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HIGHLIGHTS

e This review outlines the emergence of oxide semiconductors as promising channel materials for high-density, low-power next-

generation memory applications.

e Adsorption and reaction mechanisms of atomic layer deposition have enabled the design of high-performance oxide semiconductors

for next-generation memory applications.

e This review discusses key challenges toward successfully integrating oxide semiconductors into next-generation memory devices.

ABSTRACT Oxide semiconductors
(OSs), introduced by the Hosono group
in the early 2000s, have evolved from
display backplane materials to promis-
ing candidates for advanced memory and
logic devices. The exceptionally low leak-
age current of OSs and compatibility with
three-dimensional (3D) architectures have

recently sparked renewed interest in their

Contact High T

use in semiconductor applications. This Oo @
review begins by exploring the unique O

Hydrogen
material properties of OSs, which fun-

damentally originate from their distinct
electronic band structure. Subsequently,
we focus on atomic layer deposition (ALD), a core technique for growing excellent OS films, covering both basic and advanced processes
compatible with 3D scaling. The basic surface reaction mechanisms—adsorption and reaction—and their roles in film growth are intro-
duced. Furthermore, material design strategies, such as cation selection, crystallinity control, anion doping, and heterostructure engineering,
are discussed. We also highlight challenges in memory applications, including contact resistance, hydrogen instability, and lack of p-type

materials, and discuss the feasibility of ALD-grown OSs as potential solutions. Lastly, we provide an outlook on the role of ALD-grown
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OSs in memory technologies. This review bridges material fundamentals and device-level requirements, offering a comprehensive per-

spective on the potential of ALD-driven OSs for next-generation semiconductor memory devices.

KEYWORDS Oxide semiconductor (OS); Atomic layer deposition (ALD); Memory applications

1 Introduction

1.1 Beyond Displays: OS Channels for Semiconductor
Applications

Advances in modern memory and logic technologies have
been driven by continuous scaling down of silicon-based
devices. However, this progress is now facing physical limi-
tations of device miniaturization and material limitations
related to power consumption [1-4]. Consequently, the need
for next-generation channel materials has become increas-
ingly critical. Oxide semiconductors (OSs), well-known in
the display industry for their excellent electrical properties
and process compatibility, are now attracting growing inter-
est in memory and logic applications [5-7]. Early research
focused on their application in back-end-of-line (BEOL)
logic technologies, given their capability for deposition
on three-dimensional (3D) structures and low-temperature
(below 400 °C) processing [8—10]. Recently, OSs have
emerged as promising candidates for next-generation mem-
ory technologies, driven by demands for reduced cell size,
increased transistor density, and vertical channel architec-
tures to enhance integration density [11-13]. The low power
consumption of these frameworks renders them especially
attractive in dynamic random-access memory (DRAM)
applications, where high leakage currents necessitate con-
tinuous dynamic refresh operations, leading to significant
power consumption [12, 14]. In response to these industrial
demands, extensive research is underway for the practical
implementation of OS-based devices.

1.2 OS Channel Roadmap: From Invention to Mass
Production in Displays

The idea of OSs as next-generation channel materials was
first proposed by the Hosono group in 2003 through the
demonstration of crystalline InGaZnO (IGZO; light red
region in Fig. 1). Specifically, single-crystalline IGZO was
synthesized via pulsed laser deposition (PLD) followed by
annealing at 1400 °C. When used as the active layer in a

© The authors

thin-film transistor (TFT), the material exhibited a high
field-effect mobility of approximately 80 cm? V~!s~! [15].
In 2004, the same group demonstrated the potential of OSs
for next-generation displays by fabricating amorphous IGZO
(a-IGZO) TFTs on polyethylene terephthalate substrates at
room temperature (RT) using PLD and validating their trans-
fer characteristics [16].

Since Hosono’s introduction of a-IGZO, OSs have
attracted growing interest in next-generation displays due
to their low off-state current, high mobility, and low-tem-
perature process compatibility (Fig. 1, light blue region).
In 2006, the Electronics and Telecommunications Research
Institute, Korea, demonstrated the first active matrix organic
light emitting diode (AMOLED) panel using ALD-grown
ZnO TFTs [17]. Subsequent milestones include Samsung
SDI’s 12.1-in AMOLED with sputtered a-IGZO (2008)
[18], and Samsung Display’s flexible AMOLED (2010)
showing robust performance under 10,000 bending cycles
[19]. In 2012, LG Display scaled IGZO to Gen. 8 glass for
55-in OLED TVs [20], while SEL introduced a foldable
AMOLED using c-axis aligned crystalline indium-gallium-
zinc oxide (CAAC-IGZO) in 2014 [21]. Sharp’s 1000 ppi
IGZO liquid crystal display (LCD) (2016) enabled ultrahigh-
resolution displays [22]. Commercial adoption followed,
with Apple integrating IGZO into the Apple Watch (2019)
and iPhone 13 Pro (2021) [23, 24]. Most recently, IGZO
has been adopted in Meta Quest 3 and Samsung Galaxy Z
Flip 6 (2024), highlighting its scalability and commercial
viability [25].

1.3 OS Channel Roadmap for Semiconductor
Industrial Applications

As shown in the dark blue region in Fig. 1, research into
the application of OSs in the memory and logic industries
began expanding in 2009 with Samsung Electronics Inc.’s
report on an 8 X 8 one-diode-one-resistor array based on
oxide transistors. In this work, IGZO was used to prepare
the selector transistor, and indium-zinc oxide (IZO) was
applied as the diode. ALD-processed NiO demonstrated

https://doi.org/10.1007/s40820-025-02013-7
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Fig. 1 Chronological development and technological expansion of oxide semiconductor thin-film transistors (OS-TFTs) from display applica-
tions to high-performance memory and logic integration. Starting with the first proposal of IGZO-based TFTs, OS-TFTs were rapidly adopted
in display technologies. Subsequently, the application scope has expanded to include advanced logic and memory devices. The images of Apple
Watch Series 4 and Apple iPhone 13 Pro were provided by Apple, Inc. The images of Samsung Galaxy Z Flip 6 were provided by Samsung
Electronics. Reproduced with permission [15-35]. Copyright 2003, Science. Copyright 2004, Nature. Copyright 2006, 2008, 2009, 2010, 2012,

2014, 2016, 2019, 2024, John Wiley & Sons. Copyright 2012, 2014, 2015, 2019, 2020, 2021, 2023, 2024, IEEE. Copyright 2023, Kim et al.

superior properties compared with sputtered NiO for the
resistive element [26]. In 2012, Renesas Corp. demon-
strated, for the first time, SnO TFTs exhibiting an I /I
ratio over 10* and a drain voltage capability exceeding 40 V,
highlighting the feasibility of SnO and IGZO-based BEOL-
complementary metal-oxide semiconductor (CMOS) I/O
integration within conventional silicon-based large-scale
integration processes [27]. In 2014, SEL Institute realized
a novel 50 nm-scale field-effect transistor (FET) employing
CAAC-IGZO, reporting excellent device characteristics with
a drain-induced barrier lowering (DIBL) of 67 mV V~'and
a subthreshold swing (SS) of 92 mV dec™!. Circuit simu-
lations further demonstrated that memory devices based
on this FET architecture could achieve write speeds below
5 ns and retention times exceeding 1000 s [28]. In 2015,
SEL reported a scalable, low-cost trench-gate-self-aligned

SHANGHAI JIAO TONG UNIVERSITY PRESS

CAAC-IGZO FET fabricated with only three masks at the
20 nm node, achieving a DIBL of 0.12 V V~!and an SS
of 97 mV dec™' [29]. In 2019, SEL introduced a CAAC-
IGZO FET with a gate length of 72 nm integrated into a 3D
monolithic stack, fabricated via a trench-gate self-aligned
flow at <400 °C with a top-/back-gate effective oxide thick-
ness (EOT) of ~6/~35 nm and a back-gate for V,;, control
(= 0Viy/0Vy, = 0.13 V/V), with the thermal budget tuned
to preserve lower-/upper-device performance. Simulation
results indicated the potential for non-volatile OS random-
access memory operation featuring write speeds under 10 ns
and endurance beyond 10'? cycles [30]. In 2020, IMEC
Institute reported a world-first capacitor-less two-transistor
(2TOC) architecture based on IGZO FETs, built in a 300-mm
back-end-of-line (BEOL)-compatible flow using a bottom
oxygen-channel stack (SiO, under IGZO with an Al,O; top

@ Springer
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gate), O,-anneal-driven defect passivation, and contact/lay-
out engineering (ALD-TiN to suppress O-scavenging and
minimized extension length) to scale the gate-dielectric
EOT and boost C_,, achieving retention times exceeding
400 s without the need for a capacitor [31]. In 2021, IME-
CAS experimentally demonstrated the world’s first verti-
cal channel-all-around (CAA) IGZO FET structure within
a 2TOC DRAM cell, built in a BEOL-compatible PEALD
flow at~250 °C using O, plasma to deposit IGZO/Al,O5/
IZO in situ, with Mo/Si0,/Mo vertical MIM S/D defining
the critical dimension (CD); V,;, and SS were optimized by
adjusting the InO,:GaO,:Zn0, cycle ratio and by lowering
the plasma power (~38 W), with retention times exceeding
300 s [32]. In 2023, Hynix Corp. confirmed that crystal-
line IGZO maintained structural stability without agglom-
eration during a hydrogen-containing high-temperature
process at 550 °C—conditions relevant to DRAM fabrica-
tion—whereas amorphous IGZO underwent degradation
[33]. Most recently, in 2024, Samsung Electronics Inc. pro-
posed a single-gate IGZO-based vertical channel transistor
(VCT) structure, DRAM-oriented to suppress passing-gate
interference below 10 nm, relocate BL/storage contacts for
a 4F? cell, favor ALD-IGZO over physical vapor deposition
(PVD) for conformal channels with steeper SS and lower
I & at 85 °C, and bias composition toward Ga-rich/low-In
to stabilize Vy;,, overcoming limits of conventional Si-based
DRAM and improving scalability [34]. Furthermore, the
company demonstrated an oxygen-deficient IGZO-based
ferroelectric FET (FeFET), which exhibited a large memory
window of 17.8 V and a fast pulse response of approximately
1 ps [35]. Overall, the widespread adoption of OSs in display
technologies has not only demonstrated their technological
significance but also accelerated their exploration for use in
next-generation memory applications.

1.4 Growing Attention for OS Channel
in Semiconductor Applications

The rising volume of research publications highlights the
growing interest in OSs for memory applications. Figure 2a
illustrates the chronological increase in the number of
publications related to OS devices. The marked accelera-
tion in memory-focused research since 2020 highlights the
increasing relevance of OSs in the field. Figure 2b sum-
marizes the number of papers on OSs presented annually at

© The authors

major international conferences, including the International
Memory Workshop (IMW), International Electron Devices
Meeting IEDM), and Symposia on VLSI Technology and
Circuits (VLSI). A clear upward trend can be observed from
2022 to 2024, with the total number of papers rising from 24
in 2022 to 47 in 2024, reflecting the expanding attention gar-
nered by this field within the memory and logic industries.
Figure 2c categorizes the annual publication count from
2022 to 2024 by application type—BEOL, one-transistor
one-capacitor (1T1C), 2TOC, and ferroelectric field-effect
transistor (FeFET)—within the memory and logic sectors.
While BEOL-related publications increased from 15 in 2022
to 23 in 2023, a decline to 9 was observed in 2024. In con-
trast, the number of publications related to 1T1C, 2TOC, and
FeFET increased to 5, 7, and 13, respectively, in 2024. In
other words, although early research on OSs in logic circuits
primarily focused on BEOL integration, a recent shift toward
their use as core cell transistors in memory applications has
been observed. The device benchmarks for each application
can be found in Tables 1 and 2 [36-86].

In the evolution of OS-channel-based memory technolo-
gies, three cell primitives—1T1C, 2TOC, and FeFET—are
drawing significant attention. 1T1C stores charge on a dis-
crete capacitor written/sensed through a gated access path.
The defined cell capacitor yields a predictable bit-line signal
(AV=Q/Cg;) and controllable retention, while physical sepa-
ration of the storage node from the channel mitigates dis-
turb and variability, enabling a stable, reproducible memory
framework based on destructive read followed by immediate
restore [87, 88]. 2TOC is a capacitor-less dynamic cell that
separates write/store and read-sense with two transistors,
where the parasitic capacitance of read transistor serves
as the storage node; removing the capacitor eases BEOL
integration and shrinks pitch, with long retention, sensing
margin, and variability as key challenges [31, 89]. FeFET
embeds a ferroelectric material in the OS gate stack to real-
ize non-volatile, polarization-driven V,, shifts, enabling fast,
low-energy operation and analog programmability for in-
memory computing [90, 91]. Across these, OS channels are
receiving growing attention in next-generation semiconduc-
tor development, with sustained academic—industrial efforts.

