

Cite as
Nano-Micro Lett.
(2026) 18:180

Received: 24 August 2025
Accepted: 9 November 2025
© The Author(s) 2026

Oxide Semiconductor for Advanced Memory Architectures: Atomic Layer Deposition, Key Requirement and Challenges

Chi-Hoon Lee¹, Seong-Hwan Ryu¹, Taewon Hwang¹, Sang-Hyun Kim²,
Yoon-Seo Kim^{1,3} , Jin-Seong Park^{1,2}

HIGHLIGHTS

- This review outlines the emergence of oxide semiconductors as promising channel materials for high-density, low-power next-generation memory applications.
- Adsorption and reaction mechanisms of atomic layer deposition have enabled the design of high-performance oxide semiconductors for next-generation memory applications.
- This review discusses key challenges toward successfully integrating oxide semiconductors into next-generation memory devices.

ABSTRACT Oxide semiconductors (OSs), introduced by the Hosono group in the early 2000s, have evolved from display backplane materials to promising candidates for advanced memory and logic devices. The exceptionally low leakage current of OSs and compatibility with three-dimensional (3D) architectures have recently sparked renewed interest in their use in semiconductor applications. This review begins by exploring the unique material properties of OSs, which fundamentally originate from their distinct electronic band structure. Subsequently, we focus on atomic layer deposition (ALD), a core technique for growing excellent OS films, covering both basic and advanced processes compatible with 3D scaling. The basic surface reaction mechanisms—adsorption and reaction—and their roles in film growth are introduced. Furthermore, material design strategies, such as cation selection, crystallinity control, anion doping, and heterostructure engineering, are discussed. We also highlight challenges in memory applications, including contact resistance, hydrogen instability, and lack of p-type materials, and discuss the feasibility of ALD-grown OSs as potential solutions. Lastly, we provide an outlook on the role of ALD-grown

Chi-Hoon Lee and Seong-Hwan Ryu have contributed equally to this work.

Yoon-Seo Kim, yoon-seo.kim@imec.be; Jin-Seong Park, jsparklime@hanyang.ac.kr

¹ Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

² Department of Display Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

³ Present Address: Imec, Kapeldreef 75, B-3001 Louvain, Belgium

OSs in memory technologies. This review bridges material fundamentals and device-level requirements, offering a comprehensive perspective on the potential of ALD-driven OSs for next-generation semiconductor memory devices.

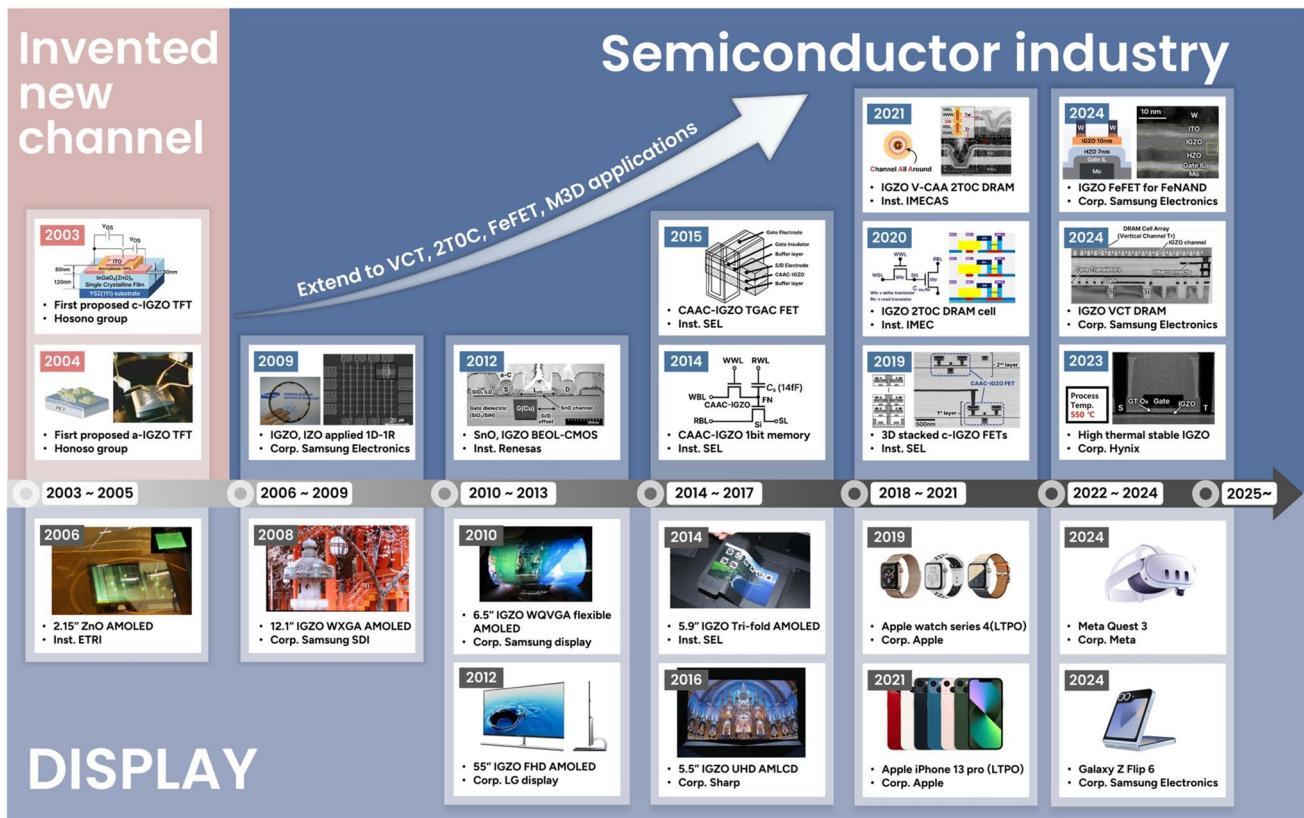
KEYWORDS Oxide semiconductor (OS); Atomic layer deposition (ALD); Memory applications

1 Introduction

1.1 Beyond Displays: OS Channels for Semiconductor Applications

Advances in modern memory and logic technologies have been driven by continuous scaling down of silicon-based devices. However, this progress is now facing physical limitations of device miniaturization and material limitations related to power consumption [1–4]. Consequently, the need for next-generation channel materials has become increasingly critical. Oxide semiconductors (OSs), well-known in the display industry for their excellent electrical properties and process compatibility, are now attracting growing interest in memory and logic applications [5–7]. Early research focused on their application in back-end-of-line (BEOL) logic technologies, given their capability for deposition on three-dimensional (3D) structures and low-temperature (below 400 °C) processing [8–10]. Recently, OSs have emerged as promising candidates for next-generation memory technologies, driven by demands for reduced cell size, increased transistor density, and vertical channel architectures to enhance integration density [11–13]. The low power consumption of these frameworks renders them especially attractive in dynamic random-access memory (DRAM) applications, where high leakage currents necessitate continuous dynamic refresh operations, leading to significant power consumption [12, 14]. In response to these industrial demands, extensive research is underway for the practical implementation of OS-based devices.

1.2 OS Channel Roadmap: From Invention to Mass Production in Displays


The idea of OSs as next-generation channel materials was first proposed by the Hosono group in 2003 through the demonstration of crystalline InGaZnO (IGZO; light red region in Fig. 1). Specifically, single-crystalline IGZO was synthesized via pulsed laser deposition (PLD) followed by annealing at 1400 °C. When used as the active layer in a

thin-film transistor (TFT), the material exhibited a high field-effect mobility of approximately $80 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ [15]. In 2004, the same group demonstrated the potential of OSs for next-generation displays by fabricating amorphous IGZO (a-IGZO) TFTs on polyethylene terephthalate substrates at room temperature (RT) using PLD and validating their transfer characteristics [16].

Since Hosono's introduction of a-IGZO, OSs have attracted growing interest in next-generation displays due to their low off-state current, high mobility, and low-temperature process compatibility (Fig. 1, light blue region). In 2006, the Electronics and Telecommunications Research Institute, Korea, demonstrated the first active matrix organic light emitting diode (AMOLED) panel using ALD-grown ZnO TFTs [17]. Subsequent milestones include Samsung SDI's 12.1-in AMOLED with sputtered a-IGZO (2008) [18], and Samsung Display's flexible AMOLED (2010) showing robust performance under 10,000 bending cycles [19]. In 2012, LG Display scaled IGZO to Gen. 8 glass for 55-in OLED TVs [20], while SEL introduced a foldable AMOLED using c-axis aligned crystalline indium-gallium-zinc oxide (CAAC-IGZO) in 2014 [21]. Sharp's 1000 ppi IGZO liquid crystal display (LCD) (2016) enabled ultrahigh-resolution displays [22]. Commercial adoption followed, with Apple integrating IGZO into the Apple Watch (2019) and iPhone 13 Pro (2021) [23, 24]. Most recently, IGZO has been adopted in Meta Quest 3 and Samsung Galaxy Z Flip 6 (2024), highlighting its scalability and commercial viability [25].

1.3 OS Channel Roadmap for Semiconductor Industrial Applications

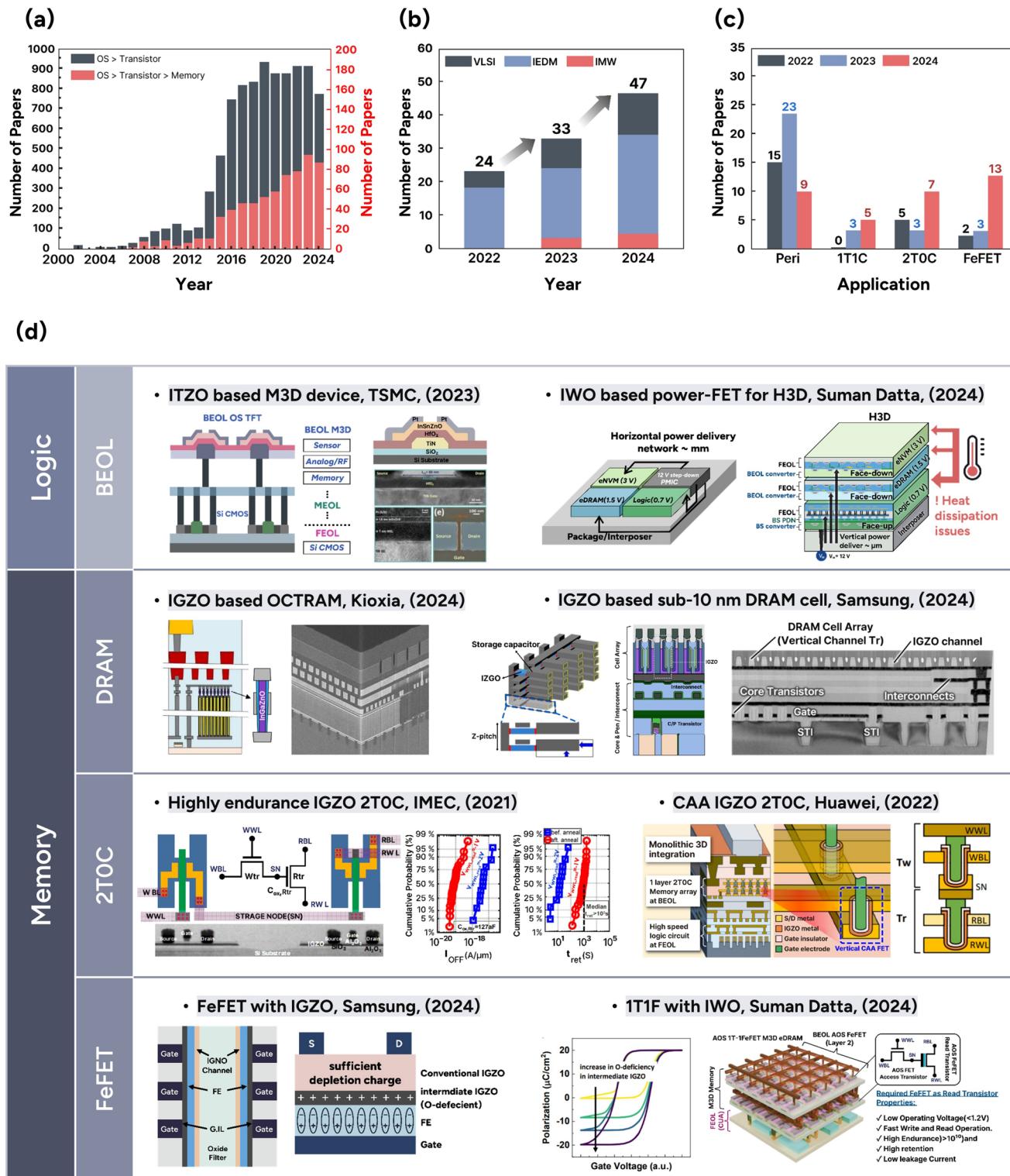
As shown in the dark blue region in Fig. 1, research into the application of OSs in the memory and logic industries began expanding in 2009 with Samsung Electronics Inc.'s report on an 8×8 one-diode-one-resistor array based on oxide transistors. In this work, IGZO was used to prepare the selector transistor, and indium-zinc oxide (IZO) was applied as the diode. ALD-processed NiO demonstrated

Fig. 1 Chronological development and technological expansion of oxide semiconductor thin-film transistors (OS-TFTs) from display applications to high-performance memory and logic integration. Starting with the first proposal of IGZO-based TFTs, OS-TFTs were rapidly adopted in display technologies. Subsequently, the application scope has expanded to include advanced logic and memory devices. The images of Apple Watch Series 4 and Apple iPhone 13 Pro were provided by Apple, Inc. The images of Samsung Galaxy Z Flip 6 were provided by Samsung Electronics. Reproduced with permission [15–35]. Copyright 2003, Science. Copyright 2004, Nature. Copyright 2006, 2008, 2009, 2010, 2012, 2014, 2016, 2019, 2024, John Wiley & Sons. Copyright 2012, 2014, 2015, 2019, 2020, 2021, 2023, 2024, IEEE. Copyright 2023, Kim et al.

superior properties compared with sputtered NiO for the resistive element [26]. In 2012, Renesas Corp. demonstrated, for the first time, SnO TFTs exhibiting an I_{on}/I_{off} ratio over 10^4 and a drain voltage capability exceeding 40 V, highlighting the feasibility of SnO and IGZO-based BEOL-complementary metal-oxide semiconductor (CMOS) I/O integration within conventional silicon-based large-scale integration processes [27]. In 2014, SEL Institute realized a novel 50 nm-scale field-effect transistor (FET) employing CAAC-IGZO, reporting excellent device characteristics with a drain-induced barrier lowering (DIBL) of 67 mV V^{-1} and a subthreshold swing (SS) of 92 mV dec^{-1} . Circuit simulations further demonstrated that memory devices based on this FET architecture could achieve write speeds below 5 ns and retention times exceeding 1000 s [28]. In 2015, SEL reported a scalable, low-cost trench-gate-self-aligned

CAAC-IGZO FET fabricated with only three masks at the 20 nm node, achieving a DIBL of 0.12 V V^{-1} and an SS of 97 mV dec^{-1} [29]. In 2019, SEL introduced a CAAC-IGZO FET with a gate length of 72 nm integrated into a 3D monolithic stack, fabricated via a trench-gate self-aligned flow at $\leq 400 \text{ }^{\circ}\text{C}$ with a top-/back-gate effective oxide thickness (EOT) of $\sim 6 \text{ nm}$ and a back-gate for V_{th} control ($-\partial V_{th}/\partial V_{bg} \approx 0.13 \text{ V/V}$), with the thermal budget tuned to preserve lower-/upper-device performance. Simulation results indicated the potential for non-volatile OS random-access memory operation featuring write speeds under 10 ns and endurance beyond 10^{12} cycles [30]. In 2020, IMEC Institute reported a world-first capacitor-less two-transistor (2T0C) architecture based on IGZO FETs, built in a 300-mm back-end-of-line (BEOL)-compatible flow using a bottom oxygen-channel stack (SiO_2 under IGZO with an Al_2O_3 top

gate), O_2 -anneal-driven defect passivation, and contact/layout engineering (ALD-TiN to suppress O-scavenging and minimized extension length) to scale the gate-dielectric EOT and boost C_{ox} , achieving retention times exceeding 400 s without the need for a capacitor [31]. In 2021, IMECAS experimentally demonstrated the world's first vertical channel-all-around (CAA) IGZO FET structure within a 2T0C DRAM cell, built in a BEOL-compatible PEALD flow at ~ 250 °C using O_2 plasma to deposit IGZO/ Al_2O_3 /IZO in situ, with Mo/ SiO_2 /Mo vertical MIM S/D defining the critical dimension (CD); V_{th} and SS were optimized by adjusting the $InO_x:GaO_x:ZnO_x$ cycle ratio and by lowering the plasma power (~ 38 W), with retention times exceeding 300 s [32]. In 2023, Hynix Corp. confirmed that crystalline IGZO maintained structural stability without agglomeration during a hydrogen-containing high-temperature process at 550 °C—conditions relevant to DRAM fabrication—whereas amorphous IGZO underwent degradation [33]. Most recently, in 2024, Samsung Electronics Inc. proposed a single-gate IGZO-based vertical channel transistor (VCT) structure, DRAM-oriented to suppress passing-gate interference below 10 nm, relocate BL/storage contacts for a 4F² cell, favor ALD-IGZO over physical vapor deposition (PVD) for conformal channels with steeper SS and lower I_{off} at 85 °C, and bias composition toward Ga-rich/low-In to stabilize V_{th} , overcoming limits of conventional Si-based DRAM and improving scalability [34]. Furthermore, the company demonstrated an oxygen-deficient IGZO-based ferroelectric FET (FeFET), which exhibited a large memory window of 17.8 V and a fast pulse response of approximately 1 μ s [35]. Overall, the widespread adoption of OSs in display technologies has not only demonstrated their technological significance but also accelerated their exploration for use in next-generation memory applications.


1.4 Growing Attention for OS Channel in Semiconductor Applications

The rising volume of research publications highlights the growing interest in OSs for memory applications. Figure 2a illustrates the chronological increase in the number of publications related to OS devices. The marked acceleration in memory-focused research since 2020 highlights the increasing relevance of OSs in the field. Figure 2b summarizes the number of papers on OSs presented annually at

major international conferences, including the International Memory Workshop (IMW), International Electron Devices Meeting (IEDM), and Symposia on VLSI Technology and Circuits (VLSI). A clear upward trend can be observed from 2022 to 2024, with the total number of papers rising from 24 in 2022 to 47 in 2024, reflecting the expanding attention garnered by this field within the memory and logic industries. Figure 2c categorizes the annual publication count from 2022 to 2024 by application type—BEOL, one-transistor one-capacitor (1T1C), 2T0C, and ferroelectric field-effect transistor (FeFET)—within the memory and logic sectors. While BEOL-related publications increased from 15 in 2022 to 23 in 2023, a decline to 9 was observed in 2024. In contrast, the number of publications related to 1T1C, 2T0C, and FeFET increased to 5, 7, and 13, respectively, in 2024. In other words, although early research on OSs in logic circuits primarily focused on BEOL integration, a recent shift toward their use as core cell transistors in memory applications has been observed. The device benchmarks for each application can be found in Tables 1 and 2 [36–86].

In the evolution of OS-channel-based memory technologies, three cell primitives—1T1C, 2T0C, and FeFET—are drawing significant attention. 1T1C stores charge on a discrete capacitor written/sensed through a gated access path. The defined cell capacitor yields a predictable bit-line signal ($\Delta V \approx Q/C_{BL}$) and controllable retention, while physical separation of the storage node from the channel mitigates disturb and variability, enabling a stable, reproducible memory framework based on destructive read followed by immediate restore [87, 88]. 2T0C is a capacitor-less dynamic cell that separates write/store and read-sense with two transistors, where the parasitic capacitance of read transistor serves as the storage node; removing the capacitor eases BEOL integration and shrinks pitch, with long retention, sensing margin, and variability as key challenges [31, 89]. FeFET embeds a ferroelectric material in the OS gate stack to realize non-volatile, polarization-driven V_{th} shifts, enabling fast, low-energy operation and analog programmability for in-memory computing [90, 91]. Across these, OS channels are receiving growing attention in next-generation semiconductor development, with sustained academic–industrial efforts.

Recent studies on OS channels for memory and logic applications can be categorized into four types—BEOL, 1T1C, 2T0C, and FeFET—as shown in Fig. 2d. In the context of logic-oriented BEOL integration, from a high-density scaling perspective, in 2023, TSMC Ltd. reported

Fig. 2 Recent research trends and application landscape of oxide–semiconductor-based devices for logic and memory applications. **a** Annual increase in the number of publications and cumulative citations on oxide semiconductors for memory applications, indicating growing research interest. **b** Yearly distribution of relevant papers across major conferences (IEDM, VLSI, IMW) from 2022 to 2024. **c** Number of published works by application category—back-end-of-line (BEOL), 1T1C, 2T0C, and FeFET—showing increased focus on memory. **d** Representative device demonstrations categorized by application. Reproduced with permission [12, 34, 35, 53, 65, 81, 89, 92]. Copyright 2021, 2022, 2023, 2024, IEEE

Table 1 Benchmark of OS FETs for BEOL applications (VLSI/IEDM/IMW, 2022–2024)

OS channel	Channel thickness (nm)	Process method	Cell architecture	Thermal budget (°C)	V_{th} (V)	μ_{FET} ($\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$)	S.S (mV dec $^{-1}$)	PBS	ΔV_{th} (V)	Refs
In_2O_3	3.1	ALD	GAA	250	−2.6	76–86	100	−0.7	[36]	
	1.9–2.5	ALD	Planar	300	0.1	55	150–185	–	[37]	
	1.5–1.8	ALD	Planar	235	0	–	163	–	[38]	
	1.5, 2.2	ALD	Planar	450	−1.1	107	100–150	–	[39]	
	2.5	ALD	Planar	225	−2.5	–	100	−0.07	[40]	
	1.3–2.0	ALD	Planar	225	0	>100	–	–	[41]	
	1.6	ALD	Planar	400	>0	72	70	0.03	[42]	
	1.2–2.0	ALD	Buried-gate	290	–	62	100	–	[43]	
	2.5	ALD	Planar	350	0	175	75	–	[44]	
In_2O_3	3.5	ALD	Planar	250	0	45	65	0.02	[45]	
	2	ALD	Planar	300	0.1	60	69	0.03	[46]	
InGaO	3	ALD	Planar	225	0.4	29	85	0.03	[47]	
	7	ALD	Nanosheet	600	0	30	100	0.1	[48]	
	–	ALD	Planar	250	0	–	75	0.08	[49]	
	3	ALD	Planar	300	1.2	14	80	–	[50]	
	–	ALD	Planar	450	0	20–100	68–75	–	[51]	
InSnO	2.9	ALD	Planar	400	0.5	26	95	−0.07	[52]	
	–	ALD	Planar	400	–	–	–	–	[53]	
	8	ALD	GAA	400	0	22	68–75	−0.09	[54]	
InGaZnO	3.0–4.0	ALD	Planar	250	0	30	75	0.12	[55]	
	2	ALD	Planar	200	–	–	–	0.5	[56]	
	10	ALD	Planar	250	0	13	126	–	[57, 58]	
	1.5	ALD	Planar	250	0	–	68	0.05	[59]	
	15	ALD	VCT	300	0	–	<100	–	[60]	
	6	ALD	V-GAA	400	0.1	–	75–80	−0.02	[61]	
	5.6	ALD	Planar	250	0	–	60	−0.1	[62]	

the implementation of a 1.8-nm ultrathin indium-tin-zinc-oxide film—deposited via ALD—as the channel material in a FET with a 40-nm channel length. This device demonstrated a low DIBL of 22 mV V $^{-1}$ along with a respectable field-effect mobility of 48 cm 2 V $^{-1}$ s $^{-1}$ [92]. From a BEOL operational validation and guidance perspective, in 2024, the Suman Datta group investigated the bias-temperature instability (BTI) characteristics of high-voltage W-doped In_2O_3 (IWO)-based power FETs designed for heterogeneous 3D (H3D) systems. Using machine learning models, the researchers predicted circuit reliability and proposed thermal optimization strategies, thereby establishing a technological foundation for energy-efficient circuit design in H3D system architectures [53]. Collectively, these findings underscore that BEOL deployment of oxide semiconductors hinges on aligning ALD-enabled device characteristics with thermally

constrained, reliability-aware design practices in stacked architectures.

In the memory industry, OS channels have been actively investigated in the domains of 1T1C, 2T0C, and FeFET, with several recent studies reporting significant advancements. In the 1T1C category, considerable attention has been directed toward the use of the OS channel in VCTs. From an array-level demonstration perspective, in 2024, Kioxia demonstrated the world's first high-density 4F 2 DRAM (OCTRAM) featuring a 275 Mbit array, integrating a gate-all-around (GAA) IGZO VCT above a high-aspect-ratio capacitor structure, using a capacitor-first stack to decouple capacitor/VCT interactions and a ~26 nm vertical hole with ALD-IGZO. Device performance was optimized by selecting contact materials to avoid interfacial oxide, thinning the gate oxide and spacer to boost the fringing field,

Table 2 Benchmark of OS FETs for 1T1C, 2T0C, and FeFET (VLSI/IEDM/IMW, 2022–2024)

Device category	OS channel	Process method	Cell architecture	I_{on} ($\mu A \mu m^{-1}$)	$S \cdot S$ ($mV dec^{-1}$)	Memory Window ¹⁾	Retention time (s)	Endurance (cycle)	Multi-level conductance (bit)	Ref
1T1C	IGZO	—	VCT	>150.0	—	—	3600	—	—	[63]
1T1C	In_2O_3	PVD	VCT	112.2	84	—	>100	—	—	[64]
2T0C	IGZO	ALD	CAA	32.8	92	—	—	—	—	[65]
2T0C	IGZO	ALD	CAA	4.1	109	10^6	190	10^{12}	—	[66]
2T0C	IGZO	ALD	CFET	—	135	—	200	500	2	[67]
2T0C	IGZO	ALD	CAA	>3.0	190	$>10^6$	100	10^{11}	—	[68]
2T0C	IGZO	ALD	Planar	>10 $^{-6}$	68	—	10^4	—	4	[69]
2T0C	IGZO	ALD	Planar	—	65	—	>5000	—	—	[70]
2T0C	IGZO	PVD	Planar	1500	—	—	>300	—	3	[71]
2T0C	IGZO	PVD	Planar	270	75	10^5	1000	—	4	[72]
2T0C	IGZO	ALD	CAA	0.2	135	25	20	—	—	[73]
2T0C	IGZO	PVD	Planar	~4.0	—	10^6	180	—	—	[74]
2T0C	IGZO	PVD	Planar	24	—	5	$>10^4$	—	3	[75]
2T0C	IGZO	PVD	Planar	10.6	76	10^5	>300	—	3	[76]
FeFET	In_2O_3	ALD	Planar	—	—	2.5	—	$>10^9$	—	[77]
FeFET	In_2O_3	ALD	VCT	17	65	1.8	>1000	$>10^9$	—	[78]
FeFET	In_2O_3	ALD	Planar	100	68–105	—	>1000	10^7	—	[79]
FeFET	IGO	ALD	GAA	—	90	2.5	>104	—	2	[80]
FeFET	IWO	ALD	Planar	1	97	1	>104	$>10^{12}$	—	[81]
FeFET	IGZO	ALD	Planar	0.2	—	>1	>105	$>10^{10}$	—	[82]
FeFET	IGZO	PVD	Planar	—	—	0.7	—	10^7	—	[83]
FeFET	IGZO	PVD	Planar	~2	—	3.3	—	10^{10}	—	[84]
FeFET	IGZO	PVD	Planar	—	—	10	>1000	10^9	3	[85]
FeFET	IGZO	PVD	Planar	~1	—	17.8	10^3	$>10^4$	—	[35]
FeFET	IGZO	PVD	Planar	1.2	62	2.1	$>10^8$	$>10^7$	—	[86]

¹⁾For 2T0C, memory window is defined as I_{read}/I_{off} . For FeFET, memory window is defined as $V_{th}^{program} - V_{th}^{erase}$

and applying O_2 anneal with channel-composition tuning to stabilize V_{th} through BEOL [12]. From a framework/roadmap and process-guidance perspective, in the same year, Samsung Electronics proposed two oxide-based device architectures—an IGZO VCT and a vertically stacked cell array transistor (VS-CAT)—to address the scaling limits of sub-10-nm DRAM technology. Their comparative analysis of PVD and ALD processes for IGZO VCTs highlighted the significance of process optimization, while the use of IGZO in the VS-CAT architecture enabled epitaxy-free stacking without a seed layer, offering advantages such as z -pitch reduction and process simplification [34]. Collectively, Kioxia's array-level validation and Samsung's framework-level guidance jointly establish both feasibility and a credible technology path for OS channel VCTs as a leading 1T1C DRAM option.

