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HIGHLIGHTS

•	 Comprehensive perspective on soft robotic systems integrating material innovation, structural design, functional synergy, and intel-
ligent control across biomedical and environmental applications.

•	 Representative platforms including microneedle array-based soft robots and 4D-printed hydrogel systems are analyzed to demonstrate 
programmable actuation, sensing, and therapeutic functions.

•	 Critical challenges and future directions are outlined, emphasizing modular standardization, self-healing materials, and data-driven 
control strategies for next-generation adaptive soft robots.

ABSTRACT  Soft robots, characterized by compliance, adaptability, and multi-
modal responsiveness, represent a rapidly advancing frontier in biomedical applica-
tions, wearable technologies, and environmental exploration. This review summa-
rizes recent progress in soft robotics with a focus on material innovation, structural 
design, functional integration, and intelligent responsiveness. Emphasis is placed on 
the development of bioinspired and stimuli-responsive materials, the construction 
of modular and reconfigurable architectures, and the integration of actuation, sens-
ing, and energy systems. Microneedle array-based soft robots and hydrogel-based 
4D-printed systems are introduced as representative platforms for drug delivery, 
wound healing, and environmental monitoring. Key challenges, including limited 
durability, power autonomy, and multifunctional synergy, are critically analyzed in 
relation to practical operation and long-term reliability. Future directions involve the 
convergence of self-healing materials, intelligent control algorithms, and multiscale 
integration strategies to achieve enhanced adaptability and clinical translation. This 
review provides a comprehensive overview of the interdisciplinary development of next-generation soft robots that bridge materials sci-
ence, biomedical engineering, and intelligent systems, paving the way toward real-world applications.
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1  Introduction

Soft robots represent a new paradigm in engineering [1–4], 
where functionality is achieved not through rigid mechanical 
assemblies but through compliant materials, stimuli‐respon-
sive architectures, and distributed control frameworks [5–9] 
(Fig. 1). By harnessing the inherent deformability of soft 
matter and adopting bioinspired strategies, these systems 
exhibit remarkable adaptability, environmental compatibil-
ity, and multimodal responsiveness [10, 11]. Their capa-
bility for large, reversible deformations while maintaining 
safe interactions with biological interfaces allows opera-
tion under unstructured conditions, driving broad interest 
across biomedical, wearable, and environmental domains 
[12, 13]. Early investigations centered on passive materials 
and single‐mode deformation [14, 15]; however, the integra-
tion of sensing, actuation, and logic within soft matrices has 
enabled the transition toward intelligent machines capable 
of environmental adaptation and programmable behaviors 
[16–19]. This technological trajectory illustrates the shift 
from isolated component design to holistic, feedback‐driven 
system integration [20] (Fig. 2a).

To support such functional complexity, modular architec-
ture has emerged as a core strategy in soft system design. 
Rather than monolithic bodies, contemporary soft robots are 
assembled from interoperable modules dedicated to struc-
ture, actuation, and control, sensing and interaction, energy 
management, and intelligence. Figure 2b presents this hier-
archical framework, progressing from material and structural 
foundations to actuation/control, perception/interaction, and 
finally an AI‐driven intelligence layer. While modularity 
enhances scalability and functional reconfigurability, it also 
introduces critical challenges in cross‐module compatibil-
ity and standardization. Interfaces between actuation mod-
ules and energy modules often lack unified mechanical and 
electrical coupling protocols, restricting seamless assembly 
and reproducibility. Efforts toward soft‐bus architectures, 
wireless signal transmission, and adaptive interface proto-
cols are emerging [21, 22], yet universal industrial or aca-
demic standards remain under development. Establishing 
such standardized interconnects will be essential for scal-
able manufacturing, data interoperability, and translational 
deployment of modular soft robotic systems.

At the foundation of these architectures lie adaptive mate-
rials capable of coupling mechanical compliance with func-
tional responsiveness. Elastomers, hydrogels, protein‐based 
polymers, and liquid metals enable tunable stiffness, reversi-
ble deformation, and multifield responses under mechanical, 
thermal, optical, and chemical stimuli [23, 24]. These mate-
rials act as active transducers—capable of sensing, actuat-
ing, and self‐healing—to emulate biological tissue dynamics 
across multiple length scales [25–27]. Equally important, 
structural design dictates motion pathways, force transmis-
sion, and overall stability [28–31]. Bioinspired geometries 
such as coiled fibers, folded membranes, lattice scaffolds, 
and hierarchical composites have produced architectures 
that undergo anisotropic deformation, gradient stiffening, 
and geometry‐encoded locking. Other emerging strategies, 
including braided architectures [32, 33], offer enhanced 
mechanical robustness and programmable compliance, 
enriching the design space for adaptive motion. The inte-
gration of gradient mechanics and internal patterning fur-
ther enables programmable stiffness and spatially distributed 
functionality [34–38], transforming structural design into an 
active contributor to system intelligence.

Advances in fabrication technologies have expanded 
the complexity and responsiveness of soft robotic sys-
tems. In particular, 4D printing—the temporal extension 

Fig. 1   Microneedle-integrated soft robotic systems enabling sensing, 
actuation, and therapeutic applications across biomedical interfaces
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Fig. 2   a Timeline of key technological milestones in the development of intelligent soft robots from 2015 to 2025. The diagram highlights 
advances in materials, structural innovations, actuation mechanisms, AI-assisted sensing, and system-level integration. b Modular schematic of 
intelligent soft robots illustrating the hierarchical architecture and functional interactions between five core subsystems. The material layer pro-
vides the physical foundation, determining flexibility, biocompatibility, and responsiveness. The structural layer builds on this by defining robot 
morphology and adaptability through advanced structural design. The actuation and control layer enables dynamic movements via multimodal 
stimuli. The perception and interaction layer facilitates closed-loop sensing and real-time environmental feedback. At the top, the AI and intel-
ligence layer governs system-level autonomy through learning-based decision-making, optimization, and task execution



	 Nano-Micro Lett.          (2026) 18:179   179   Page 4 of 32

https://doi.org/10.1007/s40820-025-02026-2© The authors

of 3D printing—introduces time as the “fourth dimen-
sion,” whereby printed architectures are designed to evolve 
their shapes or properties in response to external stimuli 
[20, 39–42]. Unlike conventional additive manufacturing, 
4D‐printed hydrogel systems incorporate preprogrammed 
time‐dependent transformations such as swelling, shrinking, 
or phase transition, producing dynamic architectures that 
autonomously change form or function in real time. By inte-
grating spatially resolved material placement with sequential 
deformation encoding, these systems bridge the gap between 
static mechanical design and living matter, enabling adaptive 
morphing, reversible actuation, and environment‐responsive 
control. Such capability marks a major step toward creating 
self‐regulated and reconfigurable soft robots for biomedical 
and environmental applications.

Despite these advances, key challenges remain. Long‐
term mechanical durability, power autonomy, closed‐loop 
control, and clinical compatibility still limit the transition 
of soft robotic platforms from laboratory demonstrations to 
practical use [43–45]. Moreover, the absence of universal 
modular standards and limited scalability hinder reproduc-
ibility and system integration. This review therefore pro-
vides a detailed examination of soft robotics from a mate-
rial–structure–function integration perspective, focusing on 
microneedle (MN) platforms [46–51], 4D‐printed hydrogel 
devices [52–58], and composite architectures [59–64], which 
collectively represent leading directions toward adaptive and 
intelligent soft systems [65, 66]. By summarizing represent-
ative breakthroughs, clarifying conceptual definitions, and 
analyzing existing challenges, this work aims to outline a 
coherent framework for designing the next generation of soft 
robots that combine structural versatility, functional intel-
ligence, and seamless interaction across biomedical and 
environmental interfaces.

2 � Structure and Materials of Soft Robots

Soft robots integrate functionally diverse structural forms, 
such as solid, hollow, porous, and cavity-tunable micronee-
dles [67–73] (Fig.  3), with advanced material systems, 
including hydrogels, elastomers, and conductive composites 
[74–77] (Table 2). Through multilayer architectures [78–82] 
and actuation [83], these systems achieve precise control 
over drug delivery, sensing, and mechanical interactions. 
Bioinspired designs and flexible substrates further increase 

the adaptability and biocompatibility of these materials 
[84–86], supporting their application in dynamic physiologi-
cal environments.

2.1 � Structure

2.1.1 � Microneedle Array Structures

Microneedle array structures are emerging as a versatile 
class of microstructured interfaces that significantly advance 
the perception, actuation, and functional integration of soft 
robotic systems (Table 1). Solid MN arrays, exemplified by 
silica gel-based microarray tactile sensors, endow soft robots 
with refined perception of object shape, size, and surface tex-
ture, enabling high-resolution tactile feedback and intelligent 
recognition when coupled with machine learning algorithms 
[87]. Moreover, conical solid MNs reinforced with materi-
als such as carbon nanotubes or hydrogels exhibit excellent 
mechanical robustness and adaptability, offering structural 
design principles for integrating sensing and actuation func-
tions within flexible robotic platforms [88] (Table 2).