Recent studies on OS channels for memory and logic
applications can be categorized into four types—BEOL,
ITIC, 2TOC, and FeFET—as shown in Fig. 2d. In the
context of logic-oriented BEOL integration, from a high-
density scaling perspective, in 2023, TSMC Ltd. reported

https://doi.org/10.1007/s40820-025-02013-7
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Table 1 Benchmark of OS FETs for BEOL applications (VLSI/IEDM/IMW, 2022-2024)

OS channel Channel Process method Cell architecture Thermal Vi, (V) pggr (cm? V7! S.S (mV dec™") PBS AV (V) Refs
thickness budget s7h
(nm) (O]

In,04 3.1 ALD GAA 250 —-2.6 76-86 100 -0.7 [36]
1.9-2.5 ALD Planar 300 0.1 55 150-185 - [37]
1.5-1.8 ALD Planar 235 0 - 163 - [38]
1.5,2.2 ALD Planar 450 -1.1 107 100-150 - [39]
2.5 ALD Planar 225 -2.5 - 100 -0.07 [40]
1.3-2.0 ALD Planar 225 0 >100 - - [41]
1.6 ALD Planar 400 >0 72 70 0.03 [42]
1.2-2.0 ALD Buried-gate 290 - 62 100 - [43]
2.5 ALD Planar 350 0 175 75 - [44]

In,04 3.5 ALD Planar 250 0 45 65 0.02 [45]
2 ALD Planar 300 0.1 60 69 0.03 [46]

InGaO 3 ALD Planar 225 0.4 29 85 0.03 [47]
7 ALD Nanosheet 600 0 30 100 0.1 [48]
- ALD Planar 250 0 - 75 0.08 [49]
3 ALD Planar 300 1.2 14 80 - [50]
- ALD Planar 450 0 20-100 68-75 - [51]
2.9 ALD Planar 400 0.5 26 95 —-0.07 [52]

InSnO - ALD Planar 400 - - - - [53]
8 ALD GAA 400 0 22 68-75 —-0.09 [54]

InGaZnO  3.0-4.0 ALD Planar 250 0 30 75 0.12 [55]
2 ALD Planar 200 - - - 0.5 [56]
10 ALD Planar 250 0 13 126 - [57, 58]
1.5 ALD Planar 250 0 - 68 0.05 [59]
15 ALD VCT 300 0 - <100 - [60]
6 ALD V-GAA 400 0.1 - 75-80 —0.02 [61]
5.6 ALD Planar 250 0 - 60 -0.1 [62]

the implementation of a 1.8-nm ultrathin indium-tin-zinc-
oxide film—deposited via ALD—as the channel material
in a FET with a 40-nm channel length. This device demon-
strated a low DIBL of 22 mV V™! along with a respectable
field-effect mobility of 48 cm? V7! s7! [92]. From a BEOL
operational validation and guidance perspective, in 2024,
the Suman Datta group investigated the bias-temperature
instability (BTI) characteristics of high-voltage W-doped
In,0; (IWO)-based power FETs designed for heterogene-
ous 3D (H3D) systems. Using machine learning models, the
researchers predicted circuit reliability and proposed thermal
optimization strategies, thereby establishing a technological
foundation for energy-efficient circuit design in H3D system
architectures [53]. Collectively, these findings underscore
that BEOL deployment of oxide semiconductors hinges on
aligning ALD-enabled device characteristics with thermally

© The authors

constrained, reliability-aware design practices in stacked
architectures.

In the memory industry, OS channels have been actively
investigated in the domains of 1TIC, 2TOC, and FeFET,
with several recent studies reporting significant advance-
ments. In the 1T1C category, considerable attention has been
directed toward the use of the OS channel in VCTs. From
an array-level demonstration perspective, in 2024, Kioxia
demonstrated the world’s first high-density 4F> DRAM
(OCTRAM) featuring a 275 Mbit array, integrating a gate-
all-around (GAA) IGZO VCT above a high-aspect-ratio
capacitor structure, using a capacitor-first stack to decou-
ple capacitor/VCT interactions and a~26 nm vertical hole
with ALD-IGZO. Device performance was optimized by
selecting contact materials to avoid interfacial oxide, thin-
ning the gate oxide and spacer to boost the fringing field,

https://doi.org/10.1007/s40820-025-02013-7
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and applying O, anneal with channel-composition tuning to
stabilize V};, through BEOL [12]. From a framework/road-
map and process-guidance perspective, in the same year,
Samsung Electronics proposed two oxide-based device
architectures—an IGZO VCT and a vertically stacked cell
array transistor (VS-CAT)—to address the scaling limits of
sub-10-nm DRAM technology. Their comparative analysis
of PVD and ALD processes for IGZO VCTs highlighted the
significance of process optimization, while the use of IGZO
in the VS-CAT architecture enabled epitaxy-free stacking
without a seed layer, offering advantages such as z-pitch
reduction and process simplification [34]. Collectively,
Kioxia’s array-level validation and Samsung’s framework-
level guidance jointly establish both feasibility and a cred-
ible technology path for OS channel VCTs as a leading 1T1C
DRAM option.

For the 2TOC architecture, research has focused on scal-
ing down devices while improving electrical performance
and reliability. From a planar IGZO-2TOC, architecture/
integration-validation perspective, in 2021, IMEC Institute
demonstrated the 2TOC DRAM operating at a 14 nm channel
length using ALD-grown IGZO. Through the adoption of a
gate-last integration scheme with a buried oxygen tunnel and
careful optimization of the gate dielectric and IGZO chan-
nel thickness, the device achieved retention times exceeding
10% s and endurance beyond 10" cycles [89]. From a vertical
CAA IGZO-FET, device-scaling/thermal-reliability perspec-
tive, in 2022, Huawei Technologies Co. fabricated the first
vertical CAA IGZO FET with a sub-50-nm critical dimen-
sion using ALD. PEALD was employed to form conformal
IGZO/HfO,/IZ0 (~3/8/8 nm) and defining the ~55 nm chan-
nel length with a SiO, spacer to strengthen electrostatics;
the high-k HfO, boosted C,,, while the stack preserved per-
formance after 300 °C/30 min N, anneal and up to 120 °C
positive bias temperature stress (PBTS). This device dem-
onstrated high-speed operation (I,,=32.8 uA um™~'), low SS
(92 mV dec™), thermal reliability, and compatibility with
2TOC 4F? cell architectures—positioning it as a key enabling
technology for next-generation ultra-dense, low-latency 3D
DRAM [65]. Collectively, these works establish a coherent
advancement path for 2TOC, in which planar demonstra-
tions provide array-level validation and integration guid-
ance, and the vertical CAA device platform confirms scal-
able electrostatics and thermal reliability—jointly de-risking
BEOL-compatible processing and paving the way toward
ultra-dense 4F> DRAM.

© The authors

In the FeFET domain, recent efforts have emphasized
reducing operating voltage, accelerating switching speed,
and enhancing endurance. From a stack- and channel-
engineering perspective aimed at maximizing the memory
window and expediting the roadmap toward vertically inte-
grated, high-density NVM, in 2024, Samsung Electronics
Inc. achieved a record-high memory window of 17.8 V in an
IGZO-based FeFET by strategically introducing an oxygen-
deficient layer within the channel and engineering the gate
interlayer. The device exhibited fast switching (1 ps), low-
voltage operation, and the potential for multi-level signal
storage, making it a promising candidate for future high-
density non-volatile memory (NVM) [35]. From a BEOL-
compatibility and embedded-systems viability perspective—
prioritizing ultra-low-voltage operation and exceptional
endurance to enable refresh-free 1 T-1FeFET, in 2023, the
Suman Datta group developed an amorphous In,05-based
1 T-1FeFET device that operated below 0.9 V, with a
switching time of 20 ns, endurance over 10'2 cycles. The
potential for refresh-free embedded memory offers a new
standard for NVMs in next-generation embedded DRAM
and artificial intelligence (AI) accelerators [81]. Collec-
tively, they strengthen the technological foundation linking
materials/process innovation to system-level deployability
across 3D NVM and energy-efficient embedded memory.

Particularly in Al system development, next-generation
NVMs—FeFET, resistive random-access memory (RRAM),
and phase change memory (PCM)—are pivotal as enablers
of non-volatile on-chip weight storage, substantially reduc-
ing data-movement energy. Their multi-level conductance
and fast, low-voltage switching enable compute-in/near-
memory architectures for analog-like MACs and in situ
learning.

In addition to FeFET, OS-channel FETs have been con-
sidered for use as selectors in resistive random-access mem-
ory (RRAM) or phase change memory (PCM), primarily
because they combine low leakage with usable drive at
logic-level biases and compatibility with BEOL fabrication.
Recent BEOL stacks pair an ITO-engineered IGZO selector
(I, ~ 196.5 uyA um~', I s ~ 1 pA um~! at V, =1 V) with
a~3.6-nm MoS, switching layer to realize <1 V, <100 pA
ITIR operation and vertically stacked 2TOC1R hybrids
[93]. Furthermore, sub-10-nm-L_, ZnO selectors fabri-
cated at <300 °C deliver record I, ~ 561 pA pm™" with
sub-pA/um leakage and have been monolithically integrated
with Al,O5-based RRAM into functional 1T1R arrays,
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underscoring OS-selector suitability for dense, energy-effi-
cient crossbars [94].

Across BEOL, 1T1C, 2T0OC, and FeFET platforms, high-
aspect-ratio vertical channels have become a central focus of
investigation. Work on structural design emphasizes precise
control of channel geometry, carefully engineered spacer
schemes, and conformal, void-free gate fill [95-100]. Efforts
in channel-material engineering target composition tailor-
ing, defect suppression, and improved interface passivation
[97, 101-105]. Studies on source/drain contacts examine the
role of contact interlayers and address resistance asymme-
try [106-108]. Collectively, these advances accelerated the
maturation of vertical-channel devices for next-generation
semiconductor industry.

In summary, OSs continue to attract interest for BEOL
integration in logic circuits owing to their low-temperature
processability, while their role as core cell transistors in
memory devices—particularly in 1T1C, 2TOC, and FeFET
architectures—has emerged as a growing area of advanced
research.

2 Material Fundamentals of OS
for Semiconductor Applications

Current semiconductor manufacturing faces interlinked
bottlenecks—BEOL thermal budgets, overlay errors, inter-
layer-via (ILV) pitch limits and interconnect RC overheads,
selector/access-device off-state leakage, and scaled contact
resistivity—that constrain integration density, and energy
efficiency [109-116]. The low-temperature processability of
OS channels supports M3D integration, lowering cumulative
thermal budget and reducing overlay burden by in situ pro-
cess. Monolithic proximity shortens interconnects and cur-
tails parasitic capacitance, easing ILV pitch pressure and RC
delay. In parallel, characteristically low leakage suppresses
off-state conduction in selector/access devices, while native
n-type behavior promotes electron accumulation at metal
contacts without heavy doping or silicide control, reducing
specific contact resistivity, in contrast to Si. Taken together,
these intrinsic material characteristics indicate that OS chan-
nels can directly address several of these pain points.
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2.1 Intrinsic Characteristics of OSs for Semiconductor
Applications

The increasing interest in OSs for next-generation memory
stems from their distinct electronic band structure, which
enables low leakage current, 3D compatibility, and excel-
lent electrical performance, as shown in Fig. 3. As shown in
Fig. 3a, OSs maintain high electron mobility in the amor-
phous phase due to the isotropic and delocalized nature of
metal ns orbitals at the conduction band minimum (CBM),
enabling efficient charge percolation unlike the directional
sp3 bonding in silicon. The CBM is dominated by metal ns
orbitals with large radial extent, yielding a small transport
effective mass (m* = 0.2-0.35 m,) and suppressing band-
edge localization despite topological disorder. As shown in
Fig. 3b, the ionic bonding in OSs induces a wide bandgap
between the O 2p valence band and metal ns CBM, ena-
bling high transparency and low off-state leakage. Despite
the large bandgap, oxygen vacancies act as key native defects
that donate free electrons, thereby modulating the Fermi
level and enabling n-type conductivity [8, 117-119]. These
V-related donor states are typically shallow (~0.1-0.3 eV
below the CBM), so even modest thermal or electrostatic
modulation can populate the conduction band. As shown in
Fig. 3¢, OSs exhibit carrier-dependent transport governed
by percolation conduction. On this basis, OSs often show
a temperature- and density-driven transition from variable-
range hopping near the percolation threshold to band-like
transport at higher carrier concentrations. In amorphous
structures, the disorder creates local potential fluctuations,
where free carriers—primarily from oxygen vacancies—
facilitate charge transport. These vacancies introduce shal-
low donor levels that raise the Fermi level toward the CBM,
increasing accessible conduction pathways. As the Fermi
level nears the CBM, carrier delocalization enhances mobil-
ity, especially at higher carrier densities or temperatures,
emphasizing the key role of defect chemistry in OS electrical
performance [8, 16, 120, 121].

