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HIGHLIGHTS
e Flexible sensing technology enables battery health monitoring under complex operating conditions, overcoming the limitations of
traditional monitoring methods.

e Artificial intelligence (AI) -powered data processing facilitates the construction of a "sensing—Al—control" framework, enhancing

monitoring efficiency.

ABSTRACT With the widespread application of lithium batteries in electric vehicles
and energy storage systems, battery-related safety and reliability issues have become 2
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increasingly prominent. Conventional monitoring methods often struggle to address \
dynamic changes under complex operando. In recent years, flexible sensing technology
has emerged as a promising solution for battery health monitoring due to its high adapt- > \

ability and conformability to complex structures. Meanwhile, empowered by artificial ; 5 >/
intelligence (AI) for data analysis, the collected data enables efficient and accurate state ? ) I Q\V}J\
assessment, offering robust support for accident prevention. Against this background, Abuse, | \

this paper first explores the integrated applications of flexible sensors in battery health e

Flexible sensing technology
St .

monitoring and their unique advantages in addressing complex battery operating con- Operando testing

ditions, while analyzing the potential of Al in battery state analysis. Subsequently, it
systematically reviews mainstream flexible sensing technologies (e.g., film sensors, thermocouples, and optical fiber sensors), elucidating their
mechanisms for revealing intricate internal battery processes during operation. Finally, the paper discusses AI’s role in enhancing monitoring
efficiency and accuracy, and envisions future research directions and application prospects. This work aims to provide technical references for the

battery health monitoring field as well as promote the application of flexible sensing technologies in improving battery system safety and reliability.

KEYWORDS Lithium battery; Battery health monitoring; Flexible sensing technology; Safety; Artificial intelligence

Xin Wang and Haiyan Zhang contributed equally to this work.

P< Hailong Wang, wanghl@xmu.edu.cn; Zongyou Yin, zongyou.yin@anu.edu.cn; Libo Gao, Ibgao @xmu.edu.cn

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, People’s Republic of China

Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen 518000, People’s Republic of China

Science and Technology On Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Chinese Academy of Space Technology,
Lanzhou 730000, People’s Republic of China

School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361102,

People’s Republic of China

5 Shenzhen Modulus Technology Co., Shenzhen 518054, People’s Republic of China

Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province IKKEM), Xiamen 361102, People’s Republic of China
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

1
2
3

Published online: 05 January 2026

> .
{} SHANGHAI JIAO TONG UNIVERSITY PRESS @ Sprlnger
&


http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-025-01999-4&domain=pdf

154 Page 2 of 35

Nano-Micro Lett. (2026) 18:154

1 Introduction

Lithium-ion batteries are the core components of electric
vehicles and scaled energy storage systems [1-3]. The safety
and health of these batteries directly determine the reliability
and lifetime of energy systems [4—7]. Despite the substantial
enhancement in energy density and cycling performance of
batteries in recent years [8§—11], under complex operando
(e.g., mechanical abuse, thermal abuse, or electrical abuse),
the coupling failure of multiple physical fields (mechanical,
thermal, and electrochemical) within the battery may still
trigger catastrophic events such as cascading thermal runa-
way or even explosion [12—15], resulting in serious safety
hazards. The demand for battery testing has led to significant
advancements in non-in situ and in situ techniques over the
past few decades [16—18], with these techniques becom-
ing increasingly important in the design of batteries [19,
20]. Nevertheless, the parameters that can be extracted by
non-in situ and in situ techniques are frequently detached
from the real operating state, i.e., the working environ-
ment. Consequently, battery operando detection technology
has become a hotspot and a challenge in battery research
in recent years [21-25]. Flexible sensing technology pro-
vides a breakthrough solution to this challenge by virtue
of its thinness (thickness can be as low as micron level)
[26-30], high ductility, and low invasiveness. It is capable
of real-time monitoring of multi-physical field states under
complex battery operando [31-36], and provides real-time
feedback to the control system through the parsing system
(Fig. 1). The in-depth integration of Al technology enables
the monitoring system to extract multi-physical field corre-
lation features (e.g., pressure-internal resistance coupling)
from the massive data of the battery operando and establish
the complex relationship between these key features and the
battery performance to enhance the prediction and syner-
gistic capability of the system and synergistic capabilities
[37-42]. For example, in a typical logic closed loop, the
electrical, temperature, and pressure signals of the battery
system operation acquired by the sensors are synchronously
analyzed by the Al model in real time [43, 44]. When bat-
tery abnormalities occur, the Al model is capable of detect-
ing it in a timely manner and making a prompt regulation
judgment, thereby enhancing the safety and stability of the
battery.
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Presently, the global annual sales of electric vehicles
exceed 17 million units (2024), signifying a substantial
market presence [45]. However, the stringent requirements
of UN38.3 certification for battery abuse testing [46], along
with the urgent needs of BYD, Tesla Motors, Contemporary
Amperex, and other companies for full life cycle manage-
ment of batteries, have led to the limitations of traditional
monitoring technologies (e.g., voltage/current sensors,
rigid thermocouples) [47]. In highly integrated battery
modules, which rely on thousands of discrete sensors, sys-
tem complexity and cost remain high, and real-time track-
ing of cell-level stress distribution is not possible. In this
context, flexible sensing technology has emerged as a piv-
otal breakthrough, with its capacity for high integration (a
single sensor capable of monitoring pressure, temperature,
and strain synchronously) and ultra-thin embeddable fea-
tures (thickness <200 pm). This technology has effectively
addressed the “sensing blind spot” prevalent in large-scale
battery packs. The incorporation of Al technology is poised
to enhance the efficiency of detection information processing
to a considerable extent. Here, this timely review summa-
rizes the applications and prospects of flexible sensors and
Al technologies for battery health monitoring.

The evolution of battery technology has consistently
driven the innovation of testing methodologies. From the
prototype of voltaic piles in 1799 to the practicalization of
primary batteries in 1850 and subsequently to the commer-
cial breakthrough of lithium-ion secondary batteries in 1991
[48-50], the increasing complexity of the battery systems
has continuously propelled the development of testing tech-
nology in the direction of high precision and multidimen-
sionality (Fig. 2a) [51-54]. This is particularly evident in the
field of secondary batteries, as they need to undergo repeated
charging and discharging cycles. The dynamic monitoring
of their internal coupled multi-physics behaviors (e.g., elec-
trode expansion triggered by lithium-ion migration, capac-
ity degradation due to solid electrolyte interface (SEI) film
thickening, temperature changes) poses significant chal-
lenges for assessing [55-57]. Early studies relied on non-in
situ testing (e.g., post-disassembly dimensional measure-
ments or offline electrochemical analyses). However, such
methods study the battery pole piece under static conditions
[58, 59], and the complex sampling process introduces many
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Fig. 1 Battery health monitoring platform under operando

irrelevant factors, thereby hindering the capture of the tran-
sient response of the battery under real operando. With the
development of operando testing techniques, researchers
have been able to acquire fundamental parameters such as
voltage and current during battery operation [60-63]. Flex-
ible sensing technology, with its multiparameter compat-
ibility (simultaneous acquisition of pressure, strain, tempera-
ture, and electrochemical signals), ultra-thin, scalable, and
easy integrability capability, as well as the spatial resolution
brought by arraying (Fig. 2b), is expected to be a key bridge
between microscopic mechanisms and macroscopic charac-
teristics. Based on the powerful capability of flexible sensing
technology and the real state of the battery, a comprehensive
and quantitative assessment of the battery’s state of health
(SOH) can be realized, including capacity degradation,
internal resistance change, temperature anomaly, mechani-
cal deformation, and electrochemical parameters (Fig. 2c).
These multidimensional indicators constitute key metrics for
SOH evaluation [64].

Battery health monitoring has moved from offline analysis
of a single parameter to the new stage of in situ multi-physical
field sensing [65], and the breakthrough application of flexible
sensing technology is reshaping the underlying logic of this
field. By deeply integrating the sensor network with the battery
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body, researchers have been able to analyze the dynamic cou-
pling mechanism of mechanical-thermal—electrochemical in
both temporal and spatial dimensions, which not only provides
a brand-new perspective for understanding the battery fail-
ure but also gives rise to the technological innovation of the
“energy sensing” paradigm. In this paper, we systematically
review the recent progress of flexible sensing technology in
battery health monitoring [66]. First, this paper focuses on
the way flexible sensors are combined with battery operando
exploring Al-driven multi-source data fusion to improve the
efficiency and accuracy of battery health monitoring [67,
68]. The paper then summarizes the commonly used means
and key technologies for battery health monitoring, includ-
ing film, thermocouple [69], and fiber optic sensors [70], and
the monitoring of core parameters such as current, voltage,
charge/discharge rate, and temperature. Finally, the paper
further explores the role of Al technologies in battery health
monitoring efficiency and provides an outlook on the direction
of energy sensing and technological challenges. By systemati-
cally summarizing the whole-chain technology framework of
“sensing-data-analysis” for battery health status, this review
aims to provide theoretical support for battery health moni-
toring and identify new research opportunities for the future
development of battery technology.