For the 2T0C architecture, research has focused on scaling down devices while improving electrical performance and reliability. From a planar IGZO-2T0C, architecture/integration-validation perspective, in 2021, IMEC Institute demonstrated the 2T0C DRAM operating at a 14 nm channel length using ALD-grown IGZO. Through the adoption of a gate-last integration scheme with a buried oxygen tunnel and careful optimization of the gate dielectric and IGZO channel thickness, the device achieved retention times exceeding 10^3 s and endurance beyond 10^{11} cycles [89]. From a vertical CAA IGZO-FET, device-scaling/thermal-reliability perspective, in 2022, Huawei Technologies Co. fabricated the first vertical CAA IGZO FET with a sub-50-nm critical dimension using ALD. PEALD was employed to form conformal IGZO/HfO_x/IZO ($\approx 3/8/8$ nm) and defining the ~ 55 nm channel length with a SiO_x spacer to strengthen electrostatics; the high-k HfO_x boosted C_{ox}, while the stack preserved performance after 300 °C/30 min N₂ anneal and up to 120 °C positive bias temperature stress (PBTS). This device demonstrated high-speed operation ($I_{on} = 32.8 \mu A \mu m^{-1}$), low SS (92 mV dec⁻¹), thermal reliability, and compatibility with 2T0C 4F² cell architectures—positioning it as a key enabling technology for next-generation ultra-dense, low-latency 3D DRAM [65]. Collectively, these works establish a coherent advancement path for 2T0C, in which planar demonstrations provide array-level validation and integration guidance, and the vertical CAA device platform confirms scalable electrostatics and thermal reliability—jointly de-risking BEOL-compatible processing and paving the way toward ultra-dense 4F² DRAM.

In the FeFET domain, recent efforts have emphasized reducing operating voltage, accelerating switching speed, and enhancing endurance. From a stack- and channel-engineering perspective aimed at maximizing the memory window and expediting the roadmap toward vertically integrated, high-density NVM, in 2024, Samsung Electronics Inc. achieved a record-high memory window of 17.8 V in an IGZO-based FeFET by strategically introducing an oxygen-deficient layer within the channel and engineering the gate interlayer. The device exhibited fast switching (1 μ s), low-voltage operation, and the potential for multi-level signal storage, making it a promising candidate for future high-density non-volatile memory (NVM) [35]. From a BEOL-compatibility and embedded-systems viability perspective—prioritizing ultra-low-voltage operation and exceptional endurance to enable refresh-free 1 T-1FeFET, in 2023, the Suman Datta group developed an amorphous In₂O₃-based 1 T-1FeFET device that operated below 0.9 V, with a switching time of 20 ns, endurance over 10^{12} cycles. The potential for refresh-free embedded memory offers a new standard for NVMs in next-generation embedded DRAM and artificial intelligence (AI) accelerators [81]. Collectively, they strengthen the technological foundation linking materials/process innovation to system-level deployability across 3D NVM and energy-efficient embedded memory.

Particularly in AI system development, next-generation NVMs—FeFET, resistive random-access memory (RRAM), and phase change memory (PCM)—are pivotal as enablers of non-volatile on-chip weight storage, substantially reducing data-movement energy. Their multi-level conductance and fast, low-voltage switching enable compute-in/near-memory architectures for analog-like MACs and in situ learning.

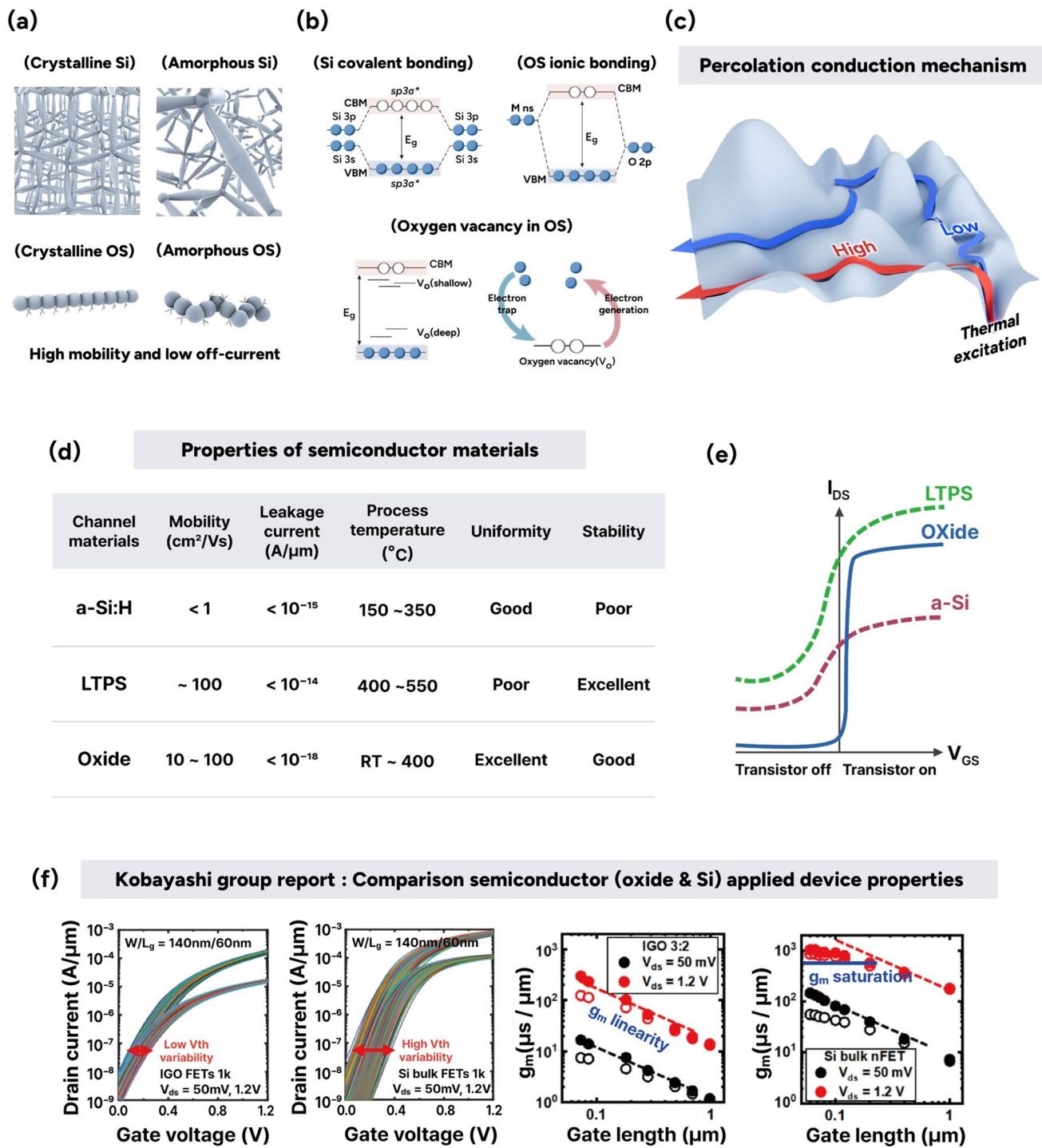
In addition to FeFET, OS-channel FETs have been considered for use as selectors in resistive random-access memory (RRAM) or phase change memory (PCM), primarily because they combine low leakage with usable drive at logic-level biases and compatibility with BEOL fabrication. Recent BEOL stacks pair an ITO-engineered IGZO selector ($I_{on} \approx 196.5 \mu A \mu m^{-1}$, $I_{off} \approx 1 pA \mu m^{-1}$ at $V_{ds} = 1$ V) with a ~ 3.6 -nm MoS₂ switching layer to realize < 1 V, $< 100 \mu A$ 1T1R operation and vertically stacked 2T0C1R hybrids [93]. Furthermore, sub-10-nm-L_{ch} ZnO selectors fabricated at ≤ 300 °C deliver record $I_{on} \approx 561 \mu A \mu m^{-1}$ with sub-pA/ μ m leakage and have been monolithically integrated with Al₂O₃-based RRAM into functional 1T1R arrays,

underscoring OS-selector suitability for dense, energy-efficient crossbars [94].

Across BEOL, 1T1C, 2T0C, and FeFET platforms, high-aspect-ratio vertical channels have become a central focus of investigation. Work on structural design emphasizes precise control of channel geometry, carefully engineered spacer schemes, and conformal, void-free gate fill [95–100]. Efforts in channel-material engineering target composition tailoring, defect suppression, and improved interface passivation [97, 101–105]. Studies on source/drain contacts examine the role of contact interlayers and address resistance asymmetry [106–108]. Collectively, these advances accelerated the maturation of vertical-channel devices for next-generation semiconductor industry.

In summary, OSs continue to attract interest for BEOL integration in logic circuits owing to their low-temperature processability, while their role as core cell transistors in memory devices—particularly in 1T1C, 2T0C, and FeFET architectures—has emerged as a growing area of advanced research.

2 Material Fundamentals of OS for Semiconductor Applications


Current semiconductor manufacturing faces interlinked bottlenecks—BEOL thermal budgets, overlay errors, interlayer-via (ILV) pitch limits and interconnect RC overheads, selector/access-device off-state leakage, and scaled contact resistivity—that constrain integration density, and energy efficiency [109–116]. The low-temperature processability of OS channels supports M3D integration, lowering cumulative thermal budget and reducing overlay burden by *in situ* process. Monolithic proximity shortens interconnects and curtails parasitic capacitance, easing ILV pitch pressure and RC delay. In parallel, characteristically low leakage suppresses off-state conduction in selector/access devices, while native n-type behavior promotes electron accumulation at metal contacts without heavy doping or silicide control, reducing specific contact resistivity, in contrast to Si. Taken together, these intrinsic material characteristics indicate that OS channels can directly address several of these pain points.

2.1 Intrinsic Characteristics of OSs for Semiconductor Applications

The increasing interest in OSs for next-generation memory stems from their distinct electronic band structure, which enables low leakage current, 3D compatibility, and excellent electrical performance, as shown in Fig. 3. As shown in Fig. 3a, OSs maintain high electron mobility in the amorphous phase due to the isotropic and delocalized nature of metal ns orbitals at the conduction band minimum (CBM), enabling efficient charge percolation unlike the directional sp₃ bonding in silicon. The CBM is dominated by metal ns orbitals with large radial extent, yielding a small transport effective mass ($m^* \approx 0.2\text{--}0.35 m_0$) and suppressing band-edge localization despite topological disorder. As shown in Fig. 3b, the ionic bonding in OSs induces a wide bandgap between the O 2p valence band and metal ns CBM, enabling high transparency and low off-state leakage. Despite the large bandgap, oxygen vacancies act as key native defects that donate free electrons, thereby modulating the Fermi level and enabling n-type conductivity [8, 117–119]. These V_O-related donor states are typically shallow ($\sim 0.1\text{--}0.3$ eV below the CBM), so even modest thermal or electrostatic modulation can populate the conduction band. As shown in Fig. 3c, OSs exhibit carrier-dependent transport governed by percolation conduction. On this basis, OSs often show a temperature- and density-driven transition from variable-range hopping near the percolation threshold to band-like transport at higher carrier concentrations. In amorphous structures, the disorder creates local potential fluctuations, where free carriers—primarily from oxygen vacancies—facilitate charge transport. These vacancies introduce shallow donor levels that raise the Fermi level toward the CBM, increasing accessible conduction pathways. As the Fermi level nears the CBM, carrier delocalization enhances mobility, especially at higher carrier densities or temperatures, emphasizing the key role of defect chemistry in OS electrical performance [8, 16, 120, 121].

2.2 Key Properties of Representative Channel Materials: a-Si:H, LTPS, and OS

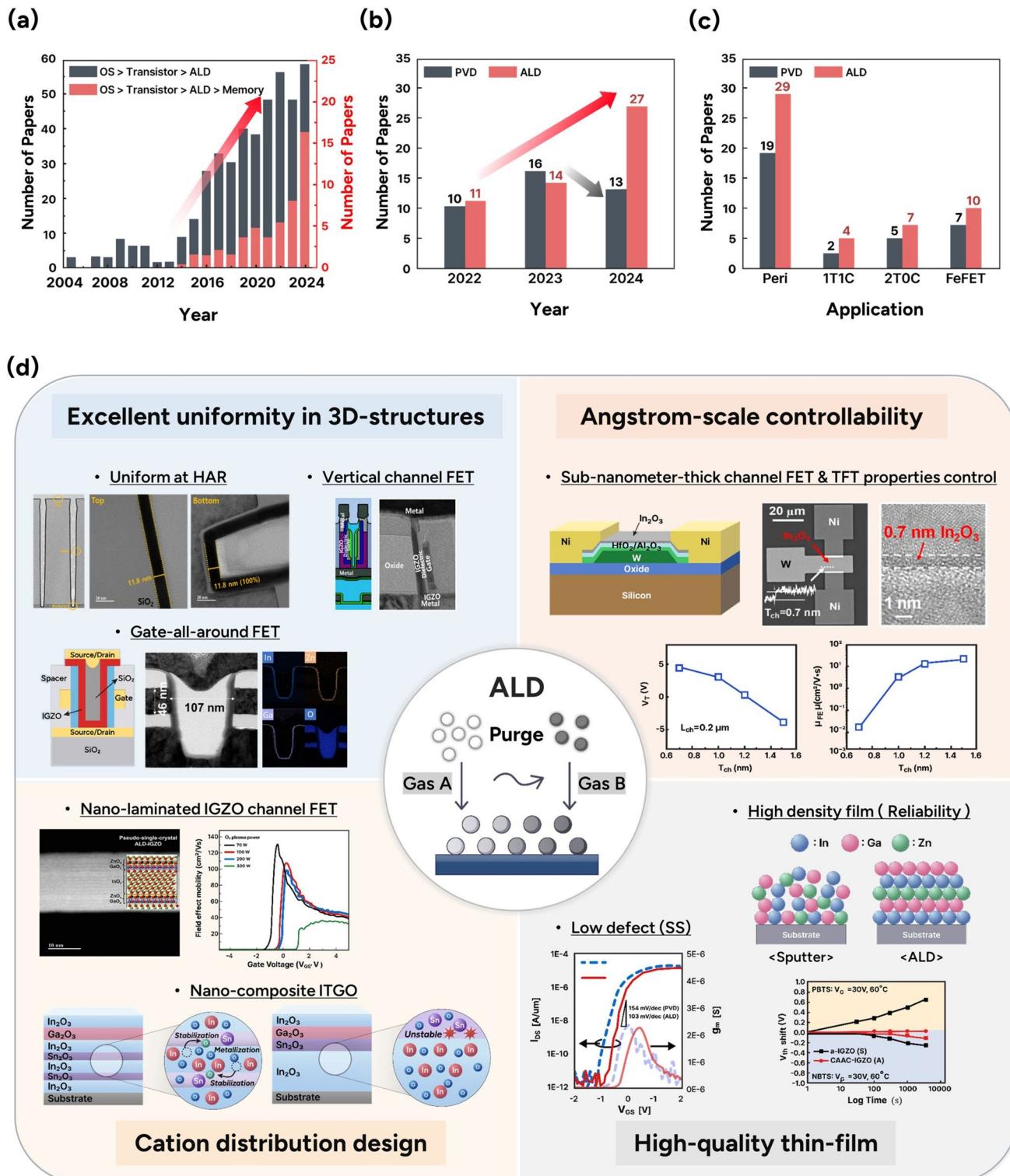
Figure 3d compares key properties of representative channel materials, including a-Si:H, LTPS, and OS. a-Si:H enables low-temperature processing (150–350 °C) and good

Fig. 3 Comparison of structural, electronic, and device-level characteristics of oxide semiconductors (OSs) and silicon-based semiconductors. **a** Schematics of atomic configurations in crystalline and amorphous states for silicon and OSs. **b** Differences in energy band diagrams of Si and OS, including the role of oxygen vacancies. **c** Percolation conduction mechanism in OSs. **d** Comparison of key properties and **e** transfer curves for a-Si:H, LTPS, and OSs. **f** Kobayashi group benchmarking of oxide (IGO) and Si FETs. Reproduced with permission [123]. Copyright 2024, IEEE

uniformity but suffers from low mobility ($< 1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) and poor stability. LTPS offers high mobility ($\sim 100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), suitable for high-current applications, but its high crystallization temperature (400–550 °C) limits compatibility, and grain boundaries reduce uniformity across large areas. As shown in Fig. 3e, the high off-current of Si-based semiconductors limits their suitability for low-power memory. In contrast, OSs combine moderate-to-high mobility (10–100 $\text{cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), ultralow leakage ($\sim 10^{-18} \text{ A } \mu\text{m}^{-1}$), and low-temperature processability (RT–400 °C), making them ideal for display and memory applications [7, 16, 122]. Their steep on–off transitions and low off-currents enhance data retention and reduce refresh power, supporting their use as memory cell transistors.

2.3 Benchmarking Report of OS Channel versus Si FETs

Recently, the Kobayashi group made a compelling case for the industrial viability of OS FETs in memory applications by benchmarking them against conventional Si bulk n-channel FETs. Figure 3f illustrates the strategic role of nanosheet OS FETs in enabling monolithic 3D integration, particularly for high-density and energy-efficient memory applications. The figure conceptually depicts the vertical stacking of logic and memory units, where oxide-based access transistors form the foundation of the memory layer directly integrated atop a logic wafer using BEOL-compatible processes. The unique advantages of OSs—high electron mobility, ultralow leakage current, and low-temperature processability—address the stringent requirements of 3D integration that traditional Si-based devices often fail to meet. In particular, recent studies on ALD-grown InGaO FETs have indicated that nanosheet devices with sub-100 nm gate lengths exhibit not only reliable operation at scaled dimensions but also unsaturated carrier velocity even at high fields, unlike conventional Si bulk FETs that exhibit early velocity saturation. This indicates strong potential for high-speed switching in densely packed vertical arrays. Moreover, statistical analyses of over 1000 fabricated nanosheet InGaO FETs reveal tight threshold voltage (V_{th}) distributions ($\sim 20 \text{ mV}$), minimal DIBL ($\sim 18.7 \text{ mV V}^{-1}$), and reduced variability in I_{on} ($\sim 4.8\%$), all of which are comparable or superior to those of foundry-grade Si bulk transistors. These findings underscore the feasibility of OSs in meeting the variability and


reliability requirements for advanced memory-periphery or selector transistors in 1T1C/1T1R arrays [123].

3 ALD for OSs: Trends, Fundamentally Engineering, and Advanced Developments

3.1 Rising Focus on ALD for OSs in Semiconductor Applications

ALD is essential for the integration of OS channels in memory devices. In conventional display applications, PVD has been sufficient to ensure lateral uniformity over large areas in OS TFTs and has been successfully adopted in mass production. However, to apply OS channels to the highly complex 3D architectures found in memory devices, ALD processes with excellent step coverage are required. As shown in Fig. 4a, the number of publications on ALD-based OS FETs has increased significantly since 2014, reaching approximately 60 papers per year in recent years. This upward trend aligns with the growing interest in applications targeting memory devices, which accounted for more than 25% of all ALD-based OS FET publications in 2024. Figure 4b summarizes the number of OS-related presentations categorized by deposition method at major international conferences (IMW, VLSI, and IEDM) over the past three years. The number of PVD-based studies was 10 in 2022, 16 in 2023, and slightly decreased to 13 in 2024. In contrast, ALD-based approaches exhibited rapid growth, increasing from 11 presentations in 2022 to 27 in 2024. Notably, in 2024, ALD-based presentations outnumbered those based on PVD by approximately twice as many presentations. Furthermore, as shown in Fig. 4c, ALD-based OS channel research outpaces PVD across all memory device categories, including peripheral circuits, 1T1C, 2T0C, and FeFET architectures. Considering these trends, research on ALD-based OS channels for memory applications is expected to show continued growth and interest in the coming years.

As shown in the center of Fig. 4d, ALD is a thin-film growth technique based on the sequential injection of self-limiting gaseous precursors and reactants. The increasing adoption of ALD in OS research for memory applications is attributable to four key characteristics: First, ALD offers excellent uniformity in complex 3D structures. In contrast to PVD, which is limited by the directional nature of vapor transport, ALD achieves conformal coating in complex 3D

Fig. 4 **a** Number of publications from Scopus (search keyword: ALD oxide semiconductor transistor (black column) and memory application (red column)). **b, c** Number of presentations on OSs using PVD and ALD in IMW, VLSI, and IEDM conferences, categorized by year and application. **d** Four key advantages of ALD. Reproduced with permission [34, 61, 125, 128–130]. Copyright 2024, IEEE. Copyright 2020, ACS Publications. Copyright 2022, Springer Nature. Copyright 2023, John Wiley & Sons. Copyright 2024, Elsevier

structures through gas-phase diffusion and self-limiting reactions [34, 124, 125]. Recent emerging 3D DRAM architectures demand conformal deposition techniques in structures with aspect ratios exceeding 20:1. Ryu et al. reported ALD-grown InGaO films (In:Ga=4:1 at%) exhibiting high mobility ($\sim 128.2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) and thermal stability ($\sim 700 \text{ }^\circ\text{C}$) [126]. To translate this promising channel material into 3D architectures, it is essential to employ a growth technique capable of achieving uniform control over key parameters—such as film thickness, composition, and crystallinity—that critically affect electrical performance. Using ALD, they demonstrated 95% thickness uniformity and less than 1% cation composition variation even in structures with aspect ratios as high as 40:1, while maintaining a uniform crystal structure. These uniform properties of thickness, composition, and crystal structure afford greater flexibility in device architecture design, such as in vertical channel and GAA OS FETs [34, 54, 60, 61].

Second, ALD provides angstrom-level thickness control. The self-limiting nature of the process enables near-monolayer growth per cycle, allowing precise thickness control at the atomic scale [8, 127]. As memory cell sizes continue to scale both laterally and vertically, particularly in vertical channel and GAA structures, thinner channels are required to enhance packing density. Si et al. demonstrated that ALD enables the uniform deposition of In_2O_3 channels down to an ultrathin thickness of 0.7 nm [128]. While bulk In_2O_3 , with its charge neutrality level located approximately 0.4 eV above the conduction band minimum (E_C), is typically considered a conducting oxide, quantum confinement in channels thinner than 1.5 nm can shift the trap neutral level below E_C , thereby suppressing the carrier density into the semiconducting regime. As the channel thickness directly influences the threshold voltage, In_2O_3 can thus be engineered to exhibit clear switching behavior. Such precise thickness control is essential to ensure uniform device characteristics in densely integrated memory arrays.

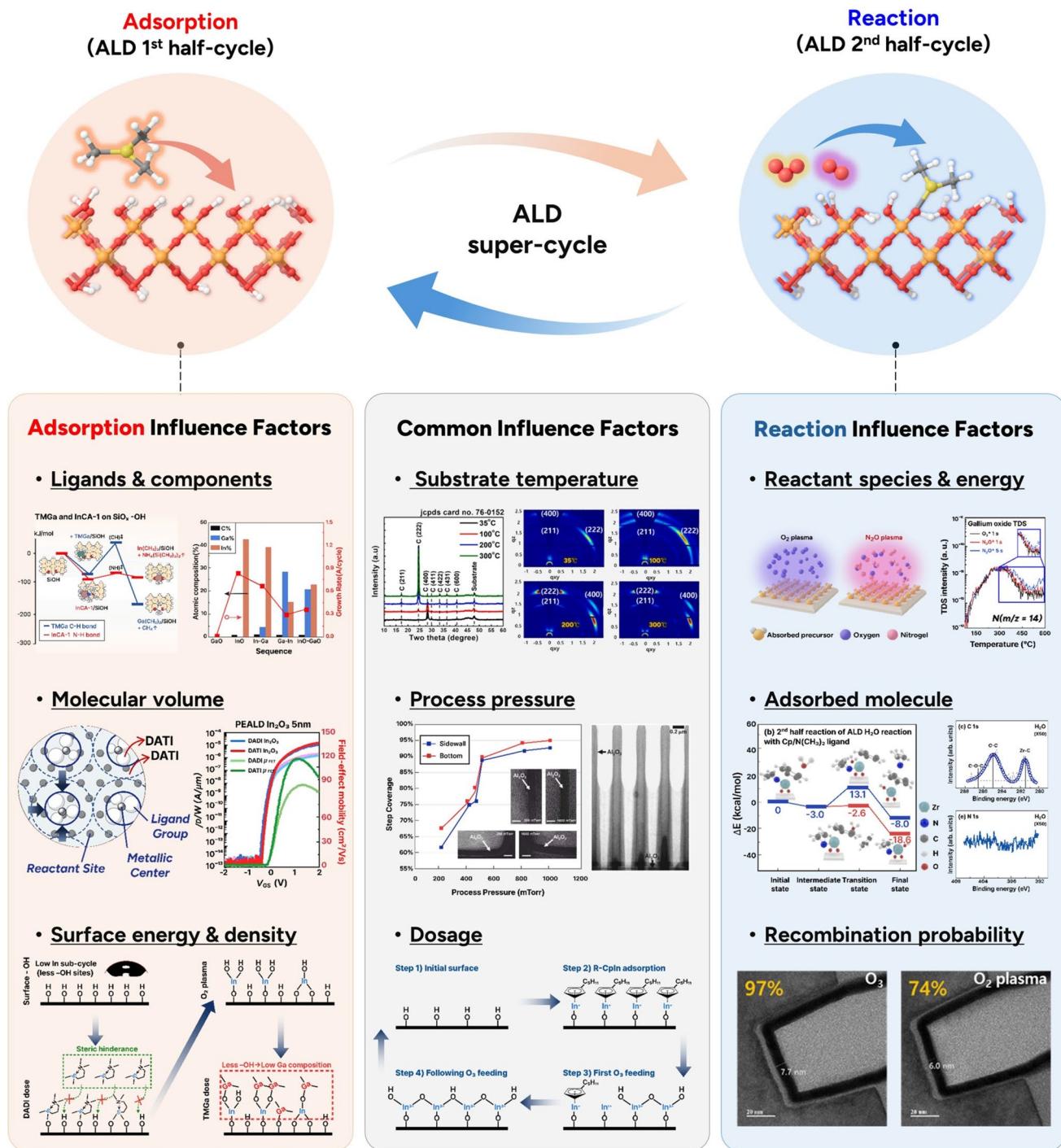
Third, ALD enables the design of cation distribution in multicomponent oxides. The electrical properties of OS materials depend strongly on cation distribution, which can be controlled via sub-cycle modulation in ALD. To meet increasing performance demands in memory applications, OS FETs are expected to achieve higher mobilities ($> 100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) and strong reliability under positive bias-temperature stress (PBTS) at elevated temperatures (e.g., 95 $^\circ\text{C}$). In a prior study, a nano-laminated

IGZO channel FET was engineered to incorporate In_2O_3 , which exhibits high electron conductivity, as the primary conduction path. This design facilitated the formation of multiple 2D electron gas (2DEG) channels, resulting in an enhanced field-effect mobility of approximately $110 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ [125]. In another study, nano-composite InSnGaO (ITGO) FETs with homogeneously incorporated Sn cations effectively suppressed oxygen vacancies and improved SS ($71.9 \rightarrow 64.8 \text{ mV decade}^{-1}$) and PBTS reliability ($\Delta V_{th}; +0.19 \rightarrow 0.06 \text{ V}$ under $+2 \text{ MV cm}^{-1}$, 95 $^\circ\text{C}$, 1 h) [129].