Hollow MNs extend the functionality of these systems by 
combining biosensing, microfluidic regulation, and targeted 
delivery within a single microarchitecture [89, 90]. Flex-
ible hollow microfiber arrays fabricated from nanocompos-
ite materials with metallic coatings enable continuous bio-
fluid extraction and electrochemical biosensing, laying the 
foundation for conformable, self-diagnostic robotic skins. 
In parallel, adjustable hollow polymer MNs with tunable 
cavity volumes achieve precise control over release kinetics, 
suggesting potential applications as biofluidic actuators and 
chemical delivery modules in soft robotic devices, thereby 
bridging biomedical and robotic domains.

Beyond solid and hollow configurations, porous, inverse 
opal, and hybrid MNs open new frontiers for adaptive 
and intelligent robotic functionalities. Porous MNs con-
structed from mesoporous silica and sealed with chitosan 
hydrogels exhibit glucose-responsive, self-regulated insu-
lin release, offering a paradigm for stimuli-responsive and 
self-adaptive soft robotic systems [71, 91]. Inverse opal 
MNs, derived from colloidal crystal templating, possess 
highly ordered porous networks that amplify fluorescence 
and enhance biofluid extraction, enabling real-time biosens-
ing and high-fidelity diagnostic feedback [92]. Meanwhile, 
hybrid MNs that integrate multiple structural motifs and 
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material components are poised to unify sensing, actua-
tion, and controlled delivery within a single soft robotic 

platform—paving the way toward autonomous, multifunc-
tional, and biointegrated robotic interfaces.

Fig. 3   Structural diversity and types of wearable soft robots. a Microneedle array structures, b multilayer composite structures, c smart-actuated 
architectures, d flexible and stretchable platforms, and e bioinspired and biomimetic designs, revealing a broad spectrum of approaches for 
developing advanced soft robotic systems
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2.1.2 � Multilayer Composite Structures

Multilayer composite structures have emerged as a vital 
design paradigm in soft robotics, enabling the integration 
of diverse functionalities within compact and flexible archi-
tectures. Sandwich-like systems exemplify this approach 
through the assembly of layered components that synergis-
tically perform distinct yet complementary tasks [120]. A 
representative case is the conductive microneedle patch for 
myocardial infarction therapy, comprising a drug-loaded 
microneedle base for localized release, a middle carbon 
nanotube (CNT) layer for electrical conduction, and a 
GelMA hydrogel scaffold supporting induced cardiomyo-
cytes. This hierarchical configuration enables simultaneous 
drug delivery, electrical stimulation, and cell integration, 
demonstrating how multilayer structural design can achieve 
biocompatible, multifunctional, and adaptive interfaces that 
meet the complex demands of soft robotic operation and 
biomedical repair.

The “Cap-Doffing System” represents another sophis-
ticated multilayer concept that introduces self-regulation 
through dynamic molecular gating [91]. In this architecture, 
mesoporous silica microneedles capped with enzyme-loaded 
chitosan hydrogels act as stimuli-responsive valves. Changes 
in glucose concentration trigger enzymatic reactions that 
cause reversible swelling or deswelling of the hydrogel cap, 
achieving on-demand, repeatable, and reversible release of 
encapsulated substances. This dynamic control mechanism 
mirrors the adaptive behaviors desired in soft robots, ena-
bling responsive substance release, intelligent channel regu-
lation, and potential integration into chemical sensing, self-
healing materials, or bioinspired actuation systems capable 
of precise environmental interaction.

The separable-tip system exemplifies an advanced design 
philosophy for safe and targeted in vivo operation of micro-
robotic systems [121]. In this configuration, functional and 
control units are decoupled through a detachable interface—
such as in magnetically guided microneedle robots designed 
for oral delivery of macromolecular drugs. The device fea-
tures a magnetic base, separable connector, and drug-loaded 
tip fabricated via a modular multistage 3D strategy. After 
reaching the intestine, the magnetic base facilitates precise 
positioning and penetration, after which the degradable con-
nector detaches, leaving the tip embedded for sustained drug 
release while the base is safely excreted. This architecture 
not only enhances bioavailability and long-term efficacy but 

also establishes a biosecure and programmable model for 
future intelligent soft robots designed for minimally invasive 
therapeutic delivery.

2.1.3 � Smart‑Actuated Architectures

Smart-actuated architectures have become a pivotal frontier 
in soft robotics, enabling remote, programmable, and bio-
logically integrated functionalities through the synergistic 
design of responsive microneedle (MN) systems. Magneti-
cally driven MN robots exemplify this progress, achieving 
noncontact manipulation and targeted intervention under 
external magnetic fields [122–124]. A representative design 
features a modular, multistage 3D-printed robot composed 
of a magnetic base, detachable connector, and drug-loaded 
tip. Guided by a magnetic field after oral administration, 
the robot precisely penetrates the intestinal wall to deliver 
macromolecular therapeutics such as insulin, followed by 
autonomous detachment and excretion of the magnetic 
component, thereby enhancing drug bioavailability and 
biosafety. Moreover, layered magnetic MN array robots have 
demonstrated precise tissue cutting for organoid-on-a-chip 
fabrication, underscoring their potential for minimally inva-
sive surgery and advanced bioengineering. These examples 
highlight how magnetic control endows soft robotic systems 
with superior locomotion precision, multifunctional integra-
tion, and clinical translation potential.

Electroactive systems further advance the sensory intel-
ligence of soft robots by converting electrical and mechani-
cal stimuli bidirectionally, allowing real-time environmental 
perception and adaptive responses [88]. A representative 
microneedle tactile sensor based on silicone composites 
operates via triboelectric and electrostatic induction princi-
ples, translating shape, size, and texture cues into electrical 
signals for intelligent object recognition. This electroac-
tive tactile system, when coupled with machine learning, 
achieves high-fidelity recognition of curved and deformable 
surfaces, effectively simulating the tactile sensitivity of bio-
logical skin. Such strategies not only provide new routes for 
material–structure co-design but also lay the technological 
foundation for autonomous, multimodal soft robots with 
refined environmental interactivity.

Optogenetically triggered MN systems represent an 
emerging paradigm that merges optogenetic precision with 
microneedle delivery to achieve spatiotemporally resolved 
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biological control [125]. A triboelectric-responsive MN 
platform designed for intervertebral disk degeneration ther-
apy exemplifies this strategy: optogenetically engineered 
extracellular vesicles (EVs) loaded within the microneedle 
array are released in a controlled manner through triboelec-
tric stimulation, enabling optical regulation of intracellu-
lar DNA-sensing pathways associated with inflammation 
in degenerative cells. By integrating optogenetic actuation 
with microstructured interfaces, these systems provide light-
controllable, noninvasive pathways for manipulating cellular 
behavior and biochemical signaling. This approach opens 
transformative opportunities for next-generation biorobots 
capable of intelligent diagnosis, precision therapy, and 
dynamic integration with living tissues.

2.1.4 � Flexible and Stretchable Architectures

Flexible microneedle (MN) electrodes have emerged 
as pivotal components in the evolution of soft robotic 
systems, enabling seamless, conformable electrical 
interfaces with biological tissues for biosensing, neu-
ral modulation, and tissue engineering applications. 
These electrodes combine minimally invasive penetra-
tion with high mechanical compliance, allowing stable 
signal transduction across irregular or dynamic surfaces. 
Hollow MN arrays constructed from soft conductive 
microfibers via nickel–gold plating have been reported 
as stretchable microfluidic biosensing patches integrat-
ing flexible electrochemical sensors, capable of intersti-
tial fluid sampling and precise biomolecular detection 
under deformation conditions. Such systems exemplify 
the synergistic integration of conductivity, flexibility, 
and biointerface conformity, paving the way for next-
generation wearable diagnostic platforms. Furthermore, 
an inductively integrated conductive MN patch designed 
for myocardial infarction therapy employs aligned car-
bon nanotube (CNT) intermediate layers to form efficient 
electrical conduction pathways, imparting both flexibil-
ity and high conductivity to the patch. This configura-
tion enables electrophysiological signal transmission and 
promotes cell activity and tissue regeneration. Collec-
tively, these flexible MN electrodes—combining con-
ductive materials with compliant substrates—minimize 
tissue damage, enhance signal stability, and improve 
long-term wearability, offering essential technological 

support for soft robotic systems in chronic monitoring, 
electrical stimulation, and therapeutic applications [87, 
90, 126–128].

