si,PO,, frameworks were fabricated
via a standardized wire-cutting process with this param-
eter precisely controlled at two distinct values: ~0.6 mm
and ~ 1.35 mm. The precursor solution comprised 2 wt%
TPGDA (C,sH,,04) monomer and 0.1 wt% AIBN
(CgH|,N,) initiator and was dissolved in a liquid electro-
lyte comprising 1 M NaClO, in EC/PC with 5% FEC. The
3D-Na;Zr,Si,PO,, framework was immersed in the gel
precursor solution. A key step involved placing the entire
setup under vacuum to evacuate air from the pores, thereby
enabling the precursor solution to infiltrate the frame-
work’s entire porous network completely. Subsequently,
the infiltrated framework was subjected to an in situ curing
process inside an argon-filled glovebox to form the com-
posite gel electrolyte. The products from the ordered and
disordered frameworks are denoted as CGE and D-CGE,
respectively.

2.2.3 Preparation of the Glass Fiber Composite Gel
Electrolyte (FGE)

The FGE was prepared through in situ polymerization of a
precursor solution infused into the pores of a Whatman GF
glass fiber membrane. The composition of the gel precur-
sor solution and the polymerization procedure were identi-
cal to those used for the fabrication of the composite gel
electrolyte.

2.2.4 Synthesis of the Na, ¢sK, osV,(PO ,); Electrode
Material (NVP-K, ;5)

The Na, 5K 45V,(PO,); material was synthesized via a
sol-gel method involving Na,CO; (>99.0%), NaH,PO,

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

(=299.0%), KH,PO, (>99.0%), NH,VO; (>99.0%), and gly-
colic acid as precursors. The detailed synthesis procedure
was described in our previous study [35].

2.3 Material Characterization

X-ray diffraction (XRD, Empyrean, Panalytical BV, Almelo,
The Netherlands) was performed using Cu-Ka radiation to
determine the crystalline phases. The morphology and ele-
mental distribution were examined via field-emission scan-
ning electron microscopy (FESEM, Hitachi, SU5000, Japan)
equipped with energy-dispersive X-ray spectroscopy (EDS).
Quasistatic uniaxial compression tests were conducted via a
universal testing machine (Instron 5569, Instron Co., Can-
ton, USA) at a strain rate of 10 s™! with cylindrical sam-
ples (® 5 mm X 10 mm). Fourier transform infrared spec-
troscopy (FT-IR, Nicolet iS50) was employed to analyze
the chemical structure of the samples. Thermal behavior
was characterized using thermogravimetric analysis (TG-
DSC, NETZSCH, STA449F3, Germany) at a heating rate
of 10 °C min~' under a nitrogen atmosphere. The chemical
states of element were researched using X-ray photoelectron
spectroscopy (XPS, PHI-QUANTERA-II-SXM).

2.4 Electrochemical Characterization

Electrochemical impedance spectroscopy (EIS) measure-
ments were conducted via a CHI760 electrochemical work-
station over a frequency range of 1 MHz to 0.01 Hz.

The ionic conductivity (¢) was calculated via the follow-
ing equation:
c= £ 1

RS M

where o is the ionic conductivity, L is the electrolyte thick-

ness, and R and S represent the electrolyte resistance and the
area of the sample, respectively.

The electrochemical stability window of the electrolytes
was evaluated via linear sweep voltammetry (LSV) via Na/
electrolytes/SS cells over a voltage range of 2.5-6.5 V at
a scanning rate of 0.1 mV s~ on a CHI760 workstation.
The cathode was fabricated by combining NVP-Kj g,
Super P, and polyvinylidene fluoride (PVDF) in a weight
ratio of 75:15:10, using N-methyl-2-pyrrolidone as the
dispersing solvent. After drying at 80 °C, the cathodes

@ Springer
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with an NVP-K; s loading of 2-3 mg were obtained.
The electrochemical performance of the CR2032 coin
cells was evaluated with a Land testing system (LAND
CT3002AU). All assembly processes were carried out in
an argon-filled glove box (0, <0.1 ppm, H,0<0.1 ppm)
to prevent environmental contamination. Galvanostatic
charge—discharge testing was conducted within a voltage
window of 2.3-3.9 V. The NVP-K, ys/electrolyte/Na cells
were tested over a temperature range of —20 to 60 °C in
temperature-controlled ovens. For Na/Na symmetric cells,
charge—discharge cycling was performed with 2 h steps at
varying current densities.