Finally, ALD enables the growth of high-quality thin films. PVD inherently induces structural native defects, as the material is physically removed from the target and directly stacked onto the substrate. In contrast, owing to ALD's layer-by-layer film growth based on self-limiting surface chemical reactions, ALD-based OSs forms close-packed films that effectively minimize impurity incorporation and defect formation compared to other deposition techniques. Owing to its layer-by-layer surface reaction mechanism, ALD minimizes impurity incorporation and defect formation compared to other deposition methods. Kim et al. conducted a comparative study of IGZO films (In:Ga:Zn = 1:1:1 at%) deposited by sputtering and ALD [130]. The ALD-grown IGZO exhibited a reduced concentration of oxygen-related defects (from 34.7 to 24.1%) and improved film density (from 6.01 to 6.30 g cm^{-3}). These improvements translated directly into enhanced FET performance, with increases in μ_{FE} (from 20.5 to 28.1 $\text{cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), and reductions in sub-threshold swing (from 0.33 to 0.23 V decade^{-1}) and hysteresis (from 0.17 to 0.04 V). Similar improvements in both material and electrical properties have also been reported for other ALD-deposited thin films compared to their PVD counterparts [34, 131]. Given these advantages, research on ALD-based OSs has been actively expanding, with increasing efforts focused on controlling ALD process parameters to optimize electrical performance.

3.2 Engineering OSs based on ALD Fundamentals: Adsorption & Reaction

The fundamental principle of ALD pertains to self-limiting chemical reactions, which occur in two key steps: surface adsorption and reaction, as illustrated in Fig. 5. Various process parameters affect each step of the cycle, ultimately


determining the properties of the resulting oxide film. Therefore, a thorough understanding of ALD process variables and their influence on surface reaction behavior is essential for engineering OS channels.

3.2.1 Factors Affecting Adsorption (1st Half-Cycle) for OSs Engineering

The first half-cycle of ALD, adsorption, involves the interaction between the precursor and reactive sites on the surface, resulting in the formation of chemisorbed species. This step is the primary consideration when designing both the process and the film properties. As illustrated in the adsorption influence factors shown in Fig. 5, several key parameters affect this process. First, the types of precursor ligands and metal components play a critical role. The adsorption energy (ΔE_{ads}) and activation energy (E_a) of the surface reaction vary depending on the metal center and ligand structure of the precursor. These factors determine whether adsorption occurs and which pathway is preferred. As adsorption reactions are generally associated with a reduction in entropy ($\Delta S < 0$), the spontaneity of the reaction can be assessed based on the sign of ΔE_{ads} : A negative ΔE_{ads} indicates a spontaneous process, while a positive value suggests a non-spontaneous reaction, providing insights into the suitability of a precursor for ALD applications [132, 133]. Among multiple spontaneous adsorption pathways, the one with the lowest E_a dominates, and this information can help predict both the reaction mechanism and configuration of the adsorbed species [134, 135]. Sheng et al. employed density functional theory to calculate the adsorption energy profiles of an In precursor, diethyl[1,1,1-trimethyl-N-(trimethylsilyl)-silanaminato]-indium (InCA-1), and a Ga precursor, trimethylgallium (TMGa), on a SiO_2 substrate [132]. Both precursors exhibited negative adsorption energies— $\Delta E_{\text{ads}} = -90.6 \text{ kJ mol}^{-1}$ for InCA-1 and $-72.1 \text{ kJ mol}^{-1}$ for TMGa—indicating favorable adsorption for ALD. However, the E_a for TMGa was significantly higher ($\sim 100 \text{ kJ mol}^{-1}$) compared to that of InCA-1 (14.5 kJ mol^{-1}), suggesting a kinetic limitation that hinders initial growth. These findings highlight the importance of precursor-specific kinetics and were utilized to optimize sub-cycle sequencing for effective film growth and compositional control in multicomponent IGO systems. E_a also defines the energy barrier: an increase in substrate temperature leads to a higher reaction

probability and improves reaction completion. Thus, E_a ultimately determines the minimum substrate temperature at which adsorption begins [136]. When the second half-cycle is sufficiently reactive, the ALD temperature window can be affected by the ligand structure of precursors, as summarized in Table 3 [137–175]. Choi et al. reported that an amine ligand-based In precursor, dimethyl[N-(tert-butyl)-2-methoxy-2-methylpropan-1-amine] indium (DMION), enables a reduction of the ALD window lower limit to 35°C , compared to conventional alkyl ligand-based In precursors [149]. This low-temperature process yielded high-quality, carbon-free ($< 0.1 \text{ at\%}$) films, and the resulting material demonstrated viable FET operation, with a V_{th} of 4.9 V and μ_{FE} of $3.1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. These results indicate that the target process temperature can be tailored by modifying the ligand structure. In addition, precursor behaviors such as decomposition, condensation, and desorption must be carefully considered for optimal process design.

Second, the molecular volume of the precursor considerably affects adsorption. Even if a certain adsorption pathway is thermodynamically favored, steric hindrance can prevent the precursor from accessing all surface reactive sites. As the volume of the adsorbed species increases, steric limitations become more severe, which reduces the number of precursor molecules that can adsorb per cycle, resulting in a lower growth per cycle (GPC). For example, Oh et al. compared the ALD behavior of trimethylaluminum (TMA) and triethylaluminum (TEA) based on their molecular sizes [176]. The effective average molecular volumes were 87.2 \AA^3 for TMA and 140.2 \AA^3 for TEA, with the larger TEA molecule exhibiting a reduced GPC of $0.8 \text{ \AA cycle}^{-1}$, compared to $1.2 \text{ \AA cycle}^{-1}$ for TMA. Similarly, in the ALD of crystalline In_2O_3 , the use of a smaller-volume precursor, (N,N-dimethylbutyl-amine)trimethylindium (DATI), led to enhanced adsorption coverage, resulting in improved film density ($6.57 \rightarrow 6.76 \text{ g cm}^{-3}$), crystallinity, and μ_{FE} ($90.5 \rightarrow 115.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), compared to a larger precursor, (3-(dimethylamino)propyl)-dimethyl indium (DADI) [177]. In multicomponent systems, larger dopant precursors have been found to promote more homogeneous doping. For example, homogeneous cation distributions in crystalline InGaO improve grain alignment and μ_{FE} ($\sim 128.2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) upon crystallization [126], while in amorphous AlZnO systems, reduced electron scattering leads to enhanced conductivity [178]. These findings suggest that controlling adsorption behavior through molecular volume design of precursors is an effective strategy for

Fig. 5 Overview of ALD process parameters for Oxide Semiconductors: Factors influencing the adsorption step, reaction step, and both adsorption and reaction. Reproduced with permission [132, 147, 149, 177, 192, 193, 200, 210]. Copyright 2017, 2021, 2023 ACS Publications. Copyright 2022, 2023, 2024, Elsevier. Copyright 2007, The Electrochemical Society

tuning the structural and electrical properties of thin films [126, 176–178].

Finally, surface energy and the density of reactive sites also strongly influence adsorption. Surface energy depends on various factors, such as substrate type and orientation,

Table 3 ALD process information for InO_x , $\text{GaO}_x/\text{ZnO}_x$, and SnO_x , and the material properties

Precursor	Reactant	Growth Temperature (°C)	GPC (Å cycle ⁻¹)	Impurity 1) (%)	E_g (eV)	Crystallinity	Hall mobility (cm ² V ⁻¹ s ⁻¹)	TFT mobility (cm ² V ⁻¹ s ⁻¹)	Refs
Indium oxide	TMIn	$\text{H}_2\text{O}/\text{O}_2$	100–250	0.2–1.6	–	–	38–111	–	[137]
	Ozone	100–200	0.46	C~1.5 at%	3.6	–	~50	–	[138]
TMIn	Ozone	100–250	0.6	–	3.8	Cubic>200 °C	–	–	[139]
TMIn	$\text{H}_2\text{O}/\text{O}_2$	100–250	1.5	–	–	Cubic>200 °C	~49	–	[140]
TMIn	Ozone	200–450	0.3–2.0	–	–	Cubic>140 °C	–	–	[141]
TMIn	ArO_2 radical	100–400	0.14	C	3.6	Cubic at 275 °C	–	–	[142]
TMIn	H_2O	165–200	0.2	–	–	Cubic>100 °C	–	–	[143]
TMIn	Ozone	165–225	0.12	–	–	–	–	–	[143]
TMIn	H_2O	150–250	0.1–0.3	N/D	3.7	–	~41	–	[144]
TEIn	Ozone	100–250	0.8	–	3.9	Cubic>200 °C	–	–	[139]
InCp	H_2O	175–275	0.7	Si, C	3.9	Cubic>200 °C	–	–	–
–	H_2O_2	125–225	0.7	Si, C	4	Cubic>200 °C	–	~15	[145]
In(tmhd) ³	Ozone	150–300	0.7	N/D	3.6	Cubic>200 °C	~51.8	–	[139]
In(acac) ³	H_2O	>275	0.6	\$text{C>1 at%}\$	3.6	Cubic>200 °C	–	–	[146]
Me ₂ In(edpa)	ArO_2 plasma	100–250	0.8	N/D	3	Cubic>275 °C	–	~10	[147]
InCA ⁻¹²)	H_2O	100–250	0.2	C	3	Cubic>100 °C	~1.0	~6.1	[148]
DADI ³	–	–	–	–	–	Rhombohedral<200 °C	–	–	–
–	–	–	–	–	–	Cubic>200 °C	–	–	–
TMION ⁴	ArO_2 plasma	100–250	1.1	N/D	3.4	Cubic>100 °C	~5.1	~20.6	[147]
–	ArO_2 plasma	35–300	1.2	N/D	3.4	Cubic>35 °C	~5<100 °C	~3.1<100 °C	[149]
DMION ⁴	–	–	–	–	–	–	~33>100 °C	~34.4>100 °C	–
DMITN ⁴	H_2O	200–250	0.3	N/D	3.3	Cubic>200 °C	~2	–	[150]
DATI ³	ArO_2 plasma	100–250	1.1	N/D	3.5	Cubic>100 °C	~9	–	[151]
Indium oxide	ArO_2 plasma	100–250	1	N/D	3.4	Cubic>100 °C	~1.1	~17.5>250 °C	[166]
TDMASn	H_2O	30–200	0.3–2.0	N/D	3.6–4.0	Tetragonal	–	–	[167]
Tin oxide	BDMADMSn	Ozone	50–250	0.98–1.60	N/D	2.9–4.0	Tetragonal	~32	–
		ArO_2 plasma	100–250	~1.25	N/D	3.6	Tetragonal	–	[168]
		Ozone	150–250	~0.49	N/D	–	Tetragonal	~2.7	[169]
		H_2O_2	250	1.22–1.38	–	3.6	Tetragonal	~9.9	[170]
SnCl ₄	–	–	–	–	–	–	–	–	[171]
HS-	H_2O_2	60–150	0.1–0.5	N/D	~1.6	Tetragonal (> 100 °C)	~18	~6.0 (p-type)	[172]
Stannylene-01	Ozone	80–250	~1.4	N/D	~4.1	Tetragonal	~24	–	[172]
Sn(edpa) ²	ArO_2 plasma	60–300	0.2	N/D	~2.9	–	–	–	[173]
Sn(dmamp) ²	H_2O	175–275	–	N/D	~4.0	Tetragonal (> 70 °C)	~27	–	[173]
	Ozone	100–230	0.18–0.42	N/D	3.6	Polycrystalline	–	~7.24	[174]
		–	–	–	–	Tetragonal	–	–	[175]

Table 3 (continued)

Precursor	Reactant	Growth Temperature (°C)	GPC (A° cycle ⁻¹)	Impurity 1 (%)	E_g (eV)	Crystallinity	Hall mobility (cm ² V ⁻¹ s ⁻¹)	TFT mobility (cm ² V ⁻¹ s ⁻¹)	Refs
Gallium oxide	Ga(acac) ³	Ozone	150–300	0.16–0.54	N/D	4.5	–	–	[152]
	TMGON	ArO ₂ plasma	150–250	0.75–1.30	N/D	4.6–4.8	–	–	[147]
DMGON	Ozone	250	0.62	N/D	4.5	–	–	–	[153]
DMGTN	ArO ₂ plasma	365–380	0.33	–	–	–	–	–	[154]
GTIP	Ozone	350–375	0.22	–	–	–	–	–	[154]
Ga(tmhd) ³	ArO ₂ plasma	100–250	1.05	C~1.2 at%	–	–	–	–	[146]
Ga ₂ (NMe ₂) ⁶	Ozone	150–300	0.11–0.46	N/D	–	–	–	–	[126]
Gal ₃	ArO ₂ plasma	100–250	0.92–1.32	N/D	5.2	–	–	–	–
TEGa	H ₂ O	150–300	0.10–0.40	N/D	–	–	–	–	–
TMGa	ArO ₂ plasma	100–400	1.17	N/D	5.2	–	–	–	[155]
	H ₂ O	150–250	2.5	N/D	~5.4	–	–	–	[156]
DEZ	ArO ₂ plasma	60–160	0.1	N/D	5	–	–	–	[157]
	Ozone	150–550	0.9–1.1	C~2.1 at%	–	–	–	–	[158]
	H ₂ O ₂	100–200	1.5	I~3.2 at%	–	–	–	–	[159]
	Ozone	100–200	0.5–1.75	–	4.9	–	–	–	[160]
	H ₂ O	150–300	~1.50	N/D	3.2	Hexagonal	~10	–	[160]
	ArO ₂ plasma	100–200	~1.58	N/D	3.2	Hexagonal	~11	–	[161]
	Ozone	150–300	~1.61	N/D	3.2	Hexagonal	~3.0	–	[162]
Zn(DMP) ₂	ArO ₂ plasma	100–250	1.57–1.70	(> 200 °C)	3.2	Hexagonal	–	–	[163]
DEZDMEA	H ₂ O	150–250	0.9	N/D	3.2	Hexagonal	–	0.04	[164]
	H ₂ O	140–180	0.7–1.1	N/D	3.2	Hexagonal	–	–	[165]
	H ₂ O	50–250	2.56	N/D	3.2	Hexagonal	–	–	[165]

¹Impurity level is estimated by XPS. (Limit of detection: <0.1 at%)

^{2–4}Provided by 2) UP-Chemical, 3) LAKE Materials, 4) Hansol Chemical

material deposited in the previous cycle, and terminal surface functional groups. High surface energy generally promotes reactivity by lowering the adsorption energy, whereas low surface energy suppresses film growth. Reactive site density is influenced by surface roughness, film density, and material composition. A high density of reactive sites facilitates greater adsorption coverage. Studies have demonstrated that controlling the surface condition based on appropriately selecting the substrate, seed layers, material deposited in the previous ALD cycle, or surface treatments can effectively tune the ALD temperature window, growth rate, crystallinity, electrical properties, and composition controllability [147, 179–187]. Notably, Hong et al. showed that the In/Ga ratio and electrical properties of InGaO films varied depending on the precursor pairing. trimethyl[N-(2-methoxyethyl)-2-methylpropan-2-amine] indium (TMION)/trimethyl[N-(2-methoxyethyl)-2-methylpropan-2-amine]gallium (TMGON) pairing enabled linear composition control due to matched adsorption characteristics, while DADI/TMGa showed Ga-rich deviation from enhanced –OH surface reactivity. Consequently, μ_{FE} reached $36.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ (TMION/TMGON-IGO) and $27.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ (DADI/TMGa-IGO) at an equivalent In/Ga ≈ 2.3 ratio. These findings highlight that surface conditions play critical roles in determining composition and growth behavior in multicomponent ALD [147, 179–187]. In summary, the adsorption step is critically influenced by both precursor characteristics and surface conditions, and it plays a central role in determining the adsorption mechanism, process temperature, and resulting film properties.

3.2.2 Factors Affecting Reaction (2nd Half-Cycle) for OSs Engineering

In the second half-cycle of ALD, referred to as the reaction step, the injected reactant reacts with the ligands of the adsorbed precursor, leading to ligand removal and the regeneration of reactive sites on the surface. This step completes the film formation process. As illustrated in the reaction influence factors in Fig. 5, several parameters affect the reaction process. First, the type and energy of the reactant play a crucial role. In oxide deposition, typical oxygen sources include H_2O , H_2O_2 , O_2 , O_3 , O_2 plasma, and N_2O plasma. The reaction mechanisms vary depending on the type of reactant, proceeding either through ligand exchange

or combustion. H_2O , which follows a ligand exchange mechanism, was widely used in early ALD processes owing to its high vapor pressure and environmental friendliness. However, its low oxidation strength limits the process temperature window and can lead to residual hydrogen impurities, necessitating alternative oxygen sources. Stronger oxidants such as H_2O_2 , O_3 , and O_2 plasma, all of which follow combustion mechanisms, have been employed to address these limitations. The relative oxidation strength follows the order $\text{H}_2\text{O} < \text{H}_2\text{O}_2 < \text{O}_3 < \text{O}_2$ plasma [150, 188–190]. Increased oxidation strength is generally associated with a wider ALD temperature window and higher GPC. Furthermore, stronger oxidants reduce impurity incorporation and defect density, improving film crystallinity and electrical properties. According to Ryu et al., ALD using H_2O as the reactant exhibited a growth per cycle (GPC) of $0.29 \text{ \AA cycle}^{-1}$ within an ALD window of $200\text{--}250 \text{ }^\circ\text{C}$, whereas the use of O_2 plasma extended the ALD window to $100\text{--}250 \text{ }^\circ\text{C}$ and significantly increased the GPC to $1.11 \text{ \AA cycle}^{-1}$ [150]. In_2O_3 films grown with O_2 plasma demonstrated a high film density ($\sim 7.0 \text{ g cm}^{-3}$), reduced oxygen-related defects, and a low crystallization temperature ($< 100 \text{ }^\circ\text{C}$). Moreover, as indicated in Table 3, a comparison of Ga precursors, TMGa, dimethyl[N-(tert-butyl)-2-methoxy-2-methylpropan-1-amine] gallium (DMGON), and dimethyl[N1-(tert-butyl)-N2,N2-dimethylethane-1,2diamine] gallium (DMGTON), and the Sn precursor, bis(dimethylamino) dimethyltin (BDMADMSn), shows that using O_2 plasma—which has a higher oxidation energy than O_3 —tends to increase the GPC by nearly a factor of three. In the case of Sn-based oxides, oxidation energy can be tuned to selectively form either p-type SnO or n-type SnO_2 . Lee et al. demonstrated that SnO and SnO_2 phases could be selectively synthesized via ALD by simply switching the oxidant: water favored SnO formation with a bandgap of $\sim 2.3 \text{ eV}$, while ozone induced SnO_2 growth with a bandgap of $\sim 4.0 \text{ eV}$. This phase control was enabled by the differing oxidative strengths and surface reactivities of H_2O and O_3 [172]. O_2 plasma offers the additional advantage of high oxidation strength along with tunable reactivity through plasma power control. However, it may also induce surface damage owing to the presence of energetic Ar radicals, necessitating careful optimization of process conditions to balance oxidation efficacy with surface integrity [125, 150, 191]. N_2O plasma has also been investigated owing to its strong reactivity and additional benefit of nitrogen incorporation, which can enhance device reliability

[192]. According to Kim et al., selective introduction of an N_2O plasma reactant during the Ga_2O_3 sub-cycle of the IGZO process enabled nitrogen doping at a concentration of 0.2 at%, which preserved high μ_{FE} ($\sim 106.5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) while simultaneously achieving excellent PBTS reliability ($\Delta V_{\text{th}}: +0.45 \text{ V}$ under $+2 \text{ MV cm}^{-1}$, 95°C , 10,000 s). These findings underscore the significance of oxidant selection as a versatile tool for precisely controlling film properties, including composition, crystallinity, electrical performance, and dopant incorporation, in oxide thin-film deposition.

Second, the type and structure of the adsorbed precursor species significantly influence the reaction. Even when the reactant is highly reactive, the reaction energy (ΔE) and E_a can vary depending on the metal center and ligand configuration of the adsorbed molecule. These energy parameters affect both the reaction efficiency and the ALD temperature window. As indicated in Table 3, different metal–ligand combinations require distinct thermal and oxidative energy inputs during ALD. A comparison between trimethylindium (TMIn) and TMGa—precursors with the same ligand structure—under O_3 reactant conditions reveals notable differences in growth behavior. While TMIn exhibits a relatively constant GPC of $\sim 0.46 \text{ \AA cycle}^{-1}$, the GPC of TMGa increases from 0.16 to $0.54 \text{ \AA cycle}^{-1}$ with rising process temperature. This trend suggests that Ga-centered adsorption molecules require higher oxidation energy compared to their In-based counterparts, implying that insufficient energy supply during the ALD process may lead to a reduced GPC or the formation of higher impurity-containing films [193]. Therefore, the reactant must be carefully matched to the precursor and intended process temperature.

Finally, the recombination probability of the reactant affects film conformality, especially in 3D memory structures. Even when a reactant is thermodynamically and kinetically favorable, its effective diffusion length must be sufficient to ensure uniform deposition across high-aspect-ratio features. Reactants with high recombination probabilities may deplete rapidly near the feature opening, leading to thicker deposition near the top and thinner coverage at the bottom, a phenomenon known as the recombination-limited regime [194]. For example, oxygen radicals used in plasma-enhanced ALD exhibit high recombination rates, limiting their ability to achieve ideal conformality compared with thermal ALD processes [150, 195–197]. According to Ryu et al., In_2O_3 films grown using H_2O or O_3 exhibited excellent conformality in structures with a 40:1 aspect ratio, achieving bottom-step coverage of 97% and sidewall-step coverage of

95%. In contrast, when O_2 plasma was used, the bottom-step coverage decreased to 74%, indicating a limitation in achieving conformal deposition [150]. In summary, the reaction step is strongly influenced by both the reactant properties and the structure of the adsorbed species. These factors collectively determine the process temperature, film quality, and step coverage in ALD-grown OSs.

3.2.3 Common Influencing Factors for OSs Engineering

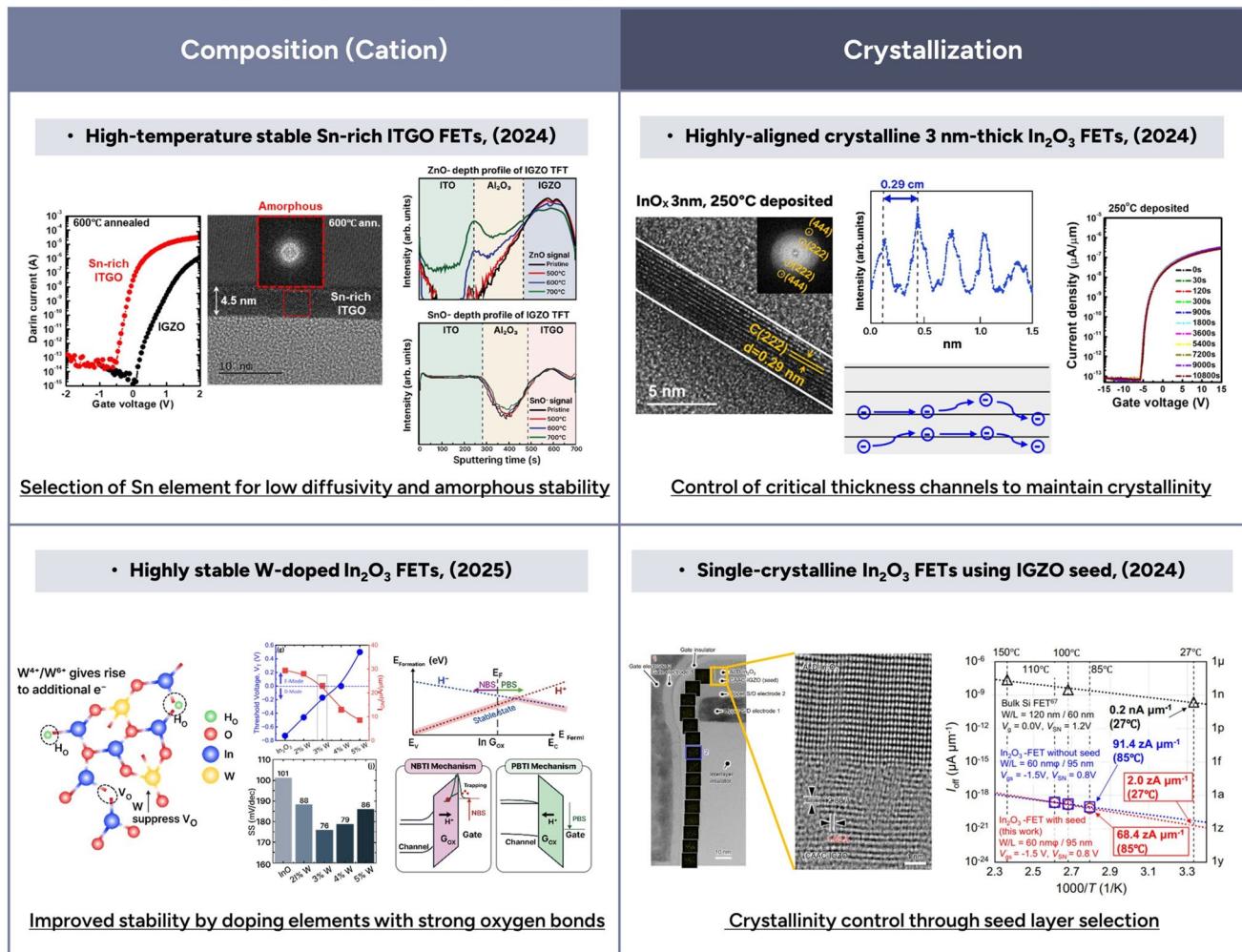
Certain factors influence both the adsorption and reaction steps. As shown in Fig. 5, the three representative process parameters are temperature, pressure, and dosage. First, substrate temperature plays a critical role. Increasing the process temperature enhances the probability of overcoming the energy barriers associated with adsorption and reaction, promoting reaction completeness. Elevated temperatures have been reported to reduce impurities and defects, increase film density and crystallinity, and improve electrical performance across various OS materials [134, 149, 150, 198, 199]. For example, in the In_2O_3 study reported by Ryu et al., increasing the process temperature from 100 to 250°C —regardless of the reactant type—led to a decrease in carbon impurity (< 0.1 at%), reduction in oxygen-related defect bonding (~20.0%), increase in film density ($\sim 7.0 \text{ g cm}^{-3}$), enhanced orientation along the cubic (222) plane, and improved Hall mobility ($\sim 38.8 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), demonstrating the significant influence of temperature [150]. However, the process temperature must remain below the precursor decomposition or desorption threshold to preserve the self-limiting behavior of ALD.

Second, process pressure significantly influences the frequency of molecular collisions with the substrate. At low pressures, reduced collision frequency may lead to longer process times, increased precursor consumption, and poor step coverage in high-aspect-ratio structures. Conversely, higher pressure can alleviate steric hindrance and enhance diffusion to reactive sites, resulting in more uniform coverage and improved film quality [200, 201]. According to Li et al., increasing the process pressure from 200 to 1000 mTorr at a fixed process temperature led to a steady rise in the GPC of Al_2O_3 from 1.01 to $1.05 \text{ \AA cycle}^{-1}$. Concurrently, improvements in insulating properties, such as higher breakdown voltage and reduced leakage current, were also observed. Recently,

atmospheric pressure processes utilizing spatial ALD have been reported, offering advantages in throughput and precursor utilization [202–205]. According to Yoo et al., the deposition rate of In_2O_3 was significantly enhanced to $30.0 \text{ \AA min}^{-1}$, compared to the conventional ALD process rate of approximately 2.5 \AA min^{-1} [202]. However, these approaches present challenges related to purge efficiency and potential contamination [206].