Stretchable microfluidic platforms represent another crit-
ical advancement in soft bioelectronics, offering deform-
able, skin-conformal systems that sustain both fluidic and 
electrical functionality under strain [63, 129]. By integrat-
ing microfluidic channels into elastomeric matrices, these 
platforms enable stable adhesion to curved or moving bio-
logical surfaces while maintaining precise liquid transport 
and signal fidelity. A representative stretchable biosensing 
patch featuring an array of hollow MNs composed of flexible 
microfibers integrates a microfluidic sampling module, an 
electrochemical biosensor, and a flexible substrate, form-
ing a closed-loop analytical system capable of minimally 
invasive interstitial fluid collection and real-time biomarker 
detection, such as glucose monitoring. The negative pres-
sure-driven sampling mechanism, coupled with the inherent 
elasticity of the substrate, ensures durable, user-friendly, and 
irritation-free operation. This design paradigm highlights 
the potential of integrating softness, multifunctionality, and 
precision into next-generation wearable point-of-care testing 
(POCT) devices, substantially broadening the role of soft 
robotic platforms in biofluidic sensing, smart diagnostics, 
and personalized healthcare [130].

The integration of flexible MN electrodes and stretchable 
microfluidic platforms thus defines a transformative frame-
work for soft robotic systems. These hybrid architectures 
bridge the gap between mechanical adaptability and electri-
cal or biochemical performance, creating robust, long-term 
biointerfaces capable of real-time physiological monitoring, 
targeted therapy, and closed-loop control. By harmonizing 
electronic conductivity, fluidic transport, and tissue compli-
ance, such systems embody the next frontier of intelligent, 
body-conformal soft robots—offering unprecedented oppor-
tunities in biosensing, neural engineering, and regenerative 
medicine.

2.1.5 � Bioinspired and Biomimetic Design

Bioinspired structural designs derived from natural organ-
isms offer powerful strategies to enhance mechanical adapta-
bility, adhesion, and long-term biointegration in soft robotic 
systems. Plant-thorn-inspired microneedle architectures, 
featuring tapered and backward-hooked geometries, enable 
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secure yet minimally invasive anchoring at dynamic tissue 
interfaces [131]. Such designs have been translated into 
skin-integrated stretchable silicon microneedle electrodes 
(SSMEs) that combine silicon microneedle arrays with 
polyimide semi-encapsulation, achieving superior mechani-
cal stability, fatigue resistance, and over 36% stretchability. 
These features ensure reliable electromyography (EMG) 
signal acquisition during motion while maintaining excel-
lent biocompatibility and comfort.106 By mimicking the 
structural logic of natural spines, these microneedle inter-
faces achieve precise mechanical interlocking and robust 
conformal contact, providing a blueprint for high-fidelity, 
long-lasting human–machine interfaces in wearable bioel-
ectronics and soft robotics.

In parallel, aquatic and avian organisms have inspired 
novel adhesion and anchoring mechanisms with unprece-
dented efficiency. Fish-like adhesion systems, modeled after 
the lamellar suction disks and microspines of climbing fish, 
integrate flexible lamellae for wet adhesion and stiff epider-
mal spines for directional friction, allowing strong attach-
ment and agile sliding on moist or irregular substrates [132]. 
Extending this principle to terrestrial conditions, eagle-claw-
inspired microhooks and microneedles replicate the curva-
ture, stiffness gradient, and anisotropic grasping mechanics 
of avian talons, enabling stable, reversible anchoring with 
minimal tissue irritation [133, 134]. These nature-derived 
architectures collectively demonstrate how hierarchical 
structural design—combining softness, rigidity, and direc-
tional mechanics—can endow soft robotic systems with 
adaptive interfacial behaviors, secure biointegration, and 
enhanced operational stability across complex environments.

2.2 � Materials

2.2.1 � Hydrogel‑Based Materials for Soft Robots

Hydrogels have emerged as a pivotal materials platform 
for next-generation soft robotics and biomedical microde-
vices owing to their high water contents, tunable mechanics, 
and biocompatibility [93]. Recent advances have focused 
on enhancing the stimulus responsiveness of hydrogels to 
precisely regulate drug diffusion kinetics and actuation 
behavior in microneedle (MN)-based systems. Thermo-, 
pH-, and photo-responsive networks can dynamically alter 
mesh size and permeability under external stimuli, enabling 
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programmable drug release synchronized with robotic 
motion or physiological cues. For instance, PNIPAM-based 
or silk protein–reinforced hydrogels demonstrate rapid vol-
umetric transitions upon near-infrared or thermal stimuli, 
allowing controlled payload diffusion and adaptive deforma-
tion at tissue interfaces [94–96, 135, 136]. Structural inno-
vations, such as anisotropic alignment and double-network 
architectures, have further improved hydrogel resilience, 
achieving tensile strengths exceeding 6 MPa and stretch-
ability beyond 1000% while maintaining responsive actua-
tion fidelity [136, 137]. Through these design strategies, 
hydrogels are evolving from passive matrices into active, 
logic-capable materials that integrate sensing, actuation, and 
drug delivery within unified soft robotic platforms.

For biomedical integration, long-term in vivo stability 
remains a critical criterion determining translational feasi-
bility. Traditional hydrogels often suffer from dehydration, 
swelling-induced delamination, or uncontrolled biodegrada-
tion in physiological media. To address these issues, organo-
hydrogel and eutectogel systems incorporating antifreeze 
agents, dynamic covalent bonds, or hydrophobic networks 
have been engineered to preserve elasticity (up to 1500%) 
and conductivity across –30 to 60 °C [94–96, 136, 138]. 
Recent studies have begun to quantify degradation kinetics 
under simulated physiological conditions, showing tunable 
half-lives ranging from several days to over a month depend-
ing on polymer cross-link density and ionic composition. 
Such data underscore the importance of tailoring degrada-
tion pathways to match tissue regeneration and drug release 
timescales. Future integration of programmable synthe-
sis and bioinspired hierarchical structuring is expected to 
yield hydrogels that not only maintain structural integrity 
and responsiveness in vivo but also synchronize therapeu-
tic release with robotic actuation, advancing toward truly 
autonomous and life-mimetic biomedical soft robots [97, 
139–143].

2.2.2 � Liquid Crystal Elastomers and Their Composites

Liquid–crystal elastomers (LCEs) and their composites offer 
great potential for next-generation soft robotics owing to 
their programmable deformation, responsiveness, and mul-
tifunctionality. Inspired by skeletal muscle, hollow LCE 
(h-LCE) fibers with programmable outer shells and func-
tional internal channels have enabled a range of applications, 

including water-triggered actuation, stiffness tuning with 
shape memory polymers (SMPs), and integration with liq-
uid metals for electrically driven systems. These h-LCE 
fibers, which are fabricated at scales up to 3 m long and 
as small as 250 μm in diameter, support advanced designs 
for artificial muscles and soft robotic components [99]. At 
the microscale, LCEs are used to construct reconfigurable 
thermoresponsive metasurfaces via two-photon polymeri-
zation, enabling the creation of micrometer-scale origami 
structures. While wireless actuation remains a challenge, 
simulation-guided strategies are helping to optimize shape 
transformations and device geometries for soft microro-
bots and wearables [100]. A biomimetic spinning method 
inspired by spiders allows for scalable production of high-
performance LCE microfibers with rapid strain, high stress, 
and long lifespans, supporting applications in smart textiles 
and humanoid robots [101].

In addition, a programmable flexible actuator (PFA) 
inspired by fig tree leaves was fabricated via 4D printing. 
Utilizing a composite of liquid metal, spider silk, and liquid 
crystal elastomers (LCEs), this actuator integrates sensing 
and selective actuation through precisely designed photo-
thermal and mesophase architectures. The spatiotemporal 
rearrangement of microstructures enables remote, program-
mable deformation and signal transduction, advancing the 
development of adaptive human–machine interfaces [119]. 
Likewise, self-recovering coiled artificial muscle fibers 
were realized by coating LCE sheaths on elastic CNT fibers, 
achieving large reversible contractions and high response 
rates through Joule heating. These helically aligned LCE 
chains mimic natural muscle behavior for efficient motion 
tasks such as object manipulation and rapid actuation 
(Fig. 4b) [102]. At the microscale, 3D nanofabricated “pico 
springs” composed of acrylic elastomer photoresists provide 
tunable compliance and magnetic responsiveness, facilitat-
ing force-sensitive micromachines capable of delicate and 
biocompatible interactions with cellular systems [76].