2.5 First-Principles Calculations

First-principles calculations were performed using the Cam-
bridge Serial Total Energy Package. The two-dimensional
Na;Zr,Si,PO,, slab was constructed by cleaving the [001]
direction of the Na;Zr,Si,PO;, conventional cell with a
2x 2 supercell configuration. The 2D crystal model of
Na;Zr,Si,PO,, was relaxed using density functional theory
(DFT) with the Perdew—Burke—Ernzerhof (PBE) functional.
A vacuum layer of 2 nm was introduced between adjacent
repeating units of the 2D slabs to avoid interlayer interac-
tions. All atomic positions within the constructed 2D slabs
were fully relaxed. Ultrasoft pseudopotentials are applied
to describe the ionic cores with a plane-wave cutoff energy
of 370 eV. The k-point sampling grids are 3x3 X 1 for 2D
crystal slabs. The Na-ion diffusion routes at the inner chan-
nel (A route) and surface channel (B route) are shown, with
a step size of 0.05 in fractional coordinates.

3 Results and Discussion
3.1 Synthesis and Characterization

We first investigated gel formation in the framework. FTIR
was employed to investigate the polymerization process
of TPGDA in NaClO,/EC:PC with 5% FEC electrolyte
(Fig. S2). The characteristic C=C stretching vibration at
1620 cm™', attributed to TPGDA, was nearly absent follow-
ing polymerization, confirming efficient monomer conver-
sion (Fig. S3) [36]. Figure 2b presents the TGA curves for
the pure gel, the glass FGE used as a reference, and the

© The authors

CGE. All samples demonstrated minimal weight loss below
100 °C, suggesting that the framework effectively confines
the gel/liquid components, thereby inhibiting their evapora-
tion under elevated temperature conditions. Upon heating
to 270 °C, rapid weight loss occurred in all the samples,
which was attributed to the decomposition or volatilization
of the liquid components. At 600 °C, the pure gel and FGE
resulted in weight losses of 95.37% and 84.26%, respec-
tively, whereas the CGE resulted in a significantly lower
weight loss of only 29.83%, indicating that about 31.29 wt%
of the gel-filled the Na;Zr,Si,PO,, framework.

The weight percentage (X) of the gel component was cal-
culated using the following equation:

= 2
WGel ( )

where X is the weight percentage of gel in the composite
gel electrolyte, W is the weight loss of the compos-
ite gel electrolyte, and W, is the weight loss of the pure
gel. Since the composite electrolyte primarily consists of
Na;Zr,Si,PO,, ceramics, it demonstrates enhanced thermal
stability and heat resistance [37]. Complementary to the
thermal stability, the microstructures of the electrolytes were
examined. Figure 2c—f shows the microstructures of the pure
gel, FGE, and CGE, with the inset showing a photo of the
electrolyte. The pure gel exhibited a wrinkled surface mor-
phology resulting from high-temperature evaporation during
gold sputtering (Fig. 2c). The cross-sectional morphology
of the commercial glass fiber (GF) used as a reference struc-
tural separator combined with the gel exhibited good inte-
gration, with the gel fully penetrating the randomly arranged
fiber rods, as observed in Fig. 2d and further confirmed by
the EDS mapping in Fig. S4. Figure 2e, f illustrates that the
gel precursor solution completely infiltrates the 3D-Na,Z-
1,51,PO,, framework under vacuum conditions, forming a
robust interfacial contact with the solid framework. The dis-
tribution of Na, Zr, Si, P, O, C, F, and Cl in the EDS mapping
further confirmed the uniform distribution of the gel and its
strong interaction with the Na;Zr,Si,PO,, framework (Fig.
S5). Flame tests revealed that both the pure gel and FGE
ignited immediately upon contact with an open flame and
were almost entirely consumed, leaving minimal residue. In
contrast, the CGE, reinforced with the 3D-Na,;Zr,Si,PO,,
framework, demonstrated enhanced flame retardancy. When
exposed to a direct flame for 2 s, CGE resisted ignition.
After 30 s, while the pure gel and FGE continued to burn
intensely. In contrast, the CGE showed excellent flame retar-
dancy and preserved its structural integrity (Fig. 2g, Videos
S1-S3). This superior flame resistance is primarily attributed

https://doi.org/10.1007/s40820-025-02032-4
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to the high content of the non-combustible Na;Zr,Si,PO,,
framework within the composite gel electrolyte, effectively
reducing safety hazards.