Finally, precursor and reactant dosages must be sufficient to ensure saturation of surface sites during both adsorption and reaction. Dosage is typically controlled by adjusting pulse duration or canister temperature. Saturation is typically determined based on the condition where the GPC reaches a constant value. In standard single-dose ALD processes, physisorbed molecules may block reactive sites, preventing complete saturation. This limitation can be addressed using discrete feeding method (DFM), in which an initial purge is followed by a second pulse to achieve denser precursor coverage. This technique has been shown to improve film density, enhance crystallinity, and reduce impurities [207–209]. Kim et al. introduced a DFM precursor into the p-type SnO process to enhance the formation of a (001)-aligned tetragonal 2D structure. As a result, the fabricated SnO -FETs exhibited improved performance with a μ_{FE} of $1.86 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, a SS of $0.12 \text{ V decade}^{-1}$, and stable PBTS reliability ($\Delta V_{\text{th}}: +0.47 \text{ V}$ under $+2 \text{ MV cm}^{-1}$, 60°C , $10,000 \text{ s}$) [207]. Additionally, in cases where precursors with bulky cyclopentadienyl ligands are employed, applying a discrete reactant feed (DRF) has been reported to enhance reaction completeness [210]. According to Yang et al., the use of a DRF approach enhanced the reactivity of a Cp ligand-based In precursor, increasing the GPC to $2.2 \text{ \AA cycle}^{-1}$ compared to $1.3 \text{ \AA cycle}^{-1}$ achieved by the conventional method. By carefully controlling these ALD process parameters, OS films that meet the stringent requirements of memory device applications can be engineered.

3.3 Advanced Developed ALD-Driven OSs via Four Main Material Design Strategies


Recent studies on ALD-driven OSs for memory applications have focused on four main material design themes—cation engineering, crystallization control, atomic structure optimization, and light element incorporation—to

enhance electrical performance, reliability, and thermal stability.

3.3.1 Cation Engineering

The cations that constitute the matrix of OSs represent a primary focus in material design. In OS channels, metal cations significantly influence key material properties, such as charge transport, defect formation, and structural stability. Electronic structure of the cations affects the dispersion of the conduction band, thereby impacting charge transport property. Their bonding strength with oxygen influences the subgap defect states, which are closely linked to device reliability. In addition, the metal cation can affect the stability of the structural properties, compatibility with temperature dependent processing. As these factors collectively determine the electrical performance and long-term stability of OS channels, precise cation engineering is essential for material optimization [117, 120].

As shown in the left part of Fig. 6, one representative approach involves incorporating cations such as Sn and W, which exhibit metal–oxygen bond dissociation energies of 548 and 653 kJ mol^{-1} , respectively, into In-based OSs to strengthen metal–oxygen bonding [211]. Through their precise introduction at controlled concentrations using ALD, the electrical characteristics, reliability, and thermal robustness of OSs can be enhanced. In terms of the introduction of Sn, Ryu et al. [169] demonstrated that a Sn-rich ITGO amorphous OS developed via ALD exhibits exceptional thermal stability and electronic performance suitable for DRAM applications. The optimized ITGO composition ($\text{In:Sn:Ga} = 25:58:17 \text{ at\%}$) maintained an amorphous structure and exhibited high Hall mobility ($\sim 24.0 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) even after annealing at $600\text{--}700^\circ\text{C}$. Sn incorporation stabilized the amorphous phase, reduced oxygen vacancies, and enhanced carrier mobility, while Ga suppressed excessive carrier generation and preserved thermal stability. A 4.5-nm-thick ITGO TFT showed excellent field-effect mobility ($7.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) and remarkable bias-temperature reliability ($\Delta V_{\text{th}}: -0.05 \text{ V}$ under PBTS and $+0.01 \text{ V}$ under negative bias-temperature stress (NBTS) at 125°C for 2000 s) [169].

Fig. 6 Recent strategies for enhancing the electrical properties and reliability of oxide semiconductor FETs through cation engineering (left) and crystallinity control (right). Reproduced with permission [169, 212, 215, 218]. Copyright 2024, ACS Publications. Copyright 2025, IEEE. Copyright 2024, Nature

In terms of the incorporation of W, Sarkar et al. [212] reported the first GAA nanosheet FET incorporating an ALD-IWO channel, which exhibited excellent scalability and electrical reliability. The small ionic radius of W allowed for stable substitution into the In_2O_3 lattice without significant lattice distortion, contributing to structural integrity and defect suppression. For fabricating the GAA FET, a novel channel release method using a W sacrificial layer enabled lithography-independent definition of the channel length with etch selectivity $> 10^3$, simplifying fabrication. The optimized 3% W-doped IWO nanosheet device demonstrated a high on-state current ($815 \mu\text{A} \mu\text{m}^{-1}$ at $V_{ds} = 1 \text{ V}$) and ultralow off-state current (3 fA), alongside an intrinsic

transconductance of $470 \mu\text{S} \mu\text{m}^{-1}$. It achieved record-low threshold voltage shifts ($\Delta V_{th} \approx 88 \text{ mV}$ at 5.4 MV cm^{-1}) under both positive and negative BTI conditions, outperforming existing AOS-based FETs. These results establish ALD-IWO GAA FETs as a promising candidate for BEOL-compatible, high-performance 3D integrated memory and logic applications [212].

In addition, with respect to W incorporation into In_2O_3 -based channels, Chiang et al. (2025) report the first BEOL-compatible ALD IWTO TFTs with an ultrathin 2 nm channel and L_{CH} down to 70 nm. The devices exhibit enhancement-mode operation with $I_{on}/I_{off} > 10^{10}$, $SS \approx 63 \text{ mV dec}^{-1}$, $DIBL \approx 37.8 \text{ mV V}^{-1}$, and low contact

resistance (≈ 0.72 – 0.86 $\text{k}\Omega \text{ }\mu\text{m}$) after O_2 annealing. These results show that high-BDE W/Sn co-doping combined with a ≤ 350 $^\circ\text{C}$ O_2 anneal mitigates short-channel V_{th} roll-off and the $I_{\text{on}}\text{--}V_{\text{th}}$ trade-off, positioning IWTO as a strong candidate for monolithic 3D BEOL integration [213]. About other cation of Al, Ding et al. [214] reported fully ALD-fabricated InAlO TFTs, establishing an ALD-only route to composition-tuned In_2O_3 channels. The study delivers a balanced performance/stability window— $\mu \approx 7.2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $\text{SS} \approx 165 \text{ mV dec}^{-1}$, $I_{\text{on}}/I_{\text{off}} \approx 2.3 \times 10^6$, $V_{\text{th}} \approx 0.1 \text{ V}$, and $\Delta V_{\text{th}} \approx 0.11 \text{ V}$ under PBS—achieved at a 350 $^\circ\text{C}$ anneal. They attribute the gains to ALD-enabled Al incorporation that suppresses oxygen-vacancy formation, highlighting a scalable, low-temperature pathway for next-generation oxide FETs [214]. Collectively, these findings underscore the effectiveness of incorporating high-bond-energy cations via ALD in enabling thermally robust and electrically reliable OSs suitable for next-generation memory and logic device integration.

3.3.2 Crystallization Control

Crystallization plays a critical role in enhancing both mobility and stability of oxide semiconductor (OS) channels. A periodic lattice structure enables effective overlap of extended s-orbitals, thereby facilitating high carrier transport. Among the factors that degrade the stability of OSs, those associated with structural disorder include interstitial metal atoms, antisite defects in multi-cation OSs, and grain boundaries (GBs) in polycrystalline films [126, 215–217]. Among these, numerous studies have reported that enhancing the crystallinity of OSs—thereby reducing GB density—effectively improves stability. GBs generally act as charge-trap-rich defective regions that induce carrier scattering, and promote V_{th} shift under bias temperature stress. Consequently, randomly oriented crystallization (large mosaic spread with small grains) produces a high areal GB density and abundant GB trap states, degrading mobility and reliability, whereas highly aligned crystalline texture (preferred orientation) suppresses GB density and suppress carrier scattering. In parallel, increasing grain size reduces total GB area per unit volume, lowering GB-mediated trapping. Compared to amorphous counterparts, crystallized films exhibit reduced defect densities—including oxygen vacancies and structural disorders; this reduction suppresses

charge trapping and improves bias-stress stability. Furthermore, crystalline OS channels have recently been recognized for their structural robustness, which contributes to enhanced thermal and electrical durability, thereby improving their compatibility with high-temperature processes. As such, controlling crystallinity—with emphasis on orientation control and grain-size enlargement to minimize GBs—has become a key strategy for developing high-performance and reliable OS channel materials [5, 33, 126, 215].

As shown in the right part of Fig. 6, ALD has been used to achieve highly oriented crystallization in ultrathin films on the nanometer scale, as well as highly uniform crystallinity throughout complex structures. In terms of achieving highly oriented crystallization, Choi et al. (2024) demonstrated the development of highly crystalline 3-nm-thick In_2O_3 films via ALD using a novel liquid indium precursor, (N,N-di-tert-butylacetimidamido)dimethylindium (DBADMIn). At an optimized deposition temperature of 250 $^\circ\text{C}$, the In_2O_3 films exhibited strong C-axis aligned C(222) orientation, resulting in enhanced film quality with reduced grain boundary scattering. The fabricated TFT demonstrated high field-effect mobility ($41.12 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), low SS (150 mV dec^{-1}), and excellent positive bias stress stability ($\Delta V_{\text{th}} = +0.16 \text{ V}$ at 100 $^\circ\text{C}$ for 3 h). The improvement in performance was attributable not to oxygen vacancy modulation but to crystalline orientation control, overcoming the traditional mobility–stability trade-off. These findings highlight the potential of low-temperature, crystalline In_2O_3 for highly scaled logic and memory devices [215].

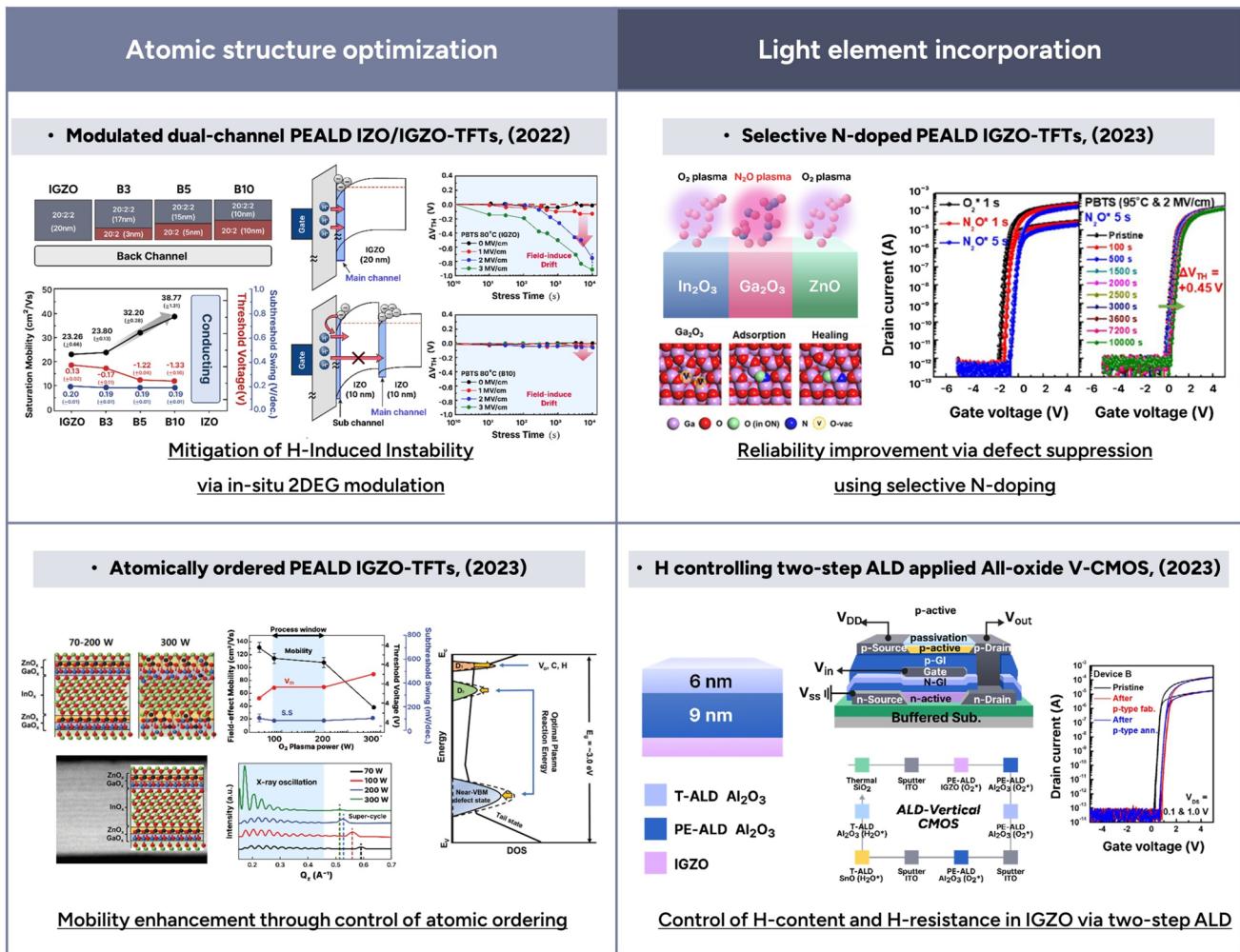
In terms of achieving uniform crystallization over complex structures, Yamazaki et al. [218] fabricated a vertical FET using single-crystalline In_2O_3 channels grown by ALD on an insulating film, enabled by a 2-nm-thick CAAC-IGZO seed layer. The single-crystalline In_2O_3 films exhibited uniform (111) orientation with no grain boundaries along the current path, achieving a high on-state current ($28.8 \text{ }\mu\text{A}$), low threshold voltage variation ($\sigma = 0.05 \text{ V}$), and steep sub-threshold slope (86.7 mV dec^{-1}). Importantly, the off-state current was reduced to an ultralow value of $2.0 \text{ zA } \mu\text{m}^{-1}$ at 27 $^\circ\text{C}$ —10 orders of magnitude lower than that of bulk Si FETs. These improvements were attributable to solid-phase epitaxial growth, facilitated by atomic alignment between the CAAC-IGZO (001) plane and In_2O_3 (111) plane. This architecture enabled 3D monolithic integration with energy-efficient logic design, offering a scalable solution for next-generation AI and server hardware [218]. Together, these

advancements demonstrate that ALD-driven control of crystalline orientation and uniformity in ultrathin oxide films is critical for achieving high-performance, low-power logic and memory devices.

3.3.3 Atomic Structure Optimization

In the pursuit of oxide semiconductors that simultaneously exhibit high mobility and long-term reliability, atomic structure optimization has emerged as an effective strategy. By engineering heterointerfaces and modulating the spatial distribution of constituent layers at the atomic scale, this approach facilitates the formation of spatially confined conduction pathways—such as two-dimensional electron gas (2DEG)-like channels—that decouple charge transport from defect-sensitive or chemically unstable regions. As a result, it enables the mitigation of bias-induced instabilities and the overcoming of the intrinsic mobility–reliability trade-off commonly observed in conventional single-layer architectures [5, 6, 8]. Atomic structure optimization strategies—such as bilayer and nanolaminate architectures—have been uniquely explored using ALD owing to its precise interface control and angstrom-level tunability, enabling the simultaneous realization of high mobility and reliability in oxide TFTs, as illustrated in the left part of Fig. 7.

Kim et al. [219] demonstrated that the optimization of bilayer structures using ALD can alleviate hydrogen-induced instability through *in situ* modulation of the 2DEG. Researchers established plasma-enhanced ALD (PEALD)-deposited dual-channel IZO/IGZO top-gate TFTs, where nanoscale modulation of the backchannel IZO thickness enabled simultaneous enhancement of mobility and stability. As the IZO layer thickness increased, the main conduction path transitioned from IGZO to high-mobility IZO, achieving a peak mobility of $\sim 40 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, while maintaining a low SS and suppressed threshold voltage shift ($\Delta V_{\text{th}} = -0.07 \text{ V}$ under PBTS for 10,800 s). Technology computer-aided design simulations confirmed dual-channel formation and revealed a 2DEG-like current path in the backchannel IZO, physically isolated from gate-insulator-induced instability. The hydrogen-resilient IZO layer effectively shielded the active channel from hydrogen diffusion originating in the PEALD-SiO₂ gate insulator (GI), addressing the abnormal negative V_{th} shifts typically observed under bias stress.


These results establish ALD-based IZO/IGZO bilayers as a compelling architecture to overcome the conventional mobility–reliability trade-off in oxide TFTs [219].

In terms of laminate structure, Kim et al. [125] developed pseudo-single-crystalline IGZO transistors via PEALD by optimizing the super-cycle sequencing of InO₂ and (Ga,Zn)O layers. By tuning the oxygen plasma power, the researchers achieved ultrahigh field-effect mobility ($> 114 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) and excellent threshold voltage ($V_{\text{th}} \approx -0.44 \text{ V}$) and SS characteristics ($SS \approx 90 \text{ mV dec}^{-1}$) at the optimal 100 W plasma condition. Excessive plasma power was noted to deteriorate atomic ordering and lead to oxygen over-incorporation, while insufficient power resulted in donor-like defects (H, C), thereby degrading reliability. This study demonstrated the critical role of plasma energy control in achieving defect-minimized, high-mobility OSs suitable for next-generation logic and memory applications [125].

Additionally, as part of atomic structure optimization, ALD-enabled angstrom-scale interlayer and bilayer engineering has been reported as an effective approach to suppress interface defects and form high-quality conduction paths. With respect to atomic interlayer tuning, Li et al. [220] report an AIMD/TCAD-guided sub-nanometer ALD interlayer strategy co-designing the gate-dielectric and contact interfaces. An InO_x interlayer, with a thickness of less than 0.5 nm, suppresses interface defects, sustaining $SS \approx 62\text{--}64 \text{ mV dec}^{-1}$ after 500 °C PDA and PBTS reliability improved to 3.4 mV of $|\Delta V_{\text{th}}|$ (1 ks, +3.5 MV cm⁻¹). An IGZO/InO_x/ITO contact stack exhibits an extracted $\approx 80 \text{ meV}$ barrier consistent with ohmic behavior, and system relevance is demonstrated in 2T0C DRAM ($> 10^{11}$ cycles, $I_{\text{on}}/I_{\text{off}} > 10^8$, retention $> 600 \text{ s}$), validating angstrom-level ALD interlayer tuning as a scalable lever to reconcile BEOL thermal budget, reliability, and performance [220]. Collectively, these strategies underscore the potential of ALD-engineered bilayer and laminate structures to precisely balance mobility and reliability by tailoring charge transport pathways and suppressing defect-induced instabilities in OS devices.

3.3.4 Light Element Incorporation

In oxide semiconductors, light elements such as hydrogen, carbon, and nitrogen are present due to precursor chemistry

Fig. 7 Recent strategies for enhancing the mobility and reliability of oxide–semiconductor FETs through atomic structure optimization (left) and light element incorporation. (right). Reproduced with permission [125, 192, 219, 221]. Copyright 2022, 2023, 2024, John Wiley & Sons. Copyright 2023, ACS Publications

and process conditions. The light elements incorporation can be utilized to modulating carrier concentration, passivate subgap states, and stabilize interface environments. Particularly, ALD offers a powerful route to engineer such light-element incorporation at the atomic scale, enabling the optimization of both mobility and reliability in oxide TFTs. Therefore, systematic understanding and deliberate control of light-element chemistry are becoming vital in the development of next-generation semiconductor applications [5, 117, 119]. As shown in the right part of Fig. 7, precise control over the physical and chemical states of light elements has been achieved through the surface reaction of ALD,

leading to improved electrical performance and device reliability in oxide TFTs.

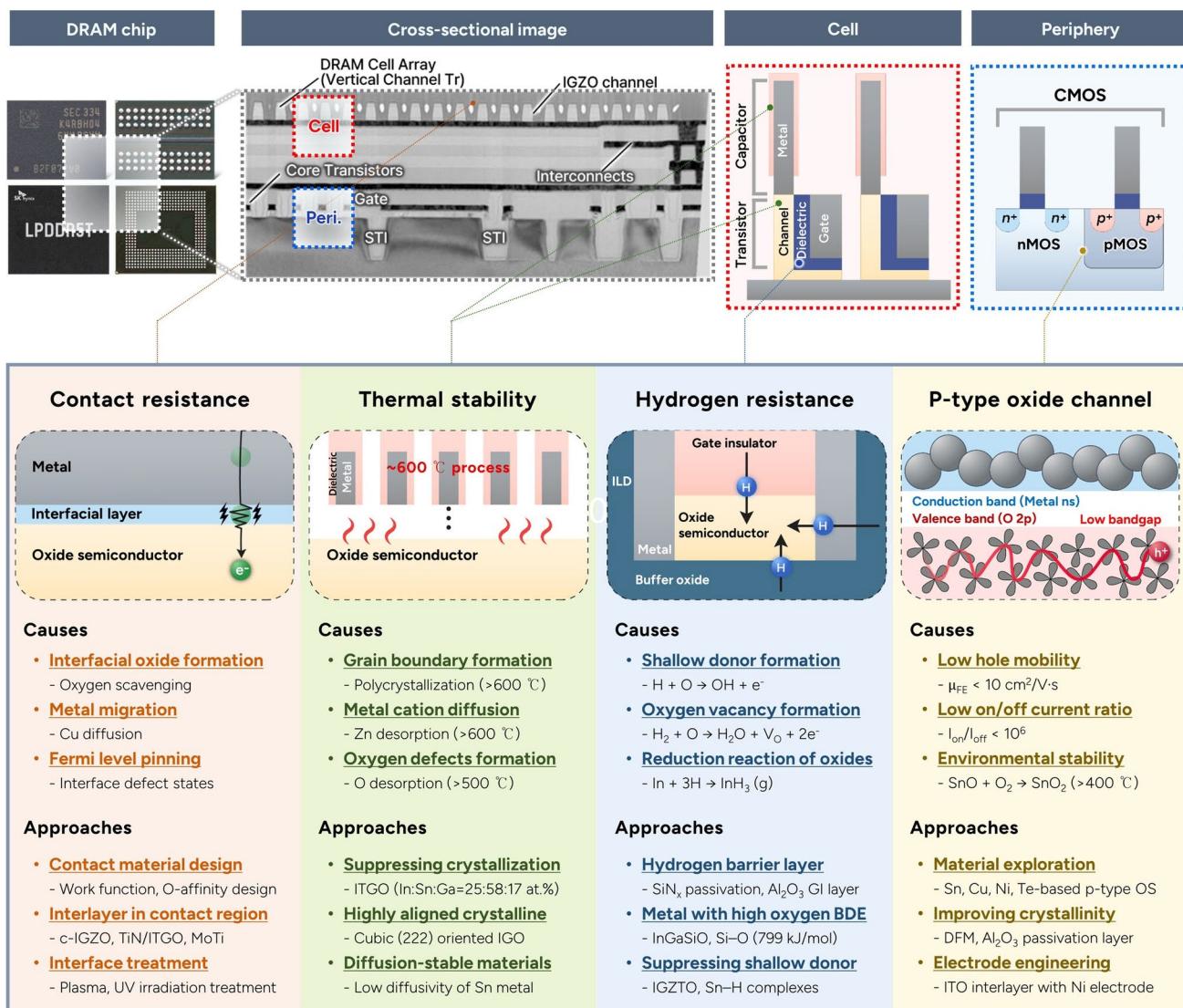
Kim et al. [192] introduced a selective nitrogen-doping strategy in PEALD-grown IGZO thin films, resulting in significant improvements in both mobility and reliability of oxide TFTs. By applying N_2O plasma reactants selectively to individual cation cycles (In, Ga, Zn), the authors demonstrated that nitrogen doping into Ga_2O_3 notably suppressed subgap states and improved PBTS reliability, without the mobility degradation observed in In-rich compositions. The optimized device achieved a high field-effect mobility of $106.5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ and minimal ΔV_{th} shifts ($+0.45 \text{ V}$ PBTS, -0.10 V NBTS at 95°C for 10,000 s). Density

functional theory calculations and thermal desorption spectroscopy revealed that nitrogen incorporation was governed by the interaction between residual carbon species and ON radicals, enabling controlled passivation of oxygen defects. These findings offer atomic-level insights into composition-specific doping chemistry and provide a viable pathway to overcome the mobility–stability trade-off in amorphous OSs.

As an example of hydrogen doping, Kim et al. [221] introduced a hybrid GI engineered via an *in situ* two-step ALD process combining PEALD and thermal ALD Al_2O_3 . This approach enabled high-mobility and hydrogen-resilient IGZO TFTs. By precisely modulating hydrogen, carbon, and oxygen incorporation through the GI stack, the optimized device achieved outstanding electrical performance with $\mu_{\text{FE}} = 150.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, $\text{SS} = 64.0 \text{ mV decade}^{-1}$, and ΔV_{th} shifts of -0.43 V (H_2 annealing) and 0.00 V (PBTS at 95°C , 10,000 s). The superior reliability was attributable to H-passivation and minimized trap formation owing to tailored chemical bonding states in the hybrid Al_2O_3 . Furthermore, the device was integrated into an all-oxide vertically stacked CMOS inverter, achieving rail-to-rail operation with a voltage gain of 44.7 V V^{-1} and noise margin of 87.5% at $V_{\text{DD}} = 10 \text{ V}$. These results highlight the potential of *in situ* hybrid ALD gate engineering for scalable, high-performance oxide-based logic in 3D monolithic integration [221]. Collectively, these findings underscore the critical role of ALD-enabled light element engineering in tailoring defect states and chemical bonding environments, advancing high-mobility and reliable oxide TFTs for next-generation memory and logic electronics.

4 Challenges Toward the Use of OSs in Semiconductor Applications

Although the adoption of ALD has enabled continuous improvements in the properties of OSs, several critical challenges remain for their integration into current memory device architectures. The current DRAM industry imposes stringent requirements on the key performance parameters of OS FETs, including V_{th} , I_{on} , I_{off} , SS, and long-term reliability. First, to ensure normally-off operation suitable for cell transistor applications, the devices must operate in enhancement mode with a moderate and well-controlled V_{th} , typically in the range of approximately 0.3–0.6 V. Enhancement mode operation is favored over depletion mode because it


eliminates the need for constant negative gate bias to keep the transistor in the off state, thereby reducing standby power consumption and preventing unnecessary charge leakage from the storage capacitor. Second, a sufficiently high I_{on} is required to ensure fast read and write access in DRAM cell operations. I_{on} is typically extracted at a gate voltage of $V_{\text{th}} + 1.0 \text{ V}$ under the designated drain bias used for cell transistor operation. For current DRAM integration, an I_{on} on the order of at least several tens of $\mu\text{A } \mu\text{m}^{-2}$ is generally considered necessary to meet the stringent timing requirements of high-speed sensing and charge transfer, while still maintaining compatibility with low-voltage peripheral circuitry [31, 34]. Third, an ultra-low I_{off} is critical for securing long retention times and minimizing standby power consumption in DRAM cell transistors. To suppress charge loss from the storage capacitor and avoid read disturbance in densely integrated arrays, I_{off} levels below $1 \times 10^{-18} \text{ A } \mu\text{m}^{-2}$ are generally required. Such stringent leakage control ensures stable data storage over extended periods, even at scaled gate lengths. Fourth, a steep SS is essential to enable low-voltage operation while maintaining a sufficient on–off current ratio in DRAM cell transistors. In the ideal, defect-free limit governed by Boltzmann carrier statistics, SS approaches $60 \text{ mV decade}^{-1}$ at 300 K . Values close to this limit are desirable because they allow the device to switch effectively at reduced gate voltages, thereby lowering dynamic power consumption and easing the voltage requirements for peripheral circuitry. In practical oxide semiconductor FETs, achieving SS near the Boltzmann limit requires minimizing trap densities at the gate dielectric/semiconductor interface and within the bulk channel, which also contributes to enhanced threshold stability under bias stress [222]. Finally, long-term reliability is a critical requirement for DRAM cell transistors, as device characteristics must remain stable over years of continuous operation under elevated temperature and electrical stress. Typical qualification targets demand stability under conditions such as 95°C and an electric field of approximately 2 MV cm^{-1} for 5–10 years of operation, with minimal degradation in I_{on} (within 10%) or V_{th} (within $\Delta V_{\text{th}} = 30 \text{ mV}$). Reliability poses significant challenges for oxide semiconductor FETs due to two dominant mechanisms: (1) charge trapping in the gate dielectric, which induces V_{th} shifts and mobility degradation, and (2) hydrogen diffusion from ALD-grown dielectrics into the semiconductor channel, which becomes increasingly dominant at elevated temperatures. Therefore, ensuring DRAM-compatible reliability requires

both dielectric engineering to suppress trap formation and barrier strategies to mitigate high-temperature hydrogen diffusion from the insulator to the channel [223, 224].