2.2.3 � Liquid–Metal Composite Materials

Liquid metals (LMs) and their composites offer unique advan-
tages for next-generation soft robotics, including flowability, 
conductivity, and deformability [103, 146, 147]. However, 
conventional LMs face limitations such as high density, cost, 
and fragility [104]. To overcome these challenges, researchers 
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have developed novel LM-based composites. For example, 
LM/CNT hydrogels exhibit high conductivity, stretchability 
and transparency for aquatic health monitoring [105]. LMPP 
hydrogels stabilized by PEDOT:PSS show increased strength 
and conductivity for motion tracking [106]. LM micronet-
work films achieve conductivities of up to 2.37 × 10⁶ S m−1 
under strain, which are ideal for wearable circuits [107]. 
PEN composite films made from PDMS, EGaIn, and NdFeB 
offer high moduli and tear strengths for soft robot actuation 
[108]. BTMN-SHFSS sensors inspired by human skin exhibit 
100% electrical repair efficiency and broad-range sensitivity 
[104]. Similarly, spider web-inspired semi-LM electronic skin 
achieves high conductivity, stretchability, and breathability for 
long-term monitoring [148].

To reduce cost and density, LM fiber network composites 
with ultralightweight structures offer stable, strain-independent 
conductivity and cycling performance, enabling stretchable 
sensors [103]. LMS inks enable 3D-printed, self-encapsulated, 
flexible tactile sensors with excellent durability and human 
posture recognition [149]. LM-based triboelectric nanogen-
erators (LM-TENGs) generate output voltages of 22.29 V and 
55.16 μW of power, along with impact protection for smart 
healthcare [150]. LMPSTs also demonstrate strong energy 
harvesting and force sensing capabilities [109]. LM-hydrogel 
sensors with wireless modules enable gesture and sign lan-
guage recognition [103]. BSFS dual-mode sensors based on 
triboelectric and magnetoelastic effects can distinguish non-
contact and tactile inputs and are integrated into robotic hands 
for high-precision object recognition via CNNs (Fig. 4c) [144].

Advanced fabrication methods have further broadened LM 
applications. Water-based ion chelation enables the continu-
ous production of magnetic LM fibers with high mechanical 
and electrical stability for shielding and sensing. [151] Liq-
uid metal solders with small-molecule modulation stretch-
ability and toughness for deformable electronics [152]. Iron 
oxide-composited LMs enable magnetically driven microsoft 
robots via external fields [153]. Magnetized EGaIn@Fe mate-
rials allow 3D manipulation without electrolytes, supporting 
microfluidics and circuit repair [154]. Biomass-encapsulated 
LM/protein gels (GLMx) exhibit adhesion, toughness, and 
recoverability, serving as epidermal sensors for body motion 
monitoring [155]. Overall, LM research is advancing toward 
multifunctional, sustainable, and low-cost materials for flexible 
electronics, wearables, and robotics. Future work will focus 
on performance optimization and deployment in complex 
environments.

2.2.4 � Protein‑Based Smart Materials

With the rise of soft robotics and flexible electronics, pro-
tein-based materials have emerged as promising candidates 
due to their biocompatibility, biodegradability, and mechani-
cal tunability. In water-responsive systems, 4D-printed zein 
gels enable programmable degradation and drug release by 
adjusting hydrogen bonding through ethanol–water mix-
tures, expanding 4D printing to include functional hetero-
geneity [110]. Spider silk-inspired sericin fibers display 
water-triggered shape memory and cyclic actuation with up 
to 18 MPa stress, making them suitable for actuators and 
smart textiles [111]. Sericin membranes offer multiple types 
of responsiveness, including thermal shrinkage and humidity 
response, with reprogrammable flipping and self-oscillation 
for applications such as biomimetic wings and soft grippers 
[112]. Silk protein films, with a surface-to-interior density 
gradient from asymmetric water diffusion, achieve excellent 
strength and moisture-driven origami and jumping behaviors 
[113]. These structural protein systems exploit hierarchi-
cal hydrogen-bond networks and water-mediated plasticity, 
providing versatile mechanical adaptability and tunable deg-
radation for dynamic environments.

For self-powered and biointegrated sensing, protein-
based triboelectric and piezoelectric devices leverage struc-
tural hierarchy to improve charge generation, mechanical 
resilience, and biocompatibility. Keratin-based S-TENGs 
incorporating CaCl₂ and Ecoflex exhibit enhanced voltage 
output, stability, and stretchability, enabling precise gesture 
and shape recognition for biomedical and environmen-
tal applications [110]. The hexagonal keratin structure of 
snake skin provides porosity and pressure sensitivity for the 
development of sustainable piezoelectric and triboelectric 
devices [114]. Silk/PVBVA nanofiber-based TENGs deliver 
high power for joint monitoring with waterproof, recyclable, 
wearable properties ideal for IoT systems [115]. Silk protein 
elastomers with PDA-intercalated clay offer superior adhe-
sion and flexibility for epidermal sensing of vibration and 
voice signals [156]. Silk electrodes with improved stabil-
ity via mesoscale doping support flexible display integra-
tion (Fig. 4d) [145]. Advanced silk/MXene composite films 
achieve a sensitivity of 17.1 kPa⁻1 over the 3.3 MPa range 
and are applied in motion detection and human‒machine 
dialog systems [157]. A thiol-ene click chemistry-based BSA 
hydrogel enables freeze-resistant, biocompatible, conductive 
sensing for gesture-based robotic control [158, 159]. For 
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biomedical applications such as implantable microneedle 
robots for gastrointestinal drug delivery, long-term in vivo 
stability is crucial. Existing studies report that silk fibroin 
microneedles retain mechanical integrity for approximately 
12–48 h in simulated gastric fluid and several days in intes-
tinal environments before enzymatic degradation, depend-
ing on β-sheet crystallinity and cross-linking density. Such 
degradation kinetics can be modulated through methanol 
annealing, ion doping, or silk–polymer hybridization, ensur-
ing controlled dissolution and mechanical endurance while 
minimizing fibrotic encapsulation or immune responses. In 
integrated bioelectronic systems, amyloid fibrils self-assem-
bled at the air‒water interface can be combined with CNTs 
or Fe₃O₄ for magnetically responsive soft robotic swimmers 

and sensors [160]. Wool keratin enables bioelectronic plat-
forms with stable, conductive CNT dispersions for ECG 
electrodes and flexible circuits [161]. Dry-spun silk-based 
ion‒electronic fibers (SSIFs) demonstrate rapid electrome-
chanical response and, when combined with triboelectric 
fibers and machine learning, enable material classification 
for human‒machine interfaces [162]. Devices using FWC-
NTs and silk-assisted transfer technology exploit intershell 
sliding to provide a stable electrical response at next-gener-
ation interfaces [163]. Finally, Ti₃C₂Tx-Ag@silk nanofiber 
composites with heterogeneous conductive networks enable 
fast-heating paper devices, high-efficiency EMI shielding, 
and high-sensitivity capacitive pressure sensing for gesture 
recognition and wireless control applications [164].

Fig. 4   Four materials used in soft robots. a Schematic diagram of a soft robot gripper integrated with a strain triboelectric sensor based on the 
developed hydrogel and its formation mechanism [93].  Copyright 2023, Elsevier. b Schematic diagram of the continuous preparation of LCE/
CNT composite fibers through LCE coating, fiber stranding and twisting [102]. Copyright 2023, American Chemical Society. c The dual-mode 
self-powered flexible sensor (BSFS) consists of two functional flexible films: a magnetoelastic conductive film and a liquid metal coil with a 
packaging film [144]. Copyright 2023, Wiley–VCH. d After undergoing processes such as washing, degumming, dissolution, dialysis, centrifu-
gation, and doping, silk protein can be transformed into a flexible substrate material with excellent light transmittance and mechanical strength, 
making it suitable for use in various flexible wearable electronic devices [145]. Copyright 2023, Elsevier
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3 � Intelligent Drive and Energy Management

3.1 � Flexible Drive and Motion Control

Flexible drive technology is the foundation for soft robots 
to achieve biomimetic motion and complex shape recon-
struction, with its core lying in the development of func-
tional materials and structural systems capable of respond-
ing to various external stimuli. In recent years, various 
actuation strategies, such as thermally induced phase 
change, electrically induced deformation, light-responsive, 
and magnetically controlled materials, have been devel-
oped, expanding the motion freedom and response sce-
narios of soft robots. Among these, thermally controlled 
pneumatic structures utilize thermoelectric elements to 
achieve rapid expansion and contraction of gas within 
chambers, enabling fully soft-driven systems without 
external air pumps [165] (Fig. 5a). Multiple responsive 
materials, such as MXenes, can generate direct deforma-
tion under humidity, temperature, and electric field stimuli 
by constructing asymmetric nanofluidic channels, thereby 
achieving more complex and biomimetic motion patterns 
[116] (Fig. 5b). Additionally, by leveraging liquid met-
als and high-resolution lithography techniques, the con-
struction process of drive circuits is increasingly moving 
toward modularization and miniaturization, enabling soft 
actuators to achieve higher integration and mechanical 
compatibility [166] (Fig. 5c). These multiphysics field-
coupled drive mechanisms provide a solid foundation for 
developing autonomous, programmable soft robots.