@ Springer
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Fig. 2 a Development history of batteries and their testing technologies; b Comparison of flexible sensing technology with other testing tech-

nologies; ¢ Comprehensive assessment metrics for battery health status

2 Research Objective

Although a few reviews have focused on flexible pressure
sensing technologies for battery monitoring [71-74], these
studies are constrained by three key limitations: (1) Technical
isolation: Most reviews concentrate on a single sensor type
(e.g., film or fiber optics), lacking systematic analysis of the

© The authors

synergistic effects of multimodal flexible sensing technolo-
gies; (2) Insufficient dynamic monitoring capabilities: Exist-
ing reviews predominantly address static parameters (e.g.,
maximum pressure thresholds) while neglecting real-time
tracking mechanisms for dynamic processes such as battery
expansion and thermal runaway; (3) Data-decision disconnec-
tion: Traditional reviews fail to delve into the closed-loop logic

https://doi.org/10.1007/s40820-025-01999-4
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between sensing data and Al-driven state analysis, resulting
in a fragmentation between sensing technologies and analyti-
cal methods. This review bridges these gaps by integrating
multi-physics sensing networks with an Al-enabled dynamic
decision-making framework. This review has two primary
objectives: (1) Systematically elucidating how flexible sensing
technologies overcome the spatiotemporal resolution limita-
tions of traditional monitoring through noninvasive integration
and multiparameter synchronous perception, addressing the
coupling of multi-physical fields (mechano-thermo-electro-
chemical) in complex battery operating conditions; (2) Reveal-
ing the pivotal role of Al in feature extraction, state estimation,
and closed-loop control of sensing data, thereby establishing
an integrated perception—analysis—decision framework.

3 Apparatus and Method for Monitoring
Battery Operation

In the characterization of the battery’s operando, the pres-
sure control is very critical. At this stage, three main types
of control are utilized, including a spring-controlled fixed
pressure design [75], a screw-controlled fixed gap design,
and a dual controlled pressure and gap design (Fig. 3a) [76].
The pressure distribution in the spring-controlled fixed pres-
sure design depends on the stiffness of the spring and the
form of the fixture plate. The disadvantage is poor pressure
uniformity, especially during cycling and evolving pres-
sure and expansion build-up phases. Fixed gap methods can
provide uniform pressure distribution control; however, the
pressure built up during cycling is ultimately uncontrolla-
ble, and the energy buildup predisposes the battery to dam-
age and abnormal deformation. As illustrated in the bottom
panel of Fig. 3a, the design of both pressure and gap is con-
trolled by means of cushions and screws, which allows for
the introduction of cushions of varying stiffness between the
fixed plates on demand. This approach controls the pressure
buildup inside the battery, providing a more reliable device
for correlating battery performance with design parameters.
The clamping strategy of the fixture is structured to pre-
cisely regulate the pressure dynamics inside the battery by
means of mechanical confinement, which directly affects the
micro-processes of the electrochemical reactions, making
the monitoring signals reflect the intrinsic characteristics of
the battery more realistically.

SHANGHAI JIAO TONG UNIVERSITY PRESS

The structure of lithium batteries encompasses three pri-
mary categories: prismatic, pouch, and cylindrical. Each
category exhibits distinct physical characteristics and is
suitable for specific application scenarios. Prismatic batter-
ies are widely used in various portable electronic devices
due to their high energy density and commendable mechani-
cal strength; pouch batteries have become the first choice
for high-end smartphones and electric vehicles due to their
thinness and high safety; cylindrical batteries occupy an
important position in many application scenarios due to their
mature production process and low cost. Stress measure-
ment techniques adapted to the structural characteristics of
different batteries also take different forms from each other.
Prismatic and pouch batteries are suitable for parallel-plate
fixtures (Fig. 3b) [77]. They can provide uniform pressure
to ensure the accuracy of the test results and facilitate the
installation of sensors on the surface or inside the battery for
real-time monitoring of key performance indicators such as
voltage, current, and temperature. As for cylindrical batter-
ies, due to their uneven surface, they are usually clamped
with mechanical clamps and combined with implantable
fiber optic sensors to monitor the internal state of the bat-
teries (Fig. 3¢) [78]. The fiber optic sensors are capable of
transmitting real-time information about the stress, strain,
and temperature inside the battery [79], which provides
powerful data support for the health management of the
batteries.

Data collection, processing, and analysis are the key
links to ensure stable battery performance and safe opera-
tion. Through the comprehensive use of a variety of high-
precision instruments such as balances, sensors, and battery
testers, key information such as mass loss, current change,
voltage fluctuation, stress, strain, temperature difference, and
charge/discharge rate of the battery can be comprehensively
collected (Fig. 4a) [78]. These data not only reflect the cur-
rent state of the battery but also reveal trends and poten-
tial problems in its long-term use. Multidimensional data
are integrated through an advanced host computer system.
Scientific algorithms are designed in the host computer to
dig deep into the multidimensional data features to reflect
the health status of the battery in real time. What’s more,
when abnormalities are detected, the monitoring system is
able to immediately trigger an early warning mechanism and
automatically execute a series of protective measures, thus
ensuring the safe and stable operation of the battery.

@ Springer
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Fig. 3 a Three main battery expansion force control devices. Copyright 2024, Springer Nature. Reproduced with permission [76]. b Test rig for
prismatic and flexible pack batteries. Copyright 2023, American Chemical Society. Reproduced with permission [77]. ¢ Test rig for cylindrical
batteries. Copyright 2023, Springer Nature. Reproduced with permission [78]

In battery health management, a real-time warning and
protection mechanism is the core technology to ensure bat-
tery safety and prolong service life [80]. Through efficient
data processing, the system is able to issue an early warn-
ing immediately when abnormal conditions are detected
and trigger the execution of protective measures, such as
adjusting charging strategies, limiting output power, or even
powering down. These measures not only prevent danger-
ous situations such as overcharging, over-discharging, or
overheating, but also optimize the efficiency of the battery
and extend its service life. In addition, early warning and
protection mechanisms include monitoring the environment
in which the battery is used [81], such as temperature and
humidity control, to ensure that the battery operates under
optimal conditions. Through these comprehensive early
warning and protection measures, Li-ion batteries are able
to provide a stable and reliable energy supply in a variety

© The authors

of application scenarios, providing a solid guarantee for the
normal operation of electronic equipment. Figure 4b illus-
trates the parsing and decision-making process of an Al-
enhanced lithium-ion battery monitoring system [74]. The
system analyzes and predicts various output measurements
of the battery, including state of charge, state of health,
remaining useful life, thermal state, and other relevant met-
rics by acquiring multiple input parameters (e.g., current,
voltage, stress, strain, temperature, state of charge, and state
of discharge). This system helps to monitor battery perfor-
mance in real time, improving the safety and efficiency of
the battery.

This chapter systematically reviews three mainstream bat-
tery expansion force control devices (spring-controlled, gap-
controlled, and hybrid-controlled), highlighting the critical
role of fixture design in characterizing intrinsic battery prop-
erties. By comparing sensing solutions adapted to prismatic,

https://doi.org/10.1007/s40820-025-01999-4



Nano-Micro Lett. (2026) 18:154

Page 70f35 154

Input parameters
Lithium-ion

battery Current

Voltage
Stress

Strain
Temperature

Recharge

Discharge

fl\
N\ /

A4
r|\
N\ v

v
flx
S /4

rI\
—

v
I
—

Output measures

Fig. 4 a Testing and characterization process of lithium batteries. Copyright 2023, Springer Nature. Reproduced with permission [78]. b Algo-
rithmic analysis process of the lithium-ion battery monitoring system to achieve Al empowerment. Copyright 2024, Elsevier. Reproduced with

permission [74]

pouch, and cylindrical batteries (e.g., parallel-plate fixtures
and fiber optic implantation), structural compatibility is
identified as a prerequisite for precise monitoring. Further-
more, the synergistic framework of data acquisition and Al-
driven analysis provides a methodological foundation for
real-time correlation of multidimensional parameters (stress,
temperature, SOC), signifying a paradigm shift in battery
monitoring from offline single-parameter to online multi-
physics approaches.