2.2 Key Properties of Representative Channel
Materials: A-Si:H, LTPS, and OS

Figure 3d compares key properties of representative chan-

nel materials, including a-Si:H, LTPS, and OS. a-Si:H ena-
bles low-temperature processing (150-350 °C) and good
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uniformity but suffers from low mobility (<1 cm? V=!s71)
and poor stability. LTPS offers high mobility (~ 100
cm? V™! s71), suitable for high-current applications, but its
high crystallization temperature (400-550 °C) limits com-
patibility, and grain boundaries reduce uniformity across
large areas. As shown in Fig. 3e, the high off-current of Si-
based semiconductors limits their suitability for low-power
memory. In contrast, OSs combine moderate-to-high mobil-
ity (10100 cm? V~!' s71), ultralow leakage (~107'% A um™1),
and low-temperature processability (RT-400 °C), making
them ideal for display and memory applications [7, 16, 122].
Their steep on—off transitions and low off-currents enhance
data retention and reduce refresh power, supporting their use
as memory cell transistors.

2.3 Benchmarking Report of OS Channel versus Si
FETs

Recently, the Kobayashi group made a compelling case for
the industrial viability of OS FETSs in memory applications
by benchmarking them against conventional Si bulk n-chan-
nel FETs. Figure 3f illustrates the strategic role of nanosheet
OS FETs in enabling monolithic 3D integration, particularly
for high-density and energy-efficient memory applications.
The figure conceptually depicts the vertical stacking of logic
and memory units, where oxide-based access transistors
form the foundation of the memory layer directly integrated
atop a logic wafer using BEOL-compatible processes. The
unique advantages of OSs—high electron mobility, ultralow
leakage current, and low-temperature processability—
address the stringent requirements of 3D integration that
traditional Si-based devices often fail to meet. In particular,
recent studies on ALD-grown InGaO FETs have indicated
that nanosheet devices with sub-100 nm gate lengths exhibit
not only reliable operation at scaled dimensions but also
unsaturated carrier velocity even at high fields, unlike con-
ventional Si bulk FETSs that exhibit early velocity saturation.
This indicates strong potential for high-speed switching in
densely packed vertical arrays. Moreover, statistical analy-
ses of over 1000 fabricated nanosheet InGaO FETs reveal
tight threshold voltage (V,;,) distributions (~20 mV), mini-
mal DIBL (~18.7 mV V'), and reduced variability in I,
(~4.8%), all of which are comparable or superior to those
of foundry-grade Si bulk transistors. These findings under-
score the feasibility of OSs in meeting the variability and
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reliability requirements for advanced memory-periphery or
selector transistors in 1T1C/1TIR arrays [123].

3 ALD for OSs: Trends, Fundamentally
Engineering, and Advanced Developments

3.1 Rising Focus on ALD for OSs in Semiconductor
Applications

ALD is essential for the integration of OS channels in
memory devices. In conventional display applications,
PVD has been sufficient to ensure lateral uniformity over
large areas in OS TFTs and has been successfully adopted
in mass production. However, to apply OS channels to the
highly complex 3D architectures found in memory devices,
ALD processes with excellent step coverage are required. As
shown in Fig. 4a, the number of publications on ALD-based
OS FETs has increased significantly since 2014, reaching
approximately 60 papers per year in recent years. This
upward trend aligns with the growing interest in applications
targeting memory devices, which accounted for more than
25% of all ALD-based OS FET publications in 2024. Fig-
ure 4b summarizes the number of OS-related presentations
categorized by deposition method at major international
conferences (IMW, VLSI, and IEDM) over the past three
years. The number of PVD-based studies was 10 in 2022,
16 in 2023, and slightly decreased to 13 in 2024. In contrast,
ALD-based approaches exhibited rapid growth, increasing
from 11 presentations in 2022 to 27 in 2024. Notably, in
2024, ALD-based presentations outnumbered those based
on PVD by approximately twice as many presentations.
Furthermore, as shown in Fig. 4c, ALD-based OS channel
research outpaces PVD across all memory device categories,
including peripheral circuits, 1T1C, 2TOC, and FeFET archi-
tectures. Considering these trends, research on ALD-based
OS channels for memory applications is expected to show
continued growth and interest in the coming years.

As shown in the center of Fig. 4d, ALD is a thin-film
growth technique based on the sequential injection of self-
limiting gaseous precursors and reactants. The increasing
adoption of ALD in OS research for memory applications
is attributable to four key characteristics: First, ALD offers
excellent uniformity in complex 3D structures. In contrast
to PVD, which is limited by the directional nature of vapor
transport, ALD achieves conformal coating in complex 3D
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structures through gas-phase diffusion and self-limiting reac-
tions [34, 124, 125]. Recent emerging 3D DRAM architec-
tures demand conformal deposition techniques in structures
with aspect ratios exceeding 20:1. Ryu et al. reported ALD-
grown InGaO films (In:Ga=4:1 at%) exhibiting high mobil-
ity (~128.2 cm? V! s7!) and thermal stability (~700 °C)
[126]. To translate this promising channel material into 3D
architectures, it is essential to employ a growth technique
capable of achieving uniform control over key parameters—
such as film thickness, composition, and crystallinity—that
critically affect electrical performance. Using ALD, they
demonstrated 95% thickness uniformity and less than 1%
cation composition variation even in structures with aspect
ratios as high as 40:1, while maintaining a uniform crystal
structure. These uniform properties of thickness, composi-
tion, and crystal structure afford greater flexibility in device
architecture design, such as in vertical channel and GAA OS
FETs [34, 54, 60, 61].

Second, ALD provides angstrom-level thickness con-
trol. The self-limiting nature of the process enables near-
monolayer growth per cycle, allowing precise thickness
control at the atomic scale [8, 127]. As memory cell sizes
continue to scale both laterally and vertically, particularly
in vertical channel and GAA structures, thinner channels
are required to enhance packing density. Si et al. demon-
strated that ALD enables the uniform deposition of In,04
channels down to an ultrathin thickness of 0.7 nm [128].
While bulk In,O5, with its charge neutrality level located
approximately 0.4 eV above the conduction band minimum
(Ee), is typically considered a conducting oxide, quantum
confinement in channels thinner than 1.5 nm can shift the
trap neutral level below E, thereby suppressing the car-
rier density into the semiconducting regime. As the channel
thickness directly influences the threshold voltage, In,0O,
can thus be engineered to exhibit clear switching behavior.
Such precise thickness control is essential to ensure uniform
device characteristics in densely integrated memory arrays.

Third, ALD enables the design of cation distribution in
multicomponent oxides. The electrical properties of OS
materials depend strongly on cation distribution, which
can be controlled via sub-cycle modulation in ALD. To
meet increasing performance demands in memory appli-
cations, OS FETs are expected to achieve higher mobili-
ties (> 100 cm? V~! s7!) and strong reliability under
positive bias-temperature stress (PBTS) at elevated tem-
peratures (e.g., 95 °C). In a prior study, a nano-laminated
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IGZO channel FET was engineered to incorporate In,0O;,
which exhibits high electron conductivity, as the primary
conduction path. This design facilitated the formation
of multiple 2D electron gas (2DEG) channels, result-
ing in an enhanced field-effect mobility of approximately
110 cm? V=1 57! [125]. In another study, nano-composite
InSnGaO (ITGO) FETs with homogeneously incorporated
Sn cations effectively suppressed oxygen vacancies and
improved SS (71.9 - 64.8 mV decade™") and PBTS reli-
ability (AVy,:+0.19—0.06 V under+2 MV cm™!, 95 °C,
1 h) [129].

Finally, ALD enables the growth of high-quality thin
films. PVD inherently induces structural native defects,
as the material is physically removed from the target and
directly stacked onto the substrate. In contrast, owing to
ALD’s layer-by-layer film growth based on self-limiting sur-
face chemical reactions, ALD-based OSs forms close-packed
films that effectively minimize impurity incorporation and
defect formation compared to other deposition techniques.
Owing to its layer-by-layer surface reaction mechanism,
ALD minimizes impurity incorporation and defect formation
compared to other deposition methods. Kim et al. conducted
a comparative study of IGZO films (In:Ga:Zn=1:1:1 at%)
deposited by sputtering and ALD [130]. The ALD-grown
IGZO exhibited a reduced concentration of oxygen-related
defects (from 34.7 to 24.1%) and improved film density
(from 6.01 to 6.30 g cm™). These improvements translated
directly into enhanced FET performance, with increases in
pgg (from 20.5 to 28.1 cm? V™! s71), and reductions in sub-
threshold swing (from 0.33 to 0.23 V decade™!) and hyster-
esis (from 0.17 to 0.04 V). Similar improvements in both
material and electrical properties have also been reported
for other ALD-deposited thin films compared to their PVD
counterparts [34, 131]. Given these advantages, research on
ALD-based OSs has been actively expanding, with increas-
ing efforts focused on controlling ALD process parameters
to optimize electrical performance.

3.2 Engineering OSs based on ALD Fundamentals:
Adsorption & Reaction

The fundamental principle of ALD pertains to self-limiting
chemical reactions, which occur in two key steps: surface
adsorption and reaction, as illustrated in Fig. 5. Various
process parameters affect each step of the cycle, ultimately
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determining the properties of the resulting oxide film. There-
fore, a thorough understanding of ALD process variables
and their influence on surface reaction behavior is essential
for engineering OS channels.

3.2.1 Factors Affecting Adsorption (1st Half-Cycle)
Jor OSs Engineering

The first half-cycle of ALD, adsorption, involves the interac-
tion between the precursor and reactive sites on the surface,
resulting in the formation of chemisorbed species. This step
is the primary consideration when designing both the pro-
cess and the film properties. As illustrated in the adsorption
influence factors shown in Fig. 5, several key parameters
affect this process. First, the types of precursor ligands and
metal components play a critical role. The adsorption energy
(AE
vary depending on the metal center and ligand structure of

ads) and activation energy (E,) of the surface reaction
the precursor. These factors determine whether adsorption
occurs and which pathway is preferred. As adsorption reac-
tions are generally associated with a reduction in entropy
(AS <0), the spontaneity of the reaction can be assessed
based on the sign of AE,;: A negative AE,; indicates a
spontaneous process, while a positive value suggests a non-
spontaneous reaction, providing insights into the suitability
of a precursor for ALD applications [132, 133]. Among mul-
tiple spontaneous adsorption pathways, the one with the low-
est £, dominates, and this information can help predict both
the reaction mechanism and configuration of the adsorbed
species [134, 135]. Sheng et al. employed density func-
tional theory to calculate the adsorption energy profiles of
an In precursor, diethyl[1,1,1-trimethyl-N-(trimethylsilyl)-
silanaminato]-indium (InCA-1), and a Ga precursor, tri-
methylgallium (TMGa), on a SiO, substrate [132]. Both
precursors exhibited negative adsorption energies—
AE, ;= —90.6 kJ mol~! for InCA-1 and —72.1 kJ mol~"! for
TMGa—indicating favorable adsorption for ALD. However,
the E, for TMGa was significantly higher (~ 100 kJ mol™)
compared to that of InCA-1 (14.5 kJ mol~"), suggesting a
kinetic limitation that hinders initial growth. These findings
highlight the importance of precursor-specific kinetics and
were utilized to optimize sub-cycle sequencing for effec-
tive film growth and compositional control in multicompo-
nent IGO systems. E, also defines the energy barrier: an
increase in substrate temperature leads to a higher reaction

© The authors

probability and improves reaction completion. Thus, E, ulti-
mately determines the minimum substrate temperature at
which adsorption begins [136]. When the second half-cycle
is sufficiently reactive, the ALD temperature window can
be affected by the ligand structure of precursors, as sum-
marized in Table 3 [137-175]. Choi et al. reported that an
amine ligand-based In precursor, dimethyl[N-(tert-butyl)-
2-methoxy-2-methylpropan-1-amine] indium (DMION),
enables a reduction of the ALD window lower limit to 35 °C,
compared to conventional alkyl ligand-based In precursors
[149]. This low-temperature process yielded high-quality,
carbon-free (< 0.1 at%) films, and the resulting material
demonstrated viable FET operation, with a Vy; of 4.9 V and
pigg of 3.1 cm? V™! 7!, These results indicate that the target
process temperature can be tailored by modifying the ligand
structure. In addition, precursor behaviors such as decom-
position, condensation, and desorption must be carefully
considered for optimal process design.

Second, the molecular volume of the precursor consider-
ably affects adsorption. Even if a certain adsorption pathway
is thermodynamically favored, steric hindrance can prevent
the precursor from accessing all surface reactive sites. As the
volume of the adsorbed species increases, steric limitations
become more severe, which reduces the number of precur-
sor molecules that can adsorb per cycle, resulting in a lower
growth per cycle (GPC). For example, Oh et al. compared
the ALD behavior of trimethylaluminum (TMA) and triethy-
laluminum (TEA) based on their molecular sizes [176]. The
effective average molecular volumes were 87.2 A3 for TMA
and 140.2 A? for TEA, with the larger TEA molecule exhib-
iting a reduced GPC of 0.8 A cycle™!, compared to 1.2 A
cycle™ for TMA. Similarly, in the ALD of crystalline In,0;,
the use of a smaller-volume precursor, (N,N-dimethylbutyl-
amine)trimethylindium (DATI), led to enhanced adsorption
coverage, resulting in improved film density (6.57 —6.76 g
cm™3), crystallinity, and ppg (90.5—115.8 cm? V= s71),
compared to a larger precursor, (3-(dimethylamino)propyl)-
dimethyl indium (DADI) [177]. In multicomponent systems,
larger dopant precursors have been found to promote more
homogeneous doping. For example, homogeneous cation
distributions in crystalline InGaO improve grain alignment
and pigg (~128.2 cm? V=1 s71) upon crystallization [126],
while in amorphous AlZnO systems, reduced electron scat-
tering leads to enhanced conductivity [178]. These findings
suggest that controlling adsorption behavior through molec-
ular volume design of precursors is an effective strategy for
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tuning the structural and electrical properties of thin films Finally, surface energy and the density of reactive sites
[126, 176-178]. also strongly influence adsorption. Surface energy depends
on various factors, such as substrate type and orientation,

A SHANGHAI JIAO TONG UNIVERSITY PRESS @ Sprlnger




180

(2026) 18

Nano-Micro Lett.