3.2 Physicochemical Properties and High Temperature
Electrochemical Performance

EIS was employed to analyze the charge transport dynamics
at the electrode/electrolyte interface for both FGE and CGE
across a temperature range from RT to 100 °C (Figs. 3a and
S6). The Nyquist plots reveal distinct impedance profiles
for CGE and FGE, reflecting their temperature-dependent
transport behaviors (Fig. 3b). At RT, the CGE demonstrates
a high ionic conductivity of 3.37x 107> S cm™, correspond-
ing to roughly 50% of the conductivity observed for the lig-
uid NaClO,/EC:PC with 5% FEC electrolyte (7.86x 107 S
cm™!). Notably, this performance is approximately 3 times
superior to that of the FGE (~ 1.0 X 103 S cm™) and over 10
times higher than that of the 3D-NasZr,Si,PO:, framework
(3.31x10* S cm™), as detailed in Fig. S7, and Table S1.
These results indicate that gel-phase incorporation sig-
nificantly enhances the ion-transport efficiency within the
ordered Na;Zr,Si,PO,, framework compared with the non-
ionic conductive disordered framework, improving the ionic
conductivity across various temperatures. The integration of
inorganic ceramics reportedly contributes to the increased
oxidative decomposition resistance of the composite elec-
trolyte [38]. To verify this, we evaluated the electrochemical
stability of the composite gel electrolyte via linear sweep
voltammetry (LSV). The decomposition voltages of the glass
fibers with the liquid electrolyte (GF-LE) and FGE are 4.4
and 4.5 V, respectively (Fig. 3c). Notably, the introduction of
a 3D-Na;Zr,Si,PO,, ceramic framework into the gel electro-
lyte increased the decomposition voltage to 4.7 V. Given the
favorable ionic conductivity and electrochemical stability
of the CGE, it was integrated into a practical Na/NVP-Kj 5
sodium metal battery to evaluate its practical applicability
(Fig. 3d). The Na/CGE/NVP-K,, s battery exhibits specific
discharge capacities of 112.6, 110.5, 108.2, 99.6, 94.7, 89.3,
84.3, and 78.5 mAh g! from 0.5C to 30C at 60 °C (Figs. 3¢
and S8), reflecting the efficient sodium-ion transport per-
formance of CGE. The limited mechanical properties of
gel electrolytes are well recognized as a major obstacle
to their practical application in energy storage devices. In
sharp contrast, the 3D-Na;Zr,Si,PO,-based composite gel

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

electrolyte demonstrates outstanding mechanical robustness,
achieving a compressive strength of 20.11 MPa (Fig. 3f),
which is more than an order of magnitude higher than that
of conventional composite gel electrolytes (~ 1 MPa) [39].
Under compressive loading, this material not only pre-
serves excellent structural integrity but also benefits from
its ordered porous architecture, which ensures uniform stress
distribution and mitigates local stress concentration, thereby
delivering superior mechanical performance. Nevertheless,
gel electrolytes typically face the inherent trade-off between
mechanical strength and ionic conductivity (Table S2) [33,
40-48]. Pristine gels lack sufficient mechanical robustness
for practical application. To address this, the composite
integrated with a 3D-ordered ceramic framework markedly
enhances the overall load-bearing capacity and imparts
greater inelastic deformation capability compared with
composites reinforced with randomly dispersed particles or
disordered non-ionic conductive networks [49]. As a result,
the 3D-Na;Zr,S1,PO,,-based composite gel electrolyte plays
a pivotal role in suppressing dendrite growth, maintaining
structural stability, and enabling the long-term safe opera-
tion of sodium metal batteries. As illustrated in Fig. 3g, the
CGE-based full cell exhibited remarkable cycling stability
at 60 °C, maintaining 83.15% specific capacity retention
after 1,000 cycles, significantly surpassing the retention
observed for the FGE-based battery (57.98%). This out-
standing performance can be attributed to two synergistic
effects: (i) enhanced Na* transport efficiency facilitated by
the gel phase, which reduces the overall resistance, and (ii)
improved chemical and electrochemical stability provided
by the 3D-Na;Zr,Si,PO,, framework, which reinforces the
structural integrity of the electrolyte.