.] SHANGHAI JIAO TONG UNIVERSITY PRESS

4 Flexible Sensor Technology for Battery
Health Monitoring

The combination of flexible sensor technology and lithium
battery health monitoring marks a new stage in battery
monitoring technology. Traditional rigid sensors are lim-
ited by physical form and monitoring dimension. Capturing
the complex internal state changes during lithium battery
charging and discharging remains challenging. Flexible sen-
sors, with their ultra-thin, stretchable, and highly sensitive

@ Springer
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properties, can be seamlessly attached to battery surfaces
or integrated into modules to enable real-time monitor-
ing of battery expansion, local temperature rise, and stress
distribution. This approach represents a new stage in accu-
rate, dynamic, and intelligent battery health management.
Changes in battery state, especially increases in internal
pressure, bulging phenomena, thermal effects, and ulti-
mately the potential for thermal runaway (Fig. 5a) [82], are
issues that need to be prioritized in lithium battery health
monitoring. The easy integration of flexible sensors allows
them to be coupled to the battery system without changing
the battery operando, providing real-time operating feed-
back on the battery state to help to and mitigate these safety
risks. These sensors are not only capable of monitoring the
physical parameters of the battery but also predicting the
battery’s state of health and remaining useful life through
data analysis.

This review focuses on the application of flexible sen-
sor technology itself in the safety monitoring of lithium
batteries, including film [83], thermocouple [84], and fiber
optic sensors (Fig. 5b) [85]. In the future, with the further
development of flexible sensor technology in terms of sen-
sitivity, sensing array density, sensing data categories, and
flexibility, combined with the powerful analytical capabili-
ties of Al, the health monitoring of lithium batteries will
become more intelligent and efficient [86]. This provides
a more solid guarantee for the safe operation of lithium
batteries and also opens up new possibilities for the future
development of battery technology. The applicable scenar-
ios for these sensors are shown in Table 1. Furthermore,
we focus on the application of different sensors in different
batteries to analyze the performance and suitability of the
sensors (Fig. 5¢) [87-95]. It can be found that thin-film
sensors are better suited for prismatic/cylindrical batteries,
thermocouple sensors have the best performance for tem-
perature sensing, and fiber optic sensors are more like a
“hexagonal warrior” with excellent performance in a wide
range of sensors.

These sensors need to fulfill the testing needs under dif-
ferent operando conditions. The diversity of sensor per-
formance (e.g., stress/strain, temperature, response time,
durability) and the suitability of the battery structure differ
significantly, which directly results in different integration
methods. This paper summarizes the performance of dif-
ferent sensors (film, thermocouple, fiber optic) and gives

© The authors

the recommended integration methods to provide technical
references for researchers and engineers (Table 2).

In practice, the application of flexible sensors in the whole
life cycle management of batteries is gradually deepening
(Fig. 5d). In the “activation” phase of battery formation,
flexible sensing technology has realized breakthrough appli-
cations. Through the high-precision sensor array integrated
into the shell, the system can capture the micron-level defor-
mation and temperature fluctuation of the battery cell during
charging and discharging in real time, and work with the
big data analytics platform to implement monitoring. This
in situ monitoring technology is reshaping the standards of
lithium-ion battery production. In the use phase, the sensor
carries out long-term multidimensional sensing, a topic that
has been widely discussed in academia and industry [120].
Expansion toward battery packs is being actively pursued
with a view to realizing true health monitoring of batter-
ies in their operando state, which in turn can be applied to
large-scale battery packs and electric vehicles. When con-
fronted with safety challenges, the most pressing issue is
the real-time warning of thermal runaway [96], necessitat-
ing millisecond-level response from the sensor to facilitate
timely emergency disposal. The incorporation of Al technol-
ogy in this process is expected to enhance the operational
efficiency of the system. It is important to note that flexible
sensors must be adapted to complex and extreme working
environments, including vibration, strong noise, extreme
cold (—40 °C), high temperature (200 °C), high altitude, and
high humidity areas. Flexible sensing technology is rapidly
evolving along the path of the “unit-pack-system.”

4.1 Mechanisms of Sensors

The sensor types covered in this review primarily include
film pressure, film temperature, thermocouples, and fiber
optic sensors. Film pressure sensor detection technology has
important applications in battery stress detection [95]. This
technique utilizes the high sensitivity and fast response char-
acteristics of film sensors to accurately monitor the stress
changes that occur in batteries during use. Figure 6a shows
the technical characteristics of a thin-film pressure sensor for
battery health monitoring. The sensor is ultra-thin and bend-
able, allowing it to perfectly adhere to the battery surface.
The three most central features of conventional thin-film
pressure sensors are the substrate and encapsulation layer,

https://doi.org/10.1007/s40820-025-01999-4
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Table 1 Application scenarios for sensors

Sensor types Monitoring parameters Battery types Battery stages References
Film stress prismatic use [94]
Temperature prismatic formation, use [83]
Stress, temperature pouch formation, use, thermal runaway [96]
Electrochemistry pouch formation, use [97]
Electrochemistry pouch formation, use [98]
Thermocouple Temperature pouch formation, use [99]
Temperature prismatic use [100]
Fiber optic Temperature prismatic formation, use [101]
Strain, temperature pouch formation, use [102]
Stress, temperature cylindrical formation, use, thermal runaway [78]
Strain, temperature pouch formation, use [103]
Strain prismatic formation, use [104]
Electrochemistry pouch formation, use [105]
Stress, temperature cylindrical formation, use [106]

Explain: The battery stage is generally divided into three stages, including the “formation stage” used to activate the battery, the “use stage” in

applications, and the “thermal runaway stage” in the event of a failure

the electrode layer, and the sensitive layer, which together
determine the mechanical—electrical characteristics of the
sensor. The sensitive layer is subdivided into resistive and
capacitive, which is determined by the conductive mecha-
nism of the sensor. Two common film pressure sensor con-
figurations are illustrated in Fig. 6b, c: sandwich sensors
and fork-finger sensors [121]. In a sandwich-type sensor
(Fig. 6b), pressure acts on the elastic substrate, reducing the
distance between upper and lower electrodes, leading to an
increase in dielectric constant or a decrease in resistivity,
which in turn causes an increase in capacitance or a decrease
in resistance. Fork-finger-type sensors (Fig. 6¢), on the other
hand, change the sensed signal by increasing the contact
area. When pressure is applied to the sensor, the contact area
between the bottom and top electrodes increases, causing
an increase in dielectric constant or a decrease in resistiv-
ity, which further results in an increase in capacitance or a
decrease in resistance. These two designs enable the sensor
to effectively sense pressure changes and convert them into
electrical signals. It is worth noting that both sandwich-type
and fork-finger-type, under pressure, will lead to an increase
in dielectric constant or a decrease in resistivity. This is due
to the fact that when the dielectric or sensitive layer is pres-
surized, the internal structure is squeezed, the molecular
density per unit volume is significantly increased, and the
effective dielectric constant is increased, or more conductive
pathways are formed, leading to an increase in dielectric

© The authors

constant or a decrease in resistivity. This characteristic is
more evident in some sensors with microstructures. Film
pressure sensors can provide real-time, accurate data in bat-
tery stress detection, which can help optimize battery design
and improve battery performance and safety. By monitoring
the stress distribution of batteries under different operando,
potential safety hazards can be detected in a timely manner
to prevent battery failure and damage [122].