Page 16 of 45

180

[sL1] - - [euoSeNaL, 9¢ anN 70810 0£2-001 auozQ
L1] YTL~ - aurreisk10k[od - a/N - SLT-SLI O'H  (dwewp)ug
[eLT] - LT~ (Do 0L <) [eUOSEIRL,  O'p~ anN L0 SLI-09 O‘H
leet1] - - - 6T~ am 70 00£—09 ewseld oy (edpayug
[cL1] - Yo~ [euoSenol, [~ am Y1~ 0S7-08 au0zQ
[cL1l (ed£y-d) 09~ 81~ (D, 001 <) [eU0OSeIRL, 9]~ a/N 010 0S1-09 O'H 10-dusjAuuels
[oL1] - 66~ [euOSENAL, 9¢ - 8¢ 1-CT'1 0T ‘O'H -SH
[691] - Le~ [euoSENaL, - am 670~ 0S7-0S1 au0z( "ous
[891] - - [euoSena], 9¢ am ST1~ 057001 vwseld ‘o/1y
[L91] - e~ [euoSenol, 0'v—6'C am 09'1-86'0 0S7-0S suozQ USINAVINAL aprxo
[991] - - [euosensl, 0'%-9'¢ a/N 0T€0 002-0¢ O‘H USYINAL urf,
(1st]  D:0ST<S'LI~ '~ Do 001 <21qn) v'e am I 0$Z-001 ewseld /1y SpIxo wnipuy
losT1] - 6~ Do 00T <21qn) S am 'l 057001 vwseld ‘Q/1y JLva
losT1] - T~ Do 00T <21qnD 3 am €0 05700 O‘H SNLING
- D00l <¥PE~ D001 <EE~ - - - - - - +NOINA
l6t1] D:001>T1°¢~ D001 > 6~ Do SE€ <N v'e a/N Tl 00¢-S¢ euwserd oy -
[Ly1] 9:0C~ "6~ Do 001 <21qnD v'e a/N 'l 057001 vwseld cQ/1y +NOINL
- - - Do 00T <o1qnD - - - - - -
- - = Do 00T > [eIpAyOquIOYY - - - - - Java
[8t1] 19~ 0T~ Do 001 <o1qnD € o) 0 0ST-001 O‘H (1= VvouI
[Ly1] 0l~ - Do SLT<O1qND € a/N 80 057001 rwseld “o/1y  (edpa)ureN
[ov1] - - Do 00T <o1qnD 9¢  ${%w 1<DhxoNg 90 SLz< O‘H (ovor)ur
l6cT] - 8IS~ Do 00T <o1qnD 9¢ a/N L0 00€—0ST suozQ <(pyum)ug
[sp1] SI~ - Do 00T <o1qnD ¥ 1S L0 STT-STl ‘O'H -
- - - Do 00T <o1qnD 6'¢ DS L0 SLT-SLI O‘H doug
l6cT] - - Do 00T <o1qnD 6'¢ - 80 0ST—001 suozQ urgL
[t1] - Tt~ - Le a/N €010 0ST-0ST O'H UL
[epT] - - - - - 4%0] STT-S91 suozQ UL
[evT] - - Do 001 <o1qnD - - 0 002591 O'H AL
[yl - - Do SLT 18 21N 9¢ o) ¥1°0 00v—001  [ed1pBI CO/IY UL
[1¥1] - - Do OFT <o1qnD - - 0T€0 0S+-00¢ suozQ UIALL
lov1] - 67~ Do 00T <21qN) - - Sl 052001 ‘0/0'H UTALL
l6cT] - - Do 00T <21qnD 8¢ - 90 057001 suozQ UTALL
[8e1] - 0S~ - 9°¢ %EST~D 970 002001 suozQ UL
[LeT] - 111-8¢ - - - 91-C0 052001 ‘0/0 “H UL SPIXO wnIpuy
(I=ST—ATW) (;_8 _A W) (D,) @rmyerad
sjod Aniqow 141, Anpiqowr [leH Auneiskry  (A9) °7 (%) (1 funduy ([ _9ppkd ) DdD WAL yimo1n ueloey I0smda1g

sonzadoid [erejew oY) pue *Qug pue *ouz *oro *ouy 10 uoneurofur ssa001d IV € dqeL

https://doi.org/10.1007/s40820-025-02013-7

© The authors



180

Page 17 of 45

180

(2026) 18

Nano-Micro Lett.

[edrwoy) [osueH ( ‘SeLIARA AN VT (€ ‘Tedruayd-dn (7 £4q papraoid, .
(%78 1°0 > :UOROASP Jo W) "SAX Aq parewnsd st [249] Ayrndwy,

[s91] - - [euoZexaH e aN 95T 0S7-0S O'H

[s91] - - [euoSexoH e WN I'1-L°0 081-0v1 OH

[¥91] 700 - [euoSexoH e am 60 0$Z-0S1 O'H  vdWdzad

[¢91] - - [euoZeXaH Te (D6 00T <) 0L 1-LS'T 0$z-001 rwseld oay YdN@uZ

[c91] - 0¢~ [euoZeXaH Te am 1977~ 00€-0S1 auoz(Q

(1911 - I~ [euoZeXaH Te am 86T ~ 00¢—001  ewse[d fo/ry

[091] - 01~ [euoZeXaH Te am 0S'1~ 00051 O'H

[091] - - - 67 - SL1-S0 002001 auoz(Q

l6s1] - - - - %¥e T'E~T ¢l 002001 ‘0'H

[8¢1] - - - - %% ['T~D I'1-6'0 0$S—0ST auozQ

[Ls1] - - - S aN 10 091-09 ewse(d co/1y 7ad

[9g1] - - - ¥S~ /N $T 0ST-0S1 OH

[sc1] - - - Ts aN LI 00t—001  rwseld oay EDNL
- - - - /N 0¥'0-01°0 00€-0S1 O'H eDHL
- - - s /N T€1-26°0 057001 rwseld oy Ien

[9z1] - - - - aN 90-11°0 00€-0S1 auwozg  (NN)%D

[9t1] - - - - %1 T I~D 0’1 057001 rwseld oy (pyun)en

[¥s1] - - - - - 70 SLE-0SE auozQ dILD

[¥s1] - - - - - £€€°0 08¢—¢9¢  rwse[d oy NLOWA

[ec1] - - - Sy aN 790 0T auozQ NOSIA

[Lp1] - - - 8¥ 9V an 0€1-5L°0 057081 ewseld zoAv NOOIL apIxo

[cs1] - - - Sy aN ¥$'0-91°0 00€-0S1 auozQ c(ovor)en wnien

(I-ST—ATWI) (;_S _A ;W) (D,) 2ayerad
sy Amgow 141, Aiiqour [reH Aruressk)  (A9) °7 (%) (1 fumduwp (9040 '¥) DD -WRL (PMOID ueIey JTosIndalg

(ponunuoo) ¢ d[qeL,

pringer

A's

»
7
e
4
&~
>
=
7
&
]
2
z
j]
&}
z
(o]
=
Q
=
<
jeny
o
zZ
<
Jeny
&




180 Page 18 of 45

Nano-Micro Lett. (2026) 18:180

material deposited in the previous cycle, and terminal sur-
face functional groups. High surface energy generally pro-
motes reactivity by lowering the adsorption energy, whereas
low surface energy suppresses film growth. Reactive site
density is influenced by surface roughness, film density, and
material composition. A high density of reactive sites facili-
tates greater adsorption coverage. Studies have demonstrated
that controlling the surface condition based on appropriately
selecting the substrate, seed layers, material deposited in the
previous ALD cycle, or surface treatments can effectively
tune the ALD temperature window, growth rate, crystallin-
ity, electrical properties, and composition controllability
[147, 179-187]. Notably, Hong et al. showed that the In/Ga
ratio and electrical properties of InGaO films varied depend-
ing on the precursor pairing. trimethyl[N-(2-methoxyethyl)-
2-methylpropan-2-amine] indium (TMION)/trimethyl[N-
(2-methoxyethyl)-2-methylpropan-2-amine]gallium
(TMGON) pairing enabled linear composition control due
to matched adsorption characteristics, while DADI/TMGa
showed Ga-rich deviation from enhanced —OH surface reac-
tivity. Consequently, yipy, reached 36.7 cm? V= s™! (TMION/
TMGON-IGO) and 27.7 cm? V~! s™! (DADI/TMGa-IGO)
at an equivalent In/Ga ~ 2.3 ratio. These findings highlight
that surface conditions play critical roles in determining
composition and growth behavior in multicomponent ALD
[147, 179-187]. In summary, the adsorption step is criti-
cally influenced by both precursor characteristics and surface
conditions, and it plays a central role in determining the
adsorption mechanism, process temperature, and resulting
film properties.

3.2.2 Factors Affecting Reaction (2nd Half-Cycle)
Jor OSs Engineering

In the second half-cycle of ALD, referred to as the reac-
tion step, the injected reactant reacts with the ligands of
the adsorbed precursor, leading to ligand removal and the
regeneration of reactive sites on the surface. This step com-
pletes the film formation process. As illustrated in the reac-
tion influence factors in Fig. 5, several parameters affect the
reaction process. First, the type and energy of the reactant
play a crucial role. In oxide deposition, typical oxygen
sources include H,O, H,0,, O,, O, O, plasma, and N,O
plasma. The reaction mechanisms vary depending on the
type of reactant, proceeding either through ligand exchange

© The authors

or combustion. H,O, which follows a ligand exchange mech-
anism, was widely used in early ALD processes owing to its
high vapor pressure and environmental friendliness. How-
ever, its low oxidation strength limits the process tempera-
ture window and can lead to residual hydrogen impurities,
necessitating alternative oxygen sources. Stronger oxidants
such as H,0,, Os, and O, plasma, all of which follow com-
bustion mechanisms, have been employed to address these
limitations. The relative oxidation strength follows the order
H,0 <H,0, <053 <0, plasma [150, 188-190]. Increased
oxidation strength is generally associated with a wider
ALD temperature window and higher GPC. Furthermore,
stronger oxidants reduce impurity incorporation and defect
density, improving film crystallinity and electrical proper-
ties. According to Ryu et al., ALD using H,O as the reac-
tant exhibited a growth per cycle (GPC) of 0.29 A cycle™!
within an ALD window of 200-250 °C, whereas the use of
O, plasma extended the ALD window to 100-250 °C and
significantly increased the GPC to 1.11 A cycle™! [150].
In,O; films grown with O, plasma demonstrated a high
film density (~7.0 g cm™), reduced oxygen-related defects,
and a low crystallization temperature (< 100 °C. Moreover,
as indicated in Table 3, a comparison of Ga precursors,
TMGa, dimethyl[N-(tert-butyl)-2-methoxy-2-methylpropan-
1-amine] gallium (DMGON), and dimethyl[N1-(tert-butyl)-
N2,N2-dimethylethane-1,2diamine] gallium (DMGTN),
and the Sn precursor, bis(dimethylamino) dimethyltin
(BDMADMSn), shows that using O, plasma—which has a
higher oxidation energy than O;—tends to increase the GPC
by nearly a factor of three. In the case of Sn-based oxides,
oxidation energy can be tuned to selectively form either
p-type SnO or n-type SnO,. Lee et al. demonstrated that
SnO and SnO, phases could be selectively synthesized via
ALD by simply switching the oxidant: water favored SnO
formation with a bandgap of ~2.3 eV, while ozone induced
SnO, growth with a bandgap of ~4.0 eV. This phase control
was enabled by the differing oxidative strengths and sur-
face reactivities of H,O and O; [172]. O, plasma offers the
additional advantage of high oxidation strength along with
tunable reactivity through plasma power control. However,
it may also induce surface damage owing to the presence of
energetic Ar radicals, necessitating careful optimization of
process conditions to balance oxidation efficacy with surface
integrity [125, 150, 191]. N,O plasma has also been investi-
gated owing to its strong reactivity and additional benefit of
nitrogen incorporation, which can enhance device reliability

https://doi.org/10.1007/s40820-025-02013-7
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[192]. According to Kim et al., selective introduction of an
N,O plasma reactant during the Ga,O; sub-cycle of the
IGZO process enabled nitrogen doping at a concentration
of 0.2 at%, which preserved high pigg (~106.5 cm® V=! s71)
while simultaneously achieving excellent PBTS reliability
(AV,:+0.45 V under+2 MV cm™!, 95 °C, 10,000 s). These
findings underscore the significance of oxidant selection as
a versatile tool for precisely controlling film properties,
including composition, crystallinity, electrical performance,
and dopant incorporation, in oxide thin-film deposition.

