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 HIGHLIGHTS

•	 Flexible sensing technology enables battery health monitoring under complex operating conditions, overcoming the limitations of 
traditional monitoring methods.

•	 Artificial intelligence (AI) -powered data processing facilitates the construction of a "sensing–AI–control" framework, enhancing 
monitoring efficiency.

ABSTRACT  With the widespread application of lithium batteries in electric vehicles 
and energy storage systems, battery-related safety and reliability issues have become 
increasingly prominent. Conventional monitoring methods often struggle to address 
dynamic changes under complex operando. In recent years, flexible sensing technology 
has emerged as a promising solution for battery health monitoring due to its high adapt-
ability and conformability to complex structures. Meanwhile, empowered by artificial 
intelligence (AI) for data analysis, the collected data enables efficient and accurate state 
assessment, offering robust support for accident prevention. Against this background, 
this paper first explores the integrated applications of flexible sensors in battery health 
monitoring and their unique advantages in addressing complex battery operating con-
ditions, while analyzing the potential of AI in battery state analysis. Subsequently, it 
systematically reviews mainstream flexible sensing technologies (e.g., film sensors, thermocouples, and optical fiber sensors), elucidating their 
mechanisms for revealing intricate internal battery processes during operation. Finally, the paper discusses AI’s role in enhancing monitoring 
efficiency and accuracy, and envisions future research directions and application prospects. This work aims to provide technical references for the 
battery health monitoring field as well as promote the application of flexible sensing technologies in improving battery system safety and reliability.
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1  Introduction

Lithium-ion batteries are the core components of electric 
vehicles and scaled energy storage systems [1–3]. The safety 
and health of these batteries directly determine the reliability 
and lifetime of energy systems [4–7]. Despite the substantial 
enhancement in energy density and cycling performance of 
batteries in recent years [8–11], under complex operando 
(e.g., mechanical abuse, thermal abuse, or electrical abuse), 
the coupling failure of multiple physical fields (mechanical, 
thermal, and electrochemical) within the battery may still 
trigger catastrophic events such as cascading thermal runa-
way or even explosion [12–15], resulting in serious safety 
hazards. The demand for battery testing has led to significant 
advancements in non-in situ and in situ techniques over the 
past few decades [16–18], with these techniques becom-
ing increasingly important in the design of batteries [19, 
20]. Nevertheless, the parameters that can be extracted by 
non-in situ and in situ techniques are frequently detached 
from the real operating state, i.e., the working environ-
ment. Consequently, battery operando detection technology 
has become a hotspot and a challenge in battery research 
in recent years [21–25]. Flexible sensing technology pro-
vides a breakthrough solution to this challenge by virtue 
of its thinness (thickness can be as low as micron level) 
[26–30], high ductility, and low invasiveness. It is capable 
of real-time monitoring of multi-physical field states under 
complex battery operando [31–36], and provides real-time 
feedback to the control system through the parsing system 
(Fig. 1). The in-depth integration of AI technology enables 
the monitoring system to extract multi-physical field corre-
lation features (e.g., pressure-internal resistance coupling) 
from the massive data of the battery operando and establish 
the complex relationship between these key features and the 
battery performance to enhance the prediction and syner-
gistic capability of the system and synergistic capabilities 
[37–42]. For example, in a typical logic closed loop, the 
electrical, temperature, and pressure signals of the battery 
system operation acquired by the sensors are synchronously 
analyzed by the AI model in real time [43, 44]. When bat-
tery abnormalities occur, the AI model is capable of detect-
ing it in a timely manner and making a prompt regulation 
judgment, thereby enhancing the safety and stability of the 
battery.

Presently, the global annual sales of electric vehicles 
exceed 17 million units (2024), signifying a substantial 
market presence [45]. However, the stringent requirements 
of UN38.3 certification for battery abuse testing [46], along 
with the urgent needs of BYD, Tesla Motors, Contemporary 
Amperex, and other companies for full life cycle manage-
ment of batteries, have led to the limitations of traditional 
monitoring technologies (e.g., voltage/current sensors, 
rigid thermocouples) [47]. In highly integrated battery 
modules, which rely on thousands of discrete sensors, sys-
tem complexity and cost remain high, and real-time track-
ing of cell-level stress distribution is not possible. In this 
context, flexible sensing technology has emerged as a piv-
otal breakthrough, with its capacity for high integration (a 
single sensor capable of monitoring pressure, temperature, 
and strain synchronously) and ultra-thin embeddable fea-
tures (thickness < 200 μm). This technology has effectively 
addressed the “sensing blind spot” prevalent in large-scale 
battery packs. The incorporation of AI technology is poised 
to enhance the efficiency of detection information processing 
to a considerable extent. Here, this timely review summa-
rizes the applications and prospects of flexible sensors and 
AI technologies for battery health monitoring.

The evolution of battery technology has consistently 
driven the innovation of testing methodologies. From the 
prototype of voltaic piles in 1799 to the practicalization of 
primary batteries in 1850 and subsequently to the commer-
cial breakthrough of lithium-ion secondary batteries in 1991 
[48–50], the increasing complexity of the battery systems 
has continuously propelled the development of testing tech-
nology in the direction of high precision and multidimen-
sionality (Fig. 2a) [51–54]. This is particularly evident in the 
field of secondary batteries, as they need to undergo repeated 
charging and discharging cycles. The dynamic monitoring 
of their internal coupled multi-physics behaviors (e.g., elec-
trode expansion triggered by lithium-ion migration, capac-
ity degradation due to solid electrolyte interface (SEI) film 
thickening, temperature changes) poses significant chal-
lenges for assessing [55–57]. Early studies relied on non-in 
situ testing (e.g., post-disassembly dimensional measure-
ments or offline electrochemical analyses). However, such 
methods study the battery pole piece under static conditions 
[58, 59], and the complex sampling process introduces many 
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irrelevant factors, thereby hindering the capture of the tran-
sient response of the battery under real operando. With the 
development of operando testing techniques, researchers 
have been able to acquire fundamental parameters such as 
voltage and current during battery operation [60–63]. Flex-
ible sensing technology, with its multiparameter compat-
ibility (simultaneous acquisition of pressure, strain, tempera-
ture, and electrochemical signals), ultra-thin, scalable, and 
easy integrability capability, as well as the spatial resolution 
brought by arraying (Fig. 2b), is expected to be a key bridge 
between microscopic mechanisms and macroscopic charac-
teristics. Based on the powerful capability of flexible sensing 
technology and the real state of the battery, a comprehensive 
and quantitative assessment of the battery’s state of health 
(SOH) can be realized, including capacity degradation, 
internal resistance change, temperature anomaly, mechani-
cal deformation, and electrochemical parameters (Fig. 2c). 
These multidimensional indicators constitute key metrics for 
SOH evaluation [64].

Battery health monitoring has moved from offline analysis 
of a single parameter to the new stage of in situ multi-physical 
field sensing [65], and the breakthrough application of flexible 
sensing technology is reshaping the underlying logic of this 
field. By deeply integrating the sensor network with the battery 

body, researchers have been able to analyze the dynamic cou-
pling mechanism of mechanical–thermal–electrochemical in 
both temporal and spatial dimensions, which not only provides 
a brand-new perspective for understanding the battery fail-
ure but also gives rise to the technological innovation of the 
“energy sensing” paradigm. In this paper, we systematically 
review the recent progress of flexible sensing technology in 
battery health monitoring [66]. First, this paper focuses on 
the way flexible sensors are combined with battery operando 
exploring AI-driven multi-source data fusion to improve the 
efficiency and accuracy of battery health monitoring [67, 
68]. The paper then summarizes the commonly used means 
and key technologies for battery health monitoring, includ-
ing film, thermocouple [69], and fiber optic sensors [70], and 
the monitoring of core parameters such as current, voltage, 
charge/discharge rate, and temperature. Finally, the paper 
further explores the role of AI technologies in battery health 
monitoring efficiency and provides an outlook on the direction 
of energy sensing and technological challenges. By systemati-
cally summarizing the whole-chain technology framework of 
“sensing-data-analysis” for battery health status, this review 
aims to provide theoretical support for battery health moni-
toring and identify new research opportunities for the future 
development of battery technology.

Fig. 1   Battery health monitoring platform under operando
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2 � Research Objective

Although a few reviews have focused on flexible pressure 
sensing technologies for battery monitoring [71–74], these 
studies are constrained by three key limitations: (1) Technical 
isolation: Most reviews concentrate on a single sensor type 
(e.g., film or fiber optics), lacking systematic analysis of the 

synergistic effects of multimodal flexible sensing technolo-
gies; (2) Insufficient dynamic monitoring capabilities: Exist-
ing reviews predominantly address static parameters (e.g., 
maximum pressure thresholds) while neglecting real-time 
tracking mechanisms for dynamic processes such as battery 
expansion and thermal runaway; (3) Data-decision disconnec-
tion: Traditional reviews fail to delve into the closed-loop logic 

Fig. 2   a Development history of batteries and their testing technologies; b Comparison of flexible sensing technology with other testing tech-
nologies; c Comprehensive assessment metrics for battery health status
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between sensing data and AI-driven state analysis, resulting 
in a fragmentation between sensing technologies and analyti-
cal methods. This review bridges these gaps by integrating 
multi-physics sensing networks with an AI-enabled dynamic 
decision-making framework. This review has two primary 
objectives: (1) Systematically elucidating how flexible sensing 
technologies overcome the spatiotemporal resolution limita-
tions of traditional monitoring through noninvasive integration 
and multiparameter synchronous perception, addressing the 
coupling of multi-physical fields (mechano-thermo-electro-
chemical) in complex battery operating conditions; (2) Reveal-
ing the pivotal role of AI in feature extraction, state estimation, 
and closed-loop control of sensing data, thereby establishing 
an integrated perception–analysis–decision framework.