Film temperature sensors show great capability in accu-
rate temperature monitoring. Temperature monitoring is
likewise a critical parameter for battery operando [103,
123, 124]. Changes in battery temperature not only affect
the performance and lifespan of the device but are also
directly related to the safety and reliability of the system.
Figure 6d shows the sensing mechanism of the film tem-
perature sensor, specifically the negative temperature coef-
ficient (NTC) and positive temperature coefficient (PTC),
which is determined by the temperature—electrical effect of
the temperature—sensitive material [125]. In the NTC, as
the temperature increases, the electronic or ionic activity
inside the sensor increases, and the resistivity or dielectric
constant of the sensor decreases, which in turn leads to a
decrease in the resistance (R) or capacitance (C) of the
sensor. Conversely, in the PTC, an increase in tempera-
ture leads to an increase in resistance or capacitance. This
effect is usually due to thermal expansion or a thermally
activated process in the material. This unique temperature

https://doi.org/10.1007/s40820-025-01999-4
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Table 2 Technical characteristics of flexible sensors
Sensor types Substrates Ranges (Stress Response time  Durability Sensitivity or resolution Errors (esti- References
(integration or strain or mated)
methods) temperature)
Film (attach- Polydimethyl-  0-250 kPa, / >7000 cycles 0.172 °C~1,610.2 kPa™! 10% [107]
ment) siloxane 0-20%,
(PDMS) 20-80 °C
Thermoplastic  0-100 kPa 120 ms >35000 cycles 3.997 kPa™!, 4.7 Pa 4.6% [108]
urethane
(TPU)
Polyethylene 0-50 kPa, 17 ms >5000 cycles  804.27 kPa~!, 31.74 Pa 10% [109]
terephthalate ~ —20-90 °C
(PET)
Polyimide (PI) 0-50 kPa, 120 ms >5000 cycles 158.23 kPa™! 6.8% [110]
—10-250 °C
Polyvinyl alco- 0-80 kPa, 30 ms > 10,000 6.45kPa~!, 5 Pa / [111]
hol (PVA) 20-50 °C cycles
Poly(styrene- ~ 0-250 kPa, 179 ms >4000 cycles 0.155 kPa™!, 16 Pa / [112]
b-ethylene- 0-350%
b-butylene-
b-styrene)
(SEBs)
Poly (acryla-  0-175%, 187 ms > 18,000 1.8, 1% 35% [113]
mide) (PAM)  6-36 °C cycles
Thermocouple PI 0-10N, / >5000 cycles  76.5 pV °C™! 3%-11% [114]
(attachment) 10-160 °C
Paper/PDMS/  20-200 °C 9.8 ms > 1000 cycles 52.67 pV °C~1, 0.8 °C / [115]
SizN,
PDMS 0-40 °C, / > 1000 cycles 22.3 uV °C™! 0.35% [116]
20-80 °C
Fiber optic Few-mode 0-600 pe, Typically less  0.5h -0.013 nm pe~!, 0.262 nm [117]
(attachment, fiber 25.3-58 °C than 10 ms oC!
implantable)  Fabry—Perot  0.2-2 MPa, / 3.63 nm MPa~!, 9.22 pm 1.4% [118]
interferom- 30-200 °C ec!
eter (FPI)
Thin-core fiber 0-100 kPa, 1.5h/ —14.3 nm MPa~!,— 340 pm <0.1% [119]
20-85 °C °oC!
Fiber Bragg 0-2 MPa, >100 cycles  4.19 nm MPa™', 10.3 pm 0.5% [78]
grating, FPI 25-600 °C °ec!

response mechanism of film temperature sensors enables
them to provide highly accurate temperature monitoring
over a wide range of temperatures. Through precise con-
trol of the material and structure of the sensor, a sensitive
response to temperature changes can be achieved to meet
a variety of battery temperature monitoring needs [96].
Thermocouple sensors are another type of sensor used for
temperature measurement, operating on the principle of the
Seebeck effect [126], which describes the electric potential
generated in a circuit due to a temperature difference when
two dissimilar metals are in contact. When two conductors
of different materials form a closed circuit and there is a

SHANGHAI JIAO TONG UNIVERSITY PRESS

temperature difference between their ends, thermal energy is
converted into electrical energy, which generates an electric
current in the circuit. Specifically, a thermocouple consists
of two conductors of different materials, and when there is a
temperature gradient between their hot (7}, and cold (T4
ends, the charge carriers (e.g., electrons and holes) within
the conductors move in a specific direction. This movement
results in a potential difference (V) at the ends of the ther-
mocouple that is proportional to the temperature difference.
Because of the metal electrode contact, it is equivalent to a
film temperature sensor that is more stable and can adapt
to a more severe test environment. Figure 6e illustrates the
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principle of temperature measurement in a flexible thermo-
couple (TFTC) [84]. In this figure, the hot end (7}, is in
contact with the object to be measured, while the cold end
(T, 1s connected to a measurement system. By measur-
ing the potential difference (V) between the cold end and
the hot end, the temperature of the hot end can be deduced,
which in turn tells the temperature of the measured object.
Thermocouples utilize the Seebeck effect to indirectly meas-
ure temperature by measuring the potential difference caused
by the temperature difference. This method is widely used
in a variety of temperature measurement scenarios due to
its simplicity, reliability, and independence from an external
power supply.

Film thermocouple sensors (TFTCs) are advanced sen-
sors with flexible substrates and thermoelectric layers that
provide highly accurate temperature monitoring in a wide
range of application scenarios (Fig. 6f) [84]. The structure
consists of a flexible substrate and a flexible thermoelectric
layer using a variety of materials such as substrate materials
(PI, PDMS, PET, etc.) and thermoelectric layer materials
(Cu, CuNi, In,Os, ITO, Bi,Te;, Ag, PEDOT/PSS, etc.). The
preparation process involves techniques such as aerosol jet
printing, screen printing, magnetron sputtering, and elec-
tron beam evaporation. In terms of performance, the sen-
sors require high sensitivity, wide measurement range, low
repeatability error, and high resolution. The performance is
further enhanced by optimization measures such as array
design and multi-sensor integration. The application areas
are widely applied, including manipulators, lithium batter-
ies, flow fields, electronic skins, and masks. Overall, TFTCs
demonstrate significant advantages in terms of structural
design, material selection, preparation process, performance
optimization, and application areas, making them one of the
excellent choices for battery temperature health monitoring.

Fiber optic sensors offer significant advantages in battery
health monitoring due to their high sensitivity, versatility,
and ease of integration [127]. They can penetrate deeply
into the battery and monitor key parameters such as tem-
perature, strain, stress, pressure, and charge/discharge rate
in real time, providing comprehensive data on battery con-
ditions to prevent thermal runaway, optimize performance,
and improve design. Figure 6g illustrates the working prin-
ciple and sensing mechanism of a fiber Bragg grating (FBG)
[128]. This fiber grating is fabricated by periodically modu-
lating the refractive index within the fiber core. As broad-
band light propagates through the fiber core, the grating
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reflects a narrowband portion of the broadband light in a
specific wavelength range and lets the rest of the broadband
light pass through. Once the incident light enters the fiber
core and reaches the grating, the presence of the fiber grat-
ing causes the wavelengths of the reflected and transmit-
ted light to shift when axial strain or temperature changes
occur. Finally, the wavelength and intensity distributions of
the incident, reflected, and transmitted light are decoupled
to reverse the strain or temperature changes.

4.2 Battery Expansion Force Detection

Film pressure sensor detection technology demonstrates
a number of advantages in the detection of mechanical
pressure on battery surfaces [129, 130]. It has high sensi-
tivity, good linearity, and accurate pressure measurement
capability, and it can carefully capture the small pressure
changes on the battery surface. Its thin and flexible struc-
ture can adapt to the different shapes and contours of the
battery surface and fit tightly to ensure the accuracy of
the measurement. The technology is highly stable and can
work reliably under different environmental conditions [131,
132]. Recently, Lei Shao et al., based on the industrialized
application scenario of new energy vehicles (Fig. 7a) [94],
proposed a flexible film pressure sensor based on flexible
printed circuit board (FPCB), which can be integrated
between battery packs (Fig. 7b) for continuous monitoring
of battery expansion to address the potential danger of ther-
mal runaway of the batteries. In the electric vehicle battery
expansion monitoring system, the battery pack is situated at
the bottom of the vehicle and has flexible pressure sensors
installed inside, which are positioned between the battery
cells to monitor the expansion of the battery during charg-
ing and discharging. The FPCB is fabricated based on the
high-temperature-resistant PI material, which is adapted
for the long-term working condition of the battery pack.
In addition, the authors further highlight a highly practical
demonstration of monitoring the battery surface pressure
state by a film pressure sensor and placing the film sensor’s
upper display interface on the driver’s console to achieve
real-time monitoring of the on-board battery state. A higher
accuracy instrument (laser displacement sensor) validated
the designed sensor detection system (Fig. 7c). The results
demonstrated that the flexible film pressure sensor was able
to track the stress state of the battery very well and that it
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was highly compatible with the laser displacement sensor in
the time domain. This advancement in detection technology
is significant.

Notably, changes in surface pressure on the battery are
attributable to variations in the pressure of the electrolyte.
During the charging and discharging process, the battery
undergoes periodic expansion and contraction (Fig. 7d),
and the solid electrolyte interface (SEI) phase layer on the
negative side of the battery grows and dissolves accord-
ingly [133], which is a healthy state. With the elongation
of the usage time, the battery gradually ages, generating
dead lithium, and exhibiting abnormal thickening of the
SEI, which may lead to the reduction of the battery capac-
ity, the abnormal expansion of the battery, and even cause
the deflagration. Monitoring these degradation effects
(e.g., SEI growth) through external or implanted sensors
is important for preventing danger and protecting life and
property.