Second, the type and structure of the adsorbed precursor spe-
cies significantly influence the reaction. Even when the reactant
is highly reactive, the reaction energy (AE) and E, can vary
depending on the metal center and ligand configuration of the
adsorbed molecule. These energy parameters affect both the
reaction efficiency and the ALD temperature window. As indi-
cated in Table 3, different metal-ligand combinations require
distinct thermal and oxidative energy inputs during ALD. A
comparison between trimethylindium (TMIn) and TMGa—ypre-
cursors with the same ligand structure—under O; reactant con-
ditions reveals notable differences in growth behavior. While
TMIn exhibits a relatively constant GPC of ~0.46 A cycle™!,
the GPC of TMGa increases from 0.16 to 0.54 A cycle™! with
rising process temperature. This trend suggests that Ga-centered
adsorption molecules require higher oxidation energy compared
to their In-based counterparts, implying that insufficient energy
supply during the ALD process may lead to a reduced GPC or
the formation of higher impurity-containing films [193]. There-
fore, the reactant must be carefully matched to the precursor and
intended process temperature.

Finally, the recombination probability of the reactant
affects film conformality, especially in 3D memory struc-
tures. Even when a reactant is thermodynamically and
kinetically favorable, its effective diffusion length must be
sufficient to ensure uniform deposition across high-aspect-
ratio features. Reactants with high recombination probabili-
ties may deplete rapidly near the feature opening, leading to
thicker deposition near the top and thinner coverage at the
bottom, a phenomenon known as the recombination-limited
regime [194]. For example, oxygen radicals used in plasma-
enhanced ALD exhibit high recombination rates, limiting
their ability to achieve ideal conformality compared with
thermal ALD processes [150, 195-197]. According to Ryu
et al., In,O; films grown using H,O or O; exhibited excellent
conformality in structures with a 40:1 aspect ratio, achieving
bottom-step coverage of 97% and sidewall-step coverage of

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

95%. In contrast, when O, plasma was used, the bottom-step
coverage decreased to 74%, indicating a limitation in achiev-
ing conformal deposition [150]. In summary, the reaction
step is strongly influenced by both the reactant properties
and the structure of the adsorbed species. These factors col-
lectively determine the process temperature, film quality,
and step coverage in ALD-grown OSs.

3.2.3 Common Influencing Factors for OSs Engineering

Certain factors influence both the adsorption and reaction
steps. As shown in Fig. 5, the three representative process
parameters are temperature, pressure, and dosage. First, sub-
strate temperature plays a critical role. Increasing the pro-
cess temperature enhances the probability of overcoming the
energy barriers associated with adsorption and reaction, pro-
moting reaction completeness. Elevated temperatures have
been reported to reduce impurities and defects, increase film
density and crystallinity, and improve electrical performance
across various OS materials [134, 149, 150, 198, 199]. For
example, in the In,0; study reported by Ryu et al., increas-
ing the process temperature from 100 to 250 °C—regardless
of the reactant type—Iled to a decrease in carbon impurity
(<0.1 at%), reduction in oxygen-related defect bonding
(~20.0%), increase in film density (~7.0 g cm™), enhanced
orientation along the cubic (222) plane, and improved Hall
mobility (~38.8 cm? V! s7!), demonstrating the significant
influence of temperature [150]. However, the process tem-
perature must remain below the precursor decomposition or
desorption threshold to preserve the self-limiting behavior
of ALD.

Second, process pressure significantly influences the
frequency of molecular collisions with the substrate. At
low pressures, reduced collision frequency may lead to
longer process times, increased precursor consumption,
and poor step coverage in high-aspect-ratio structures.
Conversely, higher pressure can alleviate steric hindrance
and enhance diffusion to reactive sites, resulting in more
uniform coverage and improved film quality [200, 201].
According to Li et al., increasing the process pressure
from 200 to 1000 mTorr at a fixed process temperature
led to a steady rise in the GPC of Al,O; from 1.01 to
1.05 A cycle™!. Concurrently, improvements in insulat-
ing properties, such as higher breakdown voltage and
reduced leakage current, were also observed. Recently,

@ Springer
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atmospheric pressure processes utilizing spatial ALD have
been reported, offering advantages in throughput and pre-
cursor utilization [202-205]. According to Yoo et al., the
deposition rate of In,O; was significantly enhanced to
30.0 A min™', compared to the conventional ALD process
rate of approximately 2.5 A min~' [202]. However, these
approaches present challenges related to purge efficiency
and potential contamination [206].

Finally, precursor and reactant dosages must be sufficient
to ensure saturation of surface sites during both adsorption
and reaction. Dosage is typically controlled by adjusting
pulse duration or canister temperature. Saturation is typically
determined based on the condition where the GPC reaches
a constant value. In standard single-dose ALD processes,
physisorbed molecules may block reactive sites, preventing
complete saturation. This limitation can be addressed using
discrete feeding method (DFM), in which an initial purge is
followed by a second pulse to achieve denser precursor cov-
erage. This technique has been shown to improve film den-
sity, enhance crystallinity, and reduce impurities [207-209].
Kim et al. introduced a DFM precursor into the p-type SnO
process to enhance the formation of a (001)-aligned tetrag-
onal 2D structure. As a result, the fabricated SnO-FETs
exhibited improved performance with a pg of 1.86 cm?
V~ls7! aSS of 0.12 V decade™!, and stable PBTS reli-
ability (AV,,: 4+0.47 V under+2 MV cm™', 60 °C, 10,000 s)
[207]. Additionally, in cases where precursors with bulky
cyclopentadienyl ligands are employed, applying a discrete
reactant feed (DRF) has been reported to enhance reaction
completeness [210]. According to Yang et al., the use of a
DRF approach enhanced the reactivity of a Cp ligand-based
In precursor, increasing the GPC to 2.2 A cycle™! compared
to1.3A cycle™! achieved by the conventional method. By
carefully controlling these ALD process parameters, OS
films that meet the stringent requirements of memory device
applications can be engineered.

3.3 Advanced Developed ALD-Driven OSs via Four
Main Material Design Strategies

Recent studies on ALD-driven OSs for memory applica-
tions have focused on four main material design themes—
cation engineering, crystallization control, atomic struc-
ture optimization, and light element incorporation—to

© The authors

enhance electrical performance, reliability, and thermal
stability.

3.3.1 Cation Engineering

The cations that constitute the matrix of OSs represent a
primary focus in material design. In OS channels, metal
cations significantly influence key material properties,
such as charge transport, defect formation, and structural
stability. Electronic structure of the cations affects the dis-
persion of the conduction band, thereby impacting charge
transport property. Their bonding strength with oxygen
influences the subgap defect states, which are closely
linked to device reliability. In addition, the metal cation
can affect the stability of the structural properties, compat-
ibility with temperature dependent processing. As these
factors collectively determine the electrical performance
and long-term stability of OS channels, precise cation
engineering is essential for material optimization [117,
120].

As shown in the left part of Fig. 6, one representative
approach involves incorporating cations such as Sn and
W, which exhibit metal-oxygen bond dissociation ener-
gies of 548 and 653 kJ mol™!, respectively, into In-based
OSs to strengthen metal-oxygen bonding [211]. Through
their precise introduction at controlled concentrations
using ALD, the electrical characteristics, reliability, and
thermal robustness of OSs can be enhanced. In terms of
the introduction of Sn, Ryu et al. [169] demonstrated
that a Sn-rich ITGO amorphous OS developed via ALD
exhibits exceptional thermal stability and electronic per-
formance suitable for DRAM applications. The optimized
ITGO composition (In:Sn:Ga=25:58:17 at%) maintained
an amorphous structure and exhibited high Hall mobility
(~24.0 cm? V7! s71) even after annealing at 600-700 °C.
Sn incorporation stabilized the amorphous phase, reduced
oxygen vacancies, and enhanced carrier mobility, while
Ga suppressed excessive carrier generation and preserved
thermal stability. A 4.5-nm-thick ITGO TFT showed
excellent field-effect mobility (7.7 cm? V7! s71) and
remarkable bias-temperature reliability (AV,:—0.05 V
under PBTS and + 0.01 V under negative bias-temperature
stress (NBTS) at 125 °C for 2000 s) [169].

https://doi.org/10.1007/s40820-025-02013-7
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In terms of the incorporation of W, Sarkar et al. [212]
reported the first GAA nanosheet FET incorporating an
ALD-IWO channel, which exhibited excellent scalabil-
ity and electrical reliability. The small ionic radius of W
allowed for stable substitution into the In,O; lattice without
significant lattice distortion, contributing to structural integ-
rity and defect suppression. For fabricating the GAA FET,
a novel channel release method using a W sacrificial layer
enabled lithography-independent definition of the channel
length with etch selectivity > 10°, simplifying fabrication.
The optimized 3% W-doped IWO nanosheet device demon-
strated a high on-state current (815 pA pm™' at Vy;=1V)
and ultralow off-state current (3 fA), alongside an intrinsic

SHANGHAI JIAO TONG UNIVERSITY PRESS

transconductance of 470 uS um~". It achieved record-low
threshold voltage shifts (AV,, ~ 88 mV at 5.4 MV cm™)
under both positive and negative BTI conditions, outper-
forming existing AOS-based FETs. These results establish
ALD-IWO GAA FETs as a promising candidate for BEOL-
compatible, high-performance 3D integrated memory and
logic applications [212].

In addition, with respect to W incorporation into
In,O;-based channels, Chiang et al. (2025) report the first
BEOL-compatible ALD IWTO TFTs with an ultrathin
2 nm channel and Ly down to 70 nm. The devices exhibit
enhancement-mode operation with 7 /I ;> 10'", SS
~ 63 mV dec”!, DIBL ~ 37.8 mV V~!, and low contact

@ Springer
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resistance (=~ 0.72-0.86 kQ pm) after O, annealing. These
results show that high-BDE W/Sn co-doping combined
with a<350 °C O, anneal mitigates short-channel V;, roll-
off and the I ,—V,, trade-off, positioning IWTO as a strong
candidate for monolithic 3D BEOL integration [213]. About
other cation of Al, Ding et al. [214] reported fully ALD-
fabricated InAlO TFTs, establishing an ALD-only route to
composition-tuned In,O; channels. The study delivers a bal-
anced performance/stability window—p = 7.2 cm? V=1 571,
SS ~ 165 mV dec™!, I, /I ~ 2.3x10°%, V,;, ~ 0.1 V, and
AV, ~ 0.11 V under PBS—achieved at a 350 °C anneal.
They attribute the gains to ALD-enabled Al incorporation
that suppresses oxygen-vacancy formation, highlighting
a scalable, low-temperature pathway for next-generation
oxide FETs [214]. Collectively, these findings underscore
the effectiveness of incorporating high-bond-energy cati-
ons via ALD in enabling thermally robust and electrically
reliable OSs suitable for next-generation memory and logic
device integration.

3.3.2 Crystallization Control

Crystallization plays a critical role in enhancing both
mobility and stability of oxide semiconductor (OS) chan-
nels. A periodic lattice structure enables effective overlap
of extended s-orbitals, thereby facilitating high carrier trans-
port. Among the factors that degrade the stability of OSs,
those associated with structural disorder include interstitial
metal atoms, antisite defects in multi-cation OSs, and grain
boundaries (GBs) in polycrystalline films [126, 215-217].
Among these, numerous studies have reported that enhanc-
ing the crystallinity of OSs—thereby reducing GB den-
sity—effectively improves stability. GBs generally act as
charge-trap-rich defective regions that induce carrier scat-
tering, and promote Vy;, shift under bias temperature stress.
Consequently, randomly oriented crystallization (large
mosaic spread with small grains) produces a high areal GB
density and abundant GB trap states, degrading mobility
and reliability, whereas highly aligned crystalline texture
(preferred orientation) suppresses GB density and suppress
carrier scattering. In parallel, increasing grain size reduces
total GB area per unit volume, lowering GB-mediated trap-
ping. Compared to amorphous counterparts, crystallized
films exhibit reduced defect densities—including oxygen
vacancies and structural disorders; this reduction suppresses

© The authors

charge trapping and improves bias-stress stability. Further-
more, crystalline OS channels have recently been recog-
nized for their structural robustness, which contributes to
enhanced thermal and electrical durability, thereby improv-
ing their compatibility with high-temperature processes. As
such, controlling crystallinity—with emphasis on orientation
control and grain-size enlargement to minimize GBs—has
become a key strategy for developing high-performance and
reliable OS channel materials [5, 33, 126, 215].