3.3 Room Temperature Electrochemical Performance

To further verify the effectiveness of the composite gel
electrolyte in enhancing electrode/electrolyte interface
stability, a systematic electrochemical evaluation was
performed on Na/Na symmetric cells and Na/NVP-K; o5
full cells at 25 °C. In the Na/Na symmetric configuration,
the Na/CGE/Na cell exhibited consistently low and sta-
ble polarization voltages at current densities of 0.2, 0.4,
and 0.6 mA cm2, indicating lower interfacial resistance
and improved compatibility (Fig. 4a). In comparison, the
Na/FGE/Na cell showed considerable voltage fluctuations

@ Springer
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Fig. 3 a Nyquist plots of the CGE with a thickness of 1.35 mm and a diameter of 15 mm, b Arrhenius plots of the ionic conductivity of the

FGE and CGE at various temperatures, ¢ LSV curves of the GF-LE, FGE,

and CGE, d Schematic diagram of solid-state sodium batteries assem-

bled with the CGE and Na, 45K, s V,(PO,); (NVP-K, o5) cathode, e Rate capability of the Na/CGE/NVP-K| (s full cell from 0.5C to 30C, f Com-
pressive strength—strain curves of the 3D-Na,Zr,Si,PO,, framework and CGE, g Long-term cycling performance of the Na/NVP-K,, ;s full cell

under the same testing conditions, reflecting inferior inter-
facial stability and further confirming the superiority of
the CGE in facilitating electrode/electrolyte interfacial
kinetics. To further investigate the interfacial stability,
EIS measurements were conducted on a symmetric Na/
Na cell employing the CGE at various cycling stages
(before cycling, after the 10th cycle, and after the 60th
cycle). The evolution of the interfacial resistance revealed
a pronounced decline in the early cycling stage, dropping
rapidly to below 400 Q within the first 10 cycles (Fig.

© The authors

S9). Upon extended cycling to 60 cycles, the resistance
was reduced by more than an order of magnitude and
exhibited stabilization. The continued resistance lower-
ing underscores the dynamic optimization of the elec-
trode/electrolyte interface, which matures into a stable
low-impedance phase during repeated sodium stripping/
plating. This resistance evolution demonstrates the forma-
tion of a highly stable interface in the CGE system, a key
factor for long-term cycling durability. In cycling tests of
Na/NVP-Kj o5 cells, the Na/CGE/NVP-K| 5 cell retained

https://doi.org/10.1007/s40820-025-02032-4
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a discharge capacity of 108.5 mAh g! after 700 cycles,
with a high-capacity retention of 94.74% and an average
capacity decay of 0.0075% per cycle (Figs. 4b and S10).
In contrast, the Na/FGE/NVP-K, (5 cell exhibited a more
pronounced capacity decline, with capacity decreasing to
90.2 mAh g~! and a retention of 83.98% after 700 cycles.
To evaluate the high-rate cycling stability of the CGE,
systematic tests were performed on full cells assembled
with various composite gel electrolytes. Notably, the Na/
CGE/NVP-K, o5 cell demonstrated excellent long-term
performance. It achieved capacity retentions of 84.58%
after 5,000 cycles and 75.88% after 10,000 cycles, while
maintaining a discharge capacity of 70.5 mAh g~'. This

| SHANGHAI JIAO TONG UNIVERSITY PRESS

performance was significantly superior to that of the Na/
FGE/NVP-K, o5 cell, which exhibited capacity retentions
of 55.26% after 5000 cycles and 34.09% after 10,000
cycles, with the discharge capacity decreasing to 31.4
mAh g (Fig. 4c). Furthermore, the Na/CGE/NVP-K, s
cell demonstrated superior cycling stability at a 2C rate,
retaining 78.45% of its initial capacity after 6,907 cycles,
far exceeding the 40.59% retention of the Na/FGE/NVP-
Ky o5 cell (Fig. S11). After 6,000 cycles, the CGE system
delivered a discharge capacity of 80.38 mAh g!, nearly
double the 42.45 mAh g! of the FGE system (Figs. 4d and
S12). The Na/CGE/NVP-K y5 cell demonstrated excep-
tional rate capability across various charge/discharge rates.