Recent studies have demonstrated that porous micronee-
dle (MN) architectures can effectively bridge the func-
tional gap between traditional actuator materials and 
biological tissues, offering both mechanical adaptability 
and multi-stimuli responsiveness. By integrating inter-
connected microchannels and gradient porosity within 
the MN array, internal stress distribution can be precisely 
modulated under external stimuli such as heat, light, or 
electrochemical potential. This enables anisotropic expan-
sion, rapid solvent diffusion, and localized drug release, 
all of which can be harnessed to generate controlled 
deformation or locomotion in soft robots. For instance, 
a hygroresponsive MN array composed of silk fibroin 
and graphene oxide demonstrates reversible bending and 
twisting motions driven by differential water absorption 

across the needle height, mimicking the contraction of 
muscle fibers while simultaneously realizing on-demand 
drug delivery to adjacent tissues. Similarly, photother-
mal porous MN actuators based on polydopamine-coated 
hydrogels have been shown to achieve millimeter-scale 
displacement within seconds under near-infrared (NIR) 
irradiation, where the hierarchical pore structure not only 
accelerates heat transfer and water evaporation but also 
improves actuation frequency and durability during cyclic 
operation.

Furthermore, the coupling of porosity and electrical con-
ductivity has opened new opportunities for integrating MN-
based actuators with energy harvesting or sensory modules, 
enabling self-regulated motion control. In one representative 
system, liquid–metal-filled porous MNs exhibited dynamic 
stiffness tuning and real-time feedback regulation: As the 
LM channels deformed under stress, their resistive network 
simultaneously generated sensing signals for closed-loop 
control, thereby achieving synchronized actuation and 
sensing within a single soft module. Such designs directly 
address limitations in power density, response precision, and 
functional lifetime that have long constrained soft robotic 
systems. The incorporation of porous MN arrays as both 
mechanical transducers and functional interfaces represents 
a significant step toward autonomous, adaptive, and self-
sustaining soft robots capable of performing complex bio-
medical or environmental tasks.

3.2 � Microneedle Array‑Based Local Actuation 
and Energy Harvesting

Recent advances in microneedle (MN) array systems have 
revealed their potential not only as passive transdermal inter-
faces but also as active platforms for localized actuation and 
on‐site energy harvesting within soft robotic architectures. 
The integration of self‐powered biochemical and triboelec-
tric systems into MN matrices has enabled the coupling 
of therapeutic drug delivery with dynamic mechanical or 
electrical output, forming a closed‐loop regulation para-
digm. For instance, Zhang et al. developed a self‐powered 
enzyme‐linked MN patch composed of anodic and cathodic 
arrays encapsulating glucose oxidase and horseradish per-
oxidase within ZIF-8 nanoparticles [168]. The enzymatic 
cascade simultaneously consumes excess glucose in dia-
betic wounds and generates stable microcurrents, achieving 
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Fig. 5   Intelligent drive and energy management. a Function of the Thermally Controlled Pneumatic Structure [165].  Copyright 2023, Elsevier. 
b Formation mechanism of biomimetic motion patterns in MXenes and other multiresponsive materials [116]. Copyright 2024, Wiley–VCH. 
c The use of liquid metal and high-resolution lithography enables soft actuators to achieve increased integration and mechanical compatibility 
[166]. Copyright 2024, Wiley–VCH. d The use of liquid metal and high-resolution lithography enables soft actuators to achieve increased inte-
gration and mechanical compatibility [167]. Copyright 2022, Elsevier. e Hybrid structures based on MXenes can increase energy storage effi-
ciency and structural stability [117]. Copyright 2024, Elsevier. f Role of the porous network and three-dimensional electrode introduction [118]. 
Copyright 2023, Elsevier
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synergistic regulation of biochemical microenvironments 
and electrostimulation. Such bioelectric feedback not only 
accelerates angiogenesis and collagen remodeling but also 
establishes a model for autonomous energy utilization in 
soft therapeutic robots. These MN patches exemplify how 
localized enzymatic reactions can transform endogenous 
biochemical energy into electrical stimuli, realizing wound 
healing or regeneration without external power inputs.

Building upon this concept, Wang et al. reported a wear-
able self‐powered MN patch integrating a flexible triboe-
lectric nanogenerator (F-TENG) for deep‐seated melanoma 
therapy [169]. The mechanical deformation of the host tissue 
or the wearer’s motion is converted into electrical energy, 
which subsequently drives iontophoretic enhancement and 
controlled drug release from pH-responsive nanoparticles 
embedded within water‐soluble MNs. This design dem-
onstrates synchronous coupling between motion‐derived 
energy and therapeutic actuation—each mechanical move-
ment of the body translates into proportional stimulation 
and drug transport. Similarly, Chen et al. introduced a self‐
powered controllable MN system capable of achieving rapid 
antihypertensive drug release through a pressure-triggered 
bioelectric circuit [170]. Together, these approaches high-
light the dual roles of MN arrays as localized actuators and 
energy harvesters: one that bridges chemical energy conver-
sion, microcurrent regulation, and dynamic drug delivery. In 
the context of soft robotics, such hybrid MN platforms offer 
an elegant route toward distributed, wire-free control—ena-
bling autonomous, site‐specific actuation and energy feed-
back for self‐regulated therapeutic or sensing tasks.

3.3 � Self‑Powered Systems

Soft systems impose nontraditional requirements on power 
supplies, demanding energy units that are not only flexible 
but also adaptable to complex and dynamic environments. 
Self-powered mechanisms—including triboelectric, biofuel, 
and thermoelectric systems—offer a promising route to meet 
these needs by generating energy in situ, eliminating reliance 
on bulky external power sources. For instance, sweat-driven 
biofuel cells exploit the reducing agents present in human 
perspiration to produce voltages sufficient to actuate electro-
active polymers, enabling self-induced bending and motion 
output [171]. Triboelectric nanogenerators (TENGs) operate 
through contact-separation-induced charge accumulation, 

providing a dynamic power supply that harvests energy dur-
ing motion [167] (Fig. 5d). Quantitatively, typical TENGs 
generate power densities on the order of 1–100 μW cm−2 
under standard laboratory motion conditions, which, while 
sufficient for low-power sensors or small actuators, remains 
significantly lower than commercial flexible batteries (in 
the mW/cm2 range). Thermoelectric systems leveraging 
solar absorption and radiative cooling can produce continu-
ous voltage outputs during daytime or in high-temperature 
environments, supplying stable energy for wearable or soft 
robotic devices [172].

Despite their potential, these self-powered systems face 
critical practical limitations that must be addressed to enable 
real-world deployment [173]. TENGs, for example, often 
exhibit performance degradation under repeated robotic 
motion due to surface wear, charge leakage, and environ-
mental sensitivity, particularly to humidity and mechani-
cal contamination. Their low output poses a bottleneck for 
high-power actuators or sustained operations, highlighting 
the need for design optimization. Recent advances in mate-
rial and structural engineering offer potential solutions: liq-
uid–metal-infused TENGs (LM-TENGs) and surface micro-
structuring have been demonstrated to enhance mechanical 
robustness, maintain charge density under repeated defor-
mation, and reduce sensitivity to moisture [174]. Similarly, 
sweat-driven biofuel cells face limitations in energy den-
sity and temporal stability, which can be partially mitigated 
through nanostructured electrodes or enzyme immobiliza-
tion strategies that prolong catalytic activity. By linking 
these material and structural innovations directly to system-
level performance, soft robotics can transition from proof-
of-concept demonstrations toward reliable, self-sufficient 
operation in complex, real-world environments [175].

3.4 � Flexible Energy Storage Devices

Flexible energy storage technology provides a critical 
foundation for the long-term independent operation of soft 
robots. An ideal energy storage unit should possess high 
energy density, excellent cycling performance, and the abil-
ity to maintain stable electrochemical performance under 
deformation conditions. Current research focuses on the 
material design and structural optimization of novel devices 
such as microsupercapacitors and flexible zinc-ion batteries. 
Hybrid structures based on MXenes can achieve a reasonable 
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distribution of interfacial electron density while ensuring 
conductivity, thereby increasing energy storage efficiency 
and structural stability [117] (Fig. 5e). The introduction of 
porous networks and three-dimensional electrodes further 
enhances the ion diffusion and electron transport pathways, 
enabling the devices to maintain excellent performance 
under high-frequency charging and discharging as well as 
multiple mechanical bending cycles [118] (Fig. 5f). The con-
tinuous optimization of flexible energy storage components 
provides a stable power supply for integrated power sup-
ply, electronic control, and sensing modules in soft robotics 
systems, which is particularly suitable for operation under 
dynamic loads or in wearable scenarios.