Inspired by tomographic imaging techniques [134], there
is a great deal of interest in analyzing the internal operando
of batteries using film sensors. Among other things, moni-
toring real-world battery degradation is crucial for a wide
range of battery applications in different scenarios. Obtain-
ing quantitative degradation information in manipulating
commercial batteries is susceptible to the limitations of the
type of signal being detected. Ravi S. Prasher et al. pro-
posed a non-embedded detection and quantitative assess-
ment scheme based on an attached thermal wave sensor by
exploiting the strong dependence of the k. on the structural
changes of the battery, using the effective thermal conductiv-
ity of the battery (k) as a quantitative indicator of battery
degradation [97]. Figure 7e reveals the internal structure of
a commercial battery containing a copper collector, anode,
diaphragm, cathode, and aluminum collector. It also presents
a thermal contact model that reveals how heat is transferred
inside the battery and the mode of operation of the contact
thermistor. Heat transfer within the battery works through a
combination of multilayer structures and interfacial contact
thermal resistance, where changes in battery thermal con-
ductivity (k) directly reflect degradation mechanisms such
as electrolyte consumption and lithium deposition. Attaching
a non-embedded thermal wave sensor to the battery surface
(Fig. 7f), in conjunction with thermal contact modeling,
allows for noninvasive quantification of the sources of bat-
tery degradation (e.g., lithium coverage ¢, ;). Figure 7g illus-
trates the relationship between k.4 and electrolyte thermal
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conductivity (ko) and lithium coverage (¢ ;), showing that as
lithium coverage increases, thermal conductivity increases
accordingly. The method is innovative in that it directly cor-
relates the complex heat transfer process with the battery
structural degradation, providing a new tool for the health
management of commercial batteries.

4.3 Battery Temperature Detection

Film temperature sensor detection technology is indispen-
sable importance in battery health monitoring. Changes in
battery temperature can have many effects on device per-
formance, lifetime, safety, and reliability, so accurate tem-
perature monitoring is critical. The unique advantages of
film temperature sensors can be fully utilized and combined
with the tomography technique to noninvasively obtain
information on the internal temperature distribution of bat-
teries. Michael Ho et al. proposed a method based on the
electrical resistance tomography (ERT) technique to monitor
the local temperature of aluminum-cased lithium-ion bat-
teries. By designing a flexible printed circuit board sensor
device conformally attached to the battery surface (Fig. 8a)
[83], the relationship between apparent resistivity and local
battery temperature and residual capacity was investigated.
The residual capacity is used to evaluate the electrochemi-
cal reaction process inside the lithium-ion battery. Indeed,
the state of charge (SOC) is described as the remaining
percentage of the rated capacity and is widely used in the
electronics industry. Figure 8b illustrates the specific lay-
out of the model, which is divided into multiple layers and
carries an array of sensors. The sensors are arranged in the
x- and y-directions to monitor the temperature distribution
inside the battery. They import the data to the upper com-
puter (Fig. 8c) via the ERT acquisition system to realize
the real-time monitoring of the internal temperature of the
battery and verify its effectiveness in practical applications.
Figure 8d shows the temperature distribution at different
depths (Layer 1, Layer 2, and Layer 3) inside the battery
for different time periods (0, 25, and 50 min). At 0 min, the
temperature distribution is relatively even; at 25 min, the
temperature begins to rise, and the color changes to more
green; at 50 min, the temperature rises further and reaches a
high value. During battery discharge, the internal tempera-
ture gradually increases over time. This temperature increase
is related to the electrochemical reactions within the battery,
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specifically the movement of lithium ions between the posi-
tive and negative electrodes and the side reactions that occur
in the electrolyte [135—-137]. These reactions generate heat,
leading to an increase in the internal temperature of the bat-
tery. The temperature distribution of the different depth lay-
ers shows the transfer and distribution of heat inside the
battery, which is an exciting result. This technique provides
a new solution for the thermal management of lithium-ion
batteries.

Compared to film temperature sensors based on tempera-
ture effects, thermocouple sensors are more resistant to high
temperatures and do not require an external excitation power
supply, making them well suited to complex environments
and avoiding electromagnetic interference caused by current
excitation. Film thermocouple sensors play an essential role
in battery health monitoring [138], especially temperature
monitoring. In a study, Xiaochun Li et al. present a flexible
thin-film thermocouple (TFTC) sensor technique for internal
temperature monitoring of lithium-ion soft-pack batteries
[99]. The technique enables in situ temperature monitoring
by embedding a transferable, flexible film thermocouple in
the battery (Fig. 8f) to improve battery safety and perfor-
mance. TFTC is fabricated on a glass substrate and trans-
ferred to a copper foil, and a film of aluminum-nickel and
Inconel alloy is deposited on the substrate by DC sputtering
as a temperature sensing element, and polyimide is used as
a flexible substrate (Fig. 8e), which is highly temperature
resistant and chemically stable.

In actual measurements, the thermocouple sensor and
the reference thermometer have a high degree of consist-
ency in monitoring the battery temperature evolution as the
battery is charged and discharged (Fig. 8g), which further
demonstrates the excellent performance of the film thermo-
couple sensor. The temperature variation of the battery is
caused by heat generation during charge/discharge cycles.
The current—temperature and voltage—temperature relation-
ship curves of the battery are plotted in Fig. 8h, i, respec-
tively, to further reveal the heat generation characteristics
of the battery during operation. During the discharge of the
battery, its temperature shows an increasing trend, and the
voltage shows a periodic decrease. The drop in voltage may
be associated with an increase in the internal resistance of
the battery, which likely results from due to the rise in tem-
perature. The performance and lifetime of the battery may
be negatively affected by the increase in internal tempera-
ture. Therefore, an effective thermal management system

| SHANGHAI JIAO TONG UNIVERSITY PRESS

is required to control and mitigate the situation [92]. The
combination of thermocouple sensor detection technology
with a battery management system is expected to enable
in situ monitoring of individual batteries.

4.4 Multi-mode Sensing and Multiparameter Detection

Temperature and pressure changes are critical warnings for
health monitoring of lithium batteries. In addition to the
pressure and temperature film sensor types described above,
Minghua Chen et al. reported a dual-mode sensor for tem-
perature and pressure (Fig. 9a) for real-time monitoring of
lithium battery operando and thermal runaway [96]. The
ability of the dual-mode sensor to simultaneously monitor
both parameters at the same location was the most critical
aspect of the development of this sensor. The two sensors
can be sensed independently (Fig. 9b) and tracked through-
out the battery’s life cycle. The thermal runaway of the bat-
tery is divided into three phases (incubation period, vent-
ing period, and thermal runaway), and the field images and
thermal imaging photographs record the moments of these
processes. It can be found that in the incubation period, the
battery temperature and expansion force gradually increase.
During the venting period, the temperature gradually desta-
bilizes and the pressure rapidly fluctuates-a process lasting
only 23 s. Subsequently, the battery undergoes thermal runa-
way, and the sensor is destroyed. The application of dual-
mode sensors makes it possible to monitor the two battery
parameters synchronously, making it one of the research
trends for future development.

Additionally, cylindrical batteries are commercially prev-
alent [139, 140]. For these curved batteries, the method of
attaching film sensors may have limitations. The powerful
capability of FBG can be applied not only to the external
electrodes of the battery but also implanted inside the bat-
tery. Tuan Guo et al. realized experiments in the application
of FBG sensors to commercial 18,650 batteries for continu-
ous monitoring of the internal temperature and pressure of
the batteries [78], and have successfully observed a stable
and reproducible optical response in lithium-ion batteries
associated with thermal runaway. The way the FBG sensor
is embedded inside the battery is shown in Fig. 9c. It can
be found that the FBG sensor consists of two components,
FBG and Fabry—Perot interferometer (FPI). FBG realizes
the sensing of temperature and FPI realizes the sensing of
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pressure. They are both analyzed by spectral variations, and
both their resonance wavelengths exhibit highly linear rela-
tionships to temperature (Fig. 9d) and pressure (Fig. 9e). The
sensitivity of the FBG to temperature is 10.3 pm °C~!, and
the sensitivity to pressure is only — 5.6 pm MPa~!. While the
sensitivity of the FPI to pressure is 4,188.4 pm MPa~!, and
the sensitivity to temperature is 0.5 pm °C~!. The organic
combination of FBG and FPI allows the sensor to fully
sense both temperature and pressure and achieve decou-
pling (essentially ignoring the FBG response to pressure
and the FPI response to temperature). The FBG-FPI sen-
sor was implanted into a commercial 18,650 Li-ion battery,
and the effect of sensor implantation on battery performance
was evaluated. Figure 9f shows that the battery implanted
with the FBG—FPI sensor exhibits comparable performance
over 100 charge/discharge cycles compared to the battery
without the sensor implant. This demonstrates that the sen-
sor implantation has a very limited impact on the battery
performance, providing the possibility of fiber optic sensors
for operando testing of commercial batteries.