@ Springer
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Even at an ultrahigh rate of 30C, the cell retained a high
discharge capacity of 54.5 mAh g”!, underscoring excel-
lent rate performance and electrochemical stability (Fig.
S13). Compared with previously reported gel electrolytes,
the Na/CGE/NVP-K,, 5 cell demonstrated superior cycling
stability and high-rate performance, highlighting the sig-
nificant advantages of CGEs in enhancing the long-term
cycling stability and rate capability of solid-state sodium
metal batteries [20, 24, 25, 34, 37, 50-65] (Fig. 4e, f). To
further evaluate the practical applicability of the composite
electrolyte, full cells were assembled with high-mass-load-
ing cathodes for performance evaluation. Notably, under a
high mass loading of 7.7 mg cm2, the cathode delivered
an initial discharge capacity of 104.5 mAh g! at 0.5C
(Fig. S14a). Moreover, even at a high rate of 5C, a dis-
charge capacity of 76.6 mAh g~! was still maintained (Fig.
S14b). This performance is competitive with the state-of-
the-art systems reported in the literature, as summarized
in Table S3 [20, 66—74]. The influence of electrolyte thick-
ness was examined using a thin film (~ 600 pm, repre-
senting a reduction of over 50%). The thinned electrolyte
retained excellent performance, achieving a high-capacity
retention of 92% after 200 cycles at 5C and delivering a
discharge capacity of 68.1 mAh g ! even at a high rate
of 20C, matching the performance of the ~ 1.35 mm-thick
CGE (Fig. Sl4c, d). These results strongly confirm that the
material’s structure forms low-resistance ion “highways,”
creating continuous pathways that overcome the limita-
tions of increased diffusion length, further demonstrating
its potential for practical applications.

3.4 Disordered and Active Framework Fillers

To elucidate the critical role of structural ordering of the
ionic conductor Na;Zr,Si,PO,, framework on the electro-
chemical performance of composite electrolytes, a disor-
dered porous Na;Zr,Si,PO,, framework was synthesized
as a control sample via a sacrificial template method. SEM
images (Fig. 5a, b) reveal a heterogeneous pore size dis-
tribution with distinct polydisperse characteristics in the
disordered ionic conductor framework. After compound-
ing with the gel electrolyte to form disordered composite
gel electrolytes (D-CGE), cross-sectional SEM images
(Fig. 5c¢, d) confirm complete pore filling with no detect-
able residual porosity. Elemental mapping of C and Cl via

© The authors

EDS further verifies the homogeneous infiltration of the
gel phase throughout the porous ceramic matrix (Fig. 5e).
To decouple the influence of ceramic content from struc-
tural effects, the porosity of the disordered Na;Zr,Si,PO,
framework was controlled to match that of the aligned
ordered structure, thereby attributing performance dif-
ferences primarily to the pore architecture. Mechanical
testing reveals a fundamental disparity in compressive
strength. The ordered Na;Zr,Si,PO,, and its composite
electrolyte exhibit a strength of 20.11 MPa, substantially
higher than the 10.57 MPa of the D-CGE, indicating the
inherent mechanical advantage of an aligned structure
(Fig. 5f). Furthermore, ion transport properties further
highlight this contrast. The intrinsic ionic conductivity of
the disordered framework (2.22x 10~* S cm™') and that of
the D-CGE (2.67x 102 S cm™!) are markedly lower than
CGE, underscoring the critical importance of directional
alignment in establishing continuous and efficient ion-con-
ducting pathways, as shown in Fig. 5g, h. Electrochemi-
cal evaluation further underscores the impact of structural
ordering. D-CGE retains only 86.2% of its capacity after
100 cycles at 5C, significantly lower than the ordered com-
posite electrolyte (~75.9% after 10,000 cycles) (Fig. 5i).
Rate capability tests reveal that at a high current density
of 10C, D-CGE only delivers a discharge capacity of only
54.6 mAh g!, approximately 40% lower than that of the
ordered composite gel electrolyte (92.3 mAh g!) (Fig. 5j).
This performance deficit originates from the structural
deficiencies of the disordered framework. Although the
ceramic phase provides some mechanical reinforcement,
its random distribution induces localized stress concentra-
tion during cycling. This leads to progressive interfacial
contact loss, heterogeneous Na* flux at the electrode—elec-
trolyte interface, accelerated interfacial impedance growth,
and ultimately, cell failure, as schematized in Fig. 5k.

3.5 Ion Transport Mechanism

To investigate the Na-ion transport mechanism in
Na,;Zr,Si,PO,,, a 3D ceramic framework was fabricated
using freeze-drying, producing a highly exposed crystal sur-
face anticipated to enhance Na* conduction. First-principles
density functional theory (DFT) calculations were conducted
to examine the Na® migration pathways and their associ-
ated energy barriers. Two primary migration routes were

https://doi.org/10.1007/s40820-025-02032-4
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Fig. 5 SEM images and EDS mapping: a, b Disordered Na;Zr,Si,PO,, framework, ¢, d The fracture surface of D-CGE, e EDS mapping of the
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CGE/NVP-K|, o5 full cell from 0.5C to 10C, k Schematic illustration of the disordered Na,Zr,Si,PO,,/gel composite