As shown in the right part of Fig. 6, ALD has been used to
achieve highly oriented crystallization in ultrathin films on
the nanometer scale, as well as highly uniform crystallinity
throughout complex structures. In terms of achieving highly
oriented crystallization, Choi et al. (2024) demonstrated the
development of highly crystalline 3-nm-thick In,O; films
via ALD using a novel liquid indium precursor, (N,N-di-
tert-butylacetimidamido)dimethylindium (DBADMIn). At
an optimized deposition temperature of 250 °C, the In,0,
films exhibited strong C-axis aligned C(222) orientation,
resulting in enhanced film quality with reduced grain bound-
ary scattering. The fabricated TFT demonstrated high field-
effect mobility (41.12 cm® V™' s71), low SS (150 mV dec™}),
and excellent positive bias stress stability (AV, = +0.16 V
at 100 °C for 3 h). The improvement in performance was
attributable not to oxygen vacancy modulation but to crystal-
line orientation control, overcoming the traditional mobil-
ity—stability trade-off. These findings highlight the potential
of low-temperature, crystalline In,O; for highly scaled logic
and memory devices [215].

In terms of achieving uniform crystallization over com-
plex structures, Yamazaki et al. [218] fabricated a vertical
FET using single-crystalline In,O5 channels grown by ALD
on an insulating film, enabled by a 2-nm-thick CAAC-IGZO
seed layer. The single-crystalline In,O; films exhibited uni-
form (111) orientation with no grain boundaries along the
current path, achieving a high on-state current (28.8 pA),
low threshold voltage variation (6 =0.05 V), and steep sub-
threshold slope (86.7 mV dec™!). Importantly, the off-state
current was reduced to an ultralow value of 2.0 zA um~" at
27 °C—10 orders of magnitude lower than that of bulk Si
FETs. These improvements were attributable to solid-phase
epitaxial growth, facilitated by atomic alignment between
the CAAC-IGZO (001) plane and In,O5 (111) plane. This
architecture enabled 3D monolithic integration with energy-
efficient logic design, offering a scalable solution for next-
generation Al and server hardware [218]. Together, these
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advancements demonstrate that ALD-driven control of crys-
talline orientation and uniformity in ultrathin oxide films
is critical for achieving high-performance, low-power logic
and memory devices.

3.3.3 Atomic Structure Optimization

In the pursuit of oxide semiconductors that simultaneously
exhibit high mobility and long-term reliability, atomic struc-
ture optimization has emerged as an effective strategy. By
engineering heterointerfaces and modulating the spatial
distribution of constituent layers at the atomic scale, this
approach facilitates the formation of spatially confined con-
duction pathways—such as two-dimensional electron gas
(2DEG)-like channels—that decouple charge transport from
defect-sensitive or chemically unstable regions. As a result,
it enables the mitigation of bias-induced instabilities and
the overcoming of the intrinsic mobility—reliability trade-off
commonly observed in conventional single-layer architec-
tures [5, 6, 8]. Atomic structure optimization strategies—
such as bilayer and nanolaminate architectures—have been
uniquely explored using ALD owing to its precise interface
control and angstrom-level tunability, enabling the simul-
taneous realization of high mobility and reliability in oxide
TFTs, as illustrated in the left part of Fig. 7.

Kim et al. [219] demonstrated that the optimization
of bilayer structures using ALD can alleviate hydrogen-
induced instability through in situ modulation of the
2DEG. Researchers established plasma-enhanced ALD
(PEALD)-deposited dual-channel IZO/IGZO top-gate
TFTs, where nanoscale modulation of the backchan-
nel IZO thickness enabled simultaneous enhancement
of mobility and stability. As the IZO layer thickness
increased, the main conduction path transitioned from
IGZO to high-mobility IZO, achieving a peak mobil-
ity of ~40 cm? V~! s7!, while maintaining a low SS
and suppressed threshold voltage shift (AV,;, =-0.07 V
under PBTS for 10,800 s). Technology computer-aided
design simulations confirmed dual-channel formation and
revealed a 2DEG-like current path in the backchannel IZO,
physically isolated from gate-insulator-induced instability.
The hydrogen-resilient IZO layer effectively shielded the
active channel from hydrogen diffusion originating in the
PEALD-Si0, gate insulator (GI), addressing the abnormal
negative V,, shifts typically observed under bias stress.
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These results establish ALD-based IZO/IGZO bilayers as
a compelling architecture to overcome the conventional
mobility—reliability trade-off in oxide TFTs [219].

In terms of laminate structure, Kim et al. [125] devel-
oped pseudo-single-crystalline IGZO transistors via
PEALD by optimizing the super-cycle sequencing of InO,
and (Ga,Zn)O layers. By tuning the oxygen plasma power,
the researchers achieved ultrahigh field-effect mobility
(> 114 cm? V= s71) and excellent threshold voltage (V,,
~—0.44 V) and SS characteristics (SS ~ 90 mV dec™!) at
the optimal 100 W plasma condition. Excessive plasma
power was noted to deteriorate atomic ordering and lead
to oxygen over-incorporation, while insufficient power
resulted in donor-like defects (H, C), thereby degrad-
ing reliability. This study demonstrated the critical role
of plasma energy control in achieving defect-minimized,
high-mobility OSs suitable for next-generation logic and
memory applications [125].

Additionally, as part of atomic structure optimization,
ALD-enabled angstrom-scale interlayer and bilayer engi-
neering has been reported as an effective approach to sup-
press interface defects and form high-quality conduction
paths. With respect to atomic interlayer tuning, Li et al.
[220] report an AIMD/TCAD-guided sub-nanometer ALD
interlayer strategy co-designing the gate-dielectric and
contact interfaces. An InO, interlayer, with a thickness of
less than 0.5 nm, suppresses interface defects, sustaining
SS = 62-64 mV dec™! after 500 °C PDA and PBTS reli-
ability improved to 3.4 mV of IAV, | (1 ks,+3.5 MV cm™).
An IGZO/InO,/ITO contact stack exhibits an extracted
~80 meV barrier consistent with ohmic behavior, and sys-
tem relevance is demonstrated in 2TOC DRAM (> 10"
cycles, 1,,/1

> 108, retention > 600 s), validating angstrom-

level ALD interlayer tuning as a scalable lever to reconcile
BEOL thermal budget, reliability, and performance [220].
Collectively, these strategies underscore the potential of
ALD-engineered bilayer and laminate structures to precisely
balance mobility and reliability by tailoring charge transport
pathways and suppressing defect-induced instabilities in OS
devices.

3.3.4 Light Element Incorporation

In oxide semiconductors, light elements such as hydrogen,
carbon, and nitrogen are present due to precursor chemistry
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and process conditions. The light elements incorporation
can be utilized to modulating carrier concentration, pas-
sivate subgap states, and stabilize interface environments.
Particularly, ALD offers a powerful route to engineer such
light-element incorporation at the atomic scale, enabling the
optimization of both mobility and reliability in oxide TFTs.
Therefore, systematic understanding and deliberate control
of light-element chemistry are becoming vital in the devel-
opment of next-generation semiconductor applications [5,
117, 119]. As shown in the right part of Fig. 7, precise con-
trol over the physical and chemical states of light elements
has been achieved through the surface reaction of ALD,

© The authors

leading to improved electrical performance and device reli-
ability in oxide TFTs.

Kim et al. [192] introduced a selective nitrogen-doping
strategy in PEALD-grown IGZO thin films, resulting in
significant improvements in both mobility and reliability of
oxide TFTs. By applying N,O plasma reactants selectively
to individual cation cycles (In, Ga, Zn), the authors demon-
strated that nitrogen doping into Ga,O; notably suppressed
subgap states and improved PBTS reliability, without the
mobility degradation observed in In-rich compositions.
The optimized device achieved a high field-effect mobility
of 106.5 cm? V~! 5! and minimal AV, shifts (+0.45 V
PBTS,—-0.10 V NBTS at 95 °C for 10,000 s). Density
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functional theory calculations and thermal desorption spec-
troscopy revealed that nitrogen incorporation was governed
by the interaction between residual carbon species and ON
radicals, enabling controlled passivation of oxygen defects.
These findings offer atomic-level insights into composition-
specific doping chemistry and provide a viable pathway to
overcome the mobility—stability trade-off in amorphous OSs.

As an example of hydrogen doping, Kim et al. [221]
introduced a hybrid GI engineered via an in situ two-step
ALD process combining PEALD and thermal ALD Al,O;.
This approach enabled high-mobility and hydrogen-resilient
IGZO TFTs. By precisely modulating hydrogen, carbon,
and oxygen incorporation through the GI stack, the opti-
mized device achieved outstanding electrical performance
with g =150.7 cm? V7! 571, S =64.0 mV dec™!, and
AV, shifts of —0.43 V (H, annealing) and 0.00 V (PBTS at
95 °C, 10,000 s). The superior reliability was attributable to
H-passivation and minimized trap formation owing to tai-
lored chemical bonding states in the hybrid Al,O;. Further-
more, the device was integrated into an all-oxide vertically
stacked CMOS inverter, achieving rail-to-rail operation with
a voltage gain of 44.7 V V™! and noise margin of 87.5% at
Vpp =10 V. These results highlight the potential of in situ
hybrid ALD gate engineering for scalable, high-performance
oxide-based logic in 3D monolithic integration [221]. Col-
lectively, these findings underscore the critical role of ALD-
enabled light element engineering in tailoring defect states
and chemical bonding environments, advancing high-mobil-
ity and reliable oxide TFTs for next-generation memory and
logic electronics.

4 Challenges Toward the Use of OSs
in Semiconductor Applications

Although the adoption of ALD has enabled continuous
improvements in the properties of OSs, several critical
challenges remain for their integration into current memory
device architectures. The current DRAM industry imposes
stringent requirements on the key performance parameters of
OS FETs, including Vy,, I, I SS, and long-term reliabil-
ity. First, to ensure normally-off operation suitable for cell
transistor applications, the devices must operate in enhance-
ment mode with a moderate and well-controlled V;, typi-
cally in the range of approximately 0.3—0.6 V. Enhancement
mode operation is favored over depletion mode because it
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eliminates the need for constant negative gate bias to keep
the transistor in the off state, thereby reducing standby power
consumption and preventing unnecessary charge leakage
from the storage capacitor. Second, a sufficiently high I,
is required to ensure fast read and write access in DRAM
cell operations. [ is typically extracted at a gate voltage of
Vin+ 1.0 V under the designated drain bias used for cell tran-
sistor operation. For current DRAM integration, an /, on
the order of at least several tens of uA um™" is generally con-
sidered necessary to meet the stringent timing requirements
of high-speed sensing and charge transfer, while still main-
taining compatibility with low-voltage peripheral circuitry
[31, 34]. Third, an ultra-low [ g is critical for securing long
retention times and minimizing standby power consumption
in DRAM cell transistors. To suppress charge loss from the
storage capacitor and avoid read disturbance in densely inte-
grated arrays, I g levels below 1 X 1078 A um™" are generally
required. Such stringent leakage control ensures stable data
storage over extended periods, even at scaled gate lengths.
Fourth, a steep SS is essential to enable low-voltage opera-
tion while maintaining a sufficient on—off current ratio in
DRAM cell transistors. In the ideal, defect-free limit gov-
erned by Boltzmann carrier statistics, SS approaches 60 mV
decade™! at 300 K. Values close to this limit are desirable
because they allow the device to switch effectively at reduced
gate voltages, thereby lowering dynamic power consumption
and easing the voltage requirements for peripheral circuitry.
In practical oxide semiconductor FETs, achieving SS near
the Boltzmann limit requires minimizing trap densities at
the gate dielectric/semiconductor interface and within the
bulk channel, which also contributes to enhanced threshold
stability under bias stress [222]. Finally, long-term reliability
is a critical requirement for DRAM cell transistors, as device
characteristics must remain stable over years of continuous
operation under elevated temperature and electrical stress.
Typical qualification targets demand stability under condi-
tions such as 95 °C and an electric field of approximately
2 MV cm™! for 5-10 years of operation, with minimal deg-
radation in I, (within 10%) or V,;, (within AV, =30 mV).
Reliability poses significant challenges for oxide semicon-
ductor FETs due to two dominant mechanisms: (1) charge
trapping in the gate dielectric, which induces V,; shifts and
mobility degradation, and (2) hydrogen diffusion from ALD-
grown dielectrics into the semiconductor channel, which
becomes increasingly dominant at elevated temperatures.
Therefore, ensuring DRAM-compatible reliability requires
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both dielectric engineering to suppress trap formation and 4.1 Contact Resistance
barrier strategies to mitigate high-temperature hydrogen dif-
fusion from the insulator to the channel [223, 224].

In addition to the aforementioned device-level require-

An increase in contact resistance leads to a reduction
in cell current, thereby degrading the device’s response
ments, several critical challenges remain to be addressed. As ~ speed and power efficiency. In conventional silicon-based
illustrated in Fig. 8, key issues include high contact resist-  memory devices, contact engineering techniques such as
ance, limited thermal stability, poor hydrogen resistance, and  silicide control and interlayer insertion have been employed
to reduce specific contact resistivity (pc) to below 10°% Q
cm?. However, in the application of OS channels to such

device architectures, their inherently high p¢ (~107° Q cm?)

insufficient performance of p-type OSs. Extensive research
efforts are underway to elucidate the causes of these limita-
tions and to develop effective solutions.
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remains a significant bottleneck. In contrast to the display
industry, which typically employs structures with larger
hole sizes (> 1078 cm?), the DRAM industry requires con-
tact areas as small as approximately 1072 cm? [225]. This
significant reduction in contact size highlights the necessity
of developing novel contact technologies specifically tai-
lored to oxide semiconductors. One of the primary factors
contributing to contact resistance is the migration of oxygen
at the metal-semiconductor interface. For example, IGZO
is known to form native oxides at the metal interface, which
can modulate the carrier concentration through interfacial
oxygen vacancy generation [40, 226, 227]. While moderate
oxygen scavenging by the metal enhances electron doping
and reduces contact resistance, excessive scavenging may
lead to structural degradation, interfacial trap formation, and
ultimately increased resistance. In addition, interfacial issues
such as metal diffusion and Fermi-level pinning have also
been reported to contribute to elevated contact resistance.