3 � Apparatus and Method for Monitoring 
Battery Operation

In the characterization of the battery’s operando, the pres-
sure control is very critical. At this stage, three main types 
of control are utilized, including a spring-controlled fixed 
pressure design [75], a screw-controlled fixed gap design, 
and a dual controlled pressure and gap design (Fig. 3a) [76]. 
The pressure distribution in the spring-controlled fixed pres-
sure design depends on the stiffness of the spring and the 
form of the fixture plate. The disadvantage is poor pressure 
uniformity, especially during cycling and evolving pres-
sure and expansion build-up phases. Fixed gap methods can 
provide uniform pressure distribution control; however, the 
pressure built up during cycling is ultimately uncontrolla-
ble, and the energy buildup predisposes the battery to dam-
age and abnormal deformation. As illustrated in the bottom 
panel of Fig. 3a, the design of both pressure and gap is con-
trolled by means of cushions and screws, which allows for 
the introduction of cushions of varying stiffness between the 
fixed plates on demand. This approach controls the pressure 
buildup inside the battery, providing a more reliable device 
for correlating battery performance with design parameters. 
The clamping strategy of the fixture is structured to pre-
cisely regulate the pressure dynamics inside the battery by 
means of mechanical confinement, which directly affects the 
micro-processes of the electrochemical reactions, making 
the monitoring signals reflect the intrinsic characteristics of 
the battery more realistically.

The structure of lithium batteries encompasses three pri-
mary categories: prismatic, pouch, and cylindrical. Each 
category exhibits distinct physical characteristics and is 
suitable for specific application scenarios. Prismatic batter-
ies are widely used in various portable electronic devices 
due to their high energy density and commendable mechani-
cal strength; pouch batteries have become the first choice 
for high-end smartphones and electric vehicles due to their 
thinness and high safety; cylindrical batteries occupy an 
important position in many application scenarios due to their 
mature production process and low cost. Stress measure-
ment techniques adapted to the structural characteristics of 
different batteries also take different forms from each other. 
Prismatic and pouch batteries are suitable for parallel-plate 
fixtures (Fig. 3b) [77]. They can provide uniform pressure 
to ensure the accuracy of the test results and facilitate the 
installation of sensors on the surface or inside the battery for 
real-time monitoring of key performance indicators such as 
voltage, current, and temperature. As for cylindrical batter-
ies, due to their uneven surface, they are usually clamped 
with mechanical clamps and combined with implantable 
fiber optic sensors to monitor the internal state of the bat-
teries (Fig. 3c) [78]. The fiber optic sensors are capable of 
transmitting real-time information about the stress, strain, 
and temperature inside the battery [79], which provides 
powerful data support for the health management of the 
batteries.

Data collection, processing, and analysis are the key 
links to ensure stable battery performance and safe opera-
tion. Through the comprehensive use of a variety of high-
precision instruments such as balances, sensors, and battery 
testers, key information such as mass loss, current change, 
voltage fluctuation, stress, strain, temperature difference, and 
charge/discharge rate of the battery can be comprehensively 
collected (Fig. 4a) [78]. These data not only reflect the cur-
rent state of the battery but also reveal trends and poten-
tial problems in its long-term use. Multidimensional data 
are integrated through an advanced host computer system. 
Scientific algorithms are designed in the host computer to 
dig deep into the multidimensional data features to reflect 
the health status of the battery in real time. What’s more, 
when abnormalities are detected, the monitoring system is 
able to immediately trigger an early warning mechanism and 
automatically execute a series of protective measures, thus 
ensuring the safe and stable operation of the battery.
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In battery health management, a real-time warning and 
protection mechanism is the core technology to ensure bat-
tery safety and prolong service life [80]. Through efficient 
data processing, the system is able to issue an early warn-
ing immediately when abnormal conditions are detected 
and trigger the execution of protective measures, such as 
adjusting charging strategies, limiting output power, or even 
powering down. These measures not only prevent danger-
ous situations such as overcharging, over-discharging, or 
overheating, but also optimize the efficiency of the battery 
and extend its service life. In addition, early warning and 
protection mechanisms include monitoring the environment 
in which the battery is used [81], such as temperature and 
humidity control, to ensure that the battery operates under 
optimal conditions. Through these comprehensive early 
warning and protection measures, Li-ion batteries are able 
to provide a stable and reliable energy supply in a variety 

of application scenarios, providing a solid guarantee for the 
normal operation of electronic equipment. Figure 4b illus-
trates the parsing and decision-making process of an AI-
enhanced lithium-ion battery monitoring system [74]. The 
system analyzes and predicts various output measurements 
of the battery, including state of charge, state of health, 
remaining useful life, thermal state, and other relevant met-
rics by acquiring multiple input parameters (e.g., current, 
voltage, stress, strain, temperature, state of charge, and state 
of discharge). This system helps to monitor battery perfor-
mance in real time, improving the safety and efficiency of 
the battery.

This chapter systematically reviews three mainstream bat-
tery expansion force control devices (spring-controlled, gap-
controlled, and hybrid-controlled), highlighting the critical 
role of fixture design in characterizing intrinsic battery prop-
erties. By comparing sensing solutions adapted to prismatic, 

Fig. 3   a Three main battery expansion force control devices. Copyright 2024, Springer Nature. Reproduced with permission [76]. b Test rig for 
prismatic and flexible pack batteries. Copyright 2023, American Chemical Society. Reproduced with permission [77]. c Test rig for cylindrical 
batteries. Copyright 2023, Springer Nature. Reproduced with permission [78]
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pouch, and cylindrical batteries (e.g., parallel-plate fixtures 
and fiber optic implantation), structural compatibility is 
identified as a prerequisite for precise monitoring. Further-
more, the synergistic framework of data acquisition and AI-
driven analysis provides a methodological foundation for 
real-time correlation of multidimensional parameters (stress, 
temperature, SOC), signifying a paradigm shift in battery 
monitoring from offline single-parameter to online multi-
physics approaches.

4 � Flexible Sensor Technology for Battery 
Health Monitoring

The combination of flexible sensor technology and lithium 
battery health monitoring marks a new stage in battery 
monitoring technology. Traditional rigid sensors are lim-
ited by physical form and monitoring dimension. Capturing 
the complex internal state changes during lithium battery 
charging and discharging remains challenging. Flexible sen-
sors, with their ultra-thin, stretchable, and highly sensitive 

Fig. 4   a Testing and characterization process of lithium batteries. Copyright 2023, Springer Nature. Reproduced with permission [78]. b Algo-
rithmic analysis process of the lithium-ion battery monitoring system to achieve AI empowerment. Copyright 2024, Elsevier. Reproduced with 
permission [74]
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properties, can be seamlessly attached to battery surfaces 
or integrated into modules to enable real-time monitor-
ing of battery expansion, local temperature rise, and stress 
distribution. This approach represents a new stage in accu-
rate, dynamic, and intelligent battery health management. 
Changes in battery state, especially increases in internal 
pressure, bulging phenomena, thermal effects, and ulti-
mately the potential for thermal runaway (Fig. 5a) [82], are 
issues that need to be prioritized in lithium battery health 
monitoring. The easy integration of flexible sensors allows 
them to be coupled to the battery system without changing 
the battery operando, providing real-time operating feed-
back on the battery state to help to and mitigate these safety 
risks. These sensors are not only capable of monitoring the 
physical parameters of the battery but also predicting the 
battery’s state of health and remaining useful life through 
data analysis.

This review focuses on the application of flexible sen-
sor technology itself in the safety monitoring of lithium 
batteries, including film [83], thermocouple [84], and fiber 
optic sensors (Fig. 5b) [85]. In the future, with the further 
development of flexible sensor technology in terms of sen-
sitivity, sensing array density, sensing data categories, and 
flexibility, combined with the powerful analytical capabili-
ties of AI, the health monitoring of lithium batteries will 
become more intelligent and efficient [86]. This provides 
a more solid guarantee for the safe operation of lithium 
batteries and also opens up new possibilities for the future 
development of battery technology. The applicable scenar-
ios for these sensors are shown in Table 1. Furthermore, 
we focus on the application of different sensors in different 
batteries to analyze the performance and suitability of the 
sensors (Fig. 5c) [87–95]. It can be found that thin-film 
sensors are better suited for prismatic/cylindrical batteries, 
thermocouple sensors have the best performance for tem-
perature sensing, and fiber optic sensors are more like a 
“hexagonal warrior” with excellent performance in a wide 
range of sensors.

These sensors need to fulfill the testing needs under dif-
ferent operando conditions. The diversity of sensor per-
formance (e.g., stress/strain, temperature, response time, 
durability) and the suitability of the battery structure differ 
significantly, which directly results in different integration 
methods. This paper summarizes the performance of dif-
ferent sensors (film, thermocouple, fiber optic) and gives 

the recommended integration methods to provide technical 
references for researchers and engineers (Table 2).