identified: route A, which occurs within the ordered bulk
channels of the crystal structure, and route B, located at the
exposed surfaces or grain boundary regions (Fig. 6a). Struc-
tural representations further depict the distinct diffusion

o)
{\‘ SHANGHALI JIAO TONG UNIVERSITY PRESS

pathways, with route A traversing the rigid framework
consisting of ZrO, and Si/PO, units, while route B fol-
lows less confined, more flexible surface regions (Fig. 6b).
Energy barrier profiles indicate that Na* migration along
route A faces a higher energy barrier, resulting from spatial

@ Springer
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restrictions and strong electrostatic interactions within the
highly ordered lattice (Fig. 6¢) [75, 76]. In contrast, the B
route presents a reduced energy barrier, benefiting from
local lattice relaxation and topological reconstruction near
the surface, which alleviates steric hindrance and creates
auxiliary low-barrier pathways [77]. Additionally, under-
coordinated atoms at grain boundaries lead to electronic
redistribution, further lowering energy peaks and promoting
3D diffusion [64]. The interface between the Na;Zr,Si,PO,,
surface and the gel phase plays a critical role in enhancing
ion transport. Previous studies have indicated that incorpo-
rating Na,;Zr,Si,PO,, fillers into gel electrolytes facilitates
the formation of continuous ion conduction pathways at

(a)

organic—inorganic interfaces [78]. Moreover, interactions
between the gel and the ceramic surface establish a syner-
gistic transport environment that further reduces the energy
barrier for ion migration compared to single-component
systems [79]. Collectively, these findings underscore the
significant contribution of both intrinsic surface pathways
and extrinsic interfacial effects to the enhancement of ionic
conduction. The vertically aligned Na;Zr,Si,PO,, frame-
work, fabricated via freeze-drying, not only promotes the
prevalence of low-energy surface channels but also provides
an ideal scaffold for constructing well-defined interfaces
with the gel phase. This hierarchical architecture, integrat-
ing the mechanical stability of the ceramic with optimized

Inner route
—— Surface route

N W A~ O

0 =

Relative barrier energy (eV)

01 02 03 04 05 06 0.7
Reaction coordinate

B, Surface route

Fig. 6 Investigations of the Na-ion conduction mechanism. a Crystal structures of Na;Zr,Si,PO,, based on first-principles calculations, b Na-
ion diffusion route in the inner channel (A route) and surface channel (B route), ¢ Migration energy barrier in the inner channel and surface
channel for Na-ion migration routes, with a step size of 0.05 in fractal coordinates
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ion transport along the Na;Zr,Si,PO,, surface and across the
Na,Zr,Si,PO,,/gel interface, offers an effective strategy for
achieving high ionic conductivity at RT while minimizing

sustained a discharge capacity of 45.6 mAh g™! at 20C,
attributed to the improved Na-ion transport kinetics facili-
tated by the SSE (Fig. 7b). To further explore the low-tem-

interfacial polarization in sodium metal batteries. perature electrochemical behavior of CGE, Na* deposition/
stripping characteristics were examined in symmetric cells
3.6 Low-Temperature Electrochemical Performance using both CGE and FGE electrolytes at a current density of
0.1 mA cm™ (Fig. 7c). The FGE system displayed a progres-
A systematic study was conducted to comprehensively sive increase in polarization voltage during cycling, with
significant hysteresis voltage fluctuations observed within
the first 400 h, eventually stabilizing at about 0.116 V after
500 h (Fig. 7d, e). In contrast, the CGE system exhibited
exceptional stability, maintaining a hysteresis voltage as
low as 0.019 V after 500 h and remained stable for up to
1,000 h, further confirming the superior performance of the