One promising approach to addressing these challenges
lies in material and structural engineering. According to
Lin et al., contact resistance is influenced by several fac-
tors, including the work function and oxygen affinity of the
metal electrode, as well as the band structure and physical
dimensions of the semiconductor channel [227]. Their study
highlights the need for a contact structure design based on
a comprehensive understanding of these interfacial inter-
actions. A second strategy involves the introduction of an
additional interlayer in the contact region. Oxide-based
interlayers with low resistivity and high bond dissociation
energy can suppress interfacial oxide formation [228]. Sub-
hechha et al. introduced a c-axis aligned crystalline IGZO
layer at the IGZO/TiN interface, which served as an effec-
tive oxygen-tunneling barrier. By preventing oxidation of
the TiN electrode, the contact resistance was effectively
of 24 pA
um~!, approaching the industry-required benchmark of over
30 pA pm™'.

Additionally, selecting interlayer materials that support

reduced. Consequently, the device achieved an I,

band alignment engineering to lower the Schottky barrier
and inhibit metal diffusion has proven effective in reduc-
ing contact resistance [229-232]. Jeong et al. demonstrated
that inserting a TIN/ITGO interlayer between ITO and In,0;
effectively modulates the contact interface and reduces the
Schottky barrier height. By optimizing the interlayer thick-
ness, they achieved a reduction in barrier height from 0.4
to 0.2 eV at an 8 nm ITGO thickness, and significantly

| SHANGHAI JIAO TONG UNIVERSITY PRESS

improved the p¢ from 8.0 X 10* t0 9.0x 107° Q cm? [229].
Kim et al. and Lee et al. reported the use of MoTi and self-
assembled monolayer interlayers, respectively, to simulta-
neously reduce contact resistance and suppress Cu metal
diffusion [230, 232].

Another approach involves plasma or chemical treatment
of the channel surface [233-236]. Such treatments have
been reported to improve contact properties by modulating
interface dipoles and passivating subgap states, thereby alle-
viating Fermi-level pinning. Kim et al. demonstrated that
ultraviolet irradiation combined with thermal energy could
induce the formation of Hy" sites coordinated with metal
species on the IGZO surface, thereby enabling modulation
of the carrier density. As a result, the channel-width-nor-
malized contact resistance between Mo and IGZO, extracted
using the transmission line method (TLM), was reduced
from 13.0 to 9.4 Q cm. Similarly, Knobelspies et al. inves-
tigated the effect of different plasma gas treatments at the
IGZO/Ti—Au interface on contact resistance. They reported
that CF,-based plasma treatment significantly reduced the
contact resistance—by a factor of 24.2—through fluorine-
induced passivation of oxygen vacancies, which suppressed
trap sites and generated additional free electrons.

Despite these efforts, OSs still exhibit higher contact
resistance compared with that of silicon-based systems.
Moreover, further enhancement in the thermal stability of
contact interfacial layers and conditions is essential to ensure
reliability under subsequent high-temperature processing
conditions. In addition, considering the 3D architecture of
next-generation DRAM, the development of high-perfor-
mance metal electrode processes that are fully compatible
with ALD remains a critical challenge.

4.2 Thermal Stability

In the display industry, for glass-based displays, the thermal
budget is typically limited to below 400 °C while flexible
displays using polymer substrates impose even stricter con-
straints, often below 250 °C. In contrast, in DRAM devices,
cell transistors are subjected to subsequent capacitor for-
mation processes at temperatures exceeding 600 °C. There-
fore, the channel materials must maintain stable electrical
properties within this thermal budget. However, IGZO has
been reported to suffer from several limitations under such
high-temperature conditions, including polycrystallization,
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elemental diffusion, and defect generation [169, 237-239].
Jeong et al. reported that initially amorphous IGZO under-
goes randomly oriented polycrystallization beyond 600 °C,
leading to significant degradation in electrical performance,
including a reduction in pgg from 40.9 to 5.8 cm? V~! 57!
and an increase in SS from 68 to 117 mV decade™! [237].
Ryu et al. attributed the decrease in IGZO conductivity
above 600 °C to the desorption of Zn atoms, which exhibits
a higher diffusivity (4.36 x 10~ cm? s™!) compared to In
(0.73% 1077 cm? s!) and Ga (0.95x 10”7 cm? s™') [169].
This Zn desorption was correlated with a positive Vi,
shift from 0.18 to 1.15 V and a decrease in ppg from 6.0
to 0.3 cm? V™! s7!. These effects lead to threshold voltage
instability, degraded field-effect mobility, and low stress reli-
ability in IGZO-based FET applications.

To address these challenges, extensive research efforts
have focused on developing OSs with enhanced phase stabil-
ity at elevated temperatures. One primary strategy involves
increasing the crystallization temperature of amorphous
oxides by modifying their cation composition. In particu-
lar, multicomponent In,O5-based oxides incorporating ele-
ments such as Ga, Zn, Sn, Al, and W have been shown to
effectively suppress crystallization [126, 169, 240-242].
Within these multicomponent systems, reducing the In>*
cation concentration below a critical threshold further
enhances resistance to crystallization. For instance, Ryu
et al. proposed ITGO (In:Sn:Ga=25:58:17 at%) as an alter-
native to conventional IGZO [169]. This composition not
only suppresses crystallization through the incorporation of
Sn but also benefits from the inherently low diffusivity of
Sn (1.05x 1077 cm? s71), thereby maintaining phase integ-
rity and stable electrical performance (Vy,: —0.03 V, pipg:
7.7 cm? V~! s71) even after annealing above 700 °C. The
high bond dissociation energy of Sn—O further contributes
to thermal stability in the bonding structure and suppresses
the formation of oxygen-related defects.

A second strategy for achieving phase stability involves
the intentional alignment of crystalline grains during the
early stages of film growth. This approach minimizes struc-
tural changes during high-temperature processing while
preserving high carrier mobility. According to Ryu et al.,
InGaO with a highly aligned cubic (222) orientation along
the out-of-plane direction (In:Ga=4:1 at%) exhibited neg-
ligible structural degradation up to 700 °C, in contrast to
randomly oriented films [126]. This phase stability also led
to reduced changes in bandgap energy, film density, and
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oxygen bonding states, ultimately enabling excellent device
performance (V,: —0.65 V, pipg: 128.2 cm? V™! s71) at tem-
peratures exceeding 600 °C, which meets the thermal budget
requirements of the DRAM industry.

Nonetheless, amorphous oxides inherently suffer from
limited mobility, while crystalline oxides face challenges in
achieving single-crystalline growth, leading to grain bound-
ary-related nonuniformities. Consequently, the debate over
the optimal phase—amorphous versus crystalline—for
thermally stable OSs remains an ongoing topic in materials
research.

4.3 Hydrogen Resistance

Hydrogen is widely incorporated across various stages of
memory device fabrication, particularly during passiva-
tion, metallization, and annealing. In conventional Si-based
memory devices, the low reactivity of silicon with hydrogen,
combined with hydrogen’s ability to effectively passivate
dangling bonds, has been beneficial for improving device
performance. However, when oxide OS channels are inte-
grated into hydrogen-rich process architectures, hydrogen
incorporation can lead to the formation of various defects
within the channel. Hydrogen can exist in H;*, Hy*, and
VH states in the OS matrix, generally acting as a shallow
donor, and has also been reported to promote the forma-
tion of oxygen vacancies [243-245]. In contrast, several
reports highlight the ambivalent effects of hydrogen. When
introduced in appropriate amounts, hydrogen can passivate
weak bonds, deep states, and oxygen vacancies in OSs,
leading to improvements in SS and short-term PBTS [243,
246-249]. However, the high thermal budgets characteristic
of DRAM fabrication—frequently above 600 °C—facilitate
rapid hydrogen diffusion and accelerate defect generation
relative to display manufacturing, indicating a clear need
for methods that improve hydrogen stability. The primary
concern regarding hydrogen exposure is the electrical deg-
radation of OS properties. In DRAM applications, where
a tight sensing margin is critical, a V,;, shift within+0.1 V
is typically required even after hydrogen exposure. This
necessitates strict control over hydrogen-related and hydro-
gen-induced defects that can alter carrier density. A second
concern is the physical degradation driven by hydrogen’s
strong reducing nature, which can induce metal precipitation
and etching phenomena [250, 251]. At temperatures above
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600 °C, hydrogen exposure has been shown, both thermo-
dynamically and experimentally, to reduce In,O5; and SnO,
into volatile hydrides such as InH; and SnH,,.

One approach to mitigate these issues is the introduc-
tion of hydrogen barrier layers. Thin films such as SiN, and
Al,O; can be deposited either on top of the OS channel or
at critical interfaces to effectively block hydrogen permea-
tion [221, 252, 253]. According to Kim et al., Al,O; used
as a gate insulator exhibits a low H, permeability of less
than 10~ Barrer [221]. By controlling the carbon, oxygen,
and hydrogen content within the Al,Oj; film, they demon-
strated improved hydrogen resistance, achieving a AV, as
low as —0.13 V after H, annealing. Another strategy involves
material-level engineering by incorporating elements with
high hydrogen resistance. For example, the inclusion of ele-
ments with high oxygen bond dissociation energy can help
suppress the formation of oxygen vacancies under hydro-
gen-rich environments. Saito et al. introduced Si, which has
a significantly higher bond dissociation energy for Si—O
(799 kJ mol™") compared to Zn—-O (< 250 kJ mol™"), into
InGaZnO to form InGaSiO [245]. As a result, InGaSiO
films maintained semiconducting properties with enhance-
ment mode even after H, annealing at 380 °C, whereas the
conventional InGaZnO films underwent severe degradation
and changed to depletion mode under the same conditions.
Similarly, Sn has been reported to trap hydrogen by form-
ing Sn—H complexes, which suppress the formation of shal-
low donor-like hydrogen states and contribute to enhanced
device stability under bias and thermal stress [254]. How-
ever, further studies on the effects and behavior of hydrogen
under high-temperature conditions are still required, consid-
ering the thermal budget of DRAM fabrication processes. In
addition to ensuring V,, stability, achieving robust H, resist-
ance with improved ppg and stress reliability continues to be
a critical research objective.

4.4 P-type Oxide Channels

In memory devices, the peripheral circuitry performs a range
of critical functions, including word line control, sensing
amplification, and precharge operations. For advanced 3D
DRAM integration, OS-based circuit technology is essen-
tial. Although OSs are predominantly n-type, NMOS-only
implementations exhibit inherent limitations that become
more pronounced with higher integration, resulting in
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reduced signal amplitude and lower efficiency. Conse-
quently, CMOS is generally adopted in the periphery to
ensure stable signaling, sufficient noise margin, and depend-
able control and sensing, underscoring the need for reliable
p-type oxide semiconductors. However, existing p-type OSs
suffer from several limitations, including low hole mobil-
ity (<10 cm? V=1 571, high I, and poor stability [8].
First, the low mobility of p-type OSs originates from their
valence bands, which are primarily composed of localized
O 2p orbitals as shown in Fig. 3b, severely restricting hole
transport. Considering that state-of-the-art n-type OSs have
demonstrated mobilities exceeding 100 cm? V= s7!, p-type
OSs are required to achieve mobilities above approximately
40 cm® V~! s7! to ensure balanced drive currents in CMOS
circuits. Second, the high I 4 in p-type OSs is mainly due
to their intrinsically low bandgap (<2.5 eV) and the corre-
spondingly low Schottky barrier height at the metal contact,
which facilitates thermionic carrier injection in the off state.
For sufficient sensing accuracy and noise immunity in prac-
tical applications, the I, /Ioy ratio should exceed 10°, with
Lo levels below ~ 10714 A um~!. Finally, the poor stability
of p-type OSs arises from the metastable oxidation state of
the cation (e.g., Sn>* in SnO, which can be oxidized to Sn**
in SnO,) and the high density of hole trap sites associated
with localized O 2p orbitals. Stress reliability requirements
are comparable to those of n-type OSs, typically demanding
that the V,;, shift remain within 0.1 V under gate bias stress
of 2 MV cm™! at 95 °C for multi-year.