4 � New Developments in the Integration of Soft 
Robotics and Artificial Intelligence

4.1 � Artificial Intelligence‑Enhanced Soft Sensing 
and Interaction

A key advancement in the field of soft robotics lies in the 
significant improvement of its perception and interaction 
capabilities, which is largely attributed to the deep integra-
tion of artificial intelligence (AI) technology. Traditional 
soft sensors face challenges in data collection, interpretation, 
and sharing, which limits their potential in practical appli-
cations. To overcome these limitations, researchers have 
developed various AI-assisted soft sensing systems aimed 
at achieving more precise, multimodal, and real-time envi-
ronmental perception and human‒robot interaction [176] 
(Fig. 6a). For example, in the field of biomedical monitor-
ing, an AI-assisted microfluidic colorimetric wearable sen-
sor system has been proposed for rapid, noninvasive, and 
synchronous detection of key biomarkers in human tears. 
Similarly, in robotics perception, researchers have developed 
an intelligent soft robotics system based on bimodal self-
powered flexible sensors (BSFS) that can perceive, describe, 
and classify objects, achieving up to 97% accuracy through 
convolutional neural networks (CNNs) [144]. Additionally, 
AI plays a crucial role in enhancing the perceptual capabili-
ties of electronic skin (e-skin), enabling a wearable Morse 
code-to-speech translation system with high recognition 
accuracy through deep learning algorithms [177] (Fig. 6b) 
as well as an integrated intelligent tactile system (IITS) inte-
grated into humanoid robots to achieve flexible grasping 

[178] (Fig. 6c). Zero-bias biomimetic fingertip electronic 
skin (E-skin) combines machine learning and feature fusion 
to comprehensively perceive objects, distinguish surface 
roughness and hardness, and accurately identify objects at 
different temperatures [179].

AI is also used to enhance the environmental adaptability 
and complex task execution capabilities of soft robots. For 
example, a soft robot perception system based on ultrasonic 
automatic positioning and multimodal perception intelli-
gence integrates ultrasonic sensors and flexible triboelectric 
sensors to detect object shapes and distances, enabling the 
robotic arm to locate and execute grasping tasks precisely, 
with nearly 100% object recognition accuracy achieved 
through deep learning analysis [182]. In extreme environ-
ments, an ultrastretchable triboelectric touchpad integrates 
liquid metal and high-performance hydrogel-based tribo-
electric sensor arrays combined with transformer-assisted 
gesture recognition technology to achieve high-precision 
real-time gesture recognition for drone flight direction 
control [183]. These studies collectively demonstrate the 
immense potential of artificial intelligence in enhancing soft 
sensing and interaction capabilities, enabling soft robots to 
perceive their own state and surrounding environment more 
precisely while achieving smarter, more adaptive behaviors 
[184, 185].

Beyond direct perception, AI also plays a role at more 
abstract levels of perception and interaction. Machine 
learning-assisted electronic skin can be integrated into soft 
robots to reconstruct their shape during movement (pro-
prioception) and identify various terrains (exteroception), 
suggesting more advanced autonomous robots [186]. AI-
enhanced hardware supports the application of multimodal 
electronic skin to rescue robots, enabling them to possess 
robust environmental perception capabilities, such as pre-
cisely distinguishing objects and identifying human limbs 
through grasping, and even real-time detection of toxic 
gases. In the field of medical diagnosis, wireless multi-
modal wearable systems combined with machine learning 
algorithms can automatically and accurately assess swal-
lowing behavior and diagnose silent aspiration, offering 
a promising noninvasive alternative for swallowing dis-
order healthcare and rehabilitation therapy [187]. Addi-
tionally, passive addressable robot metamorphic surfaces 
(PARMS) achieve real-time, high-precision forward and 
inverse control of matrix-arranged ion actuators through 
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training that combines machine learning and finite ele-
ment simulation, enabling them to dynamically deform 
into any predefined surface on demand. This is significant 
for wearable devices, haptic feedback, and augmented/

virtual reality [188]. These advancements are pushing soft 
robotics to the forefront of revolutionary changes across 
multiple fields, including healthcare, rescue operations, 
and human‒machine interactions.

Fig. 6   a Basic concepts of colorimetric sensing of key biomarkers in human tears via an AI-assisted microfluidic colorimetric wearable sensor 
system [176].  Copyright 2024, Springer Nature. b Working mechanism of the wearable Morse code-to-speech translation system [177] Copy-
right 2023, Science China Press. c Schematic diagram of drone control in extreme environments via ultraflexible triboelectric touchpads [178]. 
Copyright 2023, American Association for the Advancement of Science. d Improving the computational design process of ultrrobust strain sen-
sors for autonomous soft robot self-awareness [180]. Copyright 2024, Springer Nature. e Schematic diagram of a remotely controlled AI-assisted 
bronchoscope robot performing lung examinations in a clinical setting [181]. Copyright 2024, Springer Nature
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4.2 � Application of Artificial Intelligence in Soft Robot 
Design and Control

The application of artificial intelligence in the design and 
control of soft robots has greatly promoted the perfor-
mance optimization and autonomous capabilities of soft 
robots. In terms of design, computational intelligence 
methods are widely used to create soft robots with spe-
cific functions and morphologies. In terms of mobility, 
researchers have designed dexterous electrically driven 
soft robots with reconfigurable chiral lattice legs, achiev-
ing precise motion control [189]. In terms of autonomous 
behavior, unconstrained soft microrobots have demon-
strated the potential to perform advanced tasks in complex 
environments by integrating adaptive logic gates [190]. 
Additionally, through action inheritance mechanisms, 
soft robots can rapidly evolve, enabling them to efficiently 
learn and adapt when performing new tasks [191]. For the 
perception and autonomy of soft robots [180] (Fig. 6d), 
computational design is used to develop ultrarobust strain 
sensors, providing reliable internal perception data for soft 
robots.

At the control level, artificial intelligence enables soft 
robots to handle complex dynamic environments by pro-
viding real-time feedback and adaptive algorithms. An 
example is a multifunctional soft robot shape display that 
combines high-speed drive [192], sensing, and control 
functions, enabling it to respond quickly and change shape 
to perform specific tasks. Furthermore, considering the 
inherent inertial dynamics of soft robots, researchers have 
proposed control methods tailored to their inertial dynam-
ics, ensuring stability and precision during high-speed or 
complex movements [193]. These studies demonstrate how 
artificial intelligence comprehensively enhances the func-
tionality and autonomy of soft robots, from conceptual 
design to practical implementation [194].

4.3 � AI Applications of Soft Robots in Specific Fields

Soft robots are increasingly being applied in specific fields 
because artificial intelligence technology endows them 
with greater adaptability and decision-making capabili-
ties [195–197]. Soft robots have unique advantages in the 
exploration of complex or hazardous environments. An 
amphibious microsoft jumping robot can perform jumping 

movements in different media and achieve on-demand 
manipulation in mid-air, significantly expanding its appli-
cation scope in reconnaissance or exploration tasks [198]. 
In the medical field, the integration of artificial intelligence 
and soft robots has led to revolutionary progress [181] 
(Fig. 6e). AI-assisted bronchoscope robots can assist doc-
tors in performing precise lung examinations and treatments, 
increasing the safety and efficiency of medical procedures. 
Additionally, the integration of soft wearable flexible bio-
electronic devices with ankle‒foot exoskeletons enable the 
estimation of metabolic costs and physical fatigue levels, 
providing personalized solutions for rehabilitation therapy 
and movement assistance.

Soft robots have also been endowed with more advanced 
intelligent behaviors to cope with unstructured environments 
and biological systems. For example, a physically intelligent 
autonomous soft robot maze escaper demonstrates the abil-
ity to autonomously solve complex path problems without 
external control [199]. In drug delivery, soft robots can 
mediate autonomous adaptation to fibrotic capsule forma-
tion, thereby improving drug delivery efficacy and address-
ing the challenge of drug absorption within the body [200]. 
In cardiovascular research, soft robots are used to construct 
patient-specific fluid dynamics models of aortic valve steno-
sis and ventricular remodeling [182], providing new tools for 
personalized diagnosis and treatment. Finally, self-folding 
soft robot chains demonstrate their reconfigurable shapes 
and functions [201], enabling them to adapt to various task 
requirements, which is significant for the development of 
morphologically variable tools and multifunctional systems. 
These cases highlight the critical role of artificial intelligence 
in driving breakthroughs in soft robotics across diverse fields, 
such as medicine, exploration, and autonomous systems.