In addition to the aforementioned device-level requirements, several critical challenges remain to be addressed. As illustrated in Fig. 8, key issues include high contact resistance, limited thermal stability, poor hydrogen resistance, and insufficient performance of p-type OSs. Extensive research efforts are underway to elucidate the causes of these limitations and to develop effective solutions.

4.1 Contact Resistance

An increase in contact resistance leads to a reduction in cell current, thereby degrading the device's response speed and power efficiency. In conventional silicon-based memory devices, contact engineering techniques such as silicide control and interlayer insertion have been employed to reduce specific contact resistivity (ρ_C) to below $10^{-8} \Omega \text{ cm}^2$. However, in the application of OS channels to such device architectures, their inherently high ρ_C ($\sim 10^{-6} \Omega \text{ cm}^2$)

Fig. 8 Four key challenges to integrating oxide semiconductors into memory devices: (1) high contact resistance, (2) thermal instability under high-temperature processing, (3) hydrogen-induced electrical degradation, and (4) absence of high-performance p-type oxide semiconductors. It schematically links each challenge to its primary physical/chemical causes and to representative mitigation approaches. The top panels provide device context (chip → cross-section → cell/periphery), while the bottom panels link the causes to the corresponding approaches. DRAM chip images provided by Samsung Electronics and SK Hynix. Reproduced with permission [34]. Copyright 2024, IEEE

remains a significant bottleneck. In contrast to the display industry, which typically employs structures with larger hole sizes ($\geq 10^{-8} \text{ cm}^2$), the DRAM industry requires contact areas as small as approximately 10^{-12} cm^2 [225]. This significant reduction in contact size highlights the necessity of developing novel contact technologies specifically tailored to oxide semiconductors. One of the primary factors contributing to contact resistance is the migration of oxygen at the metal–semiconductor interface. For example, IGZO is known to form native oxides at the metal interface, which can modulate the carrier concentration through interfacial oxygen vacancy generation [40, 226, 227]. While moderate oxygen scavenging by the metal enhances electron doping and reduces contact resistance, excessive scavenging may lead to structural degradation, interfacial trap formation, and ultimately increased resistance. In addition, interfacial issues such as metal diffusion and Fermi-level pinning have also been reported to contribute to elevated contact resistance.

One promising approach to addressing these challenges lies in material and structural engineering. According to Lin et al., contact resistance is influenced by several factors, including the work function and oxygen affinity of the metal electrode, as well as the band structure and physical dimensions of the semiconductor channel [227]. Their study highlights the need for a contact structure design based on a comprehensive understanding of these interfacial interactions. A second strategy involves the introduction of an additional interlayer in the contact region. Oxide-based interlayers with low resistivity and high bond dissociation energy can suppress interfacial oxide formation [228]. Subhechha et al. introduced a c-axis aligned crystalline IGZO layer at the IGZO/TiN interface, which served as an effective oxygen-tunneling barrier. By preventing oxidation of the TiN electrode, the contact resistance was effectively reduced. Consequently, the device achieved an I_{on} of $24 \mu\text{A} \mu\text{m}^{-1}$, approaching the industry-required benchmark of over $30 \mu\text{A} \mu\text{m}^{-1}$.

Additionally, selecting interlayer materials that support band alignment engineering to lower the Schottky barrier and inhibit metal diffusion has proven effective in reducing contact resistance [229–232]. Jeong et al. demonstrated that inserting a TiN/ITGO interlayer between ITO and In_2O_3 effectively modulates the contact interface and reduces the Schottky barrier height. By optimizing the interlayer thickness, they achieved a reduction in barrier height from 0.4 to 0.2 eV at an 8 nm ITGO thickness, and significantly

improved the ρ_{C} from 8.0×10^{-4} to $9.0 \times 10^{-6} \Omega \text{ cm}^2$ [229]. Kim et al. and Lee et al. reported the use of MoTi and self-assembled monolayer interlayers, respectively, to simultaneously reduce contact resistance and suppress Cu metal diffusion [230, 232].

Another approach involves plasma or chemical treatment of the channel surface [233–236]. Such treatments have been reported to improve contact properties by modulating interface dipoles and passivating subgap states, thereby alleviating Fermi-level pinning. Kim et al. demonstrated that ultraviolet irradiation combined with thermal energy could induce the formation of H_0^+ sites coordinated with metal species on the IGZO surface, thereby enabling modulation of the carrier density. As a result, the channel-width-normalized contact resistance between Mo and IGZO, extracted using the transmission line method (TLM), was reduced from 13.0 to $9.4 \Omega \text{ cm}$. Similarly, Knobelspies et al. investigated the effect of different plasma gas treatments at the IGZO/Ti–Au interface on contact resistance. They reported that CF_4 -based plasma treatment significantly reduced the contact resistance—by a factor of 24.2—through fluorine-induced passivation of oxygen vacancies, which suppressed trap sites and generated additional free electrons.

Despite these efforts, OSs still exhibit higher contact resistance compared with that of silicon-based systems. Moreover, further enhancement in the thermal stability of contact interfacial layers and conditions is essential to ensure reliability under subsequent high-temperature processing conditions. In addition, considering the 3D architecture of next-generation DRAM, the development of high-performance metal electrode processes that are fully compatible with ALD remains a critical challenge.

4.2 Thermal Stability

In the display industry, for glass-based displays, the thermal budget is typically limited to below 400 °C while flexible displays using polymer substrates impose even stricter constraints, often below 250 °C. In contrast, in DRAM devices, cell transistors are subjected to subsequent capacitor formation processes at temperatures exceeding 600 °C. Therefore, the channel materials must maintain stable electrical properties within this thermal budget. However, IGZO has been reported to suffer from several limitations under such high-temperature conditions, including polycrystallization,

elemental diffusion, and defect generation [169, 237–239]. Jeong et al. reported that initially amorphous IGZO undergoes randomly oriented polycrystallization beyond 600 °C, leading to significant degradation in electrical performance, including a reduction in μ_{FE} from 40.9 to 5.8 $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$ and an increase in SS from 68 to 117 mV decade $^{-1}$ [237]. Ryu et al. attributed the decrease in IGZO conductivity above 600 °C to the desorption of Zn atoms, which exhibits a higher diffusivity ($4.36 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$) compared to In ($0.73 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$) and Ga ($0.95 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$) [169]. This Zn desorption was correlated with a positive V_{th} shift from 0.18 to 1.15 V and a decrease in μ_{FE} from 6.0 to 0.3 $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$. These effects lead to threshold voltage instability, degraded field-effect mobility, and low stress reliability in IGZO-based FET applications.

To address these challenges, extensive research efforts have focused on developing OSs with enhanced phase stability at elevated temperatures. One primary strategy involves increasing the crystallization temperature of amorphous oxides by modifying their cation composition. In particular, multicomponent In_2O_3 -based oxides incorporating elements such as Ga, Zn, Sn, Al, and W have been shown to effectively suppress crystallization [126, 169, 240–242]. Within these multicomponent systems, reducing the In^{3+} cation concentration below a critical threshold further enhances resistance to crystallization. For instance, Ryu et al. proposed ITGO (In:Sn:Ga = 25:58:17 at%) as an alternative to conventional IGZO [169]. This composition not only suppresses crystallization through the incorporation of Sn but also benefits from the inherently low diffusivity of Sn ($1.05 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$), thereby maintaining phase integrity and stable electrical performance (V_{th} : -0.03 V, μ_{FE} : 7.7 $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$) even after annealing above 700 °C. The high bond dissociation energy of Sn–O further contributes to thermal stability in the bonding structure and suppresses the formation of oxygen-related defects.

A second strategy for achieving phase stability involves the intentional alignment of crystalline grains during the early stages of film growth. This approach minimizes structural changes during high-temperature processing while preserving high carrier mobility. According to Ryu et al., InGaO with a highly aligned cubic (222) orientation along the out-of-plane direction (In:Ga = 4:1 at%) exhibited negligible structural degradation up to 700 °C, in contrast to randomly oriented films [126]. This phase stability also led to reduced changes in bandgap energy, film density, and

oxygen bonding states, ultimately enabling excellent device performance (V_{th} : -0.65 V, μ_{FE} : 128.2 $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$) at temperatures exceeding 600 °C, which meets the thermal budget requirements of the DRAM industry.

Nonetheless, amorphous oxides inherently suffer from limited mobility, while crystalline oxides face challenges in achieving single-crystalline growth, leading to grain boundary-related nonuniformities. Consequently, the debate over the optimal phase—amorphous versus crystalline—for thermally stable OSs remains an ongoing topic in materials research.

4.3 Hydrogen Resistance

Hydrogen is widely incorporated across various stages of memory device fabrication, particularly during passivation, metallization, and annealing. In conventional Si-based memory devices, the low reactivity of silicon with hydrogen, combined with hydrogen's ability to effectively passivate dangling bonds, has been beneficial for improving device performance. However, when oxide OS channels are integrated into hydrogen-rich process architectures, hydrogen incorporation can lead to the formation of various defects within the channel. Hydrogen can exist in H_i^+ , H_0^+ , and $\text{V}_{\text{O}}\text{H}$ states in the OS matrix, generally acting as a shallow donor, and has also been reported to promote the formation of oxygen vacancies [243–245]. In contrast, several reports highlight the ambivalent effects of hydrogen. When introduced in appropriate amounts, hydrogen can passivate weak bonds, deep states, and oxygen vacancies in OSs, leading to improvements in SS and short-term PBTS [243, 246–249]. However, the high thermal budgets characteristic of DRAM fabrication—frequently above 600 °C—facilitate rapid hydrogen diffusion and accelerate defect generation relative to display manufacturing, indicating a clear need for methods that improve hydrogen stability. The primary concern regarding hydrogen exposure is the electrical degradation of OS properties. In DRAM applications, where a tight sensing margin is critical, a V_{th} shift within ± 0.1 V is typically required even after hydrogen exposure. This necessitates strict control over hydrogen-related and hydrogen-induced defects that can alter carrier density. A second concern is the physical degradation driven by hydrogen's strong reducing nature, which can induce metal precipitation and etching phenomena [250, 251]. At temperatures above

600 °C, hydrogen exposure has been shown, both thermodynamically and experimentally, to reduce In_2O_3 and SnO_2 into volatile hydrides such as InH_3 and SnH_4 .

One approach to mitigate these issues is the introduction of hydrogen barrier layers. Thin films such as SiN_x and Al_2O_3 can be deposited either on top of the OS channel or at critical interfaces to effectively block hydrogen permeation [221, 252, 253]. According to Kim et al., Al_2O_3 used as a gate insulator exhibits a low H_2 permeability of less than 10^{-4} Barrer [221]. By controlling the carbon, oxygen, and hydrogen content within the Al_2O_3 film, they demonstrated improved hydrogen resistance, achieving a ΔV_{th} as low as -0.13 V after H_2 annealing. Another strategy involves material-level engineering by incorporating elements with high hydrogen resistance. For example, the inclusion of elements with high oxygen bond dissociation energy can help suppress the formation of oxygen vacancies under hydrogen-rich environments. Saito et al. introduced Si, which has a significantly higher bond dissociation energy for $\text{Si}-\text{O}$ (799 kJ mol^{-1}) compared to $\text{Zn}-\text{O}$ ($< 250 \text{ kJ mol}^{-1}$), into InGaZnO to form InGaSiO [245]. As a result, InGaSiO films maintained semiconducting properties with enhancement mode even after H_2 annealing at 380 °C, whereas the conventional InGaZnO films underwent severe degradation and changed to depletion mode under the same conditions. Similarly, Sn has been reported to trap hydrogen by forming $\text{Sn}-\text{H}$ complexes, which suppress the formation of shallow donor-like hydrogen states and contribute to enhanced device stability under bias and thermal stress [254]. However, further studies on the effects and behavior of hydrogen under high-temperature conditions are still required, considering the thermal budget of DRAM fabrication processes. In addition to ensuring V_{th} stability, achieving robust H_2 resistance with improved μ_{FE} and stress reliability continues to be a critical research objective.

4.4 P-type Oxide Channels

In memory devices, the peripheral circuitry performs a range of critical functions, including word line control, sensing amplification, and precharge operations. For advanced 3D DRAM integration, OS-based circuit technology is essential. Although OSs are predominantly n-type, NMOS-only implementations exhibit inherent limitations that become more pronounced with higher integration, resulting in

reduced signal amplitude and lower efficiency. Consequently, CMOS is generally adopted in the periphery to ensure stable signaling, sufficient noise margin, and dependable control and sensing, underscoring the need for reliable p-type oxide semiconductors. However, existing p-type OSs suffer from several limitations, including low hole mobility ($< 10 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), high I_{off} , and poor stability [8]. First, the low mobility of p-type OSs originates from their valence bands, which are primarily composed of localized $\text{O} 2p$ orbitals as shown in Fig. 3b, severely restricting hole transport. Considering that state-of-the-art n-type OSs have demonstrated mobilities exceeding $100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, p-type OSs are required to achieve mobilities above approximately $40 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ to ensure balanced drive currents in CMOS circuits. Second, the high I_{off} in p-type OSs is mainly due to their intrinsically low bandgap (< 2.5 eV) and the correspondingly low Schottky barrier height at the metal contact, which facilitates thermionic carrier injection in the off state. For sufficient sensing accuracy and noise immunity in practical applications, the $I_{\text{on}}/I_{\text{off}}$ ratio should exceed 10^6 , with I_{off} levels below $\sim 10^{-14} \text{ A } \mu\text{m}^{-2}$. Finally, the poor stability of p-type OSs arises from the metastable oxidation state of the cation (e.g., Sn^{2+} in SnO , which can be oxidized to Sn^{4+} in SnO_2) and the high density of hole trap sites associated with localized $\text{O} 2p$ orbitals. Stress reliability requirements are comparable to those of n-type OSs, typically demanding that the V_{th} shift remain within 0.1 V under gate bias stress of 2 MV cm^{-1} at 95 °C for multi-year.

To address these challenges, new material systems based on Cu, Sn, Ni, and Te are being actively investigated [207, 255–261]. P-type channels such as CuO , SnO , and NiO , in which the valence band maximum (VBM) is primarily derived from $\text{O} 2p$ orbitals, have demonstrated μ_{FE} below $10 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. In contrast, TeO_x materials, in which the VBM is primarily composed of $\text{Te} 5p$ orbitals, have recently been regarded as promising p-type candidates, as the large spatial extent of the $5p$ orbitals can reduce the hole effective mass and thereby enhance mobility. Based on Liu et al., the electrical performance of amorphous $\text{Te}-\text{TeO}_x$ thin-film transistors was significantly enhanced by selenium alloying [261]. Controlling the oxygen content to promote suboxide formation effectively widened the bandgap, which in turn suppressed the off-state current. As a result, the optimized Se-alloyed $\text{Te}-\text{TeO}_x$ devices achieved an average hole mobility of $\sim 15 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, an $I_{\text{on}}/I_{\text{off}}$ ratio of $\sim 10^7$, and exhibited

excellent bias-stress stability with minimal subthreshold degradation.

To further enhance mobility, material engineering strategies that improve crystallinity are being actively explored. Kim et al. reported that in ALD-grown SnO, adopting a DFM for the precursor supply promoted lateral grain growth and improved the c-axis alignment of the (001)-oriented tetragonal structure, thereby reducing structural defects and enhancing carrier transport [207]. As a result, the optimized SnO TFT achieved a one-order-of-magnitude increase in the I_{on}/I_{off} ratio (7.38×10^6), a higher μ_{FE} of $1.86 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, and a low SS of $0.12 \text{ V decade}^{-1}$. Approaches involving the introduction of passivation layers have also been investigated to simultaneously improve carrier mobility and device stability. Kim et al. reported that incorporating an in situ ALD-grown Al_2O_3 passivation layer on the SnO channel suppressed the formation of thermodynamically stable SnO_2 phases and facilitated the growth of highly oriented, large-grain SnO domains, thereby reducing grain boundary density and scattering centers [258]. This crystallinity enhancement improved hole transport, yielding a μ_{FE} of $2.53 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. Moreover, the use of conformal passivation layers is particularly advantageous in suppressing extrinsic degradation mechanisms, such as oxygen diffusion or interfacial redox reactions, which are accelerated under bias-temperature stress. This highlights the importance of interface and surface engineering in advancing the stability of p-type oxide TFTs.

Another strategy to enhance the performance of p-type FETs involves electrode and contact engineering. Choi et al. emphasized the importance of selecting electrode materials with an appropriate work function to minimize the Schottky barrier height at the metal–semiconductor interface, thereby facilitating efficient hole injection [259]. They demonstrated that inserting a 5 nm indium tin oxide (ITO) interlayer between the Ni electrode (work function = 4.60 eV) and the p-type SnO channel (4.56 eV) effectively suppressed interfacial redox reactions that otherwise induce the formation of insulating SnO_2 phases. This interface modification enhanced the μ_{FE} ($\sim 2.5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), while lowering the off-current from 3×10^{-9} to $2 \times 10^{-11} \text{ A}$ by mitigating defect-induced leakage pathways. Beyond simple work-function matching, recent studies also emphasize the role of contact-induced dipoles and interfacial phase stabilization, suggesting that contact engineering should be considered not only from an energy-band alignment perspective but also

as a means to suppress parasitic chemical reactions at the interface.

Nevertheless, p-type OSs still demonstrate inferior performance compared to conventional p-type Si channels, underscoring the need for effective strategies to achieve key targets such as a field-effect mobility exceeding $40 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, high-temperature stability ($\sim 600 \text{ }^\circ\text{C}$), and excellent bias temperature stress reliability. Furthermore, establishing ALD processes for implementing promising Te-based materials into 3D architectures remains an unresolved challenge.

4.5 Other Challenging Issues

4.5.1 Cross-Parameter Trade-Offs and Co-optimization

Interdependent mitigation strategies for contact resistance, thermal stability, and hydrogen resistance inevitably introduce trade-offs, necessitating a co-optimization approach for balanced device performance. These interdependencies are evident in practical schemes such as interlayer design with oxygen scavenging metals, hydrogen barrier formation, and surface or plasma treatments. For contact resistance, interlayers and oxygen scavenging metals can narrow the interfacial barrier and reduce injection resistance. Still, they also risk interfacial redox reactions and metal diffusion during high-temperature steps, which subsequently perturb V_{th} stability. For thermal stability, the same metallurgical activity can drive premature crystallization and interface roughening, degrading the SS and long-term reliability. For hydrogen resistance, barrier layers suppress donor formation and limit threshold drift, yet they may introduce interfacial dipoles and fixed charge that worsen the SS or reinforce Fermi level pinning.

Accordingly, diagnostics must be explicitly tied to each issue: wafer map TLM and cross-bridge Kelvin resistor (CBKR) structures for continuous tracking of contact resistance; accelerated thermal stress and retention style tests for thermal stability; and bias temperature stress under controlled hydrogen exposure for hydrogen-related drift. Taken together, these links motivate a co-optimization strategy that sets an appropriate thermal budget to minimize diffusion time and preserves the intended band alignment and barrier function through deliberate control of layer placement and

thickness, with closed-loop feedback from the corresponding electrical monitors.

4.5.2 Device-to-device and Wafer-to-wafer Variability

While ALD offers excellent film-level uniformity, translating this advantage into consistent device-level performance across large wafers and deeply stacked arrays remains a significant challenge. In OS FETs, variability in V_{th} , μ_{FE} , SS, contact resistance, and reliability arises from coupled process and materials factors. Process side contributors include precursor dosing and purge efficiency, spatial nonuniformity of temperature, pattern density effects, and step coverage; materials side contributors include local differences in cation ratio, oxygen vacancy fraction, residual hydrogen, nanocrystallinity, and interface state density. Interface-related factors—such as interlayer thickness fluctuations, interfacial dipoles, contact roughness, and Fermi level pinning—further degrade uniformity.

To address these issues, variance decomposition across the channel, gate insulator, and contact can be coupled with wafer maps and on-chip monitors—such as CBKR, TLM, and Van der Pauw structures—to quantify corner-to-center trends and distribution tails. At the same time, advanced process control with in situ sensing, optimized wafer rotation and flow zoning, controlled post-treatments, and interlayer engineering that suppresses interfacial oxidation remains necessary. In parallel, unified statistical specifications that link device-level variability to array-level failure tails are required, including quantitative targets for sigma of V_{th} , contact resistance spread, and interface state density that guarantee sensing margin at scale. Closing the loop from variability monitors to real-time tool control across 300 mm wafers and 3D stacks remains a critical milestone.

4.5.3 Long-Term Reliability Beyond Bias-Temperature Stress

While BTI has been widely studied in OS FETs, other degradation mechanisms—particularly hot carrier injection (HCI), random telegraph noise (RTN), and soft error rate (SER)—are gaining increasing importance as devices are scaled and sensing margins become tighter. In contrast to Si-based channel, the wide bandgap and disordered network of OSs shift the degradation focus toward contact-adjacent

regions and within the channel, where strong lateral fields and injection-limited transport promote HCI-induced trap creation that drives V_{th} drift, transconductance loss, and SS degradation. The intrinsically low carrier density amplifies the impact of a few active traps, producing RTN and discrete current fluctuations that directly erode the read margin, while ionizing events can inject transient charge into high-resistance nodes with long recovery times, increasing SER susceptibility.

To evaluate and mitigate these reliability concerns, a systematic qualification framework is required. This framework combines contact-focused hot carrier stress at elevated temperatures, time-domain noise measurements across millisecond–second scales and temperature ranges, and accelerated stress testing—including radiation, electrical, and thermal transients—to extract soft-error cross sections under realistic bias conditions. Mitigation strategies operate across multiple levels. At the material and process level, emphasis is placed on gate-insulator stacks with low interface state density, balanced hydrogen management, and interlayer engineering to stabilize injection barriers and reduce local field concentration. At the circuit and operation level, noise-robust sensing, adaptive bias or refresh schemes, and error correction with redundancy are essential to maintain array-level reliability.

5 Conclusion and Outlook

Oxide semiconductors (OSs) have rapidly evolved from display backplane materials into promising channel candidates for advanced memory architectures. Their unique electronic band structure—characterized by delocalized metal ns orbitals, wide bandgaps, and ultralow leakage—provides an intrinsic advantage for low-power and 3D integration. Recent demonstrations in BEOL, 1T1C, 2T0C, and ferroelectric FET (FeFET) architectures highlight their potential to extend beyond conventional silicon-based scaling limits.

Atomic layer deposition (ALD) has emerged as a pivotal enabler in this transformation. By virtue of the four key characteristics—excellent 3D uniformity, angstrom-scale controllability, rational cation-distribution design, and inherently high film quality—ALD enables the growth of dense, low-defect thin films with clean interfaces. Recent advances—including cation engineering with Sn and W, controlled crystallization of ultrathin In_2O_3 , bilayer/nanolaminate channel design, and light-element incorporation—have

demonstrated significant progress in mobility enhancement, bias stability, and thermal robustness. These findings confirm that ALD not only provides scalable processing but also offers a versatile platform for defect control and atomic-scale material design.

Despite these advances, several challenges must be overcome before OSs can be widely adopted in DRAM and other memory technologies. Key bottlenecks include (i) high contact resistance at the metal–semiconductor interface, (ii) limited thermal stability under > 600 °C processing relevant to capacitor formation, (iii) hydrogen-induced threshold voltage instabilities during high-temperature fabrication, and (iv) the lack of high-mobility, stable p-type oxide semiconductors for CMOS integration. Addressing these issues requires a combination of interface engineering, dopant and defect control, hydrogen barrier design, and exploration of novel p-type systems such as TeO_x alloys.

Specifically, across four application classes—BEOL, 1T1C, 2T0C, and FeFET—OSs are required to meet the application targets. For BEOL, it is desirable that they deliver high mobility with large I_{on} , ultralow I_{off} , small SS, and appropriate V_{th} within a sub-400 °C thermal budget. In 1T1C, OSs should retain transfer characteristics and reliability after high temperature (≥ 600 °C) capacitor processing. In 2T0C, charge retention benefits from very low I_{off} in the read FET, while fast (few–tens of ns) writes are favored by high I_{on} and large g_m ; in parallel, device/layout choices are encouraged to suppress unintended parasitic capacitances. For FeFETs, suitability for high-aspect-ratio 3D vertical architectures and excellent ferroelectric/OS-channel interfacial compatibility are paramount, design strategies, such as adopting p-type OSs, are required to address hole scarcity in n-type OS channels. Across all applications, lower contact resistance, improvement hydrogen resistance, and ALD compatibility is advantageous to conformally realize CAA/GAA/VCT 3D geometric FETs for continued scaling.

Looking ahead, OSs are expected to play a strategic role in bridging logic and memory integration, particularly in monolithic 3D system architectures where energy efficiency and scaling are paramount. The demonstrated compatibility of ALD-grown OSs with vertical channel transistors, gate-all-around (GAA) FETs, and ferroelectric memory elements highlights their adaptability across diverse device platforms. Moreover, the integration of AI-driven process modeling and data-driven optimization of ALD chemistry offers a path toward accelerating material discovery and device

reliability. Practically, AI/data-driven process optimization proceeds along two primary directions, augmented by large language models (LLMs) as an integrating layer. First, ALD recipe optimization uses closed-loop Bayesian optimization and active learning on high-throughput experiments to meet target film metrics [262–264]. Second is precursor/reactant design, based on DFT-derived machine learning, for precursor/reactant properties optimization or HAR conformality prediction [265–268].

In conclusion, ALD-enabled OSs offer a credible path to next-generation semiconductor industry. From a technology-maturity perspective, the present maturity ranges from proof-of-concept and lab-validated prototypes to early pilot-line (pre-production) demonstration for BEOL/memory-compatible OS channels and selector devices, enabling near-term deployment in low-leakage selectors and peripheral circuits and positioning the technology for mid-term adoption in 1T1C/2T0C/FeFET architectures. Most recently, TSMC Ltd. has substantiated industrial viability by validating yield and reliability at the test-chip level for an ALD-OS-based 1T1C memory array embedded in the BEOL that is fully compatible with advanced logic processes [269]. Additionally, at the 2025 VLSI Symposium, SK hynix positioned oxide semiconductors (OSs) as next-generation channel materials for 4F² memory scaling [270]. However, key risks remain—contact resistance at scaled dimensions, thermal robustness, hydrogen resistance, reliable hole transport, device-to-device and wafer-to-wafer variability, and long-term reliability—yet these are de-riskable through precursor chemistry and ligand design, contact/interface engineering, impurity incorporation and defect management, atomic-scale processing, and system-level integration. With these milestones, the convergence of atomic-scale materials design and device co-optimization is positioned to move OS channels from pilot demonstrations toward qualified, industry-relevant deployment.

Acknowledgements This work was supported by National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (MSIT) (No. RS-2023-00260527, RS-2024-00407282, RS-2025-00557667), supported by Hanyang University Industry-University Cooperation Foundation (No. 202400000003943), supported by Korea Planning & Evaluation Institute of Industrial Technology (KEIT) funded by South Korean Ministry of Trade, Industry and Energy (MOTIE) (No. RS-2025-25454815, RS-2025-02308064, 20017382).