In practice, the application of flexible sensors in the whole 
life cycle management of batteries is gradually deepening 
(Fig. 5d). In the “activation” phase of battery formation, 
flexible sensing technology has realized breakthrough appli-
cations. Through the high-precision sensor array integrated 
into the shell, the system can capture the micron-level defor-
mation and temperature fluctuation of the battery cell during 
charging and discharging in real time, and work with the 
big data analytics platform to implement monitoring. This 
in situ monitoring technology is reshaping the standards of 
lithium-ion battery production. In the use phase, the sensor 
carries out long-term multidimensional sensing, a topic that 
has been widely discussed in academia and industry [120]. 
Expansion toward battery packs is being actively pursued 
with a view to realizing true health monitoring of batter-
ies in their operando state, which in turn can be applied to 
large-scale battery packs and electric vehicles. When con-
fronted with safety challenges, the most pressing issue is 
the real-time warning of thermal runaway [96], necessitat-
ing millisecond-level response from the sensor to facilitate 
timely emergency disposal. The incorporation of AI technol-
ogy in this process is expected to enhance the operational 
efficiency of the system. It is important to note that flexible 
sensors must be adapted to complex and extreme working 
environments, including vibration, strong noise, extreme 
cold (− 40 °C), high temperature (200 °C), high altitude, and 
high humidity areas. Flexible sensing technology is rapidly 
evolving along the path of the “unit-pack-system.”

4.1 � Mechanisms of Sensors

The sensor types covered in this review primarily include 
film pressure, film temperature, thermocouples, and fiber 
optic sensors. Film pressure sensor detection technology has 
important applications in battery stress detection [95]. This 
technique utilizes the high sensitivity and fast response char-
acteristics of film sensors to accurately monitor the stress 
changes that occur in batteries during use. Figure 6a shows 
the technical characteristics of a thin-film pressure sensor for 
battery health monitoring. The sensor is ultra-thin and bend-
able, allowing it to perfectly adhere to the battery surface. 
The three most central features of conventional thin-film 
pressure sensors are the substrate and encapsulation layer, 
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Fig. 5   a The process of thermal runaway in Li-ion batteries and the conceptual diagram of the Li-ion battery testing device. Copyright 2024, Elsevier. Reproduced 
with permission [82]. b Three types of flexible sensor technologies involved in lithium battery safety monitoring. Copyright 2016, Elsevier. Reproduced with per-
mission [83]. Copyright 2023, Elsevier. Reproduced with permission [84]. Copyright 2022, Springer Nature. Reproduced with permission [85]. c Adaptation study 
of different types of sensors. d Logic diagram of the application of flexible sensing technology in the full life cycle health monitoring of batteries
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the electrode layer, and the sensitive layer, which together 
determine the mechanical–electrical characteristics of the 
sensor. The sensitive layer is subdivided into resistive and 
capacitive, which is determined by the conductive mecha-
nism of the sensor. Two common film pressure sensor con-
figurations are illustrated in Fig. 6b, c: sandwich sensors 
and fork-finger sensors [121]. In a sandwich-type sensor 
(Fig. 6b), pressure acts on the elastic substrate, reducing the 
distance between upper and lower electrodes, leading to an 
increase in dielectric constant or a decrease in resistivity, 
which in turn causes an increase in capacitance or a decrease 
in resistance. Fork-finger-type sensors (Fig. 6c), on the other 
hand, change the sensed signal by increasing the contact 
area. When pressure is applied to the sensor, the contact area 
between the bottom and top electrodes increases, causing 
an increase in dielectric constant or a decrease in resistiv-
ity, which further results in an increase in capacitance or a 
decrease in resistance. These two designs enable the sensor 
to effectively sense pressure changes and convert them into 
electrical signals. It is worth noting that both sandwich-type 
and fork-finger-type, under pressure, will lead to an increase 
in dielectric constant or a decrease in resistivity. This is due 
to the fact that when the dielectric or sensitive layer is pres-
surized, the internal structure is squeezed, the molecular 
density per unit volume is significantly increased, and the 
effective dielectric constant is increased, or more conductive 
pathways are formed, leading to an increase in dielectric 

constant or a decrease in resistivity. This characteristic is 
more evident in some sensors with microstructures. Film 
pressure sensors can provide real-time, accurate data in bat-
tery stress detection, which can help optimize battery design 
and improve battery performance and safety. By monitoring 
the stress distribution of batteries under different operando, 
potential safety hazards can be detected in a timely manner 
to prevent battery failure and damage [122].

Film temperature sensors show great capability in accu-
rate temperature monitoring. Temperature monitoring is 
likewise a critical parameter for battery operando [103, 
123, 124]. Changes in battery temperature not only affect 
the performance and lifespan of the device but are also 
directly related to the safety and reliability of the system. 
Figure 6d shows the sensing mechanism of the film tem-
perature sensor, specifically the negative temperature coef-
ficient (NTC) and positive temperature coefficient (PTC), 
which is determined by the temperature–electrical effect of 
the temperature–sensitive material [125]. In the NTC, as 
the temperature increases, the electronic or ionic activity 
inside the sensor increases, and the resistivity or dielectric 
constant of the sensor decreases, which in turn leads to a 
decrease in the resistance (R) or capacitance (C) of the 
sensor. Conversely, in the PTC, an increase in tempera-
ture leads to an increase in resistance or capacitance. This 
effect is usually due to thermal expansion or a thermally 
activated process in the material. This unique temperature 

Table 1   Application scenarios for sensors

Explain: The battery stage is generally divided into three stages, including the “formation stage” used to activate the battery, the “use stage” in 
applications, and the “thermal runaway stage” in the event of a failure

Sensor types Monitoring parameters Battery types Battery stages References

Film stress prismatic use [94]
Temperature prismatic formation, use [83]
Stress, temperature pouch formation, use, thermal runaway [96]
Electrochemistry pouch formation, use [97]
Electrochemistry pouch formation, use [98]

Thermocouple Temperature pouch formation, use [99]
Temperature prismatic use [100]

Fiber optic Temperature prismatic formation, use [101]
Strain, temperature pouch formation, use [102]
Stress, temperature cylindrical formation, use, thermal runaway [78]
Strain, temperature pouch formation, use [103]
Strain prismatic formation, use [104]
Electrochemistry pouch formation, use [105]
Stress, temperature cylindrical formation, use [106]
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response mechanism of film temperature sensors enables 
them to provide highly accurate temperature monitoring 
over a wide range of temperatures. Through precise con-
trol of the material and structure of the sensor, a sensitive 
response to temperature changes can be achieved to meet 
a variety of battery temperature monitoring needs [96].

Thermocouple sensors are another type of sensor used for 
temperature measurement, operating on the principle of the 
Seebeck effect [126], which describes the electric potential 
generated in a circuit due to a temperature difference when 
two dissimilar metals are in contact. When two conductors 
of different materials form a closed circuit and there is a 

temperature difference between their ends, thermal energy is 
converted into electrical energy, which generates an electric 
current in the circuit. Specifically, a thermocouple consists 
of two conductors of different materials, and when there is a 
temperature gradient between their hot (Thot) and cold (Tcold) 
ends, the charge carriers (e.g., electrons and holes) within 
the conductors move in a specific direction. This movement 
results in a potential difference (Vout) at the ends of the ther-
mocouple that is proportional to the temperature difference. 
Because of the metal electrode contact, it is equivalent to a 
film temperature sensor that is more stable and can adapt 
to a more severe test environment. Figure 6e illustrates the 

Table 2   Technical characteristics of flexible sensors

Sensor types 
(integration 
methods)

Substrates Ranges (Stress 
or strain or 
temperature)

Response time Durability Sensitivity or resolution Errors (esti-
mated)

References

Film (attach-
ment)

Polydimethyl-
siloxane 
(PDMS)

0–250 kPa, 
0–20%, 
20–80 °C

/  > 7000 cycles 0.172 °C−1, 610.2 kPa−1 10% [107]

Thermoplastic 
urethane 
(TPU)

0–100 kPa 120 ms  > 5000 cycles 3.997 kPa−1, 4.7 Pa 4.6% [108]

Polyethylene 
terephthalate 
(PET)

0–50 kPa, 
− 20–90 °C

17 ms  > 5000 cycles 804.27 kPa−1, 31.74 Pa 10% [109]

Polyimide (PI) 0–50 kPa, 
− 10–250 °C

120 ms  > 5000 cycles 158.23 kPa−1 6.8% [110]

Polyvinyl alco-
hol (PVA)

0–80 kPa, 
20–50 °C

30 ms  > 10,000 
cycles

6.45 kPa−1, 5 Pa / [111]

Poly(styrene-
b-ethylene-
b-butylene-
b-styrene) 
(SEBs)

0–250 kPa, 
0–350%

179 ms  > 4000 cycles 0.155 kPa−1, 16 Pa / [112]

Poly (acryla-
mide) (PAM)

0–175%, 
6–36 °C

187 ms  > 18,000 
cycles

1.8, 1% 35% [113]

Thermocouple 
(attachment)