Na/CGE/Na cell. The electrochemical evaluation of the Na/

evaluate the electrochemical performance of CGE in low-
temperature environments, with a focus on cycling stability
and rate capability in Na/SSEs/Na cells. At 5 °C, the CGE-
based cell maintained a specific capacity of 100.7 mAh g™!
after 749 cycles, surpassing that of the FGE-based cell,
which retained 93.7 mAh g~! (Fig. 7a). Additionally, the
rate performance demonstrated that the CGE-based battery
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Fig. 7 Electrochemical performance tests of FGE and CGE. a Comparison of the cycling stability of Na/NVP-K,, s at 1C at 5 °C, b Rate perfor-
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SSEs/NVP-K, (s system also verified its adaptability at low
temperatures. Remarkably, the Na/CGE/NVP-K, 5 battery
maintained a capacity of 99.81 mAh g~! after 291 cycles
at —20 °C, with negligible capacity fading. In contrast, the
Na/FGE/NVP-K| ;5 battery showed a capacity retention of
only 91.66% after 146 cycles, with the discharge capacity
decreasing to 73.6 mAh g~!, further emphasizing the supe-
rior cycling stability (Fig. 7f). Furthermore, the CGE sys-
tem displayed excellent rate capability at -20 °C, delivering
discharge capacities of 85.5, 72.5, 63.7, 54.0, and 45.7 mAh
g’l at 0.2C, 0.4C, 0.6C, 0.8C, and 1C, respectively, as shown
in Fig. S15. These results collectively provide compelling
evidence for the outstanding low-temperature performance
of the composite electrolyte. To evaluate the electrochemi-
cal stability of CGE under rapid temperature fluctuations, a
temperature shock test was performed. Following 350 cycles
at —20 °C, the battery was immediately subjected to cycling
at 0.5C at 25 °C (Fig. 7g). The battery retained a discharge
capacity of 90.8 mAh g™! after 350 cycles at —20 °C and
maintained stability with a capacity of 89.1 mAh g~! over
1,000 cycles at 25 °C. The stable capacity retention of the
Na,;Zr,S1,PO,,/Gel composite at low temperatures originates
from multilevel, synergistic effects. This hierarchical design
first ensures efficient ion transport: the vertically aligned
Na;Zr,Si,PO,, framework provides a rigid “ionic highway”
resilient to temperature fluctuations, securing continuous
conduction, while the gel phase infiltrating its pores further
enhances kinetics via low-activation-energy pathways [80,
81]. In addition, the soft gel accommodates volumetric fluc-
tuations between electrodes and electrolyte, ensuring durable
contact and substantially reducing interfacial impedance [85,
86]. This unique combination of rigid and soft components
ultimately yields exceptional structural and thermal integrity
against low-temperature stresses, with the synergy between
facilitated ion transport, stabilized interfaces, and mechani-
cal robustness collectively enabling high performance. This
robust performance highlights the structural integrity and
excellent reversibility of the CGE system under abrupt envi-
ronmental changes, further demonstrating its suitability for
practical applications in extreme conditions.

© The authors

3.7 Dendrite Suppression and Interface Stabilization
Mechanisms

To further elucidate the intrinsic mechanisms underlying
the stability of the composite gel electrolytes, a systematic
SEM analysis was performed on Na/CGE/NVP-K) 55 and
Na/FGE/NVP-K|, (s cells after prolonged cycling at 60 °C.
SEM images revealed that cross-sectional CGE/NVP-Kj 5
retained excellent structural integrity even after extended
cycling, with an inset showing a photograph of the elec-
trolyte after cycling (Fig. 8a). As shown in Fig. 8b, c, the
cross-sectional analysis of the CGE electrolyte showing an
absence of dendrite intrusion as evidenced by imaging. This
finding is further corroborated by EDS analysis performed at
both the anode/electrolyte and cathode/electrolyte interfaces
(Figs. 8f and S16). These results confirm that the composite
electrolyte effectively suppresses dendrite formation during
long-term cycling, thereby significantly minimizing the risk
of uncontrolled sodium dendritic propagation through the
electrolyte structure. However, SEM analysis revealed the
presence of particles of diverse sizes distributed throughout
the interior of the FGE, encompassing both fiber and gel
surfaces, with an inset showing a photo of the electrolyte
after cycling (Fig. 8d, e). As confirmed by EDS analysis
(Fig. S17), these particulate features are predominantly com-
posed of metallic sodium. Specifically, EDS point scan tests
were performed on the particles deposited on the glass fiber
surface, and the results indicate that the atomic ratios of C,
O, and Na are 37.11%, 37.72%, and 17.32%, respectively
(Fig. S17¢c). Notably, only a trace amount of Na originates
from NaClO, in the gel, while the vast majority of Na is
attributed to sodium deposition products. The relatively high
atomic ratios of C and O are likely derived from Na,O and
Na,CO;, which form via the oxidation of deposited metallic
sodium in air during sample transfer and characterization
processes. To further understand the role of the composite
structure in regulating deposition morphology, the cycled
CGE-Na interface after 2000 cycles at 0.1 mA cm 2 was
examined by SEM (Fig. S18). The results reveal that sodium
deposits in the CGE system exhibit a flat, planar morphol-
ogy tightly adhered to the electrolyte surface, forming a
uniform deposition layer. Furthermore, X-ray photoelectron
spectroscopy (XPS) was employed to analyze the chemical
composition of the cycled sodium metal surface (Fig. S19).
Compared to pristine Na, the CGE-Na surface shows distinct
chemical characteristics: the Na 1 s spectrum displays a NaF
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Fig. 8 SEM images of the Na/NVP-K, (5 full cell after cycling at 60 °C. a NVP-K,, ,s/CGE cross section, b, ¢ Cross section of the CGE, d, e