Author Contributions Chi-Hoon Lee and Seong-Hwan Ryu have contributed equally to this work. Chi-Hoon Lee and Seong-Hwan Ryu contributed to conceptualization, visualization, and writing—original draft. Taewon Hwang contributed to visualization and investigation. Sang-Hyun Kim contributed to investigation. Yoon-Seo Kim contributed to writing—review & editing, supervision, conceptualization. Jin-Seong Park contributed to writing—review & editing, supervision, conceptualization, funding acquisition.

Declarations

Conflict of interest The authors declare no interest conflict. They have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. M. Badaroglu, M. Moore, IEEE International Roadmap for Devices and Systems Outbriefs. November 30, 2021. Santa Clara, CA, USA. IEEE **2021**, 01–38 (2021). <https://doi.org/10.1109/irds54852.2021.00010>
2. S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. *Nat. Electron.* **1**(8), 442–450 (2018). <https://doi.org/10.1038/s41928-018-0117-x>
3. M. Bohr, The evolution of scaling from the homogeneous era to the heterogeneous era. 2011 International Electron Devices Meeting., 1.1.1–1.1.6. IEEE (2012). <https://doi.org/10.1109/IEDM.2011.6131469>
4. W. Haensch, E.J. Nowak, R.H. Dennard, P.M. Solomon, A. Bryant et al., Silicon CMOS devices beyond scaling. *IBM J. Res. Dev.* **50**(4.5), 339–361 (2006). <https://doi.org/10.1147/rd.504.0339>
5. T. Kim, C.H. Choi, J.S. Hur, D. Ha, B.J. Kuh et al., Progress, challenges, and opportunities in oxide semiconductor devices: a key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. *Adv. Mater.* **35**(43), e2204663 (2023). <https://doi.org/10.1002/adma.202204663>
6. A.R. Choi, D.H. Lim, S.-Y. Shin, H.J. Kang, D. Kim et al., Review of material properties of oxide semiconductor thin films grown by atomic layer deposition for next-generation 3D dynamic random-access memory devices. *Chem. Mater.* **36**(5), 2194–2219 (2024). <https://doi.org/10.1021/acs.chemmater.3c02223>
7. E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. *Adv. Mater.* **24**(22), 2945–2986 (2012). <https://doi.org/10.1002/adma.201103228>
8. H.-M. Kim, D.-G. Kim, Y.-S. Kim, M. Kim, J.-S. Park, Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook. *Int. J. Extreme Manuf.* **5**(1), 012006 (2023). <https://doi.org/10.1088/2631-7990/acb46d>
9. M. Si, Z. Lin, Z. Chen, P.D. Ye, High-performance atomic-layer-deposited indium oxide 3-D transistors and integrated circuits for monolithic 3-D integration. *IEEE Trans. Electron Devices* **68**(12), 6605–6609 (2021). <https://doi.org/10.1109/ted.2021.3106282>
10. Y. Sun, Y. Xu, Z. Zheng, Y. Wang, Y. Kang et al., BEOL three-dimensional stackable oxide semiconductor CMOS inverter with a high voltage gain of 233 at cryogenic temperatures. *Nano Lett.* **25**(31), 11757–11761 (2025). <https://doi.org/10.1021/acs.nanolett.4c04701>
11. Z. Lin, Z. Zhang, C. Niu, H. Dou, K. Xu et al., Highly robust all-oxide transistors toward vertical logic and memory. *IEEE Trans. Electron Devices* **71**(12), 7984–7991 (2024). <https://doi.org/10.1109/ted.2024.3495632>
12. S. Fujii, T.F. Lu, K. Ikeda, S.Y. Chang, K. Sakamoto et al., Oxide-semiconductor channel transistor DRAM (OCTRAM) with 4F2 architecture. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873368>
13. J.S. Hur, S. Lee, J. Moon, H.-G. Jung, J. Jeon et al., Oxide and 2D TMD semiconductors for 3D DRAM cell transistors. *Nanoscale Horiz.* **9**(6), 934–945 (2024). <https://doi.org/10.1039/d4nh00057a>
14. A. Belmonte, G.S. Kar, Disrupting the DRAM roadmap with capacitor-less IGZO-DRAM technology. *Nat. Rev. Electr. Eng.* **2**(4), 220–221 (2025). <https://doi.org/10.1038/s44287-025-00162-w>
15. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano et al., Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. *Science* **300**(5623), 1269–1272 (2003). <https://doi.org/10.1126/science.1083212>
16. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. *Nature* **432**(7016), 488–492 (2004). <https://doi.org/10.1038/nature03090>
17. S.K. Park, C.-S. Hwang, J.-I. Lee, S.M. Chung, Y.S. Yang et al., 4.3: Transparent ZnO thin film transistor array for the application of transparent AM-OLED display. *SID Symp. Dig. Tech. Pap.* **37**(1), 25–28 (2006). <https://doi.org/10.1889/1.2433472>
18. J.K. Jeong, J.H. Jeong, J.H. Choi, J.S. Im, S.H. Kim et al., 12.1-Inch WXGA AMOLED display driven by

indium-gallium-zinc oxide TFTs array, SID Symposium Digest of Technical Papers **39**, 1 (2012). <https://doi.org/10.1889/1.3069591>

19. D.-U. Jin, T.-W. Kim, H.-W. Koo, D. Stryakhilev, H.-S. Kim et al., Highly robust flexible AMOLED display on plastic substrate with new structure. SID Symp. Dig. Tech. Pap. **41**(1), 703–705 (2010). <https://doi.org/10.1889/1.3500565>
20. C.-W. Han, K.-M. Kim, S.-J. Bae, H.-S. Choi, J.-M. Lee et al., 21.2: 55-inch FHD OLED TV employing new tandem WOLEDs. SID Symp. Dig. Tech. Pap. **43**(1), 279–281 (2012). <https://doi.org/10.1002/j.2168-0159.2012.tb05768.x>
21. Y. Jimbo, T. Aoyama, N. Ohno, S. Eguchi, S. Kawashima et al., 25.1: Tri-fold flexible AMOLED with high barrier passivation layers. SID Symp. Dig. Tech. Pap. **45**(1), 322–325 (2014). <https://doi.org/10.1002/j.2168-0159.2014.tb00087.x>
22. T. Matsuo, Y. Kanzaki, H. Matsukizono, A. Oda, S. Kaneko et al., CAAC-IGZO Technology. SID Symposium Digest of Technical Papers **47**, 1 (2016). <https://doi.org/10.1002/SDTP.10904>
23. T.-K. Chang, C.-W. Lin, S. Chang, LTPO TFT technology for AMOLEDs. SID Symp. Dig. Tech. Pap. **50**(1), 545–548 (2019). <https://doi.org/10.1002/sdtp.12978>
24. Nachiket Mhatre, Why iPhone 13 LTPO display tech is game-changing. (NewsBytes, 2021), <https://www.newsbytesapp.com/news/science/why-iphone-13-ltpo-display-tech-is-game-changing/story>
25. A. Hachiya, M. Aman, H.-Y. Chiu, T. Shinohara, W.Y. Lin et al., 46–1: 1218 ppi quest 3 display by hybrid backplane with highly reliable IGZO TFTs. SID Symp. Dig. Tech. Pap. **55**(1), 615–618 (2024). <https://doi.org/10.1002/sdtp.17599>
26. M.-J. Lee, S.I. Kim, C.B. Lee, H. Yin, S.-E. Ahn et al., Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory. Adv. Funct. Mater. **19**(10), 1587–1593 (2009). <https://doi.org/10.1002/adfm.200801032>
27. H. Sunamura, K. Kaneko, N. Furutake, S. Saito, M. Narihiro et al., High on/off-ratio P-type oxide-based transistors integrated onto Cu-interconnects for on-chip high/low voltage-bridging BEOL-CMOS I/Os. 2012 International Electron Devices Meeting. December 10–13, 2012. San Francisco, CA, USA. IEEE, (2012). pp. 18.8.1–18.8.3. <https://doi.org/10.1109/iedm.2012.6479070>
28. Y. Kobayashi, D. Matsubayashi, S. Nagatsuka, Y. Yakubo, T. Atsumi et al., Scaling to 50-nm C-axis aligned crystalline In-Ga-Zn oxide FET with surrounded channel structure and its application for less-than-5-nsec writing speed memory. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers. June 9–12, 2014. Honolulu, HI, USA. IEEE, (2014). pp. 1–2. <https://doi.org/10.1109/vlsit.2014.6894421>
29. D. Matsubayashi, Y. Asami, Y. Okazaki, M. Kurata, S. Sasa-gawa et al., 20-nm-Node trench-gate-self-aligned crystalline In-Ga-Zn-Oxide FET with high frequency and low off-state current. 2015 IEEE International Electron Devices Meeting (IEDM). December 7–9, 2015. Washington, DC, USA. IEEE, (2015). pp. 6.5.1–6.5.4. <https://doi.org/10.1109/iedm.2015.7409641>
30. M. Oota, Y. Ando, K. Tsuda, T. Koshida, S. Oshita et al., 3D-stacked CAAC-In-Ga-Zn oxide FETs with gate length of 72nm. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). pp. 3.2.1–3.2.4. <https://doi.org/10.1109/iedm19573.2019.8993506>
31. A. Belmonte, H. Oh, N. Rassoul, G.L. Donadio, J. Mitard et al., Capacitor-less, Long-Retention (>400s) DRAM Cell Paving the Way towards Low-Power and High-Density Monolithic 3D DRAM, 2020 IEEE International Electron Devices Meeting (IEDM) (2020). <https://doi.org/10.1109/IEDM13553.2020.9371900>
32. X. Duan, K. Huang, J. Feng, J. Niu, H. Qin et al., Novel vertical channel-all-around(CAA) IGZO FETs for 2T0C DRAM with high density beyond 4F² by monolithic stacking, 2021 IEEE International Electron Devices Meeting (IEDM) (2021). <https://doi.org/10.1109/IEDM19574.2021.9720682>
33. W. Kim, J. Kim, D. Ko, J.-H. Cha, G. Park et al., Demonstration of crystalline IGZO transistor with high thermal stability for memory applications. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. <https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185258>
34. D. Ha, Y. Lee, S. Yoo, W. Lee, M.H. Cho et al., Exploring innovative IGZO-channel based DRAM cell architectures and key technologies for sub-10nm node. 2024 IEEE International Memory Workshop (IMW). May 12–15, 2024. Seoul, Korea, Republic of. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/imw59701.2024.10536968>
35. S. Yoo, D. Kim, D.-H. Choe, H.J. Lee, Y. Lee et al., Highly enhanced memory window of 17.8V in ferroelectric FET with IGZO channel via introduction of intermediate oxygen-deficient channel and gate interlayer. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. <https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631534>
36. Z. Zhang, Z. Lin, A. Charnas, H. Dou, Z. Shang et al., Reliability of atomic-layer-deposited gate-all-around In₂O₃ nano-ribbon transistors with ultra-high drain currents. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 30.3.1–30.3.4. <https://doi.org/10.1109/iedm45625.2022.10019494>
37. P.-Y. Liao, D. Zheng, S. Alajlouni, Z. Zhang, M. Si et al., Transient thermal and electrical co-optimization of BEOL top-gated ALD In₂O₃ FETs toward monolithic 3-D integration. IEEE Trans. Electron Devices **70**(4), 2052–2058 (2023). <https://doi.org/10.1109/ted.2023.3235313>
38. P.-Y. Liao, S. Alajlouni, M. Si, Z. Zhang, Z. Lin et al., Thermal studies of BEOL-compatible top-gated atomically thin ALD In₂O₃ FETs. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp.

322–323. <https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830279>

39. W. Tang, Z. Wang, Z. Lin, L. Feng, Z. Liu et al., Monolithic 3D integration of vertically stacked CMOS devices and circuits with high-mobility atomic-layer-deposited $\text{In}_2\text{O}_3\text{n-FET}$ and polycrystalline Si p-FET: achieving large noise margin and high voltage gain of 134 V/V. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 483–486. <https://doi.org/10.1109/iedm45625.2022.10019410>

40. C. Niu, Z. Lin, Z. Zhang, P. Tan, M. Si et al., Record-low metal to semiconductor contact resistance in atomic-layer-deposited In_2O_3 TFTs reaching the quantum limit. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. <https://doi.org/10.1109/iedm45741.2023.10413708>

41. J.-Y. Lin, Z. Zhang, S. Alajlouni, P.-Y. Liao, Z. Lin et al., First determination of thermal resistance and thermal capacitance of atomic-layer-deposited In_2O_3 transistors. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. <https://doi.org/10.1109/iedm45741.2023.10413835>

42. Z. Zhang, Z. Lin, C. Niu, M. Si, M.A. Alam et al., Ultrahigh bias stability of ALD In_2O_3 FETs enabled by high temperature O_2 annealing. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. <https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185292>

43. J.-Y. Lin, C. Niu, Z. Lin, T. Kim, B. Park et al., Quantum confinement controlled positive to negative Schottky barrier conversion in ultrathin In_2O_3 transistor contacts. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873514>

44. Z. Lin, C. Niu, H. Jang, T. Kim, Y. Zhang et al., Enhancement of In_2O_3 field-effect mobility up to $152 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ Using HZO-based higher-k linear dielectric. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. <https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631497>

45. D. Zheng, A. Charnas, J. Anderson, H. Dou, Z. Hu et al., First demonstration of BEOL-compatible ultrathin AtomicLayer-deposited InZnO transistors with GHz operation and record high bias-stress stability. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 4.3.1–4.3.4. <https://doi.org/10.1109/iedm45625.2022.10019452>

46. Y.-K. Liang, J.-Y. Zheng, Y.-L. Lin, W.-L. Li, Y.-C. Lu et al., Aggressively scaled atomic layer deposited amorphous InZnO_x thin film transistor exhibiting prominent short channel characteristics ($\text{SS} = 69 \text{ mV/dec.}$; $\text{dibl} = 27.8 \text{ mV/V}$) and high G_m ($802 \mu\text{s}/\mu\text{m}$ at $\text{V}_{DS} = 2\text{V}$). 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. <https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185343>

47. J. Zhang, Z. Zhang, H. Dou, Z. Lin, K. Xu et al., Fluorine anion-doped ultra-thin InGaO transistors overcoming mobility-stability trade-off. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. <https://doi.org/10.1109/iedm45741.2023.10413810>

48. K. Hikake, Z. Li, J. Hao, C. Pandya, T. Saraya et al., A nanosheet oxide semiconductor FET using ALD InGaO_x channel and InSnO_x electrode with normally-off operation, high mobility and reliability for 3D integrated devices. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. <https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185234>

49. K.A. Aabrar, H. Park, S.G. Kirtania, E. Sarkar, M.A. Al Mamun et al., On the reliability of high-performance dual gate (DG) W-doped In_2O_3 FET. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. <https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631312>

50. F.F. Athena, E. Ambrosi, K. Jana, C.H. Wu, J. Hartanto et al., First demonstration of an N-P oxide semiconductor complementary gain cell memory. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873499>

51. S. Datta, E. Sarkar, K. Aabrar, S. Deng, J. Shin et al., Amorphous oxide semiconductors for monolithic 3D integrated circuits. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. <https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631324>

52. Q. Lin, N. Safron, D. Zhong, G. Arutchelvan, C. Gilardi et al., Enhancement-mode atomic layer deposited W-doped In_2O_3 transistor at 55 nm channel length by oxide capping layer with improved stability. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873594>

53. J. Kwak, J. Shin, S. Deng, G. Jeong, J. Sharda et al., Bias temperature instability analysis of oxide power transistors for BEOL on-chip voltage converter in thermally-constrained H3D systems. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873303>

54. E. Sarkar, C. Zhang, D. Chakraborty, F.G. Waqar, S. Kirtania et al., First demonstration of W-doped In_2O_3 gate-all-around (GAA) nanosheet FET with improved performance and record threshold voltage stability. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873456>

55. S. Liu, K. Jana, K. Toprasertpong, J. Chen, Z. Liang et al., Gain cell memory on logic platform–device guidelines for

oxide semiconductor transistor materials development. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. <https://doi.org/10.1109/iedm45741.2023.10413726>

56. Q. Jiang, K. Jana, K. Toprasertpong, S. Liu, H.S. Philip Wong, Positive bias stress measurement guideline and band analysis for evaluating instability of oxide semiconductor transistors. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits),, 1–2. IEEE (2024). <https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631369>

57. R. An, Y. Li, J. Tang, B. Gao, Y. Du et al., A hybrid computing-In-memory architecture by monolithic 3D integration of BEOL CNT/IGZO-based CFET logic and analog RRAM. 2022 International Electron Devices Meeting (IEDM),, 18.1.1–18.1.4. IEEE (2023). <https://doi.org/10.1109/IEDM5625.2022.10019473>

58. M. Shi, Y. Su, J. Tang, Y. Li, Y. Du et al., Counteractive coupling IGZO/CNT hybrid 2T0C DRAM accelerating RRAM-based computing-In-memory via monolithic 3D integration for edge AI. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. <https://doi.org/10.1109/iedm45741.2023.10413876>

59. J. Zhang, Z. Zhang, Z. Lin, K. Xu, H. Dou et al., First demonstration of BEOL-compatible atomic-layer-deposited InGaN_xO TFTs with 1.5 nm channel thickness and 60 nm channel length achieving on/off ratio exceeding 10¹¹, SS of 68 mV/dec, normal-off operation and high positive gate bias stability. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 11–16, 2023. Kyoto, Japan. IEEE, (2023). pp. 1–2. <https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185312>

60. Z. Liu, Y. Dul, R. Liang, Z. Zhang, L. Pan et al., A dual-gate vertical channel IGZO transistor for BEOL stackable 3D parallel integration for memory and computing applications. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits),, 1–2. IEEE (2024). <https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631472>

61. W. Zhao, W. Cui, L. Kang, S. Lu, W. Yuan et al., High-performance vertical gate-all-around oxide semiconductor transistors with 6 nm ALD IGZO channel and scaled contact CD down to 28 nm. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873430>

62. W. Zhao, S. Zhu, Q. Li, Q. Hu, H. Liu et al., First Demonstration of Double-Gate IGZO Transistors with Ideal Subthreshold Swing of 60 mV/dec at Room Temperature and 76 mV/dec at 380 K Over 5 Decades and gm Exceeding 1 mS/μm with Contact Length Scaling. 2024 IEEE International Electron Devices Meeting (IEDM),, 1–4. IEEE (2025). <https://doi.org/10.1109/IEDM50854.2024.10873547>

63. H. Inoue, T. Hirose, T. Mizuguchi, Y. Komura, T. Saito et al., Heterogeneous oxide semiconductor FETs comprising planar FET and vertical channel FETs monolithically stacked on Si CMOS, enabling 1-mbit 3D DRAM. 2024 IEEE International Memory Workshop (IMW). May 12–15, 2024. Seoul, Korea, Republic of. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/imw59701.2024.10536958>

64. S. Miyata, K. Furutani, Y. Komura, Y. Ando, S. Saito et al., Vertical-channel crystalline In₂O₃FET with a pulled-up gate, monolithically stacked on Si CMOS, achieving 112.2 μA/μm on-state current. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873545>

65. K. Huang, X. Duan, J. Feng, Y. Sun, C. Lu et al., Vertical Channel-All-Around (caa) igzo fet under 50 nm cd with High Read Current of 32.8 μA/μm (V_{th} + 1 v), Well-performed Thermal Stability up to 120 °C for Low Latency, High-density 2t0c 3d dram Application. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 296–297. <https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830271>

66. C. Chen, X. Duan, G. Yang, C. Lu, D. Geng et al., Inter-layer dielectric engineering for monolithic stacking 4F²–2 T0C DRAM with channel-all-around (CAA) IGZO FET to achieve good reliability (>10⁴ s bias stress, >10¹² cycles endurance). 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022. San Francisco, CA, USA. IEEE, (2022). pp. 26.5.1–26.5.4. <https://doi.org/10.1109/iedm45625.2022.10019502>

67. Y. Su, T. Liu, J. Tang, Y. Li, R. An et al., Complementary oxide semiconductor-based 2T0C DRAM macro with CFET peripherals using TeO_x-PFET/IGZO-NFET for 3D memory integration. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873505>

68. C. Chen, J. Xiang, X. Duan, C. Lu, J. Niu et al., First demonstration of stacked 2T0C-DRAM bit-cell constructed by two-layers of vertical channel-all-around IGZO FETs realizing 4F2 area cost. 2023 International Electron Devices Meeting (IEDM),, 1–4. IEEE (2024). <https://doi.org/10.1109/IEDM5741.2023.10413790>

69. L. Zheng, Z. Wang, Z. Lin, M. Si, First Demonstration on the Transient Writing Characteristics of Multi-bit ald igzo 2t0c dram by Fast i-v Measurement. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873579>

70. M. Liu, Z. Li, W. Lu, K. Chen, J. Niu et al., First demonstration of monolithic three-dimensional integration of ultra-high density hybrid IGZO/Si SRAM and IGZO 2T0C DRAM achieving record-low latency (5000s). 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI,

USA. IEEE, (2024). pp. 1–2. <https://doi.org/10.1109/vlsitechnologyandcir46783.2024.10631551>

71. K. Chen, Z. Zhu, W. Lu, M. Liu, F. Liao et al., Improved multi-bit statistics of novel dual-gate IGZO 2T0C DRAM with in-cell V_{TH} compensation and $\Delta V_{SN}/\Delta V_{DATA}$ boosting technique. 2023 International Electron Devices Meeting (IEDM). December 9–13, 2023. San Francisco, CA, USA. IEEE, (2023). pp. 1–4. <https://doi.org/10.1109/iedm45741.2023.10413770>

72. G. Yan, Y. Luo, J. Wang, Z. Song, C. Niu et al., First DEMONSTRATION OF TRUE 4-bit MEMORY WITH RECORD HIGH MULTIBIT RETENTION $>10^3$ s and READ WINDOW $>10^5$ by HYDROGEN SELF-ADAPTIVE-DOPING for IGZO DRAM Arrays, 2023 International Electron Devices Meeting (IEDM) (2023). <https://doi.org/10.1109/IEDM45741.2023.10413762>

73. W. Tang, C. Chen, J. Liu, C. Zhang, C. Gu et al., 30 Mb/mm²/layer 3D eDRAM computing-in-memory with embedded beol peripherals and local layer-wise calibration based on first-demonstrated vertically-stacked CAA-IGZO 4F2 2T0C cell. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). <https://doi.org/10.1109/IEDM45741.2023.10413756>

74. F.-M. Lee, P.-H. Tseng, Y.-Y. Lin, Y.-H. Lin, W.-L. Weng et al., Bit-cost-scalable 3D DRAM architecture and unit cell first demonstrated with integrated gate-around and channel-around IGZO FETs. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). <https://doi.org/10.1109/VLSITEchnologyandCir46783.2024.10631386>

75. Q. Hu, Q. Li, S. Zhu, C. Gu, S. Liu et al., Optimized IGZO FETs for Capacitorless DRAM with Retention of 10 ks at RT and 7 ks at 85 °C at Zero Vhold with Sub-10 ns Speed and 3-bit Operation. 2022 International Electron Devices Meeting (IEDM)., 26.6.1–26.6.4. IEEE (2023). <https://doi.org/10.1109/IEDM45625.2022.10019435>

76. W. Lu, Z. Zhu, K. Chen, M. Liu, B.M. Kang et al., First demonstration of dual-gate IGZO 2T0C DRAM with novel read operation, one bit line in single cell, $I_{ON}=1500 \mu A/\mu m @ V_{DS}=1V$ and retention time $>300s$, 2022 International Electron Devices Meeting (IEDM) (2022). <https://doi.org/10.1109/IEDM45625.2022.10019488>

77. Z. Lin, M. Si, P.D. Ye, Ultra-fast operation of BEOL-compatible atomic-layer-deposited In_2O_3 Fe-FETs: achieving memory performance enhancement with memory window of 2.5 V and high endurance $>10^9$ cycles without V_T drift penalty. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 12–17, 2022. Honolulu, HI, USA. IEEE, (2022). pp. 1–2. <https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830156>

78. Z. Lin, Z. Zhang, C. Niu, H. Dou, K. Xu et al., Highly robust all-oxide transistors with ultrathin In_2O_3 as channel and thick In_2O_3 as metal gate towards vertical logic and memory. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., 1–2. IEEE (2024). <https://doi.org/10.1109/VLSITEchnologyandCir46783.2024.10631533>

79. Y. Shao, J.C.C. Huang, E.R. Borujeny, T.E. Espedal, D.A. Antoniadis et al., Highly-scaled BEOL E-mode transistor and discrete-domain ferroelectric memory platform enabled by PEALD In_2O_3 . 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873392>

80. B. Ku, J.-M. Sim, J.S. Hur, J.K. Jeong, Y.-H. Song et al., A novel 3D gate-all-around vertical FeFET with back-gate structure for disturbance-less program operation. 2024 IEEE International Memory Workshop (IMW)., 1–4. IEEE (2024). <https://doi.org/10.1109/IMW59701.2024.10536939>

81. S.G. Kirtania, O. Phadke, E. Sarker, K.A. Aabrar, D. Chakraborty et al., Amorphous indium oxide channel FeFETs with write voltage of 0.9V and endurance $>10^{12}$ for refresh-free 1T-1FeFET embedded memory. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873370>

82. Z. Chen, H.C. Kim, W. Zheng, R. Izmailov, B. Truijen et al., novel design strategy for high-endurance ($>10^{10}$) and fast-erase oxide-semiconductor channel FeFET, 2024 IEEE International Electron Devices Meeting (IEDM) (2024). <https://doi.org/10.1109/IEDM50854.2024.10873449>

83. Z. Chen, N. Ronchi, A. Walke, K. Banerjee, M.I. Popovici et al., Improved MW of IGZO-channel FeFET by reading scheme optimization and interfacial engineering. 2023 IEEE International Memory Workshop (IMW)., 1–4. IEEE (2023). <https://doi.org/10.1109/IMW56887.2023.10145930>

84. M. Zeng, Q. Hu, Q. Li, H. Liu, S. Yan et al., First demonstration of annealing-free top gate La: HZO-IGZO FeFET with record memory window and endurance. 2023 International Electron Devices Meeting (IEDM)., 1–4. IEEE (2024). <https://doi.org/10.1109/IEDM45741.2023.10413682>

85. P. Xu, P. Jiang, Y. Yang, X. Peng, W. Wei et al., A fully BEOL-compatible (300°C annealing) IGZO FeFET with ultra-high memory window (10V) and prominent endurance (109). 2024 IEEE International Electron Devices Meeting (IEDM)., 1–4. IEEE (2025). <https://doi.org/10.1109/IEDM50854.2024.10873310>

86. C.-K. Chen, Z. Fang, S. Hooda, M. Lal, U. Chand et al., First demonstration of ultra-low dit top-gated ferroelectric oxide-semiconductor memtransistor with record performance by channel defect self-compensation effect for BEOL-compatible non-volatile logic switch. 2022 International Electron Devices Meeting (IEDM)., 6.1.1–6.1.4. IEEE (2023). <https://doi.org/10.1109/IEDM45625.2022.10019440>

87. S.R. Sarangi, *Next-Gen Computer Architecture: Till the End of Silicon*, 2.0 (White Falcon Publishing, 2023).

88. B. Jacob, D. Wang, S. Ng, *Memory Systems: Cache, DRAM, Disk* (Morgan Kaufmann, 2010).

89. A. Belmonte, H. Oh, S. Subhechha, N. Rassoul, H. Hody et al., Tailoring IGZO-TFT architecture for capacitorless DRAM, demonstrating $> 10^3$ s retention, $>10^{11}$

cycles endurance and L_g scalability down to 14nm, 2021 IEEE International Electron Devices Meeting (IEDM) (2021). <https://doi.org/10.1109/IEDM19574.2021.9720596>