PI 0–10 N, 
10–160 °C

/  > 5000 cycles 76.5 μV °C−1 3%-11% [114]

Paper/PDMS/
Si3N4

20–200 °C 9.8 ms  > 1000 cycles 52.67 μV °C−1, 0.8 °C / [115]

PDMS 0–40 °C, 
20–80 °C

/  > 1000 cycles 22.3 μV °C−1 0.35% [116]

Fiber optic 
(attachment, 
implantable)

Few-mode 
fiber

0–600 με, 
25.3–58 °C

Typically less 
than 10 ms

0.5 h -0.013 nm μϵ−1, 0.262 nm 
°C−1

[117]

Fabry–Perot 
interferom-
eter (FPI)

0.2–2 MPa, 
30–200 °C

/ 3.63 nm MPa−1, 9.22 pm 
°C−1

1.4% [118]

Thin-core fiber 0–100 kPa, 
20–85 °C

1.5 h/  − 14.3 nm MPa−1, − 340 pm 
°C−1

 < 0.1% [119]

Fiber Bragg 
grating, FPI

0–2 MPa, 
25–600 °C

 > 100 cycles 4.19 nm MPa−1, 10.3 pm 
°C−1

0.5% [78]
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Fig. 6   a Technical characteristics of film sensor. Sensing mechanisms of film pressure sensors: b Sandwich type and c Fork-finger type. d Sens-
ing mechanism of the film temperature sensor. e Temperature measurement principle of film thermocouple sensors. Copyright 2023, Elsevier. 
Reproduced with permission [84]. f Multi-scenario application of TFTCs. Copyright 2023, Elsevier. Reproduced with permission [84]. g Princi-
ple of operation and sensing mechanism of fiber Bragg grating. Copyright 2018, Springer Nature. Reproduced with permission [128]
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principle of temperature measurement in a flexible thermo-
couple (TFTC) [84]. In this figure, the hot end (Thot) is in 
contact with the object to be measured, while the cold end 
(Tcold) is connected to a measurement system. By measur-
ing the potential difference (Vout) between the cold end and 
the hot end, the temperature of the hot end can be deduced, 
which in turn tells the temperature of the measured object. 
Thermocouples utilize the Seebeck effect to indirectly meas-
ure temperature by measuring the potential difference caused 
by the temperature difference. This method is widely used 
in a variety of temperature measurement scenarios due to 
its simplicity, reliability, and independence from an external 
power supply.

Film thermocouple sensors (TFTCs) are advanced sen-
sors with flexible substrates and thermoelectric layers that 
provide highly accurate temperature monitoring in a wide 
range of application scenarios (Fig. 6f) [84]. The structure 
consists of a flexible substrate and a flexible thermoelectric 
layer using a variety of materials such as substrate materials 
(PI, PDMS, PET, etc.) and thermoelectric layer materials 
(Cu, CuNi, In2O5, ITO, Bi2Te3, Ag, PEDOT/PSS, etc.). The 
preparation process involves techniques such as aerosol jet 
printing, screen printing, magnetron sputtering, and elec-
tron beam evaporation. In terms of performance, the sen-
sors require high sensitivity, wide measurement range, low 
repeatability error, and high resolution. The performance is 
further enhanced by optimization measures such as array 
design and multi-sensor integration. The application areas 
are widely applied, including manipulators, lithium batter-
ies, flow fields, electronic skins, and masks. Overall, TFTCs 
demonstrate significant advantages in terms of structural 
design, material selection, preparation process, performance 
optimization, and application areas, making them one of the 
excellent choices for battery temperature health monitoring.

Fiber optic sensors offer significant advantages in battery 
health monitoring due to their high sensitivity, versatility, 
and ease of integration [127]. They can penetrate deeply 
into the battery and monitor key parameters such as tem-
perature, strain, stress, pressure, and charge/discharge rate 
in real time, providing comprehensive data on battery con-
ditions to prevent thermal runaway, optimize performance, 
and improve design. Figure 6g illustrates the working prin-
ciple and sensing mechanism of a fiber Bragg grating (FBG) 
[128]. This fiber grating is fabricated by periodically modu-
lating the refractive index within the fiber core. As broad-
band light propagates through the fiber core, the grating 

reflects a narrowband portion of the broadband light in a 
specific wavelength range and lets the rest of the broadband 
light pass through. Once the incident light enters the fiber 
core and reaches the grating, the presence of the fiber grat-
ing causes the wavelengths of the reflected and transmit-
ted light to shift when axial strain or temperature changes 
occur. Finally, the wavelength and intensity distributions of 
the incident, reflected, and transmitted light are decoupled 
to reverse the strain or temperature changes.

4.2 � Battery Expansion Force Detection

Film pressure sensor detection technology demonstrates 
a number of advantages in the detection of mechanical 
pressure on battery surfaces [129, 130]. It has high sensi-
tivity, good linearity, and accurate pressure measurement 
capability, and it can carefully capture the small pressure 
changes on the battery surface. Its thin and flexible struc-
ture can adapt to the different shapes and contours of the 
battery surface and fit tightly to ensure the accuracy of 
the measurement. The technology is highly stable and can 
work reliably under different environmental conditions [131, 
132]. Recently, Lei Shao et al., based on the industrialized 
application scenario of new energy vehicles (Fig. 7a) [94], 
proposed a flexible film pressure sensor based on flexible 
printed circuit board (FPCB), which can be integrated 
between battery packs (Fig. 7b) for continuous monitoring 
of battery expansion to address the potential danger of ther-
mal runaway of the batteries. In the electric vehicle battery 
expansion monitoring system, the battery pack is situated at 
the bottom of the vehicle and has flexible pressure sensors 
installed inside, which are positioned between the battery 
cells to monitor the expansion of the battery during charg-
ing and discharging. The FPCB is fabricated based on the 
high-temperature-resistant PI material, which is adapted 
for the long-term working condition of the battery pack. 
In addition, the authors further highlight a highly practical 
demonstration of monitoring the battery surface pressure 
state by a film pressure sensor and placing the film sensor’s 
upper display interface on the driver’s console to achieve 
real-time monitoring of the on-board battery state. A higher 
accuracy instrument (laser displacement sensor) validated 
the designed sensor detection system (Fig. 7c). The results 
demonstrated that the flexible film pressure sensor was able 
to track the stress state of the battery very well and that it 
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Fig. 7   a Schematic of a battery expansion monitoring system integrated in an electric vehicle. Copyright 2024, IEEE. Reproduced with permis-
sion [94]. b Application of film sensors for on-board battery expansion force detection. Copyright 2024, IEEE. Reproduced with permission [94]. 
c Pressure calibration and characterization of on-board batteries. Copyright 2024, IEEE. Reproduced with permission [94]. d Healthy and swollen 
phase layers of the solid electrolyte interface of the battery in operando. Copyright 2019, Elsevier. Reproduced with permission [133]. e Internal 
structure of a commercial battery. Copyright 2023, Springer Nature. Reproduced with permission [97]. f Integration method of the non-embedded 
thermal wave sensor. Copyright 2023, Springer Nature. Reproduced with permission [97]. g Relationship between the thermal conductivity of the 
battery and the thermal conductivity of the electrolyte and lithium coverage. Copyright 2023, Springer Nature. Reproduced with permission [97]
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was highly compatible with the laser displacement sensor in 
the time domain. This advancement in detection technology 
is significant.

Notably, changes in surface pressure on the battery are 
attributable to variations in the pressure of the electrolyte. 
During the charging and discharging process, the battery 
undergoes periodic expansion and contraction (Fig. 7d), 
and the solid electrolyte interface (SEI) phase layer on the 
negative side of the battery grows and dissolves accord-
ingly [133], which is a healthy state. With the elongation 
of the usage time, the battery gradually ages, generating 
dead lithium, and exhibiting abnormal thickening of the 
SEI, which may lead to the reduction of the battery capac-
ity, the abnormal expansion of the battery, and even cause 
the deflagration. Monitoring these degradation effects 
(e.g., SEI growth) through external or implanted sensors 
is important for preventing danger and protecting life and 
property.

Inspired by tomographic imaging techniques [134], there 
is a great deal of interest in analyzing the internal operando 
of batteries using film sensors. Among other things, moni-
toring real-world battery degradation is crucial for a wide 
range of battery applications in different scenarios. Obtain-
ing quantitative degradation information in manipulating 
commercial batteries is susceptible to the limitations of the 
type of signal being detected. Ravi S. Prasher et al. pro-
posed a non-embedded detection and quantitative assess-
ment scheme based on an attached thermal wave sensor by 
exploiting the strong dependence of the keff on the structural 
changes of the battery, using the effective thermal conductiv-
ity of the battery (keff) as a quantitative indicator of battery 
degradation [97]. Figure 7e reveals the internal structure of 
a commercial battery containing a copper collector, anode, 
diaphragm, cathode, and aluminum collector. It also presents 
a thermal contact model that reveals how heat is transferred 
inside the battery and the mode of operation of the contact 
thermistor. Heat transfer within the battery works through a 
combination of multilayer structures and interfacial contact 
thermal resistance, where changes in battery thermal con-
ductivity (keff) directly reflect degradation mechanisms such 
as electrolyte consumption and lithium deposition. Attaching 
a non-embedded thermal wave sensor to the battery surface 
(Fig. 7f), in conjunction with thermal contact modeling, 
allows for noninvasive quantification of the sources of bat-
tery degradation (e.g., lithium coverage �

Li
 ). Figure 7g illus-

trates the relationship between keff and electrolyte thermal 

conductivity (kf) and lithium coverage ( �
Li

 ), showing that as 
lithium coverage increases, thermal conductivity increases 
accordingly. The method is innovative in that it directly cor-
relates the complex heat transfer process with the battery 
structural degradation, providing a new tool for the health 
management of commercial batteries.