In practical applications, three SOCs, 100%, 50%, and
0% SOC, are selected to analyze the thermal runaway of
the battery. Figure 9g—i shows the real-time behavior of the
internal temperature, pressure, mass loss, and output voltage
of the battery during thermal runaway. It is divided into four
phases. After the heater is switched on, the battery surface
temperature rises rapidly as the safe ventilation stage (Stage
I); the electrolyte releases vapor gas, causing mass loss and
a sudden drop in pressure as the latency stage (Stage II);
the white jet of smoke and the temperature continue to rise
to a maximum of 509.8 °C (or 438.1 °C, 330.3 °C) in the
thermal runaway stage (Stage III); the end of the reaction
with no mass loss and gas production and the temperature
gradually returning to the ambient temperature is the cool-
ing stage (Stage IV). The measured states are shown in
Fig. 9j-1. Research on commercial 18,650 lithium batteries
has shown that fiber optic implantation inside the batteries
can monitor key parameters such as temperature, pressure,
refractive index, gas, and SEI growth [141]. This is critical
for operational safety, enabling early detection of hazardous
situations such as thermal runaway, overpressure, and side
reactions. It is also valuable for battery health management,
providing insight into reaction processes, predicting lifetime,
and optimizing charge and discharge strategies to improve
performance and utilization and reduce operating costs.
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In a study, Ajay Raghavan et al. revealed a complex cou-
pling mechanism between volumetric strain relaxation and
state of charge (SOC), temperature during battery charging,
and discharging by innovatively deploying an FBG sensing
system on the surface of a soft-packed lithium-ion battery
(Fig. 10a) [102]. Figure 10b illustrates the wavelength shift
of the combined FBG sensor, the loosely attached reference
FBG sensor, and the temperature-compensated strain sig-
nal measurements over time during a standard cycle. In this
case, the reference sensor is only sensitive to temperature
changes at the battery surface. The standard cycle is divided
into five regions: the initial resting period (I), the standard
charging period (II), the resting period after charging (III),
the standard discharging period (IV), and the resting period
after discharging (V). It can be noticed that the reflected
wavelengths of both sensors are zeroed at the beginning of
the charging period. A wavelength shift of 1 pm corresponds
to a strain of about 1 pe in the extracted strain signal (or a
temperature change of about 0.1 °C in the loose FBG signal).
The wavelength shift of the reference sensor increases pre-
dominantly during charging and discharging, which is due to
the temperature increase caused by the increase in internal
resistance (e.g., polarization resistance and associated Joule
heating). However, there are also different SOC values dur-
ing charging and discharging, during which a heat absorption
response can be observed. The relationship between strain
relaxation and SOC was examined by gradually charging
to different SOC levels. The battery was gradually charged
to 10%, 30%, 50%, 80%, and 100% SOC levels at a rate of
C/2 and rested for 2 h at each SOC level. Figure 10c shows
the wavelength offsets of the combined FBG sensor and the
reference FBG sensor, as well as the extracted strain signals.
The wavelength shift of the reference FBG reflects the tem-
perature change during each charging step, as the tempera-
ture gradually returns to the initial temperature during the
subsequent rest phase. During the rest phase after charging,
the strain signals show different characteristics at different
SOCs: at low SOCs, there is no significant relaxation, while
at high SOCs, a significant relaxation process is observed.
In particular, the relationship between strain relaxation and
SOC (total amount of embedded/de-embedded lithium) will
be directly related to the stability and safety of the battery.

It is noteworthy that the strain evolution of prismatic
and cylindrical batteries differs significantly. Wei-Li Song
et al. detected temperature and strain signals from jelly roll

@ Springer



154 Page 20 of 35

Nano-Micro Lett. (2026) 18:154

ribbons in both prismatic and cylindrical batteries (Fig. 10d)
[142]. For both battery types, temperature varies with SOC
and reaches its maximum at the end of discharge (Fig. 10e,
f). This temperature—SOC relationship is highly consistent.
However, strain evolution differs markedly: strain in pris-
matic cells is temperature-dependent, mirroring temperature
evolution. In contrast, strain evolution in cylindrical cells
exhibits significant layer-to-layer variation, approximately
350 pe. This disparity may stem from graphite phase transi-
tions [143]. In summary, strain evolution exhibits high cor-
relation with the temporal distribution of SOC, changing in
tandem with SOC depletion. Figure 10g demonstrates that
the battery retains over 90% capacity after 1000 charge—dis-
charge cycles, indicating slow SOH degradation. Even with
sensors implanted, the battery maintains exceptionally high
performance.

To emphasize, integrating multiple sensor types into a
unified fusion framework can effectively mitigate spati-
otemporal aliasing effects. In large-scale battery packs,
inconsistencies in sampling and response times between
stress, strain, and temperature sensors can trigger aliasing,
leading to blurred or misaligned critical events across dif-
ferent modalities. Multi-channel signal synchronization
and missing time window interpolation techniques achieve
multi-sensor spatiotemporal synchronization, enabling high-
fidelity reconstruction of coupled mechanical-thermal—elec-
trochemical behavior.

To enhance interpretability, Al models were developed
to separate overlapping mechanical and thermal signals
within the same sensor channel. For instance, in dual-
mode temperature—pressure sensors, pressure-induced
resistive changes in film sensors often coexist with tem-
perature-induced resistive changes, complicating feature
attribution. By applying time—frequency decomposition
(such as wavelet transform) and feature engineering (such
as separating low-frequency thermal drift from high-fre-
quency mechanical oscillations), machine learning mod-
els extract orthogonal feature sets. Furthermore, training
processes constrained by physical principles (such as
enforcing thermodynamic monotonicity for temperature
features and elastic linearity for stress features) effectively
decouple mechanical and thermal effects, thereby enhanc-
ing model interpretability.

© The authors

S Al-Enabled Data Processing

Flexible sensing technology provides a breakthrough solu-
tion for real-time monitoring of multi-physical field states
under complex battery operando. However, the massive
multidimensional data generated by these sensors presents
challenges for interpretation and timely decision-making.
To address this, Al plays a pivotal role in data fusion and
predictive analysis. By integrating flexible sensing with Al
algorithms, a closed-loop “sensing—analysis—control” frame-
work can be constructed, which substantially enhances mon-
itoring accuracy and system reliability. Taking film pressure
sensor as an example, it starts from the original signal gener-
ated by battery behavior. The strain—temperature signal out-
put by the sensor undergoes preprocessing via an extended/
unscented Kalman filter (EKF/UKF) to eliminate environ-
mental noise and complete data calibration. Subsequently,
feature points related to battery behavior are extracted within
the algorithmic model. A common approach is a modular
fusion architecture, which serves as a universal model. A
convolutional neural networks (CNN) encoder extracts
spatial temperature features, while a gated recurrent units
or long short-term memory (LSTM) encoder models the
strain time series. A multilayer perceptron (MLP) encoder
processes the electrical signal. Subsequently, the state esti-
mation module couples the battery voltage relaxation curve
with temperature field distribution data. Finally, the decision
output generates health status classification alerts based on
dynamically determined thresholds, driving the battery man-
agement system. Notably, dynamic threshold determination
typically employs statistical control or reinforcement learn-
ing approaches to guide decision output. Statistical control
employs window-based mean, variance, and uncertainty
estimation to manage false alarm rates, whereas reinforce-
ment learning models alarm decisions as a Markov decision
process, utilizing policy learning for adaptive thresholding.
Statistical control offers low computational complexity and
high sampling rates, while reinforcement learning delivers
synergistic effects, enabling threshold determination and
coordinated control decision-making under complex, mul-
timodal operating conditions (Fig. 11). Such a sensing-Al
collaborative mechanism elevates battery health monitoring
from passive response to active prevention.