90. D. Lehninger, M. Ellinger, T. Ali, S. Li, K. Mertens et al., A fully integrated ferroelectric thin-film-transistor—Influence of device scaling on threshold voltage compensation in displays. *Adv. Electron. Mater.* **7**(6), 2100082 (2021). <https://doi.org/10.1002/aelm.202100082>
91. E. Yu, G. Kumar K, U. Saxena, K. Roy, Ferroelectric capacitors and field-effect transistors as in-memory computing elements for machine learning workloads. *Sci. Rep.* **14**, 9426 (2024). <https://doi.org/10.1038/s41598-024-59298-8>
92. Y.-K. Liang, J.-Y. Zheng, Y.-L. Lin, Y. Chen, K.-L. Chen et al., First demonstration of highly scaled atomic layer deposited ultrathin InSnZnO channel thin film transistor exhibiting superior electrical characteristics. 2023 International Electron Devices Meeting (IEDM), 1–4. IEEE (2024). <https://doi.org/10.1109/IEDM45741.2023.10413671>
93. B. Tang, Z. Fang, R. Wan, S. Hooda, J.F. Leong et al., 1T1R and 2T0C1R IGZO-MoS₂ all-BEOL 3D memory cells. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873575>
94. U. Chand, M.M. Sabry Aly, M. Lal, C. Chun-Kuei, S. Hooda et al., Sub-10nm ultra-thin ZnO channel FET with record-high 561 μ A/ μ m ION at VDS 1V, high μ -84 Cm²/V-s and 1T-1RRAM memory cell demonstration memory implications for energy-efficient deep-learning computing. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 326–327. IEEE (2022). <https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830250>
95. Y.-J. Cho, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Impact of channel thickness on device scaling in vertical InGaZnO channel charge-trap memory transistors with ALD Al₂O₃ tunneling layer. *Mater. Sci. Semicond. Process.* **178**, 108476 (2024). <https://doi.org/10.1016/j.mssp.2024.108476>
96. H.-M. Ahn, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Impact of strategic approaches for improving the device performance of mesa-shaped nanoscale vertical-channel thin-film transistors using atomic-layer deposited In-Ga-Zn-O channel layers. *Electron. Mater. Lett.* **18**(3), 294–303 (2022). <https://doi.org/10.1007/s13391-022-00336-w>
97. Y.J. Baek, I.H. Kang, S.H. Hwang, Y.L. Han, M.S. Kang et al., Vertical oxide thin-film transistor with interfacial oxidation. *Sci. Rep.* **12**, 3094 (2022). <https://doi.org/10.1038/s41598-022-07052-3>
98. C.-E. Oh, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, S.-M. Yoon, Impact of Al₂O₃ spacers on the improvement in short-channel effects for the mesa-shaped vertical-channel In-Ga-Zn-O thin-film transistors with a channel length below 100 nm. *Mater. Sci. Semicond. Process.* **171**, 108025 (2024). <https://doi.org/10.1016/j.mssp.2023.108025>
99. H.-I. Yeom, G. Moon, Y. Nam, J.-B. Ko, S.-H. Lee et al., 60–3: *Distinguished paper*: oxide vertical TFTs for the application to the ultra high resolution display. *SID Symp. Dig. Tech. Pap.* **47**(1), 820–822 (2016). <https://doi.org/10.1002/sdtp.10799>
100. Y.-M. Kim, H.-B. Kang, G.-H. Kim, C.-S. Hwang, S.-M. Yoon, Improvement in device performance of vertical thin-film transistors using atomic layer deposited IGZO channel and polyimide spacer. *IEEE Electron Device Lett.* **38**(10), 1387–1389 (2017). <https://doi.org/10.1109/LED.2017.2736000>
101. Y. Chen, X. Duan, X. Ma, P. Yuan, Z. Jiao et al., Implementation of sub-100 nm vertical channel-all-around (CAA) thin-film transistor using thermal atomic layer deposited IGZO channel. *J. Semicond.* **45**(7), 072301 (2024). <https://doi.org/10.1088/1674-4926/24010032>
102. H.-M. Ahn, Y.-H. Kwon, N.-J. Seong, K.-J. Choi, C.-S. Hwang et al., Improvement in current drivability and stability in nanoscale vertical channel thin-film transistors via band-gap engineering in In–Ga–Zn–O bilayer channel configuration. *Nanotechnology* **34**(15), 155301 (2023). <https://doi.org/10.1088/1361-6528/acb3cc>
103. B. Sun, H. Huang, P. Wen, M. Xu, C. Peng et al., Research progress of vertical channel thin film transistor device. *Sensors* **23**(14), 6623 (2023). <https://doi.org/10.3390/s23146623>
104. H.-J. Ryoo, N.-J. Seong, K.-J. Choi, S.-M. Yoon, Implementation of oxide vertical channel TFTs with sub-150 nm channel length using atomic-layer deposited IGZO active and HfO₂ gate insulator. *Nanotechnology* **32**(25), 255201 (2021). <https://doi.org/10.1088/1361-6528/abcbc4>
105. H. Hun, H. Seol, H. Ho, M. Jae, L. Mo et al., Optimizing gate insulator conditions via interfacial oxidation in vertical structure TFTs. 2024 International Conference on Electronics, Information, and Communication (ICEIC), 1–4. IEEE (2024). <https://doi.org/10.1109/ICEIC61013.2024.10457204>
106. Y. Zhao, L. Xu, C. Chen, C. Zhang, Z. Bai et al., Deep insights into interlayer in TiN/IGZO contact and its impact on contact resistance of CAA FETs: first-principles calculation, experimental study and modeling. 2024 IEEE International Electron Devices Meeting (IEDM), 1–4. IEEE (2025). <https://doi.org/10.1109/IEDM50854.2024.10872994>
107. C. Chen, C. Gu, Y. Zhao, X. Duan, C. Lu et al., Vertical channel-all-around (CAA) IGZO FET with recessed source/drain structure to improve contact characteristics. *IEEE Electron Device Lett.* **46**(7), 1127–1130 (2025). <https://doi.org/10.1109/led.2025.3563839>
108. X. Sun, W. Yu, F. Yang, M. Jin, C. Liu et al., Asymmetric contact resistances in IGZO vertical channel-all-around FETs. *IEEE Electron Device Lett.* **46**(11), 2070–2073 (2025). <https://doi.org/10.1109/led.2025.3604792>
109. Y. Fan, R. An, J. Tang, Y. Li, T. Liu et al., Monolithic 3D integration as a pathway to energy-efficient computing and beyond: from materials and devices to architectures and chips. *Curr. Opin. Solid State Mater. Sci.* **33**, 101199 (2024). <https://doi.org/10.1016/j.cossms.2024.101199>
110. A. Mallik, A. Vandooren, L. Witters, A. Walke, J. Franco et al., The impact of sequential-3D integration on semiconductor scaling roadmap. 2017 IEEE International Electron

Devices Meeting (IEDM). December 2–6, 2017. San Francisco, CA, USA. IEEE, (2017). pp. 32.1.1–31.1.4. <https://doi.org/10.1109/iedm.2017.8268483>

111. S. Katz, Y. Grauer, E. Megged, Optical overlay metrology trends in advanced nodes. *Metrology, Inspection, and Process Control XXXVI*. April 24–May 30, 2022. San Jose, USA. SPIE, (2022). pp. 101. <https://doi.org/10.1117/12.2605863>

112. K. Dhananjay, P. Shukla, V.F. Pavlidis, A. Coskun, E. Salman, Monolithic 3D integrated circuits: recent trends and future prospects. *IEEE Trans. Circuits Syst. II Express Briefs* **68**(3), 837–843 (2021). <https://doi.org/10.1109/TCSII.2021.3051250>

113. M. Xie, Y. Jia, C. Nie, Z. Liu, A. Tang et al., Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T-4R structure for high-density memory. *Nat. Commun.* **14**(1), 5952 (2023). <https://doi.org/10.1038/s41467-023-41736-2>

114. Mehul Naik, Challenges to Interconnect Scaling at 3nm and Beyond. (Applied Materials, 2021), <https://www.appliedmaterials.com/us/en/blog/blog-posts/challenges-to-interconnect-scaling-at-3nm-and-beyond.html>

115. Z. Zhao, S. Clima, D. Garbin, R. Degraeve, G. Pourtois et al., Chalcogenide ovonic threshold switching selector. *Nano-Micro. Lett.* **16**(1), 81 (2024). <https://doi.org/10.1007/s40820-023-01289-x>

116. IEEE International Roadmap for Devices and Systems, “Metrology.” Institute of Electrical and Electronics Engineers Inc. (2023). <https://doi.org/10.60627/FF6X-D213>

117. T. Kamiya, H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. *NPG Asia Mater.* **2**(1), 15–22 (2010). <https://doi.org/10.1038/asiamat.2010.5>

118. H. Hosono, Transparent Amorphous Oxide Semiconductors for Display Applications, in *Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory* (wiley, 2022), pp. 3–20. <https://doi.org/10.1002/9781119715641.ch1a>

119. K. Ide, K. Nomura, H. Hosono, T. Kamiya, Electronic defects in amorphous oxide semiconductors: a review. *Phys. Status Solidi A* **216**(5), 1800372 (2019). <https://doi.org/10.1002/pssa.201800372>

120. T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors. *Sci. Technol. Adv. Mater.* **11**(4), 044305 (2010). <https://doi.org/10.1088/1468-6996/11/4/044305>

121. J. Kyeong, The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. *Semicond. Sci. Technol.* **26**(3), 034008 (2011). <https://doi.org/10.1088/0268-1242/26/3/034008>

122. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano et al., Amorphous oxide semiconductors for high-performance flexible thin-film transistors. *Jpn. J. Appl. Phys.* **45**(5S), 4303 (2006). <https://doi.org/10.1143/jjap.45.4303>

123. K. Hikake, X. Huang, S.-H. Kim, K. Sakai, Z. Li et al., Scaling potential of nanosheet oxide semiconductor FETs for monolithic 3D integration—ALD material engineering, high-field transport, statistical variability. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16–20, 2024. Honolulu, HI, USA. IEEE, (2024). pp. 1–2. <https://doi.org/10.1109/vlsitechologyandcir46783.2024.10631493>

124. W. He, ALD: atomic layer deposition—precise and conformal coating for better performance. In: *Handbook of Manufacturing Engineering and Technology*, pp. 2959–2996. Springer London (2014). https://doi.org/10.1007/978-1-4471-4670-4_80

125. Y.-S. Kim, H.-J. Oh, J. Kim, J.H. Lim, J.-S. Park, Approaches for 3D integration using plasma-enhanced atomic-layer-deposited atomically-ordered InGaZnO transistors with ultra-high mobility. *Small Methods* **7**(10), 2300549 (2023). <https://doi.org/10.1002/smtd.202300549>

126. S.-H. Ryu, H.-M. Kim, D.-G. Kim, J.-S. Park, Highly C-axis aligned ALD-InGaO channel improving mobility and thermal stability for next-generation 3D memory devices. *Adv. Electron. Mater.* **11**(3), 2400377 (2025). <https://doi.org/10.1002/aelm.202400377>

127. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. *Mater. Today* **17**(5), 236–246 (2014). <https://doi.org/10.1016/j.mattod.2014.04.026>

128. M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas et al., Why In_2O_3 can make 0.7 nm atomic layer thin transistors. *Nano Lett.* **21**(1), 500–506 (2021). <https://doi.org/10.1021/acs.nanolett.0c03967>

129. D.-G. Kim, M. Kim, D.-H. Lee, S. Lee, J. Kho et al., Facile routes to enhance doping efficiency using nanocomposite structures for high-mobility and stable PEALD-ITGO TFTs. *Appl. Surf. Sci.* **665**, 160370 (2024). <https://doi.org/10.1016/j.apsusc.2024.160370>

130. Y.-S. Kim, H. Hong, T. Hong, S.-H. Choi, K.-B. Chung et al., Attaining quantitatively fewer defects in close-packed InGaZnO synthesized using atomic layer deposition. *Appl. Surf. Sci.* **664**, 160242 (2024). <https://doi.org/10.1016/j.apsusc.2024.160242>

131. M.H. Cho, H. Seol, A. Song, S. Choi, Y. Song et al., Comparative study on performance of IGZO transistors with sputtered and atomic layer deposited channel layer. *IEEE Trans. Electron Dev.* **66**(4), 1783–1788 (2019). <https://doi.org/10.1109/ted.2019.2899586>

132. J. Sheng, E.J. Park, B. Shong, J.-S. Park, Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications. *ACS Appl. Mater. Interfaces* **9**(28), 23934–23940 (2017). <https://doi.org/10.1021/acsami.7b04985>

133. S. Lee, M. Kim, G. Mun, J. Ko, H.-I. Yeom et al., Effects of Al precursors on the characteristics of indium–aluminum oxide semiconductor grown by plasma-enhanced atomic layer deposition. *ACS Appl. Mater. Interfaces* **13**(33), 40134–40144 (2021). <https://doi.org/10.1021/acsami.1c11304>

134. G.M. Jeong, H.L. Yang, A. Yoon, Y.-S. Kim, S. Lee et al., Unveiling growth mechanisms of PEALD In_2O_3 thin films with amide-based versus alkyl-based novel indium

precursors. *J. Mater. Chem. C* **12**(28), 10575–10584 (2024). <https://doi.org/10.1039/d4tc00868e>

135. I.-K. Oh, B.-E. Park, S. Seo, B.C. Yeo, J. Tanskanen et al., Comparative study of the growth characteristics and electrical properties of atomic-layer-deposited HfO_2 films obtained from metal halide and amide precursors. *J. Mater. Chem. C* **6**(27), 7367–7376 (2018). <https://doi.org/10.1039/c8tc01476k>

136. L. Huang, B. Han, M. Fan, H. Cheng, Design of efficient mono-aminosilane precursors for atomic layer deposition of SiO_2 thin films. *RSC Adv.* **7**(37), 22672–22678 (2017). <https://doi.org/10.1039/c7ra02301d>

137. J.A. Libera, J.N. Hryny, J.W. Elam, Indium oxide atomic layer deposition facilitated by the synergy between oxygen and water. *Chem. Mater.* **23**(8), 2150–2158 (2011). <https://doi.org/10.1021/cm103637t>

138. A.U. Mane, A.J. Allen, R.K. Kanjolia, J.W. Elam, Indium oxide thin films by atomic layer deposition using trimethylindium and ozone. *J. Phys. Chem. C* **120**(18), 9874–9883 (2016). <https://doi.org/10.1021/acs.jpcc.6b02657>

139. W.J. Maeng, D.-W. Choi, J. Park, J.-S. Park, Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant. *J. Alloys Compd.* **649**, 216–221 (2015). <https://doi.org/10.1016/j.jallcom.2015.07.150>

140. J.W. Elam, J.A. Libera, J.N. Hryny, Indium oxide ALD using cyclopentadienyl indium and mixtures of H_2O and O_2 . *ECS Trans.* **41**(2), 147–155 (2011). <https://doi.org/10.1149/1.3633663>

141. J.W. Elam, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, Atomic layer deposition of In_2O_3 using cyclopentadienyl indium: a new synthetic route to transparent conducting oxide films. *ChemInform* **37**(42), 200642207 (2006). <https://doi.org/10.1002/chin.200642207>

142. R.K. Ramachandran, J. Dendooven, H. Poelman, C. Detavernier, Low temperature atomic layer deposition of crystalline In_2O_3 films. *J. Phys. Chem. C* **119**(21), 11786–11791 (2015). <https://doi.org/10.1021/acs.jpcc.5b03255>

143. O. Nilsen, R. Balasundaraprabhu, E.V. Monakhov, N. Muthukumarasamy, H. Fjellvåg et al., Thin films of In_2O_3 by atomic layer deposition using $\text{In}(\text{acac})_3$. *Thin Solid Films* **517**(23), 6320–6322 (2009). <https://doi.org/10.1016/j.tsf.2009.02.059>

144. A. Edem, J. Ae, P. Keun, T.-M. Chung, K. Gyoun et al., Thermal atomic layer deposition of In_2O_3 thin films using dimethyl(N-ethoxy-2, 2-dimethylcarboxylicpropanamide) indium and H_2O . *Appl. Surf. Sci.* **419**, 758–763 (2017). <https://doi.org/10.1016/j.apsusc.2017.05.066>

145. J. Sheng, H.-J. Lee, S. Oh, J.-S. Park, Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. *ACS Appl. Mater. Interfaces* **8**(49), 33821–33828 (2016). <https://doi.org/10.1021/acsami.6b11774>

146. W.J. Maeng, D.-W. Choi, J. Park, J.-S. Park, Atomic layer deposition of highly conductive indium oxide using a liquid precursor and water oxidant. *Ceram. Int.* **41**(9), 10782–10787 (2015). <https://doi.org/10.1016/j.ceramint.2015.05.015>

147. T. Hong, H.-J. Jeong, H.-M. Lee, S.-H. Choi, J.H. Lim et al., Significance of pairing In/Ga precursor structures on PEALD InGaOx thin-film transistor. *ACS Appl. Mater. Interfaces* **13**(24), 28493–28502 (2021). <https://doi.org/10.1021/acsami.1c06575>

148. J.-H. Lee, J. Sheng, H. An, T. Hong, H.Y. Kim et al., Metastable rhombohedral phase transition of semiconducting indium oxide controlled by thermal atomic layer deposition. *Chem. Mater.* **32**(17), 7397–7403 (2020). <https://doi.org/10.1021/acs.chemmater.0c02306>

149. S.-H. Choi, T. Hong, S.-H. Ryu, J.-S. Park, Plasma-enhanced atomic-layer-deposited indium oxide thin film using a DMION precursor within a wide process window. *Ceram. Int.* **48**(19), 27807–27814 (2022). <https://doi.org/10.1016/j.ceramint.2022.06.083>

150. S.-H. Ryu, T. Hong, S.-H. Choi, K. Yeom, D. Won Ryu et al., Tailoring indium oxide film characteristics through oxygen reactants in atomic layer deposition with highly reactive liquid precursor. *Appl. Surf. Sci.* **664**, 160271 (2024). <https://doi.org/10.1016/j.apsusc.2024.160271>

151. S.-H. Choi, H.-J. Jeong, T. Hong, Y.H. Na, C.K. Park et al., Plasma-enhanced atomic layer deposited indium oxide film using a novel dimethylbutylamino-trimethylindium precursor for thin film transistors. *J. Vac. Sci. Technol. A* **39**(3), 032406 (2021). <https://doi.org/10.1116/6.0000842>

152. D.J. Comstock, J.W. Elam, Atomic layer deposition of Ga_2O_3 films using trimethylgallium and ozone. *Chem. Mater.* **24**(21), 4011–4018 (2012). <https://doi.org/10.1021/cm300712x>

153. H.-Y. Shih, F.-C. Chu, A. Das, C.-Y. Lee, M.-J. Chen et al., Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. *Nanoscale Res. Lett.* **11**(1), 235 (2016). <https://doi.org/10.1186/s11671-016-1448-z>

154. M. Nieminen, L. Niinistö, E. Rauhala, Growth of gallium oxide thin films from gallium acetylacetone by atomic layer epitaxy. *J. Mater. Chem.* **6**(1), 27–31 (1996). <https://doi.org/10.1039/JM9960600027>

155. D.-W. Choi, K.-B. Chung, J.-S. Park, Low temperature Ga_2O_3 atomic layer deposition using gallium tri-isopropoxide and water. *Thin Solid Films* **546**, 31–34 (2013). <https://doi.org/10.1016/j.tsf.2013.03.066>

156. R.K. Ramachandran, J. Dendooven, J. Botterman, S. Pulinthanathu Sree, D. Poelman et al., Plasma enhanced atomic layer deposition of Ga_2O_3 thin films. *J. Mater. Chem. A* **2**(45), 19232–19238 (2014). <https://doi.org/10.1039/c4ta05007j>

157. J. Dezelah, K. Niinistö, L. Arstila, C.H. Niinistö, Winter, Atomic layer deposition of Ga_2O_3 films from a dialkylamido-based precursor. *Chem. Mater.* **18**(2), 471–475 (2006). <https://doi.org/10.1021/cm0521424>

158. R. O'Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H.-W. Becker et al., Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition. *Dalton Trans.* **46**(47), 16551–16561 (2017). <https://doi.org/10.1039/C7DT03427J>

159. L. Aarik, H. Mändar, J. Kozlova, A. Tarre, J. Aarik, Atomic layer deposition of Ga_2O_3 from GaI_3 and O_3 : growth of high-density phases. *Cryst. Growth Des.* **23**(8), 5899–5911 (2023). <https://doi.org/10.1021/acs.cgd.3c00502>

160. W.-J. Lee, S. Bera, Z. Wan, W. Dai, J.-S. Bae et al., Comparative study of the electrical characteristics of ALD-ZnO thin films using H_2O and H_2O_2 as the oxidants. *J. Am. Ceram. Soc.* **102**(10), 5881–5889 (2019). <https://doi.org/10.1111/jace.16429>

161. K. Keun, H. Seong, P. Ko, Y. Jin, Comparison between ZnO films grown by atomic layer deposition using H_2O or O_3 as oxidant. *Thin Solid Films* **478**(1–2), 103–108 (2005). <https://doi.org/10.1016/j.tsf.2004.10.015>

162. T. Muneshwar, G. Shoute, D. Barlage, K. Cadieu, Plasma enhanced atomic layer deposition of ZnO with diethyl zinc and oxygen plasma: effect of precursor decomposition. *J. Vac. Sci. Technol. A* **34**(5), 050605 (2016). <https://doi.org/10.1111/1.4961885>

163. S. Stefanovic, N. Gheshlaghi, D. Zanders, I. Kundler, B. Zhao et al., Direct-patterning ZnO deposition by atomic-layer additive manufacturing using a safe and economical precursor. *Small* **19**(36), 2301774 (2023). <https://doi.org/10.1002/smll.202301774>

164. L. Johnston, J. Obenluneschloß, M.F. Khan Niazi, M. Weber, C. Lausecker et al., Assessing the potential of non-pyrolytic $\text{Zn}(\text{DMP})_2$ for the fast deposition of ZnO functional coatings by spatial atomic layer deposition. *RSC Appl. Interfaces* **1**(6), 1371–1381 (2024). <https://doi.org/10.1039/D4LF00160E>

165. M.-J. Jung, D. Kim, H.C. Kim, S. Kim, Y. Kim et al., ZnO thin films with stable, tunable electrical and optical properties deposited by atomic layer deposition using Et_2Zn : NEtMe_2 precursor. *Appl. Surf. Sci.* **682**, 161728 (2025). <https://doi.org/10.1016/j.apsusc.2024.161728>

166. J. Heo, A.S. Hock, R.G. Gordon, Low temperature atomic layer deposition of tin oxide. *Chem. Mater.* **22**(17), 4964–4973 (2010). <https://doi.org/10.1021/cm1011108>

167. D.-W. Choi, J.-S. Park, Highly conductive SnO_2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant. *Surf. Coat. Technol.* **259**, 238–243 (2014). <https://doi.org/10.1016/j.surfcoat.2014.02.012>

168. J.-H. Han, D.-Y. Kim, S. Lee, H.L. Yang, B.H. Park et al., A study on the growth mechanism and gas diffusion barrier property of homogeneously mixed silicon–tin oxide by atomic layer deposition. *Ceram. Int.* **47**(24), 34774–34782 (2021). <https://doi.org/10.1016/j.ceramint.2021.09.016>

169. S.-H. Ryu, H.-M. Kim, K.-H. Lee, H.-J. Sung, J.-E. Yang et al., High-temperature stable amorphous Sn-rich InSnGaO thin films fabricated via atomic layer deposition for next-generation dynamic random-access memory applications. *Nano Lett.* **24**(50), 16039–16046 (2024). <https://doi.org/10.1021/acs.nanolett.4c04499>

170. D.-H. Lee, D.-G. Kim, M. Kim, S. Uhm, T. Kim et al., Developing subthreshold-swing limit of PEALD In–Sn–Ga–O transistor via atomic-scaled Sn control. *ACS Appl. Electron. Mater.* **4**(11), 5608–5616 (2022). <https://doi.org/10.1021/acsaelm.2c01222>

171. X. Du, S.M. George, Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. *Sens. Actuat. B Chem.* **135**(1), 152–160 (2008). <https://doi.org/10.1016/j.snb.2008.08.015>

172. J.-H. Lee, M. Yoo, D. Kang, H.-M. Lee, W.-H. Choi et al., Selective SnO_x atomic layer deposition driven by oxygen reactants. *ACS Appl. Mater. Interfaces* **10**(39), 33335–33342 (2018). <https://doi.org/10.1021/acsami.8b12251>

173. H.Y. Kim, J.H. Nam, S.M. George, J.-S. Park, B.K. Park et al., Phase-controlled SnO_2 and SnO growth by atomic layer deposition using bis(*N*-ethoxy-2, 2-dimethyl propanamido)tin precursor. *Ceram. Int.* **45**(4), 5124–5132 (2019). <https://doi.org/10.1016/j.ceramint.2018.09.263>

174. M.-J. Choi, C.J. Cho, K.-C. Kim, J.J. Pyeon, H.-H. Park et al., SnO_2 thin films grown by atomic layer deposition using a novel Sn precursor. *Appl. Surf. Sci.* **320**, 188–194 (2014). <https://doi.org/10.1016/j.apsusc.2014.09.054>

175. C. Gil, J. Kim, J. Won, P. Keun, T.-M. Chung et al., High field-effect mobility and on/off current ratio of p-type ALD SnO thin-film transistor. *ACS Appl. Electron. Mater.* **5**(4), 1992–1999 (2023). <https://doi.org/10.1021/acsaelm.2c01107>

176. I.-K. Oh, T.E. Sandoval, T.-L. Liu, N.E. Richey, S.F. Bent, Role of precursor choice on area-selective atomic layer deposition. *Chem. Mater.* **33**(11), 3926–3935 (2021). <https://doi.org/10.1021/acs.chemmater.0c04718>

177. H.Y. Lee, J.S. Hur, I. Cho, C.H. Choi, S.H. Yoon et al., Comparative study on indium precursors for plasma-enhanced atomic layer deposition of In_2O_3 and application to high-performance field-effect transistors. *ACS Appl. Mater. Interfaces* **15**(44), 51399–51410 (2023). <https://doi.org/10.1021/acsami.3c11796>

178. Y. Wu, S.E. Potts, P.M. Hermkens, H.C.M. Knoops, F. Roozeboom et al., Enhanced doping efficiency of Al-doped ZnO by atomic layer deposition using dimethylaluminum isopropoxide as an alternative aluminum precursor. *Chem. Mater.* **25**(22), 4619–4622 (2013). <https://doi.org/10.1021/cm402974j>

179. Z. Gao, P. Banerjee, Review article: atomic layer deposition of doped ZnO films. *J. Vac. Sci. Technol. A Vac. Surf. Films* **37**(5), 050802 (2019). <https://doi.org/10.1116/1.5112777>

180. N.P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee et al., Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity. *Chem. Mater.* **22**(16), 4769–4775 (2010). <https://doi.org/10.1021/cm101227h>

181. O.V. Bilousov, A. Voznyi, B. Landeke-Wilsmark, M.M.S. Villamayor, T. Nyberg et al., Substrate effects on crystal phase in atomic layer deposition of tin monosulfide. *Chem. Mater.* **33**(8), 2901–2912 (2021). <https://doi.org/10.1021/acs.chemmater.1c00241>

182. P.C. Lemaire, M. King, G.N. Parsons, Understanding inherent substrate selectivity during atomic layer deposition: effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during

tungsten ALD. *J. Chem. Phys.* **146**(5), 052811 (2017). <https://doi.org/10.1063/1.4967811>

183. J.S. Kim, Y. Jang, S. Kang, Y. Lee, K. Kim et al., Substrate-dependent growth behavior of atomic-layer-deposited zinc oxide and zinc tin oxide thin films for thin-film transistor applications. *J. Phys. Chem. C* **124**(49), 26780–26792 (2020). <https://doi.org/10.1021/acs.jpcc.0c07800>

184. S.H. Yoon, J.H. Cho, I. Cho, M.J. Kim, J.S. Hur et al., Tailoring subthreshold swing in A-IGZO thin-film transistors for amoled displays: impact of conversion mechanism on peald deposition sequences. *Small Meth.* **8**(8), 2470043 (2024). <https://doi.org/10.1002/smtd.202470043>