4.3 � Battery Temperature Detection

Film temperature sensor detection technology is indispen-
sable importance in battery health monitoring. Changes in 
battery temperature can have many effects on device per-
formance, lifetime, safety, and reliability, so accurate tem-
perature monitoring is critical. The unique advantages of 
film temperature sensors can be fully utilized and combined 
with the tomography technique to noninvasively obtain 
information on the internal temperature distribution of bat-
teries. Michael Ho et al. proposed a method based on the 
electrical resistance tomography (ERT) technique to monitor 
the local temperature of aluminum-cased lithium-ion bat-
teries. By designing a flexible printed circuit board sensor 
device conformally attached to the battery surface (Fig. 8a) 
[83], the relationship between apparent resistivity and local 
battery temperature and residual capacity was investigated. 
The residual capacity is used to evaluate the electrochemi-
cal reaction process inside the lithium-ion battery. Indeed, 
the state of charge (SOC) is described as the remaining 
percentage of the rated capacity and is widely used in the 
electronics industry. Figure 8b illustrates the specific lay-
out of the model, which is divided into multiple layers and 
carries an array of sensors. The sensors are arranged in the 
x- and y-directions to monitor the temperature distribution 
inside the battery. They import the data to the upper com-
puter (Fig. 8c) via the ERT acquisition system to realize 
the real-time monitoring of the internal temperature of the 
battery and verify its effectiveness in practical applications. 
Figure 8d shows the temperature distribution at different 
depths (Layer 1, Layer 2, and Layer 3) inside the battery 
for different time periods (0, 25, and 50 min). At 0 min, the 
temperature distribution is relatively even; at 25 min, the 
temperature begins to rise, and the color changes to more 
green; at 50 min, the temperature rises further and reaches a 
high value. During battery discharge, the internal tempera-
ture gradually increases over time. This temperature increase 
is related to the electrochemical reactions within the battery, 
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Fig. 8   a Temperature–sensitive resistive tomography for monitoring the local temperature of an aluminum-cased lithium-ion battery. Copyright 
2016, Elsevier. Reproduced with permission [83]. b Specific layout of the temperature–sensitive sensor model. Copyright 2016, Elsevier. Repro-
duced with permission [83]. c Test and acquisition system for monitoring by temperature–sensitive resistive tomography, and d Presentation of 
results. Copyright 2016, Elsevier. Reproduced with permission [83]. Copyright 2016, Elsevier. Reproduced with permission [83]. e Preparation 
process of film thermocouple sensors and f Working scenarios. Copyright 2014, Elsevier. Reproduced with permission [99]. Copyright 2014, 
Elsevier. Reproduced with permission [99]. g Thermocouple sensors temperature characterization during battery charging and discharging. Cop-
yright 2014, Elsevier. Reproduced with permission [99]. h Current–temperature relationship and i Voltage–temperature relationship. Copyright 
2014, Elsevier. Reproduced with permission [99]. Copyright 2014, Elsevier. Reproduced with permission [99]
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specifically the movement of lithium ions between the posi-
tive and negative electrodes and the side reactions that occur 
in the electrolyte [135–137]. These reactions generate heat, 
leading to an increase in the internal temperature of the bat-
tery. The temperature distribution of the different depth lay-
ers shows the transfer and distribution of heat inside the 
battery, which is an exciting result. This technique provides 
a new solution for the thermal management of lithium-ion 
batteries.

Compared to film temperature sensors based on tempera-
ture effects, thermocouple sensors are more resistant to high 
temperatures and do not require an external excitation power 
supply, making them well suited to complex environments 
and avoiding electromagnetic interference caused by current 
excitation. Film thermocouple sensors play an essential role 
in battery health monitoring [138], especially temperature 
monitoring. In a study, Xiaochun Li et al. present a flexible 
thin-film thermocouple (TFTC) sensor technique for internal 
temperature monitoring of lithium-ion soft-pack batteries 
[99]. The technique enables in situ temperature monitoring 
by embedding a transferable, flexible film thermocouple in 
the battery (Fig. 8f) to improve battery safety and perfor-
mance. TFTC is fabricated on a glass substrate and trans-
ferred to a copper foil, and a film of aluminum–nickel and 
Inconel alloy is deposited on the substrate by DC sputtering 
as a temperature sensing element, and polyimide is used as 
a flexible substrate (Fig. 8e), which is highly temperature 
resistant and chemically stable.

In actual measurements, the thermocouple sensor and 
the reference thermometer have a high degree of consist-
ency in monitoring the battery temperature evolution as the 
battery is charged and discharged (Fig. 8g), which further 
demonstrates the excellent performance of the film thermo-
couple sensor. The temperature variation of the battery is 
caused by heat generation during charge/discharge cycles. 
The current–temperature and voltage–temperature relation-
ship curves of the battery are plotted in Fig. 8h, i, respec-
tively, to further reveal the heat generation characteristics 
of the battery during operation. During the discharge of the 
battery, its temperature shows an increasing trend, and the 
voltage shows a periodic decrease. The drop in voltage may 
be associated with an increase in the internal resistance of 
the battery, which likely results from due to the rise in tem-
perature. The performance and lifetime of the battery may 
be negatively affected by the increase in internal tempera-
ture. Therefore, an effective thermal management system 

is required to control and mitigate the situation [92]. The 
combination of thermocouple sensor detection technology 
with a battery management system is expected to enable 
in situ monitoring of individual batteries.

4.4 � Multi‑mode Sensing and Multiparameter Detection

Temperature and pressure changes are critical warnings for 
health monitoring of lithium batteries. In addition to the 
pressure and temperature film sensor types described above, 
Minghua Chen et al. reported a dual-mode sensor for tem-
perature and pressure (Fig. 9a) for real-time monitoring of 
lithium battery operando and thermal runaway [96]. The 
ability of the dual-mode sensor to simultaneously monitor 
both parameters at the same location was the most critical 
aspect of the development of this sensor. The two sensors 
can be sensed independently (Fig. 9b) and tracked through-
out the battery’s life cycle. The thermal runaway of the bat-
tery is divided into three phases (incubation period, vent-
ing period, and thermal runaway), and the field images and 
thermal imaging photographs record the moments of these 
processes. It can be found that in the incubation period, the 
battery temperature and expansion force gradually increase. 
During the venting period, the temperature gradually desta-
bilizes and the pressure rapidly fluctuates-a process lasting 
only 23 s. Subsequently, the battery undergoes thermal runa-
way, and the sensor is destroyed. The application of dual-
mode sensors makes it possible to monitor the two battery 
parameters synchronously, making it one of the research 
trends for future development.

Additionally, cylindrical batteries are commercially prev-
alent [139, 140]. For these curved batteries, the method of 
attaching film sensors may have limitations. The powerful 
capability of FBG can be applied not only to the external 
electrodes of the battery but also implanted inside the bat-
tery. Tuan Guo et al. realized experiments in the application 
of FBG sensors to commercial 18,650 batteries for continu-
ous monitoring of the internal temperature and pressure of 
the batteries [78], and have successfully observed a stable 
and reproducible optical response in lithium-ion batteries 
associated with thermal runaway. The way the FBG sensor 
is embedded inside the battery is shown in Fig. 9c. It can 
be found that the FBG sensor consists of two components, 
FBG and Fabry–Perot interferometer (FPI). FBG realizes 
the sensing of temperature and FPI realizes the sensing of 
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Fig. 9   a Dual-mode sensors for temperature and pressure. Copyright 2025, Elsevier. Reproduced with permission [96]. b Dual-mode sensors 
for independent sensing and battery status tracking. Copyright 2025, Elsevier. Reproduced with permission [96]. c Schematic of the FBG sensor 
implanted inside the battery. Copyright 2023, Springer Nature. Reproduced with permission [78]. d Wavelength versus temperature for the FBG 
sensor in the range of 25–600 °C. Copyright 2023, Springer Nature. Reproduced with permission [78]. e Wavelength versus pressure for the FPI 
in the range of 0–2 MPa pressure. Copyright 2023, Springer Nature. Reproduced with permission [78]. f Impact of the implantation of the FBG–
FPI sensor on the performance of the recycling of a commercial 18,650 Li-ion battery. Copyright 2023, Springer Nature. Reproduced with per-
mission [78]. Characterization of battery thermal runaway at g 100% SOC, h 50% SOC and i 0% SOC. Copyright 2023, Springer Nature. Repro-
duced with permission [78]. Copyright 2023, Springer Nature. Reproduced with permission [78]. Copyright 2023, Springer Nature. Reproduced 
with permission [78]. Measured states of battery thermal runaway at j 100% SOC, k 50% SOC and l 0% SOC. Copyright 2023, Springer Nature. 
Reproduced with permission [78]. Copyright 2023, Springer Nature. Reproduced with permission [78]. Copyright 2023, Springer Nature. 
Reproduced with permission [78]
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pressure. They are both analyzed by spectral variations, and 
both their resonance wavelengths exhibit highly linear rela-
tionships to temperature (Fig. 9d) and pressure (Fig. 9e). The 
sensitivity of the FBG to temperature is 10.3 pm °C−1, and 
the sensitivity to pressure is only − 5.6 pm MPa−1. While the 
sensitivity of the FPI to pressure is 4,188.4 pm MPa−1, and 
the sensitivity to temperature is 0.5 pm °C−1. The organic 
combination of FBG and FPI allows the sensor to fully 
sense both temperature and pressure and achieve decou-
pling (essentially ignoring the FBG response to pressure 
and the FPI response to temperature). The FBG–FPI sen-
sor was implanted into a commercial 18,650 Li-ion battery, 
and the effect of sensor implantation on battery performance 
was evaluated. Figure 9f shows that the battery implanted 
with the FBG–FPI sensor exhibits comparable performance 
over 100 charge/discharge cycles compared to the battery 
without the sensor implant. This demonstrates that the sen-
sor implantation has a very limited impact on the battery 
performance, providing the possibility of fiber optic sensors 
for operando testing of commercial batteries.