In the context of large-scale application of lithium-ion
batteries in electric vehicles [144], energy storage power
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Fig. 10 a FBG sensor applied to a pouch battery. Copyright 2015, Elsevier. Reproduced with permission [102]. b Wavelength offsets over time
measured by the combined FBG sensor, the loosely attached reference FBG sensor, and the temperature-compensated strain signals. Copyright
2015, Elsevier. Reproduced with permission [102]. ¢ Wavelength offsets of the combined FBG sensor and the reference FBG sensor, and the
extracted strain signals. Copyright 2015, Elsevier. Reproduced with permission [102]. d Applications of sensors in prismatic and cylindrical bat-
teries. Copyright 2025, Springer Nature. Reproduced with permission [142]. e The voltage, internal temperature, and strain profiles of prismatic
and f cylindrical batteries during operation at 0.5 C are shown. Copyright 2025, Springer Nature. Reproduced with permission [142]. Copyright
2025, Springer Nature. Reproduced with permission [142]. g The capacity retention and coulombic efficiency of battery at 0.5C over 1000
cycles. Copyright 2025, Springer Nature. Reproduced with permission [142]

stations, and other key areas, accurate monitoring of bat-
tery health status and remaining service life has become
the core challenge to ensure system safety and economic
benefits. However, limitation of traditional battery man-
agement systems lies in their reliance on shallow data
analysis driven by artificial experience: in the face of the
massive sensing data generated by the coupling of mul-
tiple physical fields during battery aging, the system is
only able to extract limited dimensional explicit features

(e.g., capacity degradation, internal resistance increase),
but it is difficult to capture implicit degradation features,
such as microwave motions in the nonlinear curve of the
voltage relaxation and the impedance spectral phase angle
shift. The rapid development of Al technology has signifi-
cantly enhanced to battery health detection systems [145],
which can process and analyze huge amounts of data
(deep learning and machine learning algorithms, etc.) to
improve the accuracy of monitoring and can also monitor
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key parameters in real-time according to the battery health
status [146]. The system can formulate optimized charg-
ing strategies based on usage habits and battery status to
improve charging efficiency and reduce energy consump-
tion and can also significantly improve the time to warning
and increase the operational efficiency and safety of the
energy storage system.

In a study, Jae Wan Park et al. proposed a method for
battery SOC estimation using load classifying neural net-
works [147]. The method was developed by classifying
the battery operating modes into resting, charging, and
discharging scenarios and training a separate neural net-
work model for each mode (Fig. 12a). The model was
trained through vehicle driving cycle load profiles and
validated using pulse test cycles, which showed an aver-
age estimation error of 3.8% (Fig. 12b). When the pulse
test cycle undergoes a rapid load change, the magnitude
of the error peaks decreases, but the number increases,
and their predictions, augmented by the neural network,
are also closer to the reference value. In another study,
Qiang Miao et al. proposed a GRU-based RNN for SOC
estimation of Li-ion batteries (Fig. 12c) [148]. The method
trains the network by using current, voltage, and tempera-
ture signals, and compared to the load classification neural
network, the recurrent neural network improves the SOC
estimation accuracy by capturing the history better and
performing repeated iterations. The problem of gradient
vanishing in traditional RNNs is solved by GRUs, which
are able to better capture long-term dependencies. GRUs
improve the efficiency of utilizing historical information
by deciding which information should be forgotten or
retained through reset gates and update gates. Figure 12d

Battery behavior

shows the GRU-RNN tracking battery SOCs, and it can
be found that the estimated values are in high agreement
with the actual values with very small error values. The
method achieves accurate estimation under dynamic loads
and is robust to unknown initial SOC values and ambient
temperature variations.

The strong nonlinear characteristics of the battery system
(e.g., the battery’s own nonlinearity, charging/discharging
hysteresis effect, and complexity of the application environ-
ment) will lead to a complex dynamic coupling between the
raw signal of the sensor and the real physical state, particu-
larly at low temperatures, high multiplicity, or deep cycling
and other operando, which will cause significant distortion
of the voltage/current signal. Consequently, an enhanced
feed-forward neural network (FFNN) and an EKF have
been proposed by Fengchun Sun et al. for SOC estimation
in lithium-ion batteries. As illustrated in Fig. 13a, the work-
flow of data processing and SOC estimation in a battery
management system consists of two primary components:
measurement and EKF [149]. First, in the measurement part,
the system starts to load the current and obtains the current
and voltage data through the battery. Subsequently, in the
EKEF part, the system uses the initial values for time update
and measurement update. The neural network then performs
the prediction and correction. This enables real-time moni-
toring and optimization of battery performance and state.
In practice, Fig. 13b shows the performance estimation of
the algorithm with unknown initial battery capacity, includ-
ing the estimated and measured voltage value, SOC value,
and capacity and their corresponding errors. It can be seen
that even if there is a deviation in the initial setting of the
capacity, the SOC estimation method using the FFNN and

Reinforcement
Tearping

State estimation Decision output

Statistical control

Feedback mechanism

Fig. 11 Al-enabled data processing

© The authors

https://doi.org/10.1007/s40820-025-01999-4



Nano-Micro Lett. (2026) 18:154

Page 23 0of 35 154

EKF-based SOC estimation method is still able to quickly
and accurately converge to the true value, and its estima-
tion error is always kept within 2%. This indicates that the
algorithm is robust and efficient and can provide reliable
SOC estimation in practical applications and maintain high
accuracy even in the face of uncertainties.

Notably, lithium batteries exhibit segregation and delayed
electrolyte ion diffusion at low temperatures, leading to dis-
crepancies between predicted and actual SOC values. Model
prediction methods based on GRU and EKF primarily rely
on data-driven dynamics or simplified equivalent circuit
assumptions, rendering them insensitive to data deviations
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caused by the battery ‘s nonlinear physical characteristics.
Therefore, Ayat Gharehghani et al. proposed embedding a
physics-informed neural network (PINN) into a fully homo-
geneous macro (FHM) model to predict key electrochemical
parameters under varying loads and temperatures (Fig. 13c)
[150]. This framework directly embeds physical models into
the neural network’s predictive architecture, enabling it to
adhere to physical constraints while leveraging data-driven
adaptability. This enhances extrapolation capabilities under
extreme conditions. By incorporating physics- and electro-
chemistry-based constraints, the framework reduces reli-
ance on extensive experimental data and ensures physically
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Fig. 12 a Load classification neural network for battery SOC estimation. Copyright 2016, Elsevier. Reproduced with permission [147]. b Char-
acterization of reference, prediction, and estimation error of SOC values. Copyright 2016, Elsevier. Reproduced with permission [147]. ¢ GRU-
RNN for SOC estimation of lithium-ion batteries. Copyright 2019, Elsevier. Reproduced with permission [148]. d When tracking battery SOC,
the GRU-RNN model produces estimated values are in high agreement with the actual values. Copyright 2019, Elsevier. Reproduced with per-

mission [148]
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consistent estimates. The PINN-enhanced SOC estimation
framework significantly improves AI’s ability to construct
battery management systems under extreme operating
conditions.

Al-enabled battery health monitoring significantly
improves battery safety and reliability by analyzing and pre-
dicting the state of lithium-ion batteries in real time [151].
By accurately estimating the battery’s SOC and SOH, Al
is able to predict potential thermal runaway or other mal-
functions so that measures can be taken in advance to avoid
safety incidents. In addition, Al can optimize battery use
and maintenance strategies to extend battery life and reduce
replacement frequency and operating costs [152].

Although the deep integration of flexible sensing technol-
ogy and Al provides a revolutionary tool for battery health
monitoring, its synergistic application still faces multiple
challenges. 1) Multi-data fusion: multiple types of data need
to be strictly on their time scales to facilitate data decou-
pling; 2) Model generalization capability: Existing AI mod-
els (e.g., GRU, EKF) can have an error of less than 2% when
trained in a laboratory environment, but under actual work-
ing conditions, due to temperature disturbances, mechanical
vibrations, and other noise influences, the error may increase
to more than 10%; 3) Closed-loop control of the system:
From the acquisition of sensing data to the execution of
regulation commands needs to be completed within 100 ms,
which puts strict requirements on the hardware operation. In
response to the above challenges, mainstream Al techniques
present differentiated advantages: GRU has efficient time-
domain modeling capability; EKF has strong robustness and
is difficult to cope with model drift; PINN can achieve a high
level of training prediction with fewer samples, but their
complexity is higher. In the practice of closed-loop control,
it is necessary to combine the “sensing-Al” synergy strategy
with the digital twin platform to optimize the training abil-
ity and improve the generalization ability so as to provide
support for the scale-up of high-security energy storage sys-
tems. Fabio Widmer et al. proposed a closed-loop control
system and an efficient simulation method for battery health
state-oriented life prediction and health state assessment of
on-board batteries (Fig. 14) [153]. The lifetime simulation
of batteries is achieved by abstracting complex dynamic
behaviors into 2D mappings, followed by fast computation
through interpolation. This excellent simulation mechanism
allows years-long lifetime simulations to be quickly com-
pleted in minutes, greatly improving efficiency. Reacting to
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the health state through the secondary reference trajectory of
the battery, which is superior to the linear reference, forms a
feedback to the health monitoring and realizes the accurate
tracking of the battery health state, providing an innovative
solution for the battery management of electric vehicles.