To address these challenges, new material systems based
on Cu, Sn, Ni, and Te are being actively investigated [207,
255-261]. P-type channels such as CuO, SnO, and NiO,
in which the valence band maximum (VBM) is primarily
derived from O 2p orbitals, have demonstrated upg below
10 cm? V! s7!. In contrast, TeO, materials, in which the
VBM is primarily composed of Te 5p orbitals, have recently
been regarded as promising p-type candidates, as the large
spatial extent of the 5p orbitals can reduce the hole effec-
tive mass and thereby enhance mobility. Based on Liu et al.,
the electrical performance of amorphous Te-TeO, thin-film
transistors was significantly enhanced by selenium alloying
[261]. Controlling the oxygen content to promote suboxide
formation effectively widened the bandgap, which in turn
suppressed the off-state current. As a result, the optimized
Se-alloyed Te-TeOy devices achieved an average hole mobil-
ity of~15 cm® V=1 s™!, an I_ /I ratio of ~ 107, and exhibited
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excellent bias-stress stability with minimal subthreshold
degradation.

To further enhance mobility, material engineering strate-
gies that improve crystallinity are being actively explored.
Kim et al. reported that in ALD-grown SnO, adopting a
DFM for the precursor supply promoted lateral grain growth
and improved the c-axis alignment of the (001)-oriented
tetragonal structure, thereby reducing structural defects and
enhancing carrier transport [207]. As a result, the optimized
SnO TFT achieved a one-order-of-magnitude increase in the
/1 ratio (7.38 x 10°), a higher g of 1.86 cm? V™! s,
and a low SS of 0.12 V decade™!. Approaches involving the
introduction of passivation layers have also been investi-
gated to simultaneously improve carrier mobility and device
stability. Kim et al. reported that incorporating an in situ
ALD-grown Al,O; passivation layer on the SnO channel
suppressed the formation of thermodynamically stable
SnO, phases and facilitated the growth of highly oriented,
large-grain SnO domains, thereby reducing grain bound-
ary density and scattering centers [258]. This crystallinity
enhancement improved hole transport, yielding a ppg of
2.53 cm? V! s7!. Moreover, the use of conformal passi-
vation layers is particularly advantageous in suppressing
extrinsic degradation mechanisms, such as oxygen diffusion
or interfacial redox reactions, which are accelerated under
bias-temperature stress. This highlights the importance of
interface and surface engineering in advancing the stability
of p-type oxide TFTs.

Another strategy to enhance the performance of p-type
FETs involves electrode and contact engineering. Choi et al.
emphasized the importance of selecting electrode materials
with an appropriate work function to minimize the Schottky
barrier height at the metal-semiconductor interface, thereby
facilitating efficient hole injection [259]. They demonstrated
that inserting a 5 nm indium tin oxide (ITO) interlayer
between the Ni electrode (work function=4.60 eV) and
the p-type SnO channel (4.56 eV) effectively suppressed
interfacial redox reactions that otherwise induce the for-
mation of insulating SnO, phases. This interface modifica-
tion enhanced the ugg (~2.5 cm? V=1 s71), while lowering
the off-current from 3x 107 to 2x 107!! A by mitigating
defect-induced leakage pathways. Beyond simple work-
function matching, recent studies also emphasize the role of
contact-induced dipoles and interfacial phase stabilization,
suggesting that contact engineering should be considered
not only from an energy-band alignment perspective but also

© The authors

as a means to suppress parasitic chemical reactions at the
interface.

Nevertheless, p-type OSs still demonstrate inferior per-
formance compared to conventional p-type Si channels,
underscoring the need for effective strategies to achieve
key targets such as a field-effect mobility exceeding 40
cm? V™! 57! high-temperature stability (~ 600 °C), and
excellent bias temperature stress reliability. Furthermore,
establishing ALD processes for implementing promising
Te-based materials into 3D architectures remains an unre-
solved challenge.

4.5 Other Challenging Issues
4.5.1 Cross-Parameter Trade-Offs and Co-optimization

Interdependent mitigation strategies for contact resistance,
thermal stability, and hydrogen resistance inevitably intro-
duce trade-offs, necessitating a co-optimization approach
for balanced device performance. These interdependencies
are evident in practical schemes such as interlayer design
with oxygen scavenging metals, hydrogen barrier forma-
tion, and surface or plasma treatments. For contact resist-
ance, interlayers and oxygen scavenging metals can narrow
the interfacial barrier and reduce injection resistance. Still,
they also risk interfacial redox reactions and metal diffusion
during high-temperature steps, which subsequently perturb
V, stability. For thermal stability, the same metallurgical
activity can drive premature crystallization and interface
roughening, degrading the SS and long-term reliability. For
hydrogen resistance, barrier layers suppress donor formation
and limit threshold drift, yet they may introduce interfacial
dipoles and fixed charge that worsen the SS or reinforce
Fermi level pinning.

Accordingly, diagnostics must be explicitly tied to each
issue: wafer map TLM and cross-bridge Kelvin resistor
(CBKR) structures for continuous tracking of contact resist-
ance; accelerated thermal stress and retention style tests for
thermal stability; and bias temperature stress under con-
trolled hydrogen exposure for hydrogen-related drift. Taken
together, these links motivate a co-optimization strategy that
sets an appropriate thermal budget to minimize diffusion
time and preserves the intended band alignment and barrier
function through deliberate control of layer placement and
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thickness, with closed-loop feedback from the corresponding
electrical monitors.

4.5.2 Device-to-device and Wafer-to-wafer Variability

While ALD offers excellent film-level uniformity, translat-
ing this advantage into consistent device-level performance
across large wafers and deeply stacked arrays remains a sig-
nificant challenge. In OS FETSs, variability in Vy, ppg, SS,
contact resistance, and reliability arises from coupled pro-
cess and materials factors. Process side contributors include
precursor dosing and purge efficiency, spatial nonuniformity
of temperature, pattern density effects, and step coverage;
materials side contributors include local differences in cation
ratio, oxygen vacancy fraction, residual hydrogen, nanocrys-
tallinity, and interface state density. Interface-related fac-
tors—such as interlayer thickness fluctuations, interfacial
dipoles, contact roughness, and Fermi level pinning—further
degrade uniformity.

To address these issues, variance decomposition across
the channel, gate insulator, and contact can be coupled with
wafer maps and on-chip monitors—such as CBKR, TLM,
and Van der Pauw structures—to quantify corner-to-center
trends and distribution tails. At the same time, advanced
process control with in situ sensing, optimized wafer rotation
and flow zoning, controlled post-treatments, and interlayer
engineering that suppresses interfacial oxidation remains
necessary. In parallel, unified statistical specifications that
link device-level variability to array-level failure tails are
required, including quantitative targets for sigma of V,,
contact resistance spread, and interface state density that
guarantee sensing margin at scale. Closing the loop from
variability monitors to real-time tool control across 300 mm
wafers and 3D stacks remains a critical milestone.

4.5.3 Long-Term Reliability Beyond Bias-Temperature
Stress

While BTI has been widely studied in OS FETs, other deg-
radation mechanisms—particularly hot carrier injection
(HCI), random telegraph noise (RTN), and soft error rate
(SER)—are gaining increasing importance as devices are
scaled and sensing margins become tighter. In contrast to
Si-based channel, the wide bandgap and disordered network
of OSs shift the degradation focus toward contact-adjacent
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regions and within the channel, where strong lateral fields
and injection-limited transport promote HCI-induced trap
creation that drives V,, drift, transconductance loss, and SS
degradation. The intrinsically low carrier density amplifies
the impact of a few active traps, producing RTN and dis-
crete current fluctuations that directly erode the read margin,
while ionizing events can inject transient charge into high-
resistance nodes with long recovery times, increasing SER
susceptibility.

To evaluate and mitigate these reliability concerns, a sys-
tematic qualification framework is required. This framework
combines contact-focused hot carrier stress at elevated tem-
peratures, time-domain noise measurements across millisec-
ond—second scales and temperature ranges, and accelerated
stress testing—including radiation, electrical, and thermal
transients—to extract soft-error cross sections under realistic
bias conditions. Mitigation strategies operate across multiple
levels. At the material and process level, emphasis is placed
on gate-insulator stacks with low interface state density, bal-
anced hydrogen management, and interlayer engineering to
stabilize injection barriers and reduce local field concentra-
tion. At the circuit and operation level, noise-robust sensing,
adaptive bias or refresh schemes, and error correction with
redundancy are essential to maintain array-level reliability.

5 Conclusion and Outlook

Oxide semiconductors (OSs) have rapidly evolved from
display backplane materials into promising channel candi-
dates for advanced memory architectures. Their unique elec-
tronic band structure—characterized by delocalized metal
ns orbitals, wide bandgaps, and ultralow leakage—provides
an intrinsic advantage for low-power and 3D integration.
Recent demonstrations in BEOL, 1T1C, 2TOC, and ferro-
electric FET (FeFET) architectures highlight their potential
to extend beyond conventional silicon-based scaling limits.

Atomic layer deposition (ALD) has emerged as a pivotal
enabler in this transformation. By virtue of the four key
characteristics—excellent 3D uniformity, angstrom-scale
controllability, rational cation-distribution design, and
inherently high film quality—ALD enables the growth of
dense, low-defect thin films with clean interfaces. Recent
advances—including cation engineering with Sn and W, con-
trolled crystallization of ultrathin In,0;, bilayer/nanolami-
nate channel design, and light-element incorporation—have
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demonstrated significant progress in mobility enhancement,
bias stability, and thermal robustness. These findings con-
firm that ALD not only provides scalable processing but also
offers a versatile platform for defect control and atomic-scale
material design.

Despite these advances, several challenges must be over-
come before OSs can be widely adopted in DRAM and other
memory technologies. Key bottlenecks include (i) high con-
tact resistance at the metal-semiconductor interface, (ii) lim-
ited thermal stability under > 600 °C processing relevant to
capacitor formation, (iii) hydrogen-induced threshold volt-
age instabilities during high-temperature fabrication, and
(iv) the lack of high-mobility, stable p-type oxide semi-
conductors for CMOS integration. Addressing these issues
requires a combination of interface engineering, dopant and
defect control, hydrogen barrier design, and exploration of
novel p-type systems such as TeOx alloys.

Specifically, across four application classes—BEOL,
1T1C, 2TOC, and FeFET—OSs are required to meet the
application targets. For BEOL, it is desirable that they

deliver high mobility with large 7, ultralow /g, small SS,

.
and appropriate V,;, within a sub-400 °C thermal budget. In
1T1C, OSs should retain transfer characteristics and reliabil-
ity after high temperature (> 600 °C) capacitor processing.
In 2TOC, charge retention benefits from very low I g in the
read FET, while fast (few—tens of ns) writes are favored by
high 1, and large g,; in parallel, device/layout choices are
encouraged to suppress unintended parasitic capacitances.
For FeFETs, suitability for high-aspect-ratio 3D vertical
architectures and excellent ferroelectric/OS-channel inter-
facial compatibility are paramount, design strategies, such
as adopting p-type OSs, are required to address hole scarcity
in n-type OS channels. Across all applications, lower con-
tact resistance, improvement hydrogen resistance, and ALD
compatibility is advantageous to conformally realize CAA/
GAA/VCT 3D geometric FETs for continued scaling.
Looking ahead, OSs are expected to play a strategic role
in bridging logic and memory integration, particularly in
monolithic 3D system architectures where energy efficiency
and scaling are paramount. The demonstrated compatibility
of ALD-grown OSs with vertical channel transistors, gate-
all-around (GAA) FETs, and ferroelectric memory elements
highlights their adaptability across diverse device platforms.
Moreover, the integration of Al-driven process modeling
and data-driven optimization of ALD chemistry offers a
path toward accelerating material discovery and device
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reliability. Practically, Al/data-driven process optimization
proceeds along two primary directions, augmented by large
language models (LLMs) as an integrating layer. First, ALD
recipe optimization uses closed-loop Bayesian optimization
and active learning on high-throughput experiments to meet
target film metrics [262-264]. Second is precursor/reactant
design, based on DFT-derived machine learning, for precur-
sor/reactant properties optimization or HAR conformality
prediction [265-268].

In conclusion, ALD-enabled OSs offer a credible path
to next-generation semiconductor industry. From a tech-
nology-maturity perspective, the present maturity ranges
from proof-of-concept and lab-validated prototypes to early
pilot-line (pre-production) demonstration for BEOL/mem-
ory-compatible OS channels and selector devices, enabling
near-term deployment in low-leakage selectors and periph-
eral circuits and positioning the technology for mid-term
adoption in 1T1C/2TOC/FeFET architectures. Most recently,
TSMC Ltd. has substantiated industrial viability by validat-
ing yield and reliability at the test-chip level for an ALD-
OS-based 1T1C memory array embedded in the BEOL that
is fully compatible with advanced logic processes [269].
Additionally, at the 2025 VLSI Symposium, SK hynix posi-
tioned oxide semiconductors (OSs) as next-generation chan-
nel materials for 4F> memory scaling [270]. However, key
risks remain—contact resistance at scaled dimensions, ther-
mal robustness, hydrogen resistance, reliable hole transport,
device-to-device and wafer-to-wafer variability, and long-
term reliability—yet these are de-riskable through precursor
chemistry and ligand design, contact/interface engineering,
impurity incorporation and defect management, atomic-scale
processing, and system-level integration. With these mile-
stones, the convergence of atomic-scale materials design and
device co-optimization is positioned to move OS channels
from pilot demonstrations toward qualified, industry-relevant
deployment.
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