In practical applications, three SOCs, 100%, 50%, and 
0% SOC, are selected to analyze the thermal runaway of 
the battery. Figure 9g–i shows the real-time behavior of the 
internal temperature, pressure, mass loss, and output voltage 
of the battery during thermal runaway. It is divided into four 
phases. After the heater is switched on, the battery surface 
temperature rises rapidly as the safe ventilation stage (Stage 
I); the electrolyte releases vapor gas, causing mass loss and 
a sudden drop in pressure as the latency stage (Stage II); 
the white jet of smoke and the temperature continue to rise 
to a maximum of 509.8 °C (or 438.1 °C, 330.3 °C) in the 
thermal runaway stage (Stage III); the end of the reaction 
with no mass loss and gas production and the temperature 
gradually returning to the ambient temperature is the cool-
ing stage (Stage IV). The measured states are shown in 
Fig. 9j–l. Research on commercial 18,650 lithium batteries 
has shown that fiber optic implantation inside the batteries 
can monitor key parameters such as temperature, pressure, 
refractive index, gas, and SEI growth [141]. This is critical 
for operational safety, enabling early detection of hazardous 
situations such as thermal runaway, overpressure, and side 
reactions. It is also valuable for battery health management, 
providing insight into reaction processes, predicting lifetime, 
and optimizing charge and discharge strategies to improve 
performance and utilization and reduce operating costs.

In a study, Ajay Raghavan et al. revealed a complex cou-
pling mechanism between volumetric strain relaxation and 
state of charge (SOC), temperature during battery charging, 
and discharging by innovatively deploying an FBG sensing 
system on the surface of a soft-packed lithium-ion battery 
(Fig. 10a) [102]. Figure 10b illustrates the wavelength shift 
of the combined FBG sensor, the loosely attached reference 
FBG sensor, and the temperature-compensated strain sig-
nal measurements over time during a standard cycle. In this 
case, the reference sensor is only sensitive to temperature 
changes at the battery surface. The standard cycle is divided 
into five regions: the initial resting period (I), the standard 
charging period (II), the resting period after charging (III), 
the standard discharging period (IV), and the resting period 
after discharging (V). It can be noticed that the reflected 
wavelengths of both sensors are zeroed at the beginning of 
the charging period. A wavelength shift of 1 pm corresponds 
to a strain of about 1 με in the extracted strain signal (or a 
temperature change of about 0.1 °C in the loose FBG signal). 
The wavelength shift of the reference sensor increases pre-
dominantly during charging and discharging, which is due to 
the temperature increase caused by the increase in internal 
resistance (e.g., polarization resistance and associated Joule 
heating). However, there are also different SOC values dur-
ing charging and discharging, during which a heat absorption 
response can be observed. The relationship between strain 
relaxation and SOC was examined by gradually charging 
to different SOC levels. The battery was gradually charged 
to 10%, 30%, 50%, 80%, and 100% SOC levels at a rate of 
C/2 and rested for 2 h at each SOC level. Figure 10c shows 
the wavelength offsets of the combined FBG sensor and the 
reference FBG sensor, as well as the extracted strain signals. 
The wavelength shift of the reference FBG reflects the tem-
perature change during each charging step, as the tempera-
ture gradually returns to the initial temperature during the 
subsequent rest phase. During the rest phase after charging, 
the strain signals show different characteristics at different 
SOCs: at low SOCs, there is no significant relaxation, while 
at high SOCs, a significant relaxation process is observed. 
In particular, the relationship between strain relaxation and 
SOC (total amount of embedded/de-embedded lithium) will 
be directly related to the stability and safety of the battery.

It is noteworthy that the strain evolution of prismatic 
and cylindrical batteries differs significantly. Wei-Li Song 
et al. detected temperature and strain signals from jelly roll 
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ribbons in both prismatic and cylindrical batteries (Fig. 10d) 
[142]. For both battery types, temperature varies with SOC 
and reaches its maximum at the end of discharge (Fig. 10e, 
f). This temperature–SOC relationship is highly consistent. 
However, strain evolution differs markedly: strain in pris-
matic cells is temperature-dependent, mirroring temperature 
evolution. In contrast, strain evolution in cylindrical cells 
exhibits significant layer-to-layer variation, approximately 
350 με. This disparity may stem from graphite phase transi-
tions [143]. In summary, strain evolution exhibits high cor-
relation with the temporal distribution of SOC, changing in 
tandem with SOC depletion. Figure 10g demonstrates that 
the battery retains over 90% capacity after 1000 charge–dis-
charge cycles, indicating slow SOH degradation. Even with 
sensors implanted, the battery maintains exceptionally high 
performance.

To emphasize, integrating multiple sensor types into a 
unified fusion framework can effectively mitigate spati-
otemporal aliasing effects. In large-scale battery packs, 
inconsistencies in sampling and response times between 
stress, strain, and temperature sensors can trigger aliasing, 
leading to blurred or misaligned critical events across dif-
ferent modalities. Multi-channel signal synchronization 
and missing time window interpolation techniques achieve 
multi-sensor spatiotemporal synchronization, enabling high-
fidelity reconstruction of coupled mechanical–thermal–elec-
trochemical behavior.

To enhance interpretability, AI models were developed 
to separate overlapping mechanical and thermal signals 
within the same sensor channel. For instance, in dual-
mode temperature–pressure sensors, pressure-induced 
resistive changes in film sensors often coexist with tem-
perature-induced resistive changes, complicating feature 
attribution. By applying time–frequency decomposition 
(such as wavelet transform) and feature engineering (such 
as separating low-frequency thermal drift from high-fre-
quency mechanical oscillations), machine learning mod-
els extract orthogonal feature sets. Furthermore, training 
processes constrained by physical principles (such as 
enforcing thermodynamic monotonicity for temperature 
features and elastic linearity for stress features) effectively 
decouple mechanical and thermal effects, thereby enhanc-
ing model interpretability.

5 � AI‑Enabled Data Processing

Flexible sensing technology provides a breakthrough solu-
tion for real-time monitoring of multi-physical field states 
under complex battery operando. However, the massive 
multidimensional data generated by these sensors presents 
challenges for interpretation and timely decision-making. 
To address this, AI plays a pivotal role in data fusion and 
predictive analysis. By integrating flexible sensing with AI 
algorithms, a closed-loop “sensing–analysis–control” frame-
work can be constructed, which substantially enhances mon-
itoring accuracy and system reliability. Taking film pressure 
sensor as an example, it starts from the original signal gener-
ated by battery behavior. The strain–temperature signal out-
put by the sensor undergoes preprocessing via an extended/
unscented Kalman filter (EKF/UKF) to eliminate environ-
mental noise and complete data calibration. Subsequently, 
feature points related to battery behavior are extracted within 
the algorithmic model. A common approach is a modular 
fusion architecture, which serves as a universal model. A 
convolutional neural networks (CNN) encoder extracts 
spatial temperature features, while a gated recurrent units 
or long short-term memory (LSTM) encoder models the 
strain time series. A multilayer perceptron (MLP) encoder 
processes the electrical signal. Subsequently, the state esti-
mation module couples the battery voltage relaxation curve 
with temperature field distribution data. Finally, the decision 
output generates health status classification alerts based on 
dynamically determined thresholds, driving the battery man-
agement system. Notably, dynamic threshold determination 
typically employs statistical control or reinforcement learn-
ing approaches to guide decision output. Statistical control 
employs window-based mean, variance, and uncertainty 
estimation to manage false alarm rates, whereas reinforce-
ment learning models alarm decisions as a Markov decision 
process, utilizing policy learning for adaptive thresholding. 
Statistical control offers low computational complexity and 
high sampling rates, while reinforcement learning delivers 
synergistic effects, enabling threshold determination and 
coordinated control decision-making under complex, mul-
timodal operating conditions (Fig. 11). Such a sensing-AI 
collaborative mechanism elevates battery health monitoring 
from passive response to active prevention.

In the context of large-scale application of lithium-ion 
batteries in electric vehicles [144], energy storage power 
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stations, and other key areas, accurate monitoring of bat-
tery health status and remaining service life has become 
the core challenge to ensure system safety and economic 
benefits. However, limitation of traditional battery man-
agement systems lies in their reliance on shallow data 
analysis driven by artificial experience: in the face of the 
massive sensing data generated by the coupling of mul-
tiple physical fields during battery aging, the system is 
only able to extract limited dimensional explicit features 

(e.g., capacity degradation, internal resistance increase), 
but it is difficult to capture implicit degradation features, 
such as microwave motions in the nonlinear curve of the 
voltage relaxation and the impedance spectral phase angle 
shift. The rapid development of AI technology has signifi-
cantly enhanced to battery health detection systems [145], 
which can process and analyze huge amounts of data 
(deep learning and machine learning algorithms, etc.) to 
improve the accuracy of monitoring and can also monitor 

Fig. 10   a FBG sensor applied to a pouch battery. Copyright 2015, Elsevier. Reproduced with permission [102]. b Wavelength offsets over time 
measured by the combined FBG sensor, the loosely attached reference FBG sensor, and the temperature-compensated strain signals. Copyright 
2015, Elsevier. Reproduced with permission [102]. c Wavelength offsets of the combined FBG sensor and the reference FBG sensor, and the 
extracted strain signals. Copyright 2015, Elsevier. Reproduced with permission [102]. d Applications of sensors in prismatic and cylindrical bat-
teries. Copyright 2025, Springer Nature. Reproduced with permission [142]. e The voltage, internal temperature, and strain profiles of prismatic 
and f cylindrical batteries during operation at 0.5 C are shown. Copyright 2025, Springer Nature. Reproduced with permission [142]. Copyright 
2025, Springer Nature. Reproduced with permission [142]. g The capacity retention and coulombic efficiency of battery at 0.5 C over 1000 
cycles. Copyright 2025, Springer Nature. Reproduced with permission [142]
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key parameters in real-time according to the battery health 
status [146]. The system can formulate optimized charg-
ing strategies based on usage habits and battery status to 
improve charging efficiency and reduce energy consump-
tion and can also significantly improve the time to warning 
and increase the operational efficiency and safety of the 
energy storage system.

In a study, Jae Wan Park et al. proposed a method for 
battery SOC estimation using load classifying neural net-
works [147]. The method was developed by classifying 
the battery operating modes into resting, charging, and 
discharging scenarios and training a separate neural net-
work model for each mode (Fig. 12a). The model was 
trained through vehicle driving cycle load profiles and 
validated using pulse test cycles, which showed an aver-
age estimation error of 3.8% (Fig. 12b). When the pulse 
test cycle undergoes a rapid load change, the magnitude 
of the error peaks decreases, but the number increases, 
and their predictions, augmented by the neural network, 
are also closer to the reference value. In another study, 
Qiang Miao et al. proposed a GRU-based RNN for SOC 
estimation of Li-ion batteries (Fig. 12c) [148]. The method 
trains the network by using current, voltage, and tempera-
ture signals, and compared to the load classification neural 
network, the recurrent neural network improves the SOC 
estimation accuracy by capturing the history better and 
performing repeated iterations. The problem of gradient 
vanishing in traditional RNNs is solved by GRUs, which 
are able to better capture long-term dependencies. GRUs 
improve the efficiency of utilizing historical information 
by deciding which information should be forgotten or 
retained through reset gates and update gates. Figure 12d 

shows the GRU-RNN tracking battery SOCs, and it can 
be found that the estimated values are in high agreement 
with the actual values with very small error values. The 
method achieves accurate estimation under dynamic loads 
and is robust to unknown initial SOC values and ambient 
temperature variations.

The strong nonlinear characteristics of the battery system 
(e.g., the battery’s own nonlinearity, charging/discharging 
hysteresis effect, and complexity of the application environ-
ment) will lead to a complex dynamic coupling between the 
raw signal of the sensor and the real physical state, particu-
larly at low temperatures, high multiplicity, or deep cycling 
and other operando, which will cause significant distortion 
of the voltage/current signal. Consequently, an enhanced 
feed-forward neural network (FFNN) and an EKF have 
been proposed by Fengchun Sun et al. for SOC estimation 
in lithium-ion batteries. As illustrated in Fig. 13a, the work-
flow of data processing and SOC estimation in a battery 
management system consists of two primary components: 
measurement and EKF [149]. First, in the measurement part, 
the system starts to load the current and obtains the current 
and voltage data through the battery. Subsequently, in the 
EKF part, the system uses the initial values for time update 
and measurement update. The neural network then performs 
the prediction and correction. This enables real-time moni-
toring and optimization of battery performance and state. 
In practice, Fig. 13b shows the performance estimation of 
the algorithm with unknown initial battery capacity, includ-
ing the estimated and measured voltage value, SOC value, 
and capacity and their corresponding errors. It can be seen 
that even if there is a deviation in the initial setting of the 
capacity, the SOC estimation method using the FFNN and 

Fig. 11   AI-enabled data processing
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EKF-based SOC estimation method is still able to quickly 
and accurately converge to the true value, and its estima-
tion error is always kept within 2%. This indicates that the 
algorithm is robust and efficient and can provide reliable 
SOC estimation in practical applications and maintain high 
accuracy even in the face of uncertainties.

Notably, lithium batteries exhibit segregation and delayed 
electrolyte ion diffusion at low temperatures, leading to dis-
crepancies between predicted and actual SOC values. Model 
prediction methods based on GRU and EKF primarily rely 
on data-driven dynamics or simplified equivalent circuit 
assumptions, rendering them insensitive to data deviations 

caused by the battery ‘s nonlinear physical characteristics. 
Therefore, Ayat Gharehghani et al. proposed embedding a 
physics-informed neural network (PINN) into a fully homo-
geneous macro (FHM) model to predict key electrochemical 
parameters under varying loads and temperatures (Fig. 13c) 
[150]. This framework directly embeds physical models into 
the neural network’s predictive architecture, enabling it to 
adhere to physical constraints while leveraging data-driven 
adaptability. This enhances extrapolation capabilities under 
extreme conditions. By incorporating physics- and electro-
chemistry-based constraints, the framework reduces reli-
ance on extensive experimental data and ensures physically 

Fig. 12   a Load classification neural network for battery SOC estimation. Copyright 2016, Elsevier. Reproduced with permission [147]. b Char-
acterization of reference, prediction, and estimation error of SOC values. Copyright 2016, Elsevier. Reproduced with permission [147]. c GRU-
RNN for SOC estimation of lithium-ion batteries. Copyright 2019, Elsevier. Reproduced with permission [148]. d When tracking battery SOC, 
the GRU-RNN model produces estimated values are in high agreement with the actual values. Copyright 2019, Elsevier. Reproduced with per-
mission [148]
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Fig. 13   a Workflow of data measurement, KEF filtering, and SOC estimation in a battery management system. Copyright 2019, Elsevier. 
Reproduced with permission [149]. b Performance estimation with unknown initial battery capacity. Copyright 2019, Elsevier. Reproduced with 
permission [149]. c A framework for predicting battery behavior using the PINN model. Copyright 2025, Elsevier. Reproduced with permission 
[150]
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consistent estimates. The PINN-enhanced SOC estimation 
framework significantly improves AI’s ability to construct 
battery management systems under extreme operating 
conditions.

AI-enabled battery health monitoring significantly 
improves battery safety and reliability by analyzing and pre-
dicting the state of lithium-ion batteries in real time [151]. 
By accurately estimating the battery’s SOC and SOH, AI 
is able to predict potential thermal runaway or other mal-
functions so that measures can be taken in advance to avoid 
safety incidents. In addition, AI can optimize battery use 
and maintenance strategies to extend battery life and reduce 
replacement frequency and operating costs [152].

Although the deep integration of flexible sensing technol-
ogy and AI provides a revolutionary tool for battery health 
monitoring, its synergistic application still faces multiple 
challenges. 1) Multi-data fusion: multiple types of data need 
to be strictly on their time scales to facilitate data decou-
pling; 2) Model generalization capability: Existing AI mod-
els (e.g., GRU, EKF) can have an error of less than 2% when 
trained in a laboratory environment, but under actual work-
ing conditions, due to temperature disturbances, mechanical 
vibrations, and other noise influences, the error may increase 
to more than 10%; 3) Closed-loop control of the system: 
From the acquisition of sensing data to the execution of 
regulation commands needs to be completed within 100 ms, 
which puts strict requirements on the hardware operation. In 
response to the above challenges, mainstream AI techniques 
present differentiated advantages: GRU has efficient time-
domain modeling capability; EKF has strong robustness and 
is difficult to cope with model drift; PINN can achieve a high 
level of training prediction with fewer samples, but their 
complexity is higher. In the practice of closed-loop control, 
it is necessary to combine the “sensing-AI” synergy strategy 
with the digital twin platform to optimize the training abil-
ity and improve the generalization ability so as to provide 
support for the scale-up of high-security energy storage sys-
tems. Fabio Widmer et al. proposed a closed-loop control 
system and an efficient simulation method for battery health 
state-oriented life prediction and health state assessment of 
on-board batteries (Fig. 14) [153]. The lifetime simulation 
of batteries is achieved by abstracting complex dynamic 
behaviors into 2D mappings, followed by fast computation 
through interpolation. This excellent simulation mechanism 
allows years-long lifetime simulations to be quickly com-
pleted in minutes, greatly improving efficiency. Reacting to 

the health state through the secondary reference trajectory of 
the battery, which is superior to the linear reference, forms a 
feedback to the health monitoring and realizes the accurate 
tracking of the battery health state, providing an innovative 
solution for the battery management of electric vehicles.