5 � Intelligent Sensing and Biointeraction

5.1 � Multimodal Perception and Human‒Computer 
Interaction

In the process of soft robotics evolving toward intelli-
gence, enhancing perception capabilities is a critical step 
in achieving environmental interaction, behavioral feed-
back, and autonomous decision-making. Flexible sen-
sors based on triboelectric, piezoelectric, thermoelectric, 
and resistive strain principles can detect various physical 
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signals from the external environment with high sensi-
tivity and possess excellent mechanical compliance and 
multifield response capabilities. Through structural design 
optimization, such as hierarchically structured design at 
the macro- and microscales, buckling folding configura-
tions, and 3D printing manufacturing processes, sensor 
arrays can simultaneously perform real-time monitoring of 
multiple inputs, such as bending, stretching, and pressure 
[202, 203] (Fig. 7a, b). Additionally, triboelectric sensor 
arrays can achieve signal channel compression through 
digital modeling and cross-array design, reducing sys-
tem complexity while enhancing spatial resolution and 
response efficiency [204]. These high-throughput, multi-
modal sensing solutions are widely applied in human‒
machine interface systems, virtual reality devices, and 
wearable identification systems, further expanding the 
application boundaries of soft robots in the service and 
assistive domains.

Despite these advances, soft robotic systems still face 
significant challenges in achieving stable and adaptive 
biointeraction. The primary difficulties lie in maintaining 
long-term biocompatibility and adhesion at the dynamic 
tissue interface, minimizing motion artifacts and hyster-
esis during continuous deformation, and ensuring signal 
fidelity in wet or ion-rich physiological environments. For 
instance, biofluid infiltration and protein adsorption can 
deteriorate triboelectric output stability, while enzymatic 
degradation or fibrotic encapsulation impairs the sensi-
tivity of implantable sensors over time. Furthermore, the 
mismatch between the mechanical modulus of soft sen-
sors and native tissues may lead to stress concentration or 
immune activation during chronic operation.

To address these limitations, structural and material 
innovations are being actively explored. The introduc-
tion of macro–microhierarchical architectures can effec-
tively decouple strain transfer and suppress mechanical 
fatigue, as demonstrated by Han et al. [202] where hier-
archical piezoelectric nanogenerators achieved enhanced 
charge retention and stable output under repeated bend-
ing through multiscale interlocking geometries. Similarly, 
triboelectric gloves integrating pneumatic actuation and 
sensor fusion, reported by Wang et al. [204], exemplify 
the potential of integrating active haptic feedback and 
multimodal perception in a unified soft interface, thus 
enhancing tactile communication and bidirectional inter-
action. From a biomedical perspective, strategies such 

as surface functionalization with zwitterionic or hydro-
gel layers can reduce immune responses and biofouling, 
while ionically conductive hydrogels or protein–polymer 
hybrid networks provide long-term stability and adaptive 
mechanical matching in vivo. Additionally, closed-loop 
multimodal fusion systems that combine self-powered 
sensing, machine learning algorithms, and soft actuation 
enable real-time physiological feedback and intelligent 
motion adjustment. Collectively, these approaches pave 
the way toward biointeractive soft robots capable of con-
tinuous sensing, adaptive response, and long-term opera-
tion within complex physiological environments.

5.2 � Medical Perception and Treatment Systems

The development of soft electronic devices in medical appli-
cations is characterized by the bidirectional integration of 
monitoring and therapeutic functions. By integrating mul-
tiple physiological sensing modules on flexible substrates, 
these systems can acquire real-time information such as tem-
perature, humidity, pH, and inflammatory markers in the 
wound microenvironment, enabling dynamic assessment 
of the wound healing status [205] (Fig. 7c). Additionally, 
integrated electrothermal and optical stimulation modules 
can respond on demand based on the monitoring results, 
establishing a closed-loop control treatment process [206] 
(Fig. 7d). Owing to their minimally invasive and continu-
ous sampling characteristics, microneedle array structures 
are commonly used for detecting biomarkers such as glu-
cose and lactate in biofluids. Their regional addressability 
and differential amplification technologies further enhance 
detection accuracy and signal stability [207] (Fig. 7e). Col-
lectively, these technologies are transforming medical sys-
tems from passive monitoring platforms to active, adaptive, 
and responsive therapeutic systems, particularly suitable for 
chronic disease management and personalized treatment 
needs, providing a demonstrative pathway for the evolution 
of intelligent soft medical devices.

However, the transition of these systems from laboratory 
prototypes to clinical applications requires careful consid-
eration of biosafety and long-term biocompatibility. Despite 
their excellent sensing performance, soft electronics and 
microneedle-based robotic systems inevitably face biologi-
cal risks associated with chronic implantation or prolonged 
skin contact, including enzymatic degradation, fibrotic 
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encapsulation, and immune rejection. For instance, in vivo 
degradation of polymeric hydrogels and protein-based scaf-
folds can lead to pH fluctuations and byproduct accumula-
tion, which alter local tissue homeostasis. Additionally, soft 
electrodes or microneedles inserted into dynamic tissues 
may cause micromotion-induced inflammation and fibrous 
tissue deposition, compromising signal quality and drug 
release efficiency. Recent studies have proposed material-
level solutions to mitigate these risks. Duan et al. devel-
oped a water-modulated biomimetic “Hygel” electronic skin 
exhibiting weak acidity, antibacterial activity, and excellent 
biodegradability, achieving long-term skin compatibility 

through balanced hydration and interfacial buffering [53]. 
Similarly, Beatty et al. introduced a FibroSensing Dynamic 
Soft Reservoir (FSDSR) that senses and adapts to fibrotic 
capsule formation in vivo by modulating actuation fre-
quency, effectively preserving drug delivery efficiency over 
extended periods [200]. These strategies underscore that 
controlling biochemical reactivity and fibrotic dynamics 
at the device–tissue interface is fundamental for ensuring 
biosafety in future soft robotic therapeutics.

From a broader perspective, current challenges in bioin-
teraction involve mechanical mismatch between devices 
and living tissues, limited long-term electrical or chemical 

Fig. 7   a 3D printing additive manufacturing PVDF/BaTiO3 MMH-PENG sensor process diagram [202] Copyright 2024, Elsevier. b Branch 
structure of the bionic DES electrode unit [203] Copyright 2024, Springer Nature. c Schematic diagram of the layered unit of the electronic/opti-
cal wound monitoring/healing system. Unit I contains monitoring components for temperature, humidity, pH, and inflammatory markers [205].  
Copyright 2022, Elsevier. d In the IWD wound treatment and information collection, the smartphone mini-program receives and stores data and 
feeds back the test results as a controllable closed-loop treatment system workflow diagram with electric heat and light stimulation [206]. Copy-
right 2023, Wiley-Blackwell. e Microneedle arrays were prepared using 160 μm diameter acupuncture needles (i). Scale bar, 30 μm. Glucose 
sensors and differential sensors were prepared on a microneedle array (ii). The back of the microneedle array has electrode contacts connected to 
a signal acquisition system (iii) [207]. Copyright 2024, Elsevier. f Schematic diagram of magnetically controlled targeted drug delivery in gastric 
models with different liquid environments using magnetic soft robots [208]. Copyright 2023, Elsevier. g Spiral micromotor structure, magnetic 
control assembly, and cell nanoparticle encapsulation [209] Copyright 2022, Elsevier. h In vivo 3D printer (F3DB) schematic diagram of in situ 
printing on the surface of in vivo tissue [210]. Copyright 2023, Wiley–VCH
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stability, and insufficient understanding of immune–mechan-
ical coupling during chronic operation. The development of 
deployable, adaptive soft robotic systems capable of autono-
mous reconfiguration offers a promising pathway forward. 
Song et al. reported a pressure-driven deployable electro-
corticography system using soft robotic eversion to achieve 
minimally invasive brain surface mapping, reducing cortical 
damage and enhancing recording fidelity [211]. In parallel, 
He et al. demonstrated layer-by-layer self-assembled ther-
moelectric fabrics with high breathability and stability after 
2000 bending cycles and 600 washing cycles, highlighting 
that durable, breathable architectures can sustain physiologi-
cal integration under long-term use [212]. Moving forward, 
improving interfacial adhesion, self-healing capacity, and 
immune invisibility of soft materials, combined with real-
time feedback control and adaptive actuation, will be key 
to expanding their applicability in biomedical scenarios. 
The ultimate goal is to develop soft robotic systems that not 
only sense and respond, but also learn and adapt—achiev-
ing dynamic equilibrium between artificial devices and 
living tissues for personalized, sustainable, and intelligent 
healthcare.