185. J. Lee, J.-M. Lee, H. Oh, C. Kim, J. Kim et al., Inherently area-selective atomic layer deposition of SiO_2 thin films to confer oxide versus nitride selectivity. *Adv. Funct. Mater.* **31**(33), 2102556 (2021). <https://doi.org/10.1002/adfm.202102556>

186. L. Xu, L. He, L. Yang, Z. Zhang, S. Guo et al., Plasma treatment to tailor growth and photoelectric performance of plasma-enhanced atomic layer deposition SnO_x infrared transparent conductive thin films. *Surf. Coat. Technol.* **40**3, 126414 (2020). <https://doi.org/10.1016/j.surcoa.2020.126414>

187. R. Krumpolec, D.C. Cameron, T. Homola, M. Černák, Surface chemistry and initial growth of Al_2O_3 on plasma modified PTFE studied by ALD. *Surf. Interfaces* **6**, 223–228 (2017). <https://doi.org/10.1016/j.surfin.2016.10.005>

188. H. Jung, W.-H. Kim, B.-E. Park, W.J. Woo, I.-K. Oh et al., Enhanced light stability of InGaZnO thin-film transistors by atomic-layer-deposited Y_2O_3 with ozone. *ACS Appl. Mater. Interfaces* **10**(2), 2143–2150 (2018). <https://doi.org/10.1021/acsami.7b14260>

189. J. Yang, A. Bahrami, X. Ding, S. Lehmann, N. Kruse et al., Characteristics of ALD-ZnO thin film transistor using H_2O and H_2O_2 as oxygen sources. *Adv. Mater. Interfaces* **9**(15), 2101953 (2022). <https://doi.org/10.1002/admi.202101953>

190. S. Seo, T. Nam, H.-B.-R. Lee, H. Kim, B. Shong, Molecular oxidation of surface- CH_3 during atomic layer deposition of Al_2O_3 with H_2O , H_2O_2 , and O_3 : a theoretical study. *Appl. Surf. Sci.* **457**, 376–380 (2018). <https://doi.org/10.1016/j.apsusc.2018.06.160>

191. D.R. Boris, V.D. Wheeler, N. Nepal, S.B. Qadri, S.G. Walton et al., The role of plasma in plasma-enhanced atomic layer deposition of crystalline films. *J. Vac. Sci. Technol. A* **38**(4), 040801 (2020). <https://doi.org/10.1116/6.0000145>

192. D.-G. Kim, H. Choi, Y.-S. Kim, D.-H. Lee, H.-J. Oh et al., Selectively nitrogen doped ALD-IGZO TFTs with extremely high mobility and reliability. *ACS Appl. Mater. Interfaces* **15**(26), 31652–31663 (2023). <https://doi.org/10.1021/acsami.3c05678>

193. A.R. Choi, S. Seo, S. Kim, D. Kim, S.-W. Ryu et al., Reaction mechanism and film properties of the atomic layer deposition of ZrO_2 thin films with a heteroleptic $\text{CpZr}(\text{N}(\text{CH}_3)_2)_3$ precursor. *Appl. Surf. Sci.* **624**, 157104 (2023). <https://doi.org/10.1016/j.apsusc.2023.157104>

194. H.C.M. Knoops, E. Langereis, M.C.M. van de Sanden, W.M.M. Kessels, Conformality of plasma-assisted ALD: physical processes and modeling. *J. Electrochem. Soc.* **157**(12), G241 (2010). <https://doi.org/10.1149/1.3491381>

195. K. Arts, M. Utriainen, R.L. Puurunen, W.M.M. Kessels, H.C.M. Knoops, Film conformality and extracted recombination probabilities of O atoms during plasma-assisted atomic layer deposition of SiO_2 , TiO_2 , Al_2O_3 , and HfO_2 . *J. Phys. Chem. C* **123**(44), 27030–27035 (2019). <https://doi.org/10.1021/acs.jpcc.9b08176>

196. J. Dendooven, D. Deduytsche, J. Musschoot, R.L. Vanmeirhaeghe, C. Detavernier, Conformality of Al_2O_3 and AlN deposited by plasma-enhanced atomic layer deposition. *J. Electrochem. Soc.* **157**(4), G111 (2010). <https://doi.org/10.1149/1.3301664>

197. X. Meng, Y.-C. Byun, H.S. Kim, J.S. Lee, A.T. Lucero et al., Atomic layer deposition of silicon nitride thin films: a review of recent progress, challenges, and outlooks. *Materials* **9**(12), 1007 (2016). <https://doi.org/10.3390/ma9121007>

198. D.-G. Kim, W.-B. Lee, S. Lee, J. Koh, B. Kuh et al., Thermally activated defect engineering for highly stable and uniform ALD-amorphous IGZO TFTs with high-temperature compatibility. *ACS Appl. Mater. Interfaces* **15**(30), 36550–36563 (2023). <https://doi.org/10.1021/acsami.3c06517>

199. T. Hong, W.-H. Choi, S.-H. Choi, H. Lee, J.H. Seok et al., Plasma enhanced atomic layer deposited amorphous gallium oxide thin films using novel trimethyl [N-(2-methoxyethyl)-2-methylpropan-2-amine] gallium. *Ceram. Int.* **47**(2), 1588–1593 (2021). <https://doi.org/10.1016/j.ceramint.2020.08.272>

200. M.-Y. Li, Y.-Y. Chang, H.-C. Wu, C.-S. Huang, J.-C. Chen et al., Effect of process pressure on atomic layer deposition of Al_2O_3 . *J. Electrochem. Soc.* **154**(11), H967 (2007). <https://doi.org/10.1149/1.2778861>

201. P. Poot, A. Mameli, J. Schulpen, W.M.M.E. Kessels, F. Roozeboom, Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition. *J. Vac. Sci. Technol. A Vac. Surf. Films* **35**(2), 021502 (2017). <https://doi.org/10.1116/1.4973350>

202. K.S. Yoo, C.-H. Lee, D.-G. Kim, S.-H. Choi, W.-B. Lee et al., High mobility and productivity of flexible In_2O_3 thin-film transistors on polyimide substrates via atmospheric pressure spatial atomic layer deposition. *Appl. Surf. Sci.* **646**, 158950 (2024). <https://doi.org/10.1016/j.apsusc.2023.158950>

203. C.-H. Lee, K.S. Yoo, D.-G. Kim, C.-K. Park, J.-S. Park, Compositionally engineered amorphous InZnO thin-film transistor with high mobility and stability via atmospheric pressure spatial atomic layer deposition. *J. Ind. Eng. Chem.* **140**, 269–276 (2024). <https://doi.org/10.1016/j.jiec.2024.05.046>

204. D. Kim, K.S. Yoo, C.-H. Lee, J.-M. Kim, D.-G. Kim et al., High-throughput and performance InZnAlO thin film transistor on polyimide substrate via atmospheric pressure spatial atomic layer deposition. *J. Alloys Compd.* **1023**, 180031 (2025). <https://doi.org/10.1016/j.jallcom.2025.180031>

205. C.-H. Lee, K.S. Yoo, D. Kim, J.-M. Kim, J.-S. Park, Advanced atmospheric-pressure spatial atomic layer deposition for OLED encapsulation: controlling growth

dynamics for superior film performance. *Chem. Eng. J.* **503**, 158424 (2025). <https://doi.org/10.1016/j.cej.2024.158424>

206. M.B.M. Mousa, C.J. Oldham, G.N. Parsons, Atmospheric pressure atomic layer deposition of Al_2O_3 using trimethyl aluminum and ozone. *Langmuir* **30**(13), 3741–3748 (2014). <https://doi.org/10.1021/la500796r>

207. H.-M. Kim, W.-B. Lee, H. Koo, S.-Y. Kim, J.-S. Park, Controlled 2D growth approach *via* atomic layer deposition for improved stability and performance in flexible SnO thin-film transistors. *J. Mater. Chem. C* **12**(23), 8390–8397 (2024). <https://doi.org/10.1039/d4tc01169d>

208. J.C. Park, C.I. Choi, S.-G. Lee, S.J. Yoo, J.-H. Lee et al., Advanced atomic layer deposition: metal oxide thin film growth using the discrete feeding method. *J. Mater. Chem. C* **11**(4), 1298–1303 (2023). <https://doi.org/10.1039/d2tc03485a>

209. H. Won, J. Soo, K. Jeong, H. Sun, W.-H. Kim et al., Advanced atomic layer deposition: ultrathin and continuous metal thin film growth and work function control using the discrete feeding method. *Nano Lett.* **22**(11), 4589–4595 (2022). <https://doi.org/10.1021/acs.nanolett.2c00811>

210. H. Lin Yang, H.-M. Kim, S. Kamimura, A. Eizawa, T. Teramoto et al., Boosted growth rate using discrete reactant feeding method and novel precursor of indium oxide by atomic layer deposition. *Appl. Surf. Sci.* **654**, 159508 (2024). <https://doi.org/10.1016/j.apsusc.2024.159508>

211. J.A. Dean, N. Adolph, *Lange, Lange's Handbook of Chemistry* (McGraw-Hill; [Distributed by] Knovel, 2001).

212. E. Sarkar, C. Zhang, D. Chakraborty, S. Gopal Kirtania, K. Akif Aabrar et al., First demonstration of high-performance and extremely stable W-doped In_2O_3 gate-all-around (GAA) nanosheet FET. *IEEE Trans. Electron Devices* **72**(5), 2662–2669 (2025). <https://doi.org/10.1109/ted.2025.3535463>

213. T.-C. Chiang, Y.-C. Chang, C.-R. Huang, C.-H. Hsu, P.-T. Liu, First demonstration of BEOL-compatible ALD-deposited 2 nm-thick indium-tungsten-tin-oxide (IWTO) TFTs with superior short-channel electrical characteristics: achieving enhancement-mode V_{TH} , $I_{\text{ON}}/I_{\text{OFF}} > 10^{10}$, $\text{SS} \sim 63.3 \text{ mV/dec}$, 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025). <https://doi.org/10.23919/VLSITechnologyandCir65189.2025.11075200>

214. X. Ding, J. Yang, J. Li, J. Zhang, Fully atomic layer deposition induced InAlO thin film transistors. *Vacuum* **227**, 113455 (2024). <https://doi.org/10.1016/j.vacuum.2024.113455>

215. S.-H. Choi, S.-H. Ryu, D.-G. Kim, J.-H. Kwag, C. Yeon et al., C-axis aligned 3 nm thick In_2O_3 crystal using new liquid DBADMIn precursor for highly scaled FET beyond the mobility–stability trade-off. *Nano Lett.* **24**(4), 1324–1331 (2024). <https://doi.org/10.1021/acs.nanolett.3c04312>

216. Y.-M. Kim, K.-S. Jeong, H.-J. Yun, S.-D. Yang, S.-Y. Lee et al., Investigation of zinc interstitial ions as the origin of anomalous stress-induced hump in amorphous indium gallium zinc oxide thin film transistors. *Appl. Phys. Lett.* **102**(17), 173502 (2013). <https://doi.org/10.1063/1.4803536>

217. A. Murat, A.U. Adler, T.O. Mason, J.E. Medvedeva, Carrier generation in multicomponent wide-bandgap oxides: InGaZnO_4 . *J. Am. Chem. Soc.* **135**(15), 5685–5692 (2013). <https://doi.org/10.1021/ja311955g>

218. S. Yamazaki, F. Isaka, T. Ohno, Y. Egi, S. Tezuka et al., High-performance single-crystalline In_2O_3 field effect transistor toward three-dimensional large-scale integration circuits. *Commun. Mater.* **5**, 184 (2024). <https://doi.org/10.1038/s43246-024-00625-x>

219. Y.-S. Kim, W.-B. Lee, H.-J. Oh, T. Hong, J.-S. Park, Remarkable stability improvement with a high-performance PEALD-IZO/IGZO top-gate thin-film transistor *via* modulating dual-channel effects. *Adv. Mater. Interfaces* **9**(16), 2200501 (2022). <https://doi.org/10.1002/admi.202200501>

220. X. Li, C. Gu, T. Yu, Y. Zhao, C. Chen et al., First demonstration of atomic-interlayer-tuning driven by first principles calculations and atomic layer deposition towards high thermal stable BEOL IGZO-FETs with $\text{SS}=62 \text{ mV/dec}$, $\text{PBTI} < 7 \text{ mV@ 3MV/cm}$ and 353K, 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2025). <https://doi.org/10.23919/VLSITechnologyandCir65189.2025.11075061>

221. D.-G. Kim, S.-H. Choi, W.-B. Lee, G.M. Jeong, J. Koh et al., Highly robust atomic layer deposition-indium gallium zinc oxide thin-film transistors with hybrid gate insulator fabricated *via* two-step atomic layer process for high-density integrated all-oxide vertical complementary metal-oxide-semiconductor applications. *Small Struct.* **5**(2), 2300375 (2024). <https://doi.org/10.1002/ssr.202300375>

222. L.-Y. Su, H.-Y. Lin, H.-K. Lin, S.-L. Wang, L.-H. Peng et al., Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing. *IEEE Electron Device Lett.* **32**(9), 1245–1247 (2011). <https://doi.org/10.1109/LED.2011.2160931>

223. A. Chasin, J. Franco, K. Triantopoulos, H. Dekkers, N. Rassoul et al., Understanding and modelling the PBTI reliability of thin-film IGZO transistors. 2021 IEEE International Electron Devices Meeting (IEDM). December 11–16, 2021. San Francisco, CA, USA. IEEE, (2021). pp. 31.1.1–31.1.4. <https://doi.org/10.1109/iedm19574.2021.9720666>

224. A. Chasin, J. Franco, S. Van Beek, H. Dekkers, A. Kruv et al., Unraveling BTI in IGZO devices: impact of device architecture, channel film deposition method and stoichiometry/phase, and device operating conditions. 2024 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2024. San Francisco, CA, USA. IEEE, (2024). pp. 1–4. <https://doi.org/10.1109/iedm50854.2024.10873388>

225. J.H. Jeong, J.E. Oh, D. Kim, D. Ha, J.K. Jeong, Advancements and hurdles in contact engineering for miniaturized sub-micrometer oxide semiconductor devices. *J. Mater. Chem. C* **13**(10), 4861–4875 (2025). <https://doi.org/10.1039/D4TC04792C>

226. M.J. van Setten, H.F.W. Dekkers, L. Kljucar, J. Mitard, C. Pashartis et al., Oxygen defect stability in amorphous, C-axis aligned, and spinel IGZO. *ACS Appl. Electron. Mater.* **3**(9), 4037–4046 (2021). <https://doi.org/10.1021/acsaelm.1c00553>

227. J.-Y. Lin, C. Niu, Z. Lin, S. Lee, T. Kim et al., Analyzing the contact-doping effect in In_2O_3 FETs: unveiling the

mechanisms behind the threshold-voltage roll-off in oxide semiconductor transistors. *IEEE Trans. Electron Devices* **72**(6), 3004–3011 (2025). <https://doi.org/10.1109/TED.2025.3564265>

228. S. Subhechha, N. Rassoul, A. Belmonte, H. Hody, H. Dekkers et al., Ultra-low leakage IGZO-TFTs with raised source/drain for $V_t > 0$ V and $ion > 30 \mu A/\mu m$, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (2022). <https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830448>

229. J.H. Jeong, S.W. Seo, D. Kim, S.H. Yoon, S.H. Lee et al., Specific contact resistivity reduction in amorphous IGZO thin-film transistors through a TiN/IGTO heterogeneous interlayer. *Sci. Rep.* **14**(1), 10953 (2024). <https://doi.org/10.1038/s41598-024-61837-2>

230. J.-L. Kim, L. Kyu, K. Jae, L. Ho, J. Kyeong, Role of MoTi diffusion barrier in amorphous indium-gallium-zinc-oxide thin-film transistors with a copper source/drain electrode. *Thin Solid Films* **731**, 138759 (2021). <https://doi.org/10.1016/j.tsf.2021.138759>

231. H. Park, J. Yun, Y. Chung, P-22: effects of self-assembled monolayer on contact resistance between IGZO and electrode for high-resolution display. *SID Symp. Dig. Tech. Pap.* **53**(1), 1118–1121 (2022). <https://doi.org/10.1002/sdtp.15697>

232. S. Lee, S. Lee, M. Lee, S.M. Rho, H.T. Kim et al., Tailored self-assembled monolayer using chemical coupling for indium–gallium–zinc oxide thin-film transistors: multi-functional copper diffusion barrier. *ACS Appl. Mater. Interfaces* **14**(50), 56310–56320 (2022). <https://doi.org/10.1021/acsami.2c16593>

233. J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, S.-I. Kim, Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. *Appl. Phys. Lett.* **90**(26), 262106 (2007). <https://doi.org/10.1063/1.2753107>

234. D.-G. Kim, S.-H. Ryu, H.-J. Jeong, J.-S. Park, Facile and stable n+ doping process via simultaneous ultraviolet and thermal energy for coplanar ALD-IGZO thin-film transistors. *ACS Appl. Electron. Mater.* **3**(8), 3530–3537 (2021). <https://doi.org/10.1021/acsaelm.1c00463>

235. S. Knobelspies, A. Takabayashi, A. Daus, G. Cantarella, N. Münzenrieder et al., Improvement of contact resistance in flexible a-IGZO thin-film transistors by CF_4/O_2 plasma treatment. *Solid State Electron.* **150**, 23–27 (2018). <https://doi.org/10.1016/j.sse.2018.10.002>

236. S.W. Yoo, Y. Lee, W.J. Jung, H. Kim, S. Byeon et al., A novel method for extracting asymmetric source and drain resistance in IGZO vertical channel transistors. 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 1–2. IEEE (2024). <https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631544>

237. H.-J. Jeong, Y.-S. Kim, S.-G. Jeong, J.-S. Park, Impact of annealing temperature on atomic layer deposited In–Ga–Zn–O thin-film transistors. *ACS Appl. Electron. Mater.* **4**(3), 1343–1350 (2022). <https://doi.org/10.1021/acsaelm.2c00079>

238. J.Y. Bak, Y. Kang, S. Yang, H.-J. Ryu, C.-S. Hwang et al., Origin of degradation phenomenon under drain bias stress for oxide thin film transistors using IGZO and IGO channel layers. *Sci. Rep.* **5**, 7884 (2015). <https://doi.org/10.1038/srep07884>

239. Y.-G. Park, D.Y. Cho, R. Kim, K.H. Kim, J.W. Lee et al., Defect engineering for high performance and extremely reliable a-IGZO thin-film transistor in QD-OLED. *Adv. Electron. Mater.* **8**(7), 2101273 (2022). <https://doi.org/10.1002/aelm.202101273>

240. H.-M. Kim, S.-H. Ryu, S. Kim, K.-H. Lee, J.-S. Park, C-axis aligned composite InZnO via thermal atomic layer deposition for 3D nanostructured semiconductor. *ACS Appl. Mater. Interfaces* **16**(12), 14995–15003 (2024). <https://doi.org/10.1021/acsami.3c16879>

241. W.-B. Lee, H.-J. Jeong, H.-M. Kim, J.-S. Park, Plasma-enhanced atomic layer deposition of aluminum-indium oxide thin films and associated device applications. *J. Vac. Sci. Technol. A* **40**(3), 032402 (2022). <https://doi.org/10.1116/6.0001643>

242. D. Menzel, L. Korte, Evolution of optical, electrical, and structural properties of indium tungsten oxide upon high temperature annealing. *Phys. Status Solidi A* **217**(18), 2000165 (2020). <https://doi.org/10.1002/pssa.202000165>

243. J. Bang, S. Matsuishi, H. Hosono, Hydrogen anion and sub-gap states in amorphous In–Ga–Zn–O thin films for TFT applications. *Appl. Phys. Lett.* **110**(23), 232105 (2017). <https://doi.org/10.1063/1.4985627>

244. H. Hosono, T. Kamiya, *State and Role of Hydrogen in Amorphous Oxide Semiconductors*, in *Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory* (wiley, 2022), pp. 145–157. <https://doi.org/10.1002/9781119715641.ch7>

245. N. Saito, K. Miura, T. Ueda, T. Tezuka, K. Ikeda, High-mobility and H2-anneal tolerant InGaSiO/InGaZnO/InGaSiO double hetero channel thin film transistor for Si-LSI compatible process. 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), 141–142. IEEE (2017). <https://doi.org/10.1109/EDTM.2017.7947542>

246. S.W. Tsao, T.C. Chang, S.Y. Huang, M.C. Chen, S.C. Chen et al., Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. *Solid-State Electron.* **54**(12), 1497–1499 (2010). <https://doi.org/10.1016/j.sse.2010.08.001>

247. A. Abliz, Effects of hydrogen plasma treatment on the electrical performances and reliability of InGaZnO thin-film transistors. *J. Alloys Compd.* **831**, 154694 (2020). <https://doi.org/10.1016/j.jallcom.2020.154694>

248. S.-I. Oh, G. Choi, H. Hwang, W. Lu, J.-H. Jang, Hydrogenated IGZO thin-film transistors using high-pressure hydrogen annealing. *IEEE Trans. Electron Devices* **60**(8), 2537–2541 (2013). <https://doi.org/10.1109/TED.2013.2265326>

249. S.-I. Oh, J.-M. Woo, J.-H. Jang, Comparative studies of long-term ambience and electrical stress stability of IGZO thin-film transistors annealed under hydrogen and nitrogen

ambiance. *IEEE Trans. Electron Devices* **63**(5), 1910–1915 (2016). <https://doi.org/10.1109/TED.2016.2545742>

250. W. Xu, X. Chen, D. Liu, W. Jiang, B. Yang, Systematic thermodynamic and experimental studies for recovering indium and tin from indium tin oxide waste target with hydrogen. *J. Clean. Prod.* **429**, 139328 (2023). <https://doi.org/10.1016/j.jclepro.2023.139328>

251. M.-J. Zhao, J.-F. Zhang, J. Huang, Z.-Z. Chen, A. Xie et al., Role of ambient hydrogen in HiPIMS-ITO film during annealing process in a large temperature range. *Nanomaterials* **12**(12), 1995 (2022). <https://doi.org/10.3390/nano12121995>

252. J.-H. Han, S.-H. Lee, S.-G. Jeong, D.-Y. Kim, H.L. Yang et al., Atomic-layer-deposited SiO_x/SnO_x nanolaminates structure for moisture and hydrogen gas diffusion barriers. *ACS Appl. Mater. Interfaces* **13**(33), 39584–39594 (2021). <https://doi.org/10.1021/acsami.1c09901>

253. Y. Li, F. Barzaghi, P. Liu, X. Zhang, Z. Yang et al., Mechanism and evaluation of hydrogen permeation barriers: a critical review. *Ind. Eng. Chem. Res.* **62**(39), 15752–15773 (2023). <https://doi.org/10.1021/acs.iecr.3c02259>

254. J. Lee, C.H. Choi, T. Kim, J. Hur, M.J. Kim et al., Hydrogen-doping-enabled boosting of the carrier mobility and stability in amorphous IGZTO transistors. *ACS Appl. Mater. Interfaces* **14**(51), 57016–57027 (2022). <https://doi.org/10.1021/ACSAM.2C18094>

255. W. Maeng, S.-H. Lee, J.-D. Kwon, J. Park, J.-S. Park, Atomic layer deposited p-type copper oxide thin films and the associated thin film transistor properties. *Ceram. Int.* **42**(4), 5517–5522 (2016). <https://doi.org/10.1016/j.ceramint.2015.12.109>

256. M. Napari, T.N. Huq, D.J. Meeth, M.J. Heikkilä, K.M. Niang et al., Role of ALD Al₂O₃ surface passivation on the performance of p-type Cu₂O thin film transistors. *ACS Appl. Mater. Interfaces* **13**(3), 4156–4164 (2021). <https://doi.org/10.1021/acsami.0c18915>

257. H.-M. Kim, S.-H. Choi, H.J. Jeong, J.-H. Lee, J. Kim et al., Highly dense and stable p-type thin-film transistor based on atomic layer deposition SnO fabricated by two-step crystallization. *ACS Appl. Mater. Interfaces* **13**(26), 30818–30825 (2021). <https://doi.org/10.1021/acsami.1c06038>

258. H.-M. Kim, S.-H. Choi, H.U. Lee, S.B. Cho, J.-S. Park, The significance of an *in situ* ALD Al₂O₃ stacked structure for p-type SnO TFT performance and monolithic all-ALD-channel CMOS inverter applications. *Adv. Electron. Mater.* **9**(4), 2201202 (2023). <https://doi.org/10.1002/aelm.202201202>

259. S.-H. Choi, H.-M. Kim, J.-S. Park, Facile control of p-type SnO TFT performance with restraining redox reaction by ITO interlayers. *J. Inf. Disp.* **24**(2), 119–125 (2023). <https://doi.org/10.1080/15980316.2022.2151522>

260. W. Xu, J. Zhang, Y. Li, L. Zhang, L. Chen et al., P-type transparent amorphous oxide thin-film transistors using low-temperature solution-processed nickel oxide. *J. Alloys Compd.* **806**, 40–51 (2019). <https://doi.org/10.1016/j.jallcom.2019.07.108>

261. A. Liu, Y.-S. Kim, M.G. Kim, Y. Reo, T. Zou et al., Selenium-alloyed tellurium oxide for amorphous p-channel transistors. *Nature* **629**(8013), 798–802 (2024). <https://doi.org/10.1038/s41586-024-07360-w>

262. P. Häussermann, N.B. Joseph, D. Hiller, Leveraging Bayesian optimization software for atomic layer deposition: single-objective optimization of TiO₂ layers. *Materials* **17**(20), 5019 (2024). <https://doi.org/10.3390/ma17205019>

263. G. Dogan, S.O. Demir, R. Gutzler, H. Gruhn, C.B. Dayan et al., Bayesian machine learning for efficient minimization of defects in ALD passivation layers. *ACS Appl. Mater. Interfaces* **13**(45), 54503–54515 (2021). <https://doi.org/10.1021/acsami.1c14586>

264. Y. Ding, Y. Zhang, Y.M. Ren, G. Orkoulas, P.D. Christofides, Machine learning-based modeling and operation for ALD of SiO₂ thin-films using data from a multiscale CFD simulation. *Chem. Eng. Res. Des.* **151**, 131–145 (2019). <https://doi.org/10.1016/j.cherd.2019.09.005>

265. J. Yim, E. Verkama, J.A. Velasco, K. Arts, R.L. Puurunen, Conformality of atomic layer deposition in microchannels: impact of process parameters on the simulated thickness profile. *Phys. Chem. Chem. Phys.* **24**(15), 8645–8660 (2022). <https://doi.org/10.1039/d1cp04758b>

266. P. Maue, É. Chantraine, F. Pieck, R. Tonner-Zech, Accurately computed dimerization trends of ALD precursors and their impact on surface reactivity in area-selective atomic layer deposition. *Chem. Mater.* **37**(3), 975–988 (2025). <https://doi.org/10.1021/acs.chemmater.4c02557>

267. Y. Chen, Z. Li, Z. Dai, F. Yang, Y. Wen et al., Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures. *Chem. Eng. J.* **472**, 144944 (2023). <https://doi.org/10.1016/j.cej.2023.144944>

268. M. Kim, J. Kim, S. Kwon, S.H. Lee, H. Eom et al., Theoretical design strategies for area-selective atomic layer deposition. *Chem. Mater.* **36**(11), 5313–5324 (2024). <https://doi.org/10.1021/acs.chemmater.3c03326>

269. K.H. Chiang, Y.-C. Ho, M.-Y. Chuang, C.-Y. Chang, Y.-F. Kao et al., Integration of 0.75 V V_{DD} oxide-semiconductor 1T1C memory with advanced logic for an ultra-low-power low-latency cache solution. 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 8–12, 2025. Kyoto, Japan. IEEE, (2025). pp. 1–3. <https://doi.org/10.23919/vlsitechnologyandcir65189.2025.11074854>

270. S.Y. Cha, Driving innovation in DRAM technology: towards a sustainable future. 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 1–4. IEEE (2025). <https://doi.org/10.23919/VLSITechnologyandCir65189.2025.11075100>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.