Recent studies have demonstrated the potential of AI-ena-
bled models for SOC and SOH estimation with quantitative 
benchmarks. To provide a more quantitative comparison 
of AI-enabled strategies for battery state estimation, repre-
sentative studies from the recent studies are summarized in 
Table 3. The results highlight how different combinations of 
feature inputs, preprocessing procedures, and model archi-
tectures translate into distinct levels of performance. Specifi-
cally, simple NN classifiers applied to voltage and current 
achieve mean squared errors below 3.8% [147], while the 
GRU–RNN model further reduces SOC estimation errors 
to < 3.5% RMSE under dynamic conditions [148]. Hybrid 
approaches combining FFNN with EKF filters can achieve 
high convergence speed and SOC errors < 2% [149], whereas 
PINN incorporates electrochemical constraints to enhance 
generalization with RMSE = 3.89% and MAE < 2% [150]. 
Beyond SOC estimation, closed-loop control frameworks 
integrating rapid kinetic mapping and simulation demon-
strate accurate SOH estimation with mean absolute devia-
tions as low as 0.9% [153].

AI-enabled battery health monitoring technology pro-
motes the intelligent process of battery management. 
Through the coupling of flexible sensing with algorithms 
such as deep learning and dynamic filtering, it parses mul-
tidimensional data, senses key features inside the battery, 
and improves the accuracy and timeliness of health status 
assessment. The introduction of the closed-loop control sys-
tem further amplifies the unique advantages of AI empower-
ment, using the powerful arithmetic power of AI to improve 
the accuracy of the assessment, while combining real-time 
feedback and system simulation. Additionally, AI-enhanced 
closed-loop control significantly enhances battery pack 
safety. By integrating state variables derived from sensors 
with predictive models, the system can generate anomaly 
alerts and implement corrective actions within 100 ms. This 
capability demonstrates that closed-loop integration not only 
accelerates the response time of battery management sys-
tems but also directly improves reliability and safety margins 
at both the module and battery pack levels.
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6 � Summary and Outlook

This paper reviews the research progress of flexible sensors 
for battery health monitoring. Flexible sensors have impor-
tant application prospects in battery health monitoring, ena-
bling real-time monitoring of the battery state, including 
key parameters such as structure, charging and discharging 
characteristics, and temperature. By using different types of 
sensors (e.g., film sensors, thermocouples, and fiber optic 
sensors), multidimensional monitoring of batteries can be 
achieved. Currently, numerous studies are based on analyz-
ing the state of the battery through pressure control and bat-
tery charging and discharging systems, followed by decou-
pling and communication of the data. In this process, the 
sensors will generate a substantial number of multidimen-
sional data streams, in which a multitude of parameters per-
taining to the battery status will be obscured. The emergence 
of AI technology can well assist in data feature extraction 
and analysis and timely feedback to the user and monitoring 
system. This will be the future direction of battery energy 
sensing (Fig. 15a). Through the synergistic operation of the 
five core modules monitoring, data flow, communication, 
AI enabled, and dynamic control, a closed-loop system from 
real-time collection of battery status (e.g., parameters such 
as current, voltage, capacity, etc.) by sensors to intelligent 
analysis of data, and then optimization of the battery per-
formance through dynamic feedback is realized. Among 
them, AI technology runs through data decoding, feature 

extraction, and decision control, integrating with decoupled 
transmission and an instant feedback mechanism, which not 
only improves the accuracy and response speed of battery 
status monitoring but also actively regulates the charging 
and discharging process through intelligent algorithms, 
which provides a visual solution for battery safety early 
warning, life prediction, and energy efficiency optimization.

6.1 � Future Challenges and Development Paths

Although flexible sensing technology combined with arti-
ficial intelligence shows tremendous potential in advancing 
battery health monitoring, its large-scale deployment still 
faces significant challenges [154, 155], which may translate 
into opportunities for sustainable development. Current flex-
ible sensors used for battery health monitoring exhibit short-
comings in several critical areas, including sensing accuracy, 
signal analysis, system integration, material compatibility, 
structural design, massive data transmission, and real-time 
online assessment (Fig. 15b). Multiple technical pathways 
can alleviate these bottlenecks: employing high-precision 
machining technologies to enhance sensor fabrication accu-
racy and consistency [156]; utilizing AI for data analysis 
to improve processing efficiency and accuracy; developing 
integrated machining technologies that combine multiple 
sensors with data processing modules into a single system 
to ensure stability and reliability; optimizing sensor material 

Fig. 14   Closed-loop control system for battery health status. Copyright 2023, Elsevier. Reproduced with permission [153]
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selection through intelligent screening techniques to boost 
performance and reliability [157]; employing simulation 
techniques to optimize sensor structural design for adapt-
ability to diverse battery configurations and environmental 
applications; adopting 5G technology to enable massive data 
transmission and ensure transmission efficiency; establishing 
cloud-based big data platforms for centralized data manage-
ment, and developing real-time online evaluation technolo-
gies to deliver more comprehensive battery health monitor-
ing services.

Looking ahead, the development of flexible sensing 
technology needs to closely focus on the three main lines 
of “long-term reliability,” “system integration and pack-
aging,” and “data closed-loop control.” At the material 
level, explore self-healing and corrosion-resistant materi-
als to extend sensor service life in extreme environments. 
At the system integration level, explore wireless passive 
sensor networks transmission and communication tech-
nologies to address challenges in high-density deployment 
of large-scale battery modules. At the data level, leverage 
large-scale sensor deployment to increase training data 
for AI models under operando conditions, and enhance 
the scientific accuracy of condition prediction through 
digital twin technology. It is foreseeable that flexible sens-
ing technology will deeply reshape the pattern of battery 
health monitoring, from the multiparameter sensing of the 
battery monomer to the collaborative management of the 
module and then to the closed-loop feedback digital twin 
platform, which will greatly improve the safety threshold 
of the battery.

6.2 � Computational Challenges and Model 
Generalization

Despite significant advancements in AI-enabled battery 
health monitoring technologies, several challenges remain 
before achieving large-scale deployment:

(1)	 Error propagation under actual operating condi-
tions SOC estimation models based on GRU and EKF 
achieve < 2% estimation error in laboratory environ-
ments, but their robustness significantly degrades 
under real-world operating conditions. For instance, in 
mechanically vibrating environments, noise coupling 
between strain and voltage signals may infiltrate the 
estimation loop, causing SOC deviations exceeding 
10%.

(2)	 Data requirements and annotation costs High-perfor-
mance deep learning models typically require training 
on multimodal sensor data (including stress, strain, 
temperature, and voltage/current) spanning 104–105 
cycles. Constructing such comprehensive datasets 
necessitates extensive cyclic testing and precise real-
value annotation (e.g., capacity decay), resulting in 
substantial costs.

(3)	 Hardware constraints In practical battery management 
systems, closed-loop decision-making from sensing to 
execution must occur within < 100 ms to enable timely 
thermal runaway warnings. This time constraint limits 
computational complexity, posing unique challenges 
for large-scale neural networks.

(4)	 Model generalization Existing AI models exhibit lim-
ited generalization when transferred from laboratory 
environments to diverse actual scenarios. PINN with 

Table 3   Quantitative analysis of the AI-enabled process

Feature input Preprocessing Model class Task Quantitative results References

Voltage, current Load profile classification, 
normalization processing

NN SOC estimation Mean squared error 
(MSE) < 3.8%

[147]

Voltage, current, temperature, 
SOC

Normalization processing, 
data augmentation

GRU, RNN SOC estimation Root mean square error 
(RMSE) < 3.5%, mean abso-
lute error (MAE) < 2%

[148]

Voltage, current, temperature, 
SOC, polarization state

Polarization state calculation, 
normalization processing, 
time constant selection

FFNN, EKF SOC estimation RMSE = 0.05 V, SOC estima-
tion error < 2%

[149]

Voltage, current, temperature, 
SOC, electrolyte concentra-
tion, electrode potential

Normalization processing, 
dimensionalization, dataset 
partitioning

PINN SOC estimation RMSE = 3.89%, 
MAE < 0.02 V, MAE < 2%

[150]

SOC, SOH, aging character-
istics

OpenSesame model, rapid 
kinetic mapping

Closed-loop 
control, simu-
lation

SOH estimation Mean absolute deviation 
(MAD) = 0.9%

[153]
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electrochemical constraints into learning frameworks 
enhances extrapolation capabilities but increases com-
putational complexity.

To overcome these computational bottlenecks, collabo-
ration is needed across three key domains: 1) developing 
physically constrained AI architectures to suppress error 
propagation; 2) establishing standardized large-scale open 
datasets to reduce redundant annotation costs; 3) implement-
ing hardware-algorithm co-design to ensure response times 
below 100 ms. These directions are critical for bridging the 
gap between proof-of-concept and industrial deployment of 
AI-based flexible sensing systems.
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