Recent studies have demonstrated the potential of Al-ena-
bled models for SOC and SOH estimation with quantitative
benchmarks. To provide a more quantitative comparison
of Al-enabled strategies for battery state estimation, repre-
sentative studies from the recent studies are summarized in
Table 3. The results highlight how different combinations of
feature inputs, preprocessing procedures, and model archi-
tectures translate into distinct levels of performance. Specifi-
cally, simple NN classifiers applied to voltage and current
achieve mean squared errors below 3.8% [147], while the
GRU-RNN model further reduces SOC estimation errors
to <3.5% RMSE under dynamic conditions [148]. Hybrid
approaches combining FFNN with EKF filters can achieve
high convergence speed and SOC errors <2% [149], whereas
PINN incorporates electrochemical constraints to enhance
generalization with RMSE =3.89% and MAE <2% [150].
Beyond SOC estimation, closed-loop control frameworks
integrating rapid kinetic mapping and simulation demon-
strate accurate SOH estimation with mean absolute devia-
tions as low as 0.9% [153].

Al-enabled battery health monitoring technology pro-
motes the intelligent process of battery management.
Through the coupling of flexible sensing with algorithms
such as deep learning and dynamic filtering, it parses mul-
tidimensional data, senses key features inside the battery,
and improves the accuracy and timeliness of health status
assessment. The introduction of the closed-loop control sys-
tem further amplifies the unique advantages of AI empower-
ment, using the powerful arithmetic power of Al to improve
the accuracy of the assessment, while combining real-time
feedback and system simulation. Additionally, Al-enhanced
closed-loop control significantly enhances battery pack
safety. By integrating state variables derived from sensors
with predictive models, the system can generate anomaly
alerts and implement corrective actions within 100 ms. This
capability demonstrates that closed-loop integration not only
accelerates the response time of battery management sys-
tems but also directly improves reliability and safety margins
at both the module and battery pack levels.
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6 Summary and Outlook

This paper reviews the research progress of flexible sensors
for battery health monitoring. Flexible sensors have impor-
tant application prospects in battery health monitoring, ena-
bling real-time monitoring of the battery state, including
key parameters such as structure, charging and discharging
characteristics, and temperature. By using different types of
sensors (e.g., film sensors, thermocouples, and fiber optic
sensors), multidimensional monitoring of batteries can be
achieved. Currently, numerous studies are based on analyz-
ing the state of the battery through pressure control and bat-
tery charging and discharging systems, followed by decou-
pling and communication of the data. In this process, the
sensors will generate a substantial number of multidimen-
sional data streams, in which a multitude of parameters per-
taining to the battery status will be obscured. The emergence
of Al technology can well assist in data feature extraction
and analysis and timely feedback to the user and monitoring
system. This will be the future direction of battery energy
sensing (Fig. 15a). Through the synergistic operation of the
five core modules monitoring, data flow, communication,
Al enabled, and dynamic control, a closed-loop system from
real-time collection of battery status (e.g., parameters such
as current, voltage, capacity, etc.) by sensors to intelligent
analysis of data, and then optimization of the battery per-
formance through dynamic feedback is realized. Among
them, Al technology runs through data decoding, feature

extraction, and decision control, integrating with decoupled
transmission and an instant feedback mechanism, which not
only improves the accuracy and response speed of battery
status monitoring but also actively regulates the charging
and discharging process through intelligent algorithms,
which provides a visual solution for battery safety early
warning, life prediction, and energy efficiency optimization.

6.1 Future Challenges and Development Paths

Although flexible sensing technology combined with arti-
ficial intelligence shows tremendous potential in advancing
battery health monitoring, its large-scale deployment still
faces significant challenges [154, 155], which may translate
into opportunities for sustainable development. Current flex-
ible sensors used for battery health monitoring exhibit short-
comings in several critical areas, including sensing accuracy,
signal analysis, system integration, material compatibility,
structural design, massive data transmission, and real-time
online assessment (Fig. 15b). Multiple technical pathways
can alleviate these bottlenecks: employing high-precision
machining technologies to enhance sensor fabrication accu-
racy and consistency [156]; utilizing Al for data analysis
to improve processing efficiency and accuracy; developing
integrated machining technologies that combine multiple
sensors with data processing modules into a single system
to ensure stability and reliability; optimizing sensor material
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Table 3 Quantitative analysis of the Al-enabled process

Feature input Preprocessing Model class Task Quantitative results References
Voltage, current Load profile classification, NN SOC estimation Mean squared error [147]
normalization processing (MSE)<3.8%
Voltage, current, temperature, Normalization processing, GRU, RNN SOC estimation Root mean square error [148]
SOC data augmentation (RMSE) < 3.5%, mean abso-
lute error (MAE) <2%
Voltage, current, temperature,  Polarization state calculation, FFNN, EKF SOC estimation RMSE=0.05V, SOC estima- [149]
SOC, polarization state normalization processing, tion error < 2%
time constant selection
Voltage, current, temperature, Normalization processing, PINN SOC estimation RMSE=3.89%, [150]
SOC, electrolyte concentra- dimensionalization, dataset MAE<0.02 V, MAE<2%
tion, electrode potential partitioning
SOC, SOH, aging character- OpenSesame model, rapid Closed-loop SOH estimation Mean absolute deviation [153]

istics kinetic mapping

control, simu-
lation

(MAD)=0.9%

selection through intelligent screening techniques to boost
performance and reliability [157]; employing simulation
techniques to optimize sensor structural design for adapt-
ability to diverse battery configurations and environmental
applications; adopting 5G technology to enable massive data
transmission and ensure transmission efficiency; establishing
cloud-based big data platforms for centralized data manage-
ment, and developing real-time online evaluation technolo-
gies to deliver more comprehensive battery health monitor-
ing services.

Looking ahead, the development of flexible sensing
technology needs to closely focus on the three main lines

LEINT3

of “long-term reliability,” “system integration and pack-
aging,” and “data closed-loop control.” At the material
level, explore self-healing and corrosion-resistant materi-
als to extend sensor service life in extreme environments.
At the system integration level, explore wireless passive
sensor networks transmission and communication tech-
nologies to address challenges in high-density deployment
of large-scale battery modules. At the data level, leverage
large-scale sensor deployment to increase training data
for AI models under operando conditions, and enhance
the scientific accuracy of condition prediction through
digital twin technology. It is foreseeable that flexible sens-
ing technology will deeply reshape the pattern of battery
health monitoring, from the multiparameter sensing of the
battery monomer to the collaborative management of the
module and then to the closed-loop feedback digital twin
platform, which will greatly improve the safety threshold
of the battery.

SHANGHAI JIAO TONG UNIVERSITY PRESS

6.2 Computational Challenges and Model
Generalization

Despite significant advancements in Al-enabled battery
health monitoring technologies, several challenges remain
before achieving large-scale deployment:

(1) Error propagation under actual operating condi-
tions SOC estimation models based on GRU and EKF
achieve <2% estimation error in laboratory environ-
ments, but their robustness significantly degrades
under real-world operating conditions. For instance, in
mechanically vibrating environments, noise coupling
between strain and voltage signals may infiltrate the
estimation loop, causing SOC deviations exceeding
10%.

(2) Data requirements and annotation costs High-perfor-
mance deep learning models typically require training
on multimodal sensor data (including stress, strain,
temperature, and voltage/current) spanning 10%-10°
cycles. Constructing such comprehensive datasets
necessitates extensive cyclic testing and precise real-
value annotation (e.g., capacity decay), resulting in
substantial costs.

(3) Hardware constraints In practical battery management
systems, closed-loop decision-making from sensing to
execution must occur within < 100 ms to enable timely
thermal runaway warnings. This time constraint limits
computational complexity, posing unique challenges
for large-scale neural networks.

(4) Model generalization Existing Al models exhibit lim-
ited generalization when transferred from laboratory
environments to diverse actual scenarios. PINN with
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electrochemical constraints into learning frameworks
enhances extrapolation capabilities but increases com-
putational complexity.

To overcome these computational bottlenecks, collabo-
ration is needed across three key domains: 1) developing
physically constrained Al architectures to suppress error
propagation; 2) establishing standardized large-scale open
datasets to reduce redundant annotation costs; 3) implement-
ing hardware-algorithm co-design to ensure response times
below 100 ms. These directions are critical for bridging the
gap between proof-of-concept and industrial deployment of
Al-based flexible sensing systems.
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