5.3 � Tissue Engineering and In Vivo Manipulation

Tissue engineering and in vivo micromanipulation impose 
extremely high demands on the flexibility, size, controlla-
bility, and biocompatibility of devices. Spiral micromotor 
structures fabricated via microfluidic technology can encap-
sulate cells and functional nanoparticles, and their move-
ment trajectories and assembly states can be regulated via 
magnetic control, demonstrating the potential for construct-
ing complex three-dimensional tissue architectures [208, 
209] (Fig. 7f, g). In vivo 3D printing devices coordinate 
high-degree-of-freedom flexible robotic arms with micro-
nozzles to perform multilayer, multimaterial in situ construc-
tion on tissue surfaces, effectively addressing the structural 
deformation and contamination issues faced by traditional 
in vitro fabrication approaches [210] (Fig. 7h). These highly 
integrated, miniaturized soft systems hold great promise as 
key technological platforms for regenerative medicine, mini-
mally invasive surgery, and precision disease intervention.

Despite these breakthroughs, the clinical translation of 
such microrobotic and biofabrication technologies remains 
subject to stringent regulatory and biosafety requirements. 

Current international standards—such as ISO 10993 for 
biological evaluation of medical devices, FDA 510(k) 
premarket notification for class II devices, and EU MDR 
2017/745—mandate systematic assessments of cytotoxicity, 
local tissue reactivity, degradation kinetics, and steriliza-
tion validation. For soft microrobots and in vivo printing 
platforms, additional regulatory complexity arises from 
their hybrid material composition and functional actuation. 
Devices combining biodegradable polymers, hydrogels, and 
magnetic nanoparticles must demonstrate both mechanical 
reliability and predictable degradation in physiological 
fluids, while ensuring that magnetic or electroactive com-
ponents do not trigger inflammatory cascades or interfere 
with local electrophysiological signals. Establishing uni-
fied performance benchmarks,such as minimal fibrotic 
encapsulation thickness (< 100 μm over 28 days) and con-
trolled degradation half-lives (7–21 days for hydrogel-based 
scaffolds),will be critical for achieving regulatory approval 
and clinical adoption.

At the same time, biointeraction and long-term adapt-
ability remain central challenges for soft robotic systems 
in tissue engineering. Mechanical mismatch between syn-
thetic structures and native extracellular matrices can lead 
to chronic irritation, while biofouling, immune activation, 
and mechanical fatigue degrade actuation performance over 
time. Strategies to overcome these obstacles are increasingly 
focused on material-level biointegration and systemic intel-
ligence. For example, Yue et al. designed a triboelectric 
nanogenerator–based tissue battery that converts mechani-
cal joint energy into electrical stimuli, enabling continuous 
chondrocyte activation and real-time monitoring of cartilage 
repair [213]. Chen et al. further demonstrated an unteth-
ered artificial muscle driven by a sweat-based energy gen-
erator, forming a closed-loop system capable of powering 
self-regulated actuation for muscle rehabilitation [171]. In 
parallel, Zhai et al. proposed a monolithic 3D printing strat-
egy to fabricate pneumatic soft robotic devices with embed-
ded fluidic control circuits, allowing autonomous gripping 
and adaptive feedback without post-assembly [214]. Mean-
while, high-throughput magneto-origami fabrication has 
enabled scalable production of magnetically reconfigurable 
micromachines, pushing the field toward clinically viable 
mass customization [215].

Going forward, advancing the biomedical applicability of 
soft robotic systems will depend on the synergistic integra-
tion of biocompatible material chemistry, intelligent control 
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algorithms, and regulatory compliance design. Combining 
in vivo–stable, self-healing materials with real-time feed-
back from embedded biosensors could enable autonomous 
adaptation to fibrotic encapsulation or biochemical stress. 
Furthermore, early alignment with clinical regulatory frame-
works and ethical guidelines will accelerate safe translation 
from benchtop demonstrations to bedside applications. 
These efforts will collectively transform current soft micro-
robots from transient experimental platforms into clinically 
deployable agents for personalized, minimally invasive, and 
regenerative therapies.

6 � Conclusions and Perspective

Soft robots, constructed from responsive materials and 
bioinspired architectures, continue to redefine the interface 
between artificial systems and living organisms. Through 
the integration of mechanical compliance, environmental 
adaptability, and modular functionality, these systems are 
rapidly evolving to address the needs of next-generation 
biomedical, wearable, and environmental technologies. This 
review summarizes recent advances in soft robotics from 
the perspectives of material innovation, structural program-
mability, functional synergy, and intelligent responsiveness. 
Representative platforms based on microneedle arrays and 
4D-printed hydrogels exemplify how structural versatility 
can be coupled with application specificity, enabling multi-
functional capabilities in transdermal delivery, wound heal-
ing, motion control, and biosensing regulation.

The emergence of multifunctional platforms has been 
largely driven by the rapid development of stimuli-respon-
sive and bioinspired materials. Hydrogels, shape memory 
elastomers, protein composites, and liquid metals have 
expanded the library of deformable substrates capable of 
reversible transformation and adaptive feedback. These 
materials not only enable controlled shape morphing and 
energy conversion but also allow self-healing and feed-
back-driven actuation, mimicking the adaptive features of 
biological tissues. Combined with advanced multimaterial 
fabrication techniques such as 4D printing, microfluidic 
assembly, and direct ink writing, soft robotic systems now 
exhibit unprecedented levels of structure–function integra-
tion, supporting complex deformation, distributed sensing, 
and intelligent energy management.

Despite this progress, several key limitations continue to 
restrict real-world deployment. Long-term durability under 
cyclic deformation remains a central concern, particularly 
for biointegrated systems subjected to continuous mechani-
cal stress, hydration fluctuations, and biological fouling. 
The relatively low output force and limited control preci-
sion of current soft actuators also hinder their capability 
for high-load operations or fine manipulation tasks. While 
compliance ensures safety and adaptability, it often compro-
mises motion accuracy, load-bearing capacity, and response 
speed. Addressing these challenges requires the develop-
ment of hybrid material systems that combine soft and rigid 
elements, as well as optimization of actuation efficiency 
through magnetic, pneumatic, or electrohydraulic enhance-
ment strategies. In parallel, the realization of precise, closed-
loop control must rely on high-resolution sensing networks, 
rapid feedback algorithms, and data-driven models capable 
of predicting nonlinear deformation and compensating in 
real time.

Power autonomy represents another critical barrier to pro-
gress. Many existing soft robotic systems depend on exter-
nal power sources or tethered configurations, which limit 
their mobility and long-term usability. The integration of 
lightweight, stretchable energy modules such as triboelectric 
nanogenerators, microsupercapacitors, and biofuel cells pro-
vides a promising route toward untethered and self-sustained 
operation. In future designs, closed-loop power manage-
ment strategies that couple energy harvesting, storage, and 
redistribution with system-level control will be essential for 
achieving stable, continuous performance under dynamic 
environmental conditions.

A major technological frontier lies in the convergence of 
materials science, mechanical design, and artificial intel-
ligence. The next generation of soft robots is expected to 
move beyond reactive functionality toward true autonomy 
through the incorporation of embedded logic, soft mem-
ory, and neuromorphic computing architectures. Machine 
learning algorithms and bioinspired control frameworks 
can enable mechanical intelligence, allowing soft systems 
to perceive stimuli, learn from deformation histories, and 
adaptively reprogram their behaviors. Such capabilities 
require the co-design of soft hardware and data-driven 
control models, ensuring compatibility between deform-
able substrates and real-time computation. Meanwhile, 
modular and reconfigurable system architectures will 
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facilitate scalable manufacturing, targeted repair, and 
task-specific customization, establishing a foundation for 
complex, multifunctional operation.

Looking forward, the advancement of soft robotics 
depends on establishing a coherent technological roadmap 
that connects material robustness, structural adaptability, 
and intelligent control within a unified design philosophy. 
Future research should prioritize the creation of durable, 
fatigue-resistant, and biocompatible materials capable 
of long-term operation in biomedical and environmental 
contexts; the realization of hybrid architectures that bal-
ance compliance with force output and precision; and the 
integration of distributed energy networks for autonomous 
operation. At the same time, the development of intelligent 
algorithms, embedded sensors, and learning-based control-
lers will transform soft robots from passive responders into 
self-evolving systems capable of prediction and decision-
making. These efforts require an interdisciplinary framework 
that links materials chemistry, mechanical engineering, and 
computational intelligence in a continuous feedback loop. 
By fostering such cross-domain collaboration, soft robot-
ics can progress from isolated demonstrations to functional, 
adaptive platforms with tangible impact in healthcare, envi-
ronmental monitoring, and human–machine interaction. 
Ultimately, the pursuit of seamless synergy among matter, 
mechanics, and intelligence will define the future landscape 
of this field and guide the realization of truly autonomous, 
life-mimicking robotic systems.
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