FGE cross section, f EDS mapping of the Na/CGE cross section

characteristic peak; the O 1 s spectrum exhibits three peaks
corresponding to Na,O (530.7 eV), C-0O (532.4 eV), and
the Na Auger peak (535.2 eV); the C 1 s spectrum shows
characteristic peaks at 284.1, 285.5, 287.7, and 289.1 eV,
assigned to C—C, C-O, C=0, and O-C =0 species, respec-
tively. These chemical species originate from the reductive
decomposition of electrolyte components including ethyl-
ene carbonate (EC), propylene carbonate (PC), and fluoro-
ethylene carbonate (FEC). These findings demonstrate that
the CGE effectively modulates the composition of the solid
electrolyte interphase (SEI) on the sodium metal surface by
introducing fluorine-containing inorganic phases (NaF) and
reconstructing an organic—inorganic hybrid SEI structure.
The organic components provide excellent flexibility and
interfacial compatibility, buffering volume changes during

SHANGHAI JIAO TONG UNIVERSITY PRESS

sodium plating/stripping, while the fluorine-containing inor-
ganic phases enhance interfacial ion transport properties,
synergistically achieving stabilization of the electrode—elec-
trolyte interface. Conventional commercial separators are
typically non-ionic conductors and suffer from insufficient
mechanical strength. To overcome these limitations, a highly
conductive NasZr,Si,PO1, framework was incorporated into
the composite gel electrolyte, simultaneously constructing a
continuous ionic conduction network and markedly enhanc-
ing its mechanical robustness. This network maintains
structural integrity during cycling, thereby effectively sup-
pressing abnormal sodium deposition and dendrite growth.
Furthermore, compared with dense ceramics, the composite
gel electrolyte not only combines the flame-retardant prop-
erties of ceramics with the high ionic conductivity of ionic
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liquids but also achieves an approximate 20% reduction in
mass, further improving the energy density of the battery
(Fig. S20 and Table S4). This study establishes compelling
economic advantages through innovations in materials selec-
tion and processing techniques. The scalable manufactur-
ing approach employs low-cost commercial raw materials,
eliminating the requirement for expensive polymer binders
and inert substrates typically used in conventional slurry-
cast methods. Concurrently, the optimized sintering protocol
enhances production efficiency substantially while maintain-
ing structural integrity. These achievements provide crucial
experimental evidence and innovative design principles for
developing safe, long-life sodium metal batteries, while also
enhancing lifecycle cost-effectiveness.

4 Conclusion

In conclusion, this study provides a systematic evalua-
tion of the composite gel electrolyte. DFT calculations
reveal that the vertically aligned NasZr,Si,PO1, frame-
work, which features extensively exposed crystal sur-
faces, offers low-energy barrier pathways and establishes
a graded diffusion network, thereby effectively facilitat-
ing Na* transport. Benefiting from this structural design,
the CGE enables efficient stress transfer, achieving a
compressive strength of 20.1 MPa, while maintaining
excellent ionic conductivity and effectively suppressing
sodium dendrites. Furthermore, the 3D-NasZr,Si,PO1,
framework further serves as a thermal barrier, imparting
the CGE with superior flame retardancy. This work con-
firms the structural integrity of the CGE and its ability
to facilitate sodium deposition, further substantiating its
effectiveness in suppressing dendrites growth. Moreover,
Na/CGE/NVP-K, o5 cells exhibit 75.9% capacity retention
after 10,000 cycles at 5C (25 °C) and deliver 78.5 mAh
g~ ! even at 30C (60 °C). Notably, the CGE exhibits excel-
lent low-temperature adaptability, retaining nearly 100%
capacity at —20 °C. These results highlight the CGE as
a highly promising candidate for next-generation high-
performance sodium metal batteries, offering significant
advancements in safety, stability, and environmental adapt-
ability for energy storage applications.
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