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HIGHLIGHTS

® A novel coplanar structure design is proposed for floating-gate antiferroelectric field-effect transistor (FG AFeFET) demonstration

with enhanced design flexibility and vertical scalability.

e Multifunctionality is achieved within a single coplanar FG AFeFET via area ratio engineering, including volatile neuronal behavior, fading

memory dynamics, and nonvolatile synaptic function. Systematic investigations into its detailed operating principles are conducted.

e Seamless integration of a full analog reservoir computing system is demonstrated based on a unified coplanar FG AFeFET architecture,

realizing satisfactory accuracies for pattern recognition tasks.
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that unifies multiple neural function-

alities within a single device, enabling the physical implementation of a complete ARC system. By combining a coplanar layout design with
an area ratio engineering strategy, we achieve tunable device behaviors, including volatile responses for artificial neuron emulation, nonvolatile
states for synaptic functions, and fading memory dynamics for reservoir operations. The mechanisms underlying these functionalities and their
operating mechanism are systematically elucidated using load line analysis and energy band diagrams. Leveraging these insights, we demonstrate
an all-in-one ARC system based on the unified coplanar FG AFeFET architecture, which achieves recognition accuracies of 95.6% and 83.4% on
the MNIST and Fashion-MNIST datasets, respectively. These findings highlight the potential of coplanar FG AFeFETs to deliver area-efficient,

design-flexible neuromorphic hardware for next-generation computing systems.
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1 Introduction

The growing demand for efficient processing of data-inten-
sive and spatiotemporal tasks has spurred interest in special-
ized hardware beyond conventional computing paradigms
[1, 2]. Inspired by biological neural networks, neuromor-
phic computing provides a promising approach to emulate
the brain’s information processing through hardware capa-
ble of supporting diverse functionalities. Within this para-
digm, analog reservoir computing (ARC) has emerged as a
powerful framework for temporal information processing
[3]. A typical ARC system comprises a dynamic reservoir
that transforms complex input signals into a high-dimen-
sional state space, thereby enhancing feature differentiation,
together with a trainable readout layer that performs post-
processing of the resulting reservoir state. A key requirement
for hardware implementation of such systems is the devel-
opment of compact, energy-efficient, and scalable devices
capable of emulating diverse neural behaviors, including both
volatile nonlinear dynamics and nonvolatile characteristics
within a unified architecture [4-7]. In this context, devices
with tunable characteristics or multifunctionality are gaining
attention for their ability to leverage the analog and nonlinear
characteristics of specific materials and architectures. How-
ever, the conventional complementary metal-oxide—semicon-
ductor (CMOS) technology-based ARC system suffers from
limited density and energy efficiency because it necessitates
complex circuit design to mimic nonlinear dynamics and
neural operations [8—10]. Despite emerging devices such as
memristors offering alternatives due to their inherent biologi-
cal resemblance [11-15], current physical implementation
of ARC systems still relies on distinct materials or device
structures and requires separate fabrication processes, which
increases fabrication complexity and hinders seamless inte-
gration of the overall system [16].

Hafnium zirconium oxide (HZO) has recently gained atten-
tion owing to its reliable polarization switching characteris-
tic, tunability via material composition engineering, and the
capability of maintaining ferroelectric and antiferroelectric
properties at nanoscale thicknesses [17, 18]. However, ferro-
electric Hf) 57r, 5O, is widely used for nonvolatile memories
and presents intrinsic limitations for implementing neuron-like
transient behavior without additional feedback circuitry, which
increases energy consumption and circuit complexity [19, 20].
In contrast, antiferroelectric Hf ,5Zr, 750, offers spontaneous
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depolarization upon field removal, making it inherently suit-
able for nonlinear dynamics and volatile behavior emulation
[21-23]. And its incorporation with a floating-gate (FG)
device structure further enables the realization of nonvolatility
[24-26]. Despite both volatile and nonvolatile characteristics
having been demonstrated in HZO-based FETs, their unified
implementation within a single device remains unachieved.
Additionally, maintaining nonvolatility in floating-gate antifer-
roelectric field-effect transistor (FG AFeFET) often requires
constant read bias, leading to increased standby energy con-
sumption. Besides, existing studies primarily focused on the
static performance of the FG AFeFET, with limited under-
standing of the underlying mechanisms related to its dynamic
behavior.

In this work, we introduce a coplanar floating-gate AFeFET
through device configuration engineering to realize ARC sys-
tem implementation within a unified device platform (Fig. 1a).
The incorporation of a multigate coplanar FG architecture
allows flexible modulation of device behavior through area
ratio (AR) engineering, enabling three distinct operational
modes: leaky—integrate—fire (LIF) neuron behavior, physi-
cal reservoir dynamics, and synaptic plasticity. This unified
approach integrates multiple neural functionalities within a
single device, eliminating the need for heterogeneous device
types or separate fabrication processes. Besides, the proposed
control-gate-last fabrication process for coplanar FG AFeFET
enables floating-gate functionality through a metal-antifer-
roelectric—insulator-semiconductor (MFIS) stack without
requiring complex additional steps. This approach not only
simplifies the fabrication process but also enhances the verti-
cal scalability compared to conventional FG AFeFETs. Using
this architecture, we demonstrate a coplanar FG AFeFET-
based ARC system, achieving recognition accuracies of 95.6%
and 83.4% on MNIST and Fashion-MNIST datasets, respec-
tively. These results underscore the potential of coplanar FG
AFeFET for compact and energy-efficient neuromorphic hard-
ware with high functional integration.

2 Experimental Section
2.1 Device Fabrication
A 30 nm tungsten (W) layer was first sputtered on a p-type

silicon substrate with 285 nm SiO, and followed by a lithog-
raphy process to form the pattern of the back electrode, which
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is used as the floating gate. Then the area uncovered by the
photoresist is etched using tungsten etchant with DI water
rinsing. Then 10 nm Hf,5Zr, ;50, film was deposited using
the thermal atomic layer deposition (ALD) at 250 °C. The
Tetrakis (ethylmethylamido) hafnium, Hf[N-(C,Hs)CH;], and
Tetrakis (ethylmethylamino) zirconium, Zr[N-(C,Hs)CH;],,
and ozone were used as precursors during the deposition pro-
cess. Following this, 30 nm W layer was sputtered on top of
the Hf, ,5Zr, ,50, before subjecting the device to the rapid
thermal annealing process at 500 °C for 60 s. The sacrificial
W layer was removed by tungsten etchant after the annealing,
and a 3 nm Al,O; layer was deposited with ALD at 150 °C as
the insulating layer. Next, exfoliated few-layer MoS, flakes
were transferred, serving as the semiconducting channel.
Finally, the patterns of source/drain contacts together with the
top gate electrodes (control gates) were defined by the elec-
tron beam lithography, followed by 25 nm Ni evaporated on
top using the electron beam evaporator and a lift-off process.
The Ni deposition rate is optimally selected at 0.3 As'to
minimize the bombardment damage on the MoS, top surface.

2.2 Characterization and Measurement

The electrical characterizations, including DC I-V measure-
ments and transient pulse /-V measurements, were done by the
Keysight B1500A semiconductor analyzer under the dark ambi-
ent environment at room temperature. The Keysight B1530
with a waveform generator fast measurement unit (WGFMU)
was used to generate the designed waveforms for pulse I-V
measurements. In addition, the antiferroelectric characteristics
related to the MFM and MFIM capacitors were measured using
an aixACCT TF 3000 analyzer. Cross-sectional transmission
electron microscopy (TEM) and energy-dispersive X-ray spec-
troscopy (EDS) mapping were conducted using a Talos F200X
TEM to confirm the device structure of the fabricated coplanar
FG AFeFET. And grazing incidence X-ray diffraction using Cu
ko radiation is utilized to characterize the crystalline phase of
the deposited antiferroelectric Hfj ,5Zr, 750, film.

3 Results and Discussion

3.1 Area Ratio Engineering of Coplanar FG AFeFET
with Multigate Design

The device structure of the fabricated FG AFeFET is
illustrated in Fig. 1a, b. To enhance vertical scalability by
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reducing the required thickness of the HZO layer t;;,, while
preserving the tunability of the floating-gate architecture,
a coplanar structure design employing a control-gate-last
fabrication process is adopted. Unlike the conventional FG
structure, where the bottom electrode serves as the control
gate (CG), the coplanar FG AFeFET utilizes the bottom
electrode as the floating gate. The control gate is formed on
the top surface in the final fabrication step, alongside the
source and drain formation. This configuration decouples
the device into the channel region (metal-antiferroelec-
tric—insulator—semiconductor: MFIS) and the AFE region
(metal—antiferroelectric—insulator-metal: MFIM). The area
of these two regions is denoted as Aypg and Ay and
determined by the FG/CG overlap (labeled with the white
rectangle in Fig. 1a) and FG/channel overlap (red rectangle),
respectively. These regions form two capacitive elements,
Cymrrs and Cyppy, and make the voltage division across the
device governed by the designed area ratio Aypp/Anmers> a5
described in Eq. 1 and detailed in Fig. S1 and Note S1.

dizo + dins

VMFIM _ AMFIS . €HzO Eins ~ AMFIS

Vuipis  Awpv iz g sy O h Amrim W
€HzO Eins s

This straightforward inverse relationship between the volt-
age distribution and designed area ratio outperforms con-
ventional FG FE/AFeFETs, where the voltage division is
more complex, and the area ratio is fixed once the channel
is formed. Such constraints limit the range of achievable
ARs in conventional FG FE/AFeFETs, especially in devices
with two-dimensional (2D) material channels, which often
exhibit irregular shapes and limited size. Differently, in the
coplanar structure, Ay can be defined after channel for-
mation, offering greater flexibility in AR design. This ena-
bles the fabrication of multiple control gates to form vary-
ing Ayippv Within a single device, facilitating the systematic
investigation of AR-dependent device behavior. Moreover,
the floating-gate-like structure is successfully incorporated
into the coplanar FG AFeFET with a simplified MFIS fab-
rication process, requiring only a 10 nm thin Hf ,5Zr, 150,
layer. As shown in Fig. 1c, the multilayer gate stacks of the
fabricated device were characterized using cross-sectional
transmission electron microscopy (TEM), revealing sharp
and well-defined interfaces between the different layers.
Energy-dispersive spectrometry (EDS) shown in Fig. S2
confirms a uniform elemental distribution across the device,
with no detectable interdiffusion between layers. A 2D MoS,
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Fig. 1 Coplanar floating-gate AFeFET with tunable area ratio for biological system emulation. a Schematic demonstration of the projection
between biological neural functionalities and tunable electrical behaviors of coplanar FG AFeFET. The 3D schematic illustrates the device struc-
ture of the coplanar FG AFeFET, featuring a tunable area ratio. b Cross-sectional view of the coplanar FG AFeFET, further clarifying the pro-
posed coplanar FG architecture with the control-gate last fabrication process. ¢ Cross-sectional TEM images of the gate stack for the fabricated
coplanar FG AFeFET. d Grazing incidence X-ray diffraction (GIXRD) spectrum of the Hf,, ,5Zr, ;50, layer, with 26 ranging from 25° to 80°.
The presence of the (011), diffraction peak at 20 =~ 30.7° indicates the existence of the antiferroelectric tetragonal phase
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channel was utilized due to its high mobility at atomic thick-
ness and superior gate control capability in thin-film devices
[27-30]. Additionally, peaks at 20 = 30.7° shown in grazing
incidence X-ray diffraction (GIXRD) confirm the presence
of the antiferroelectric tetragonal phase in the deposited
Hf, 5571 750, thin film (Fig. 1d).

In Fig. 2a, polarization data extracted from metal-anti-
ferroelectric—metal (MFM) capacitors fabricated at various
deposition temperatures Tgp and rapid thermal annealing
temperatures Ty, show that the highest polarization differ-
ence between saturation and remanent polarization (P-P,)
is achieved at Tppp =250 °C with Ty, =500 °C, indicating
a promising AFE characteristic. This fabrication condition
is adopted in the following discussion. The corresponding
polarization—voltage (P-V) hysteresis, displacement cur-
rent—voltage (/-V) loops, and capacitance—voltage (C-V)
curves of the deposited Hf;,5Zr 750, film are shown in
Figs. 2b and S3a, which exhibit a representative double
hysteresis in the measured P-V curve and a double-humped
shape with four capacitance peaks in the C-V curve. The
obtained AFE behavior can sustain over 107 cycles of
repeated stressing pulses (Fig. S4). To accurately capture
the antiferroelectric behavior of the deposited Hf, ,5Zr(, 750,
film in the designed gate stack, an MFIM capacitor is further
fabricated for characterization. Compared to the representa-
tive AFE double hysteresis P-V loop in the MFM capacitor,
the insertion of a 3 nm thin Al,O; layer results in a shift
toward ferroelectric-like (FE-like) behavior, as evidenced
by a single hysteresis loop and significantly increased P,
as well as butterfly-shaped capacitance curves (Fig. S3b).
This interlayer-caused P-V hysteresis shift together with
the symmetric gate stack design results in distinct operating
principles within the device compared to conventional FG
AFeFET, which will be discussed in detail in the following
sections.

Following the characterization of antiferroelectricity in
the AFE gate stack, the transfer characteristics of the fabri-
cated FG AFeFET were evaluated across area ratios ranging
from 1:34 to 1:1 under a+5 V gate voltage Vg applied to
different control gates (Fig. 2d). All configurations exhibit
counterclockwise hysteresis, and the corresponding memory
window (MW) extracted from the transfer curves shows a
monotonic increase as AR decreases (Fig. 2e). Ultimately, a
large memory window of around 10 V is achieved at a small
AR of 1:34 (under a+6.5 V applied V5) with a high on/
off ratio> 107 obtained at the same time, exhibiting overall
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improvement compared to previously reported ferroelec-
tric devices (Fig. 2f) [31-41]. In Fig. 2g—i, cycling tests for
three representative AR conditions are conducted, including
AR =1:1 (MFIS and MFIM balanced condition), AR =1:5
(intermediate condition), and AR =1:34 (MFIM-dominated
condition). The obtained results show stable transfer char-
acteristics across 50 cycles, with minimal cycle-to-cycle
variation and a well-sustained high on/off ratio. Besides the
AR-dependent memory window expansion, the coplanar FG
AFeFET also exhibits an AR engineering-enabled tunable
memory behavior. Detailed characterization of the device’s
memory behavior under different ARs and corresponding
operating principles is provided in the following discussion.

3.2 Volatile FG AFeFET for LIF Neuron

Taking advantage of the coplanar device structure, vari-
ous area ratios are achieved by designing multiple FG/CG
overlaps to create different Ayepy While keeping the Ayprg
unchanged. The optical microscopy image of the control
gate design is shown in Fig. 3a, and detailed geometric
parameters are provided in Fig. S5 and Tables S1 and S2.
During characterization of the AR engineering effect in the
multigate structure, the large AR of 1:1 functions as a tran-
sition point for the device to operate from an MFIS-domi-
nated regime (large AR > 1) to an MFIM-dominated regime
(AR < 1), during which the majority of the applied voltage
drop gradually shifts from the MFIS region to the MFIM
region. To carefully investigate the device performance
under this specific AR, we model the device as serial-con-
nected MFIM and MFIS stacks (Fig. 3a). Through load line
analysis combined with the corresponding energy band dia-
gram, its operating principle is systematically investigated
(Fig. 3b, ¢). A detailed description of analytical procedures
and the basis of the load line method are provided in Note
S2 and Fig. S6 [42]. In addition, the load line graph for the
device operating under a fixed 4 V5 is exhibited in Fig. S7
as an example to explain the analysis process.

In Fig. 3b, the upper panel depicts the analysis process
when Vg sweeps from + V5 to 0 V and then back to Vg p.
For the device in the on-state, the voltage drop across the
channel layer is negligible, thereby the Q-V relations of
the gate stacks on both sides of the FG are nearly identical,
leading to an equal voltage division. When + V5 is applied,
the HZO layers on both sides of the FG reach the same

@ Springer
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Fig. 2 Device performance of coplanar FG AFeFET. a Evolution of (P,—P,) value under different fabrication conditions. b Polarization and
displacement current of the MFM capacitor as a function of applied voltages. Typical double hysteresis curves with partial polarization effect
under low sweeping voltages are obtained. ¢ P-V and I-V curves of the MFIM capacitor, showing a transition toward FE-like behavior. d Vari-
ation of transfer characteristics with different area ratios, revealing the effective tunability of area ratio on the memory window. e Evolution of
Vg for both program state Vi p and erase state Vi, and the obtained memory window as a function of area ratio. f Benchmark of memory
window efficiency and on/off ratio of the coplanar FG AFeFET compared to previously reported ferroelectric devices. Transfer characteristic of
the device with g AR=1:1. h AR=1:5. i AR=1:34. Stable counterclockwise hysteresis with a high on/off ratio is well-sustained under 50 con-

secutive dual-sweeping cycles

polarization state, and an operating point with a high Q value
can be obtained from the load line graph (labeled using a
purple dot in the upper panel). This high total charge indi-
cates carrier accumulation in the channel layer and results
in a large drain current Iy, as labeled by the purple dot on
the In—Vgg curve in the middle panel. When V4 returns to
0V, the P, of the HZO layer preserves the channel carri-
ers, maintaining the on-state (orange operation point). The
corresponding band diagram evolution from the purple to
orange operation points is illustrated in Fig. 3c. However,
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the depolarization field (Egep) and finite coercive field (E,)
inevitably degrade polarization stability, leading to lim-
ited retention. (A detailed investigation of back-switching
characteristic in intrinsic AFE film is provided in Fig. S8
and Note S3.) Finally, the red load line in the upper panel
of Fig. 3b and its associated operation point represent the
transition of the channel into depletion. Beyond this stage,
the finite dielectric constant and voltage drop in the channel
layer can no longer be neglected; the effective area of the
MEFIS region decreases, synergistically compressing the O—V

https://doi.org/10.1007/s40820-025-02049-9
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curve of the MFIS part. Consequently, in the bottom panel
of load line analysis for applying — V5, the HZO layer in the
MFIM region cannot achieve saturated switching. This leads
to asymmetric threshold voltages Vi g and Vi p, with Vg g
shifted closer to O V. Details related to different operating
points in Fig. 3b are illustrated in Fig. S9. These operating
points obtained via load line analysis constitute an analytical
I,-Vgs curve, as shown in the middle panel of Fig. 3b. The
obtained curve through this analysis shows strong agreement
with the measured I—V g characteristics (Fig. 2g), offering
a qualitative explanation of the experimental results.

After the theoretical analysis, the volatile response is
verified through excitatory-post-synaptic-current (EPSC)
measurements (Fig. 3d). Upon the application of an excita-
tory pulse, progressive polarization switching in the AFE
layer results in obvious current integration, with increas-
ing pulse widths yielding stronger responses. The subse-
quent rapid decay in I upon voltage removal confirms the
volatility of the device. The observed volatile behavior is
further validated by EPSC measurement on 10 devices, all
of which show a consistent fast decay with small device-
to-device (D2D) variation (Fig. S10). This current integra-
tion and leaky behavior preserve over a wide range of gate
voltages, enabling self-reset functionality analogous to bio-
logical neurons and obviating the need for external reset cir-
cuitry. Figure 3e presents the device response to excitatory
pulses, which exhibits gradual current integration during
pulses and spontaneous decay in between. Upon reaching
a threshold value (I;y=2 pA), a firing event occurs, fol-
lowed by a spontaneous reset to its initial state. Notably,
this LIF behavior is sensitive to pulse parameters. Increas-
ing pulse amplitude (Fig. 3e) or width (Fig. 3f) reduces the
number of pulses required for firing, which can be attributed
to enhanced tetragonal-to-orthorhombic phase transitions
in the AFE layer under stronger fields [43]. The resulting
increase in polarized dipoles modulates channel conductance
more effectively, accelerating current integration. The pulse
interval also plays a critical role. Longer intervals exacerbate
depolarization-driven decay, requiring more pulses to reach
the threshold (Fig. 3g). However, if pulse intensity is insuffi-
cient due to low amplitude, short duration, or long intervals,
the device fails to fire. The suppression of firing behavior
occurs because the weak current integration fails to com-
pensate for the leaky component, or the pronounced leakage
effect surpasses the accumulation of polarized charges. This
characteristic further demonstrates the filtering function of
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the AFeFET neuron. The reproducibility of LIF behavior is
demonstrated in Fig. 3h, where the device successfully resets
and fires under two successive groups of excitatory pulses.
Furthermore, inhibitory pulse responses are illustrated in
Fig. 3i. The insertion of inhibitory pulses between excitatory
pulse trains effectively suppresses current integration and
resets the neuron, highlighting the AFeFET’s bidirectional
response capability.

3.3 Nonvolatile FG AFeFET for Synaptic Function

In contrast to the volatile behavior obtained under a large AR
of 1:1, nonvolatile characteristics become dominant when
the size of Ay 1s significantly reduced to form a small
AR of 1:34 (AR K1), where Aygy 1s far smaller than Aypg
(Fig. 4a). The corresponding load line analysis is demon-
strated in Fig. 4b. In this case, the MFIS and MFIM regions
experience a highly unbalanced voltage distribution. Consid-
ering that the area of the MFIS region remains unchanged in
practical devices, the reduced MFIM area is reflected in the
load line plot as a compression of its Q—V curve along the
y-axis. For example, when AR =1:34, the Q value is reduced
by a factor of 34. As a result, when + V54 is applied, a large
portion of the voltage drop occurs across the MFIM region
to maintain the continuity of the electric displacement. Due
to the very small voltage drop across the MFIS region, the
HZO layer within it hardly undergoes polarization switch-
ing. For clarity, we use straight lines to represent the O-V
relations of both MFIM and MFIS regions, with their slope
ratio approximately equal to AR. This simplification does
not affect the mechanism analysis.

Referring to the experimentally measured memory win-
dow, which already far exceeds the upper limit solely attrib-
utable to the ferroelectricity of HZO (2E_ X tyy,(), it is evi-
dent that charge trapping dominates the device operation in
this regime. Under + Vg, non-negligible positive charges are
trapped within FG because Vypp, is significantly larger than
Vurrs» leading to a substantial negative shift in the Vo of
the device. Based on the load line analysis, trapped charges
Oryap manifest as a vertical shift of the -V curve (refer to
Note S2), as indicated by the pink x-axis in Fig. 4b. There-
fore, channel charges Q. remain positive when Vg sweeps
from+ Vg to 0V, keeping the device in the on-state (from
the purple operation point to the orange operation point)
until reaching Vi p (red operation point). The bottom panel
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of Fig. 4b shows the load line plot while applying — V55 and
Vrye- The overall device operation mechanism is similar to
that of FG memories. Given the relatively small electric field
for detrapping and the effective blocking provided by the
Al,Oj layer, good retention performance can be expected. A
consistent process can also be obtained from the energy band
diagram evolution shown in Fig. 4c. Under this small AR,
the significantly enhanced voltage drop across the MFIM
region (Vyepy) strengthens corresponding polarization and
induces significant electron trapping along the FG to CG
direction. Upon voltage removal, the positive trapped charge
in the FG layer maintains the downward band bending in
the channel, enabling long-term memory functionality. This
nonvolatile behavior, combined with partial polarization
switching, allows the device to mimic synaptic plasticity.
The nonvolatile behavior of the device is first evaluated
using a read-after-write measurement (Fig. 4d). A single
programming pulse induces a clear increase in I, which
remains stable for over 100 s with minimal decay. Robust
nonvolatile retention is sustained across various pulse con-
ditions, with higher programming voltages amplifying
the response. In addition, the device’s multilevel memory
capability is demonstrated through a sequence of program-
ming pulses. Under ten consecutive pulses, the drain cur-
rent accumulates and remains stable between pulses, veri-
fying the device’s ability to support continuous and stable
conductance updates (Fig. 4e). The varying pulse width
shows a clear modulation effect on the linearity of the syn-
aptic response. As good linearity is crucial for the synaptic
device to realize reliable and stable weight updates, long-
term potentiation (LTP) measurement over a wide range of
pulse width 7, is further performed to explore the influence
of pulsing parameters on synaptic plasticity. As shown in
Fig. 4f, multilevel synaptic weights are obtained across all
1, conditions when a sequence of 128 pulses with identi-
cal pulsing parameters is applied to the control gate. High
linearity is observed for 7, shorter than 200 ps but begins to
degrade at a 1, of 500 ps due to enhanced dipoles switching
under a high applied electric field, which makes the polariza-
tion in the AFE layer approach the saturation state after only
a few pulses. Consequently, the available current increment
per pulse gradually decreases, leading to a loss of linearity in
synaptic weight updates. To further evaluate complete long-
term plasticity, both LTP and long-term depression (LTD)
pulse schemes are applied. Ultimately, optimal linearity
and symmetry are achieved using identical LTP pulses and
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tailored LTD pulses, yielding nonlinearity coefficient values
of oy rp=0.35 and oy, = —2.09 (Fig. S11). Figure 4g shows
the repeatedly measured LTP and LTD over 20 cycles using
the determined pulse scheme; highly linear 7-bit synaptic
responses with low cycle-to-cycle variation were obtained,
suggesting the stability of the device for synaptic function
emulation. Retention of multiple conductance levels is fur-
ther confirmed in Fig. 4h. Ten distinct conductance states
remain well-separated with no significant degradation over
10? s, underscoring the robust nonvolatile performance of
the device. In addition, a good endurance of over 10* cycles
is achieved, rendering the potential of the device for demon-
strating reliable weight update (Fig. 41). The D2D variation
in nonvolatile behavior is also investigated in Figs. S12 and
S13. A stable transfer characteristic with a large memory
window is obtained across devices, confirming robust reten-
tion of the nonvolatile state. Furthermore, LTP measure-
ments demonstrate a repeatable weight update, yielding an
overall low D2D variation of 9% across all programmed
states.

3.4 Fading Memory in FG AFeFET for Physical
Reservoir Demonstration

In the ARC system, the fading memory and nonlinear
dynamics serve as pivotal properties for the system to per-
form temporal summation and compress abundant sequen-
tial data, enabling efficient signal fusion. To emulate such
behaviors, the AR of the device was further engineered to
a medium value of 1:5 by adjusting the CG/FG overlap-
ping area Ay (Fig. 5a). Within this regime, the device
exhibits a transient response that lies between purely volatile
and fully nonvolatile operation, resulting in a semi-retentive
characteristic. To evaluate this transition, a single program-
ming pulse (1 ms, 5 V) was applied to the CG, followed by a
read operation at V=0 V. As shown in Fig. S14, the device
exhibits current integration during the applied pulse and a
gradual current decay that stabilizes at a non-zero level after
voltage removal, demonstrating a hybrid response shaped by
dipole depolarization and weak memory effects.

This graded current integration and decay aligns with key
features of physical reservoirs, namely nonlinearity and fad-
ing memory. Nonlinear current integration enables the non-
linear transformation of the input signals into high-dimen-
sional space, and the gradual decay facilitates the internal
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connections between the input signals in the recent past,
which assist in clarifying the underlying correlation between
temporal inputs [44, 45]. Moreover, its weak memory effect
provides additional flexibility in physical reservoir design.
As shown in Fig. 5b, an additional modulation parameter
“base voltage (V,,.)” is applied to the control gate to finely
tune the decay characteristic of the residual I, during the
read process, thereby enabling controlled adjustment of the
device dynamics. With the application of this small nega-
tive base voltage, the polarized dipoles originally retained
during the read process are gradually forced to switch back,
resulting in an accelerated recovery of the drain current.
By modulating the amplitude of the V,,., the drain current
I, relaxation speed varies distinctly, and a more negative
Viase causes faster relaxation. To quantify this modulation
effect, I, was fitted using a stretched exponential model as
expressed in Eq. 2 to extract the responsive current Al and
characteristic time constant 7 corresponding to varying V..
conditions.

p
Ip(®) = Iy + Alp - exp [-(%) ] )

where [, is the rest state of the current relaxation and f is
the stretch component. From the fitting results in Fig. 5Sc,
the characteristic time constant v decreases by three orders
of magnitude as V,,, decreases from 0 to—1 V, while A},
exhibits only a small variation. This indicates that the tem-
poral dynamics of the device can be freely controlled to meet
the needs of different systems containing temporal informa-
tion across multiple timescales. This characteristic greatly
improves the design efficiency of the physical reservoir, as
most physical reservoirs implemented by electronic devices
usually possess a fixed timescale that is determined once
the fabrication process is completed, which makes them
only applicable for specific tasks [46, 47]. Furthermore, by
exploiting these tunable temporal dynamics, the system can
generate a rich set of reservoir states without compromis-
ing processing speed or increasing hardware complexity
[48, 49]. This represents a significant advantage over con-
ventional approaches that depend on large parallel reser-
voir arrays or deep cascaded architectures to enhance state
diversity [50, 51], as further discussed and benchmarked
in Table S3. In addition, the fitting parameter  shows no
obvious dependence on the V.., which suggests the domi-
nating influence of V|, on the time constant 7 (Fig. S15).
The fading memory property is further validated via paired-
pulse facilitation (PPF) measurements. The second pulse
induces a stronger I, response compared to the first one,
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and this enhancement gradually diminishes with increas-
ing intervals between the two pulses (inset of Fig. 5d). The
extracted PPF indices fit a double exponential decay model,
and the obtained time constant (7, =34.6 s, 7,=533 s at
Viase = — 0.6 V) is consistent with the result extracted from
EPSC measurement (Fig. 5c). To further confirm its abil-
ity to function appropriately as an effective physical reser-
voir, reservoir states separability was evaluated. Figure S16
demonstrates the dynamic evolution of the device response
to the 4-bit sequential input sequences. Distinct reservoir
states corresponding to 16 different combinations of input
sequences are obtained by sampling the response current
at the end of each input combination (Fig. Se). The well-
separated reservoir states demonstrate the high capability
of the FG AFeFET for input signal encoding. Additionally,
the cycle-to-cycle uniformity of the device in response to
a specific input sequence is verified. As shown in Fig. 5f,
the input sequence “1111” is repeatedly sent into the device
for 10 consecutive cycles with identical pulsing parameters
(Vgs=5V, Vie=—0.6 V, pulse width=500 ps, inter-
val =500 ps). To statistically evaluate the state separability
of the coplanar AFeFET-based reservoir, cycling tests were
performed for all 16 input sequences (Fig. S17), thereby
accounting for both cycle-to-cycle variation and unavoidable
measurement noise. The resulting reservoir states were plot-
ted as cumulative probability distributions (Fig. S18), reveal-
ing clearly distinguishable states with no apparent overlap.
As summarized in Table S4, the small cycle-to-cycle varia-
tion and strong state separability demonstrate reliable input
discrimination and a reduced processing error, marking a
substantial improvement over conventional physical RC
systems.

3.5 All-in-One FG AFeFET-Based Analog Reservoir
Computing System

Through effective AR engineering utilizing a coplanar struc-
ture and multigate design, both volatile, fading memory, and
nonvolatile behaviors can be realized in a single FG AFeFET
by selectively activating different control gates that define
distinct AR configurations. Leveraging these diversifying
functionalities, an all-in-one ARC system is constructed
based on coplanar FG AFeFETs. As shown in Fig. 5g, all
components inside the system can be realized with a multi-
gate coplanar FG AFeFET structure, the volatile leaky—inte-
grate—fire characteristic obtained under a large AR configu-
ration is used to implement LIF neurons, the fading memory
characteristic obtained under a medium AR configuration
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is adopted for physical reservoir implementation, and the
nonvolatile memory characteristic obtained under a small
AR configuration is utilized for synaptic weight update in
the readout layer.

Pattern recognition tasks are performed using two dif-
ferent datasets to thoroughly assess the performance of
the system, including the MNIST dataset containing hand-
written digits and the Fashion-MNIST dataset consisting of
different clothing patterns. In both datasets, each image con-
taining 28 X 28 pixels is preprocessed by segmenting rows
into seven 4-pixel blocks. Each block is binarized into a
4-time-step pulse sequence, which is then fed into the FG
AFeFET-based reservoir layer. The device response at the
last time step is collected as the reservoir states and transmit-
ted into the next layer. With the application of this encoding
method, each input image is scaled down to a size of 7x 28
pixels while maintaining the spatial information. Next, the
encoded information is input into a 196 X 128 x 10 fully con-
nected readout network for processing, and the ten output
neurons in the output layer generate distinct outputs based
on the rate coding method. To closely emulate the practical
system performance, experimentally extracted parameters
from the device, such as reservoir responses to 4-bit inputs,
multilevel synaptic weights, and the time constant 7 of the
LIF neuron, were incorporated into the simulation. In addi-
tion, a schematic demonstration of corresponding hardware
implementation using coplanar FG AFeFET for the designed
ARC system is illustrated in Fig. Sh. Within the system, the
preprocessed input images first go through the FG AFeFET-
based physical reservoir layer (medium AR configuration)
for transformation. The transformed signals are then fed into
a readout network composed of FG AFeFET-based synaptic
devices (small AR configuration), where the bit-line cur-
rent of the synaptic array is subsequently transmitted to FG
AFeFET-based LIF neurons (large AR configuration) for
spike generation. The system achieves recognition accu-
racies of 95.6% on the MNIST dataset and 83.4% