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HIGHLIGHTS

e A novel Cu*/Cu®* redox couple was introduced to enable a thermosensitive crystallization process, significantly enhancing thermo-
power from 1.47 t0 2.93 mV K.

e A readily fabricated etched carbon cloth electrode offered an enlarged electroactive surface area, demonstrating superior current

density through improved kinetics.

® The optimized Cu*/Cu®* system, achieved through synergistic enhancements in thermodynamic and kinetic performance, delivered

an outstanding normalized power density P, (AT)™? of 3.97 mW m™2 K2,

ABSTRACT Thermocells are garnering increasing attention as a promising ther- B
Thermosensitive

moelectric technology for harvesting low-grade heat. However, their performance °0® © ' crystal

+ .
is often limited by the scarcity of high-performance redox couples that possess both 3

— Boosting
high thermopower and rapid redox kinetics. This work addresses this challenge .i C'ys':"za‘w"‘ Eiopy changess
: + 2+ +

by leveraging our recently developed copper (I/II) (Cu™/Cu“") redox couple. We % i Dissoluﬁon. ..
significantly enhance the performance of Cu-based liquid thermocells by integrat- 31 %o ° -
. .. . . . S SAg ¥ Etching
ing a thermosensitive crystallization process with etched carbon cloth electrodes, M carbon cloth

achieving synergistic improvements in thermodynamic and kinetic performance.

The thermosensitive crystallization process establishes a persistent Cu?* concentration gradient, boosting the thermopower from 1.47 to
2.93 mV K~!. Moreover, the etched carbon cloth electrodes provide a larger electroactive surface area and demonstrate a higher current
density. Consequently, the optimized Cu*/Cu?* system achieved an exceptional normalized power density P, (AT)™2 of 3.97 mW m™—2 K2,
A thermocell module comprised of 20 cells directly power various electronic devices at a temperature difference of 40 K. This work
successfully exhibits potential of Cu*/Cu®* redox couple in thermoelectric conversion and introduces a valuable redox couple for high-

performance thermocells.
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1 Introduction

As global energy demands continue to rise and the search for
sustainable energy solutions intensifies, the efficient utiliza-
tion of available thermal energy resources, especially those
that are often neglected, becomes increasingly critical [1, 2].
Low-grade heat, defined as thermal energy below 100 °C, is
an often-overlooked and underutilized resource. It is abun-
dantly available in various environmental sources, including
geothermal and solar-thermal energy, as well as waste heat
generated by power plants, data centers, and even the human
body [3, 4]. Thermoelectric technologies, which convert this
ubiquitous thermal energy directly into useful electricity,
hold significant potential for powering low-energy smart
devices within the Internet of Things (IoT) [5-7]. Among
them, liquid thermocells (LTCs) present a promising new
solution, offering high thermopower (in the mV K~! range),
low cost, and easy scalability. LTCs exploit the tempera-
ture dependence of electrochemical redox potentials, known
as the thermogalvanic effect, to generate continuous elec-
tricity. The power output (P=V « J) of LTCs depends on
both thermodynamic and kinetic features. The thermody-
namic aspect is characterized by thermopower S, defined
as S,=0V /0T = AS/nF, where AS represents the entropy
change for the redox reaction, n is the number of electrons
transferred, and F refers to Faraday’s constant. The kinetic
aspect is directly reflected in the current density (J). Over-
(AT)7?) serves as
a comprehensive metric for evaluating and comparing the

all, the normalized power density (P,
performance of TLCs.

Since the introduction of the concept of LTCs in the
nineteenth century, only a limited number of redox couples
have demonstrated potential for thermoelectric conversion,
including Fe(CN),*>~/Fe(CN)¢*~ [8-10], Fe**/Fe’* [11, 12],
Cu/Cu®* [13, 14], I"/1;~ [15, 16], and others [17, 18]. Among
these redox couple systems, the Fe(CN)63‘/Fe(CN)64‘ Sys-
tem stands out as the most preferred thermogalvanic system
primarily due to its intrinsic characteristics. The pristine
0.4 M Fe(CN)*"/Fe(CN),*~ system exhibits a high S, of
approximately —1.4 mV K~! and rapid redox kinetics, serv-
ing as a benchmark for LTC [19, 20]. Over the past decade,
the field of LTCs has witnessed remarkable progress and
impressive performance enhancements through advance-
ments in electrolytes [10, 21-24], electrodes [25-27],
and device architectures [28-30], particularly within the
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Fe(CN)63_/Fe(CN)64_ system. For instance, Duan et al.
introduce strong chaotropic guanidinium cations and highly
soluble urea into Fe(CN)63_/Fe(CN)64_ system, synergisti-
cally enlarging the entropy difference. This resulted in a high
S, of —4.2 mV K™ and a normalized power density (P,
(AT)™?) of 1.1 mW K2 m~2 [9]. Furthermore, carbon nano-
materials have emerged as cost-effective electrodes, provid-
ing high current densities in LTCs due to their increased sur-
face area and rapid electron transfer kinetics [8, 31, 32]. For
example, activated carbon cloth employed as electrodes in
the Fe(CN)63_/Fe(CN)64_ system can achieve a P, (A )2
of up to 1.80 mW K~2 m~2 [26]. In a holistic approach, Yu
et al. pioneered a thermosensitive crystallization strategy in
conjunction with porous carbon fiber electrodes, yielding a
high S, of —=3.73 mV K! and a remarkable P,,,, (AT)"? of
7.08 mW K2 m™2[28].

Conversely, other redox couple systems have struggled to
exceed 2 mW K~2 m~2 due to intrinsic performance limita-
tions. For example, applying similar thermosensitive crys-
tallization and 3D multi-structured electrodes to enhance
the thermodynamic and kinetic properties of the Cu/Cu**
system yields a S, of only 1.66 mV K™ ' and a P, (AT)>
of 0.71 mW K2 m~? [13]. Although the I7/I;~ system
achieves an exceptionally high S. of 9.62 mV K™! through
strong hydrophobic interactions between thermoresponsive
methylcellulose and I~ ions, it only reaches a P,,,, (AT)™>
of 0.36 mW K~ m™? [15]. This is attributed to the slow
kinetic rate inherent to this system. Although optimized
systems show significant improvements over their unop-
timized counterparts, they still fall short when compared
to the Fe(CN),> /Fe(CN)*~ system. The Fe’*/Fe** system
displays a S, that is highly dependent on the choice of coun-
ter ions, with the perchlorate system (Fe(ClO,),/Fe(ClO,)5)
yielding a relatively high S, of ~1.65 mV K™! [33, 34].
However, this system often requires expensive platinum
electrodes to ensure fast kinetics and corrosion resistance.
Utilizing highly catalytic electrodes in a cylindrical architec-
ture, the Fe(ClO,),/Fe(Cl0O,); system achieves a P,,, (A 7)72
of 1.92 mW K~2 m~2 [35]. It is important to note that the
advancement of high-performance LTCs is currently con-
strained by the challenge of discovering redox couples that
exhibit both high S. and rapid redox kinetics simultaneously.

Recently, we have developed an innovative redox cou-
ple, Cu™/Cu?* (Fig. 1, left), which demonstrate excep-
tional thermogalvanic performance. This system rivals
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the performance of the benchmark 0.4 M K;Fe(CN)4/
K, Fe(CN)4 system, showcasing an intrinsically high S. of
1.51 mV K~! and fast redox kinetics. In this work, we
achieve further performance enhancements by combin-
ing a thermosensitive crystallization process with etched
carbon cloth electrodes, enabling synergistic optimization
of both thermodynamic and kinetic properties. The ther-
mosensitive crystallization process, driven by ammonium
sulfate, creates a sustained Cu®* concentration gradient
that contributes to a substantial increase in entropy change
(AS), thereby boosting the S. from 1.47 to 2.93 mV K.
Additionally, the etched carbon cloth electrodes are pre-
pared via an easily accessible alkalization and annealing
treatment, which increases hydrophilicity and surface
area. This results in a larger electroactive surface area and
consequently leads to greater current density. As a result,
the optimized Cu™/Cu?* system achieved an exception-
ally high P, (AT)™* of 3.97 mW m~2 K2 Given to the
high S, and J of Cu*/Cu** system, a prototype module
consisting of 20 units generates an open-circuit voltage of
2.14 V and a maximum power output of 27.19 mW under a
temperature difference (AT) of 40 K, which is sufficient to

directly power low-energy power devices. This work suc-
cessfully demonstrates the potential of the Cu*/Cu** redox
couple in thermoelectric conversion and introduces a valu-
able new redox couple for high-performance thermocells.

2 Experimental Section
2.1 Materials

Cuprous chloride (CuCl), cupric chloride (CuCl,), potas-
sium ferricyanide (K;Fe(CN)y), potassium ferrocyanide
(K,Fe(CN)y), sodium sulfate (Na,SO,), potassium sulfate
(K,S0,), ammonium sulfate (NH,),SO,), tetramethylam-
monium sulfate, and guanidinium sulfate were obtained
from Shanghai Aladdin Co. Ltd. Hydrochloric acid (HCl)
and ammonium chloride (NH,Cl) were purchased from the
Chengdu Kelong Co. Ltd. All chemical reagents were used
without further purification. Graphite sheets and carbon
cloth were purchased from Longyao Carbon New Material
Technology Co. Ltd. (China), respectively. The deionized
water used in all experiments was prepared by an ATSro 10.

Liquid-state thermocell (LTC): Cu?* + e <> Cu™
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Fig.1 Schematic representation of a high-performance Cu-based liquid thermocell. This design incorporates a thermosensitive crystalliza-
tion process and etched carbon cloth electrodes to synergistically enhance entropy changes and redox reaction kinetics. The reduction reaction
(Cu** +e — Cu*) occurs at the hot electrode (cathode), and the oxidation reaction (Cu* — Cu®* +e.”) takes place at cold electrode (anode)
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2.2 Preparation of Electrodes, Electrolytes and LTCs
Devices

3D porous carbon cloth electrodes were prepared by two
steps. First, carbon cloth was immersed in 1 M KOH solu-
tion at 70 °C for 24 h, stirred at 500 rpm. Thereafter, carbon
cloth was washed with deionized water several times and
dried in vacuum at 60 °C for 12 h. Second, carbon cloth was
annealed at 600 °C in a tube furnace. The annealing time
affected surface structure of carbon cloth fiber. We set five
time points: 0, 1, 3, 5, and 7 h. The etched carbon cloth was
washed and placed in the oven to dry for use.

For Cu-based liquid thermocell, CuCl and CuCl, were
dissolved in this aqueous solution containing 0.1 M HCI
and 0.9 M NH,CI. The 0.15 M CuCl and 0.4 M CuCl, dis-
solved in this aqueous solution were used as the pristine
electrolyte for LTC. The optimized electrolyte was prepared
by adding (NH,),SO, into the pristine electrolyte. Similarly,
the electrolyte with other molarity ratios and additives was
prepared for comparison. Typically, a planar single cell was
used to demonstrate the thermoelectric performance of the
LTC/TC-LTC. As shown in Fig. S1, the planar cell was
assembled by four steps: first, attaching the carbon cloth
electrodes and/or graphite sheets to the poly (methyl meth-
acrylate) (PMMA) frame and sealing with epoxy glue; sec-
ond, injecting electrolyte to fill up the cell; third, sealing
the cell by the nano transparent double-sided tape; forth,
horizontally placing the cell to test. The cross-sectional area
of the frame was 3.24 cm?, and the height was 1.2 cm. The
hot side was heated by an electrical heating plate, and the
cold side was cooled by a thermoelectric cooler contacting a
water-cooling plate. In all measurements, the cold electrode
temperature is controlled at ~20 °C. A similar process was
used to fabricate an integrated TC-LTC module (Fig. 5a). In
brief, a plastic frame containing 20 isolated cells was filled
with optimized electrolyte. Each isolated cell was the same
size as the planar cell above. Finally, the isolated cells were
connected in series by Cu wires.

2.3 Material and Electrical Characterizations

The concentration of Cu?* and Cu* in the electrolytes
was measured by UV—Vis spectro-photometry (Shimadzu
UV-3600) with the loading buffer diluted ~350 times by
3 M NH,CI solution. The crystal structure of samples was

© The authors

analyzed by X-ray diffraction (XRD, PANalytical X’ Pert
Powder). Fourier-transform infrared spectroscopy (FTIR)
was performed using Thermo Fisher Scientific Nicolet iS50.
X-ray photoelectron spectroscopy (XPS) was performed
with an ESCALAB-250Xi X-ray photoelectron spectrom-
eter. The solubility (defined as g per 100 g solution) of the
crystals at different temperatures was directly measured.
The dried samples were gradually added them to aqueous
solution (contain 0.9 M NH,Cl and 0.1 M HCI) (5 g) at dif-
ferent temperatures and thermostatically incubated until the
solution was saturated. The amounts of dried samples added
were multiplied by 20 to obtain their solubility at different
temperatures. The morphology of the various electrodes
was characterized by a scanning electron microscope (SEM,
JXA-8530F Plus). The contact angles of water droplets on
the various electrodes were measured by a contact angle
meter (SL200B, Kino) at room temperature.

Cyclic voltammetry (CV) scanning was performed
at 10 mV s~!'. The Randles—Sevcik equation is given by
1, =2.69 x 10° - ESA - DV/2 . 33/2 . y1/2. C, where 1, is the
faradaic peak current, n is the number of electrons trans-
ferred during the redox reaction, ESA is the electroactive
surface area, C is the concentration of the probe molecule,
v is the potential scan rate, and D is the diffusion coeffi-
cient. Electrochemical impedance spectra (EIS) measure-
ments were taken in the frequency range between 10 kHz
and 100 mHz. CV and EIS tests were performed on elec-
trochemical workstation (Bio-Logic, VMP3, SN 0897).
Voltage—time, current—voltage, and power—voltage curves
were measured with a Keithley 2400 instrument, and the
corresponding temperature profiles were recorded by a ther-
mocouple data logger (USB-TC-08, Pico Technology, St.
Neots). The current—voltage curves were recorded by the
points measured from the open-circuit voltage to 0 V, and
the power—voltage curves were calculated by the product of
the corresponding current and voltage values.

3 Results and Discussion

The LTC consists of an electrolyte containing a redox cou-
ple sandwiched between two electrodes (Fig. 1, left). The
device architecture is straightforward and does not require
complex manufacturing processes, demonstrating good
reliability (Figs. S1 and S2). Our laboratory has developed
a novel redox couple, Cu™/Cu®*, achieved by stabilizing

https://doi.org/10.1007/s40820-025-01977-w
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cuprous ions in chloride-rich solutions. The solubility of
CuCl/CuCl, in an electrolyte solution of 0.9 M NH,CI and
0.1 M HCl can reach up to 0.15 M, yielding an inherent S, as
high as 1.51 mV K! (Fig. $3). This promising pristine sys-
tem presents significant opportunities for further improve-
ment. As detailed in Note S1, the potential difference under
a temperature difference (also referred to as S.) depends on
both the solvent-dependent entropy difference (AS) between
the redox couple and the concentration ratio difference (AC,)
between the hot and cold sides of the LTC. Typically, the
concentration gradient is thermodynamically unstable and
tend to spontaneously decays into a homogeneous stable
state (Fig. 1, left), where AC, equals zero [13, 28]. Conse-
quently, the S, for the traditional LTC is driven solely by
AS. The AS can be increased through the addition of specific
organic solvents or specific additives [9, 36]. However, their
role is single and they may have minimal or even opposing
impacts on the improvement of redox kinetics within the
LTC [36, 37]. Yu et al. proposed a thermosensitive crystalli-
zation strategy that enhances S, through the contributions of
both AS and AC, [28]. In the thermodynamically stable state,
a concentration gradient is established within LTC, which
not only enhances S, but also effectively suppresses thermal
conductivity without scarifying kinetic performance.

To further boost S., we establish a Cu?* concentration
gradient in CuCl/CuCl, solution using the ammonium sul-
fate ((NH,),SO,) to induce thermosensitive crystallization
(Fig. 1, right). Specifically, the addition of (NH,),SO, pref-
erentially binds Cu®* to form thermosensitive crystals on the
cold side (top), where the crystals precipitate due to gravity
and subsequently redissolve on the hot side (bottom). This
process creates a Cu>* concentration gradient, with lower
concentration near the cold electrode and higher concen-
tration near the hot electrode. We refer to this system as
a thermosensitive crystallization-boosted LTC (TC-LTC).
However, the relatively low concentration of the redox cou-
ple (0.15 M CuCl/CuCl,) yields fewer crystals (Fig. S4).
For effective thermosensitive crystallization and dissolution,
sufficient crystal formation is essential. Therefore, we re-
optimize the pristine LTC system, i.e., the system without
thermosensitive crystallization. As the solubility of CuCl has
reached its maximum under the given solvent conditions, we
opted to increase only the concentration of CuCl, during the
re-optimization process. By increasing the CuCl, concentra-
tion, we can enhance the number of crystals formed. When
the concentration of CuCl, is increased from 0.15 to 0.4 M,

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

the S, of the system reaches its maximum (Fig. S4). The
optimal composition for the pristine LTC is determined to
be 0.15 M CuCl/0.4 M CuCl,. The pristine LTC not only has
a high S, of 1.47 mV K~! but also exhibits fast rapid kinet-
ics, which are comparable to those of the 0.4 M Fe(CN )637/
Fe(CN)64_ benchmark system (Figs. S2, S5, S6). Moreover,
the short-circuit current density (J,,) does not fluctuate sig-
nificantly over 12 h at a temperature difference (A7) of 40 K,
indicating excellent stability for the pristine system.

The addition of (NH,),SO, causes a color change in
the CuCl/CuCl, solution, shifting from dark green to light
blue, as blue crystals form (Figs. 2a and S7). The light blue
supernatant suggests a decrease in Cu>* concentration. To
further confirm the specific binding of (NH,),SO, to Cu*™,
X-ray photoelectron spectroscopy (XPS) analysis is used
(Fig. 2b, c). The peaks at 954.2 eV and 934.4 eV corre-
spond to Cu(Il) 2p,,, and Cu(Il) 2p5,, while the peaks at
952.0 eV and 932.1 eV are assigned to Cu(I) 2p,,, and Cu(I)
2ps» [38]. These results confirm that Cu** predominantly
resides within the crystals, whereas Cu* is primarily found
in the supernatant. Additionally, this interaction between
ammonium (NH}) and Cu?* in the crystals is supported by
Fourier-transform infrared spectroscopy (FTIR) (Fig. S8).

The thermosensitive crystals, forming at the cold end and
dissolving at the hot end, induce a copper ion concentra-
tion gradient, creating a AC,. We measure the concentration
ratio profile of [Cu?*]/[Cu*] in the TC-LTC under varying
AT from UV-Vis absorption spectra (Figs. 2d, S9-S11, and
Note S2). At the cold side (293 K), nearly complete crystal-
lization of Cu* led to low [Cu**]/[Cu™] ratio of ~0.27. In
contrast, as the temperature increased on the hot side, rapid
dissolution of the crystals resulted in a [Cu**]/[Cu*] ratio
of 2.66 at 333 K. This creates a substantial AC, between the
electrodes, which rises with increasing AT. Given that S,
is synergistically influenced by both AS and AC,, the volt-
age output of the TC-LTC shows significant enhancement
(Figs. 2e and S12). The experimentally measured voltage
values agree with those simulated using Eq. S6 and the
measured [Cu?*]/[Cu*] ratios. The maximum S, achieved
is 2.93 mV K™!, which is nearly double that of the origi-
nal LTC system (1.47 mV K™). Further optimization of the
(NH,),SO, addition (Figs. 2f, and S13, S14) indicates that
a concentration of 4 M achieves complete crystallization of
Cu®* at lower temperatures, leading to the largest concen-
tration gradient and thus maximizing S,. Higher (NH,),SO,
concentrations result in decreased AC, due to concomitant

@ Springer
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Fig. 2 Crystallization-inducing enhancement of the S, in the TC-LTC. a Photograph of a single planar TC-LTC cell. The water-cooling plate
and thermoelectric cooler work together to maintain the cold side temperature at 293 K. Cu 2p XPS spectra for dried powders from b the precip-
itate and ¢ the supernatant in the (NH,),SO,-added electrolytes. d [Cu?*]/[Cu™] concentration ratio at the cold and hot electrodes as a function of
the temperature difference (A7). e Open-circuit voltage (V) of the LTC and TC-LTC at different AT values, with simulated results (dashed line)
aligning with experimental data. f [Cu**]/[Cu*] concentration ratio in the electrolyte at 293 K and corresponding S, values with the addition of

(NH,),S0O, at different concentrations

crystallization of Cu*, which ultimately leads to a reduction
inS,.

To illustrate the underlying mechanisms of thermo-
sensitive crystallization, we systematically investigate
various monovalent cation sulfates as additives. The abil-
ity to induce crystallization is observed only with potas-
sium (K*), ammonium (NH}) and tetramethylammonium
(Tma™) (Figs. 3a and S15). Subsequently, we examine
the crystal structure using XRD (Fig. 3b). The crystals
induced by (NH,),SO,, K,SO,, and (Tma),SO, are iden-
tified as (NH,),Cu(SO,),*6H,0, K,Cu(S0,),*6H,0, and
(Tma),Cu(SO,),*H,0, respectively [13, 39]. These double
sulfates of divalent metals with various monovalent cati-
ons could be effectively explained based on the hard—soft
acid-base (HSAB) principle, which states that hard Lewis
acids preferentially bind with hard Lewis bases and soft
Lewis acids with soft Lewis bases [40, 41]. In order to co-
crystallize, the complex cation and the complex anion must

© The authors

have similar acid and base strengths [42]. As a typical inter-
mediate hardness cation, Cu®* is considered to coordinate
with either H,O molecules or anions during the formation
of the double salts, depending on the relative proportions
of H,O and anions and the hardness of the second cation
[13]. In the pristine electrolyte solution (0.9 M NH,CI and
0.1 M HCl), CI” progressively replaces water molecules in
the hydrated [Cu(H20)6]2Jr complex, forming cupric-chloro
complexes such as [CuCl(H,0)s]* and [CuClz(H20)4]0 [43].
However, upon the introduction of sulfates, the increased
sulfate concentration (4 M) promotes coordination between
Cu?* and SOi_, facilitating the formation of a softer com-
plex anion. Moreover, the harder second cations Li*, Na*
and guanidinium (Gdm™) do not induce Cu?* crystallization,
likely due to unfavorable HSAB interactions. In contrast, the
softer second cations NH;, K*, and Tma* could potentially
form double salts with softer complex anion composed of
with Cu®* and SO;™.

https://doi.org/10.1007/s40820-025-01977-w
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Fig. 3 Various additives for inducing thermosensitive crystallization and enhancing S,. a Photographs of the electrolyte with various additives at
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(Tma),Cu(SO,),-H,O0, respectively. ¢ Normalized solubility of the three crystals as a function of temperature. d Comparison of S, values for the

thermocell using various additives

The thermosensitive solubility of Cu?*-associated
crystals is a critical for achieving a high S.. Investiga-
tion of temperature-dependent solubility reveals that the
(NH,),SO,-induced crystals exhibit the highest thermo-
sensitive solubility, resulting in the greatest concentration
difference with increasing temperature (Figs. 3c and S16,
S17). Thermodynamic theory, captured by the equation
AG=AH-TAS, explains the differences in thermosensitiv-
ity among the crystals. Generally, crystals that undergo sig-
nificant entropy changes (AS) combined with small enthalpy

SHANGHAI JIAO TONG UNIVERSITY PRESS

changes (AH) upon dissolution lead to a notable decrease
in Gibbs free energy (AG) with a slightly increase in tem-
perature, resulting in high thermosensitivity [28]. The
crystal induced by (NH,),SO, contains six hydrated water
molecules and features the relatively large NH} cation,
resulting in the highest structural complexity and a large
AS. This highly hydrated crystal is less tightly bound and
exhibits low lattice energy [44], which translates to a
small AH during dissolution. Consequently, this unique

@ Springer
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characteristic contributes to the highest S, observed in the
(NH,),SO,-enhanced TC-LTC system (Figs. 3d and S18).
The power output of the LTCs is influenced not only by
the thermodynamic parameter S, but also by the current
density [8]. Electrodes play a significant role in current
delivery, particularly the microstructures of the electrodes
[26, 45]. Initial experiments utilize a cost-effective graphite
plate; however, its planar structure and limited specific sur-
face area restrict the kinetic rates of the thermocell. In con-
trast, porous carbon electrodes offer a larger specific surface
area, providing more active sites for redox reactions per unit
volume, which contributes to a higher current density [46,
47]. Carbon cloth, known for its large specific surface area,
is widely employed as an electrode material in the fields of
energy storage and conversion [48—50]. To further enhance
the specific surface area, an etched carbon cloth electrode is
prepared through alkalization treatment followed by anneal-
ing at 600 °C (Fig. S19). The alkalization treatment involves
soaking the carbon cloth in a 1 M KOH solution at 70 °C,
which improves its hydrophilicity (Fig. S20). This enhance-
ment facilitates easier access of the aqueous electrolyte to
the carbon cloth, likely due to the formation of oxygen-
containing functional groups [51, 52]. The alkalized carbon
cloth electrode is designated as CC-Alkali. During the sub-
sequent annealing process, residual KOH in the carbon cloth
etches the surfaces of the carbon fibers, creating numerous
tiny pores and further increasing the specific surface area
[53]. The resulting electrode is referred to as CC-Alkali+A.
Details of the etching mechanism are provided in Note S3.
As the annealing time is extended, the density of surface
micropores gradually increases (Figs. S21 and S22). How-
ever, when the annealing time reaches 7 h, the fibers exhibit
ulceration, which leads to fiber breakage (Fig. S23).
Subsequently, we assembled LTC and TC-LTC devices
using the electrodes described above (Fig. 4a). In brief,
a plastic cell is filled with an electrolyte and sealed with
treated carbon cloth, followed by graphite plates (GPs),
which serve as the electrodes. Based on the assessments
of current output of the LTC, we optimized the annealing
time to 5 h (Fig. S24). A comparison of different types of
electrodes used in the LTC is presented in Fig. 4b. The J,
of the LTC utilizing the CC-Alkali+A electrodes reaches
105.23 A m~2, which is greater than that of the LTC with
GP electrodes or CC-Alkali electrodes. Correspondingly,
of this LTC is significantly
increased. To understand this enhancement, we leverage the

maximum power density P,

© The authors

electroactive surface area (ESA), defined as the fraction of
the electrode surface that is electrochemically active and
participates in Faradaic reactions. The ESA provides a direct
measure of the number of active sites and is thus a more rel-
evant metric for electrochemical performance than geomet-
ric area [54]. Experimentally, the ESA could be determined
from the peak current density (/,) in the cyclic voltammo-
grams (CVs) of the electrodes (Fig. 4c). According to the
Randles—Sevcik equation [55], a high faradaic peak cur-
rent of an electrode exhibiting reversible kinetics indicates
a high ESA [8, 56]. The ESAs of the GP, CC-Alkali, and
CC-Alkali+A electrodes are estimated to be 3.77, 4.93, and
6.31 cm?, respectively. Generally, a higher ESA corresponds
to a higher P, (Fig. 4d). Furthermore, the CC-Alkali+A
electrode also demonstrates a lower charge transfer resist-

max

ance (R, represented by the diameter of the semicircle in

ct>
a Nyquist plot) (Fig. 4e), which facilitates improved charge
transport.

When utilizing the same GP electrodes, both the S, and J
of the TC-LTC system are enhanced compared to the LTC
system (Fig. 4f). This increase in current density is attributed
to the thermosensitive crystallization process. In TC-LTC
system, a low local concentration of Cu?* near the cold elec-
trode promotes the oxidation reaction (Cu™ — Cu** +e"),
while a high local concentration of Cu?* near the hot elec-
trode enhances the reduction reaction of (Cu** +e~— Cu™).
The cell employing CC-Alkali+A electrodes in the TC-LTC,
which represents an optimized electrolyte and electrode sys-
of 6.35 W m™? at a AT of 40 K. This
is 7.74 times greater than that of the LTC system using GP
electrodes (0.82 W m™2) and 1.97 times greater than that of
the TC-LTC system with GP electrodes (3.23 W m™2), as
shown in Fig. 4f. Additionally, the TC-LTC displays remark-
able enhancements in output compared to the LTC with the

tem, achieves a P,

same CC-Alkali+A electrodes across various AT values
(Figs. 4g and S25). The P
reaches 3.97 mW m ™2 K2, remarkably surpassing those of
current n-type LTCs, including [Co(bpy);]**/[Co(bpy);]**
system [37, 57, 58], Cu/Cu?* system [13, 59, 60], I"/I;~
system [15, 21, 61], and various Fe**/Fe** systems [33-35,
46, 47] (Fig. 4h and Table S1). In comparison to p-type
Fe(CN),> /Fe(CN)*~ systems, our optimized system out-
performs most Fe(CN)4> /Fe(CN)(* -based LTCs [9, 26,
33, 36], except for the one reported by Yu et al. [28]. This
motivates us to explore more suitable additives for thermo-

' wax (AT) ™% of our optimized system

sensitive crystallization to achieve higher S. values and to

https://doi.org/10.1007/s40820-025-01977-w
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Fig. 4 Electrode optimization of the Cu-based thermocells. a Diagram of electrode structure along with SEM images of the surface of carbon
cloth. The alkalized carbon cloth electrode is labeled as CC-Alkali, while the etched carbon cloth electrode, produced through alkalization and
annealing treatment, is labeled as CC-Alkali+A. b Current—voltage and power—voltage curves for the LTC using different electrodes at a AT of
40 K. ¢ Cyclic voltammograms of different electrodes. d Maximum output power density P, of LTC with different electrodes and electroactive
surface area (ESA) values. e Electrochemical impedance spectra of different electrodes. f Current—voltage and power—voltage curves for the LTC

and TC-LTC using different electrodes at a AT of 40 K. g Maximum power density (P,,,,) for the LTC and TC-LTC utilizing CC-Alkali+A elec-
trodes at varying AT. h Comparison of P, (AT)"> and S, values for this work and the other LTCs

develop more effective electrode optimization strategies for
faster reaction kinetics. Moreover, we have evaluated the
cost-performance metric (CPM) of various thermoelectric
systems by considering the prices of raw materials. Com-
pared to inorganic solid-state thermoelectric cells ITECs)
and organic solid-state thermoelectric cells (OTECs), our
TC-LTC system demonstrates a potentially more cost-effec-
tive profile, as detailed in Table S2.

Finally, we design a TC-LTC module by connecting 20
cells to demonstrate the viability for scale-up (Fig. 5a). Each

SHANGHAI JIAO TONG UNIVERSITY PRESS

isolated cell maintains the same electrode configuration and
size as the planar cells tested earlier, and the isolated cells
are connected in series by Cu wires. The module generates
an open-circuit voltage (V) of 2.14 V and a short-circuit
current of 41.95 mA, resulting in a P_,, of 27.19 mW under
a AT of 40 K (Fig. 5b, c). Relative to a single TC-LTC, the
loss of current is attributed to increased internal resistance
from the series connections [33]. Given the considerable
power output, the module is capable of directly driving
various electronic devices, including a thermohygrometer,

@ Springer
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Fig. 5 Electricity generation and demonstration of using a TC-LTC module to power electronic devices. a Schematic representation and photo-
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ence (AT). ¢ Current—voltage curve and corresponding power output of the module at AT=40 K. Image of the module directly powering various
small electronic devices, including d a thermohygrometer, e an electric fan, and f an LED strip

an electric fan, and a light-emitting diode (LED) strip
(Fig. 5d—f, and Movie S1). This suggests that the Cu-based
TC-LTC we developed shows excellent potential for recover-
ing low-grade heat.

4 Conclusions

In summary, we have achieved a high-performance LTC
through the synergistic thermodynamic and kinetic engi-
neering of a novel Cut/Cu** system, resulting in a high S,
of 2.93 mV K ™! and a power density of 6.35 W m™2 at AT
of 40 K. Specifically, we developed a thermosensitive crys-
tal, (NH,),Cu(SO,),-6H,0, induced by ammonium sulfate,
which enables both a significant entropy change to enhance
S, and a concentration gradient simultaneously to improve
the redox reaction of Cu*/Cu**. Furthermore, we design an
etched carbon cloth electrode with high hydrophilicity and
a large electroactive area to further boost the redox kinetics.
Consequently, our optimized Cu™/Cu**-based LTC achieves

© The authors

(AT)™ of 3.97 mW m 2 K2, representing
the best performance among current n-type LTCs. A proto-

aremarkable P,
type module consisting of 20 units successfully generates
usable electrical energy, capable of directly powering small
electronics, demonstrating the potential of this system for
efficient low-grade heat harvesting. Prospectively, we will
further enhance the kinetic properties of the Cu*/Cu?* sys-
tem by optimizing electrode materials and structures, as well
as increasing the concentration of CuCl/CuCl,, to enable
highly efficient p—n integrated devices with thermosensitive
crystallization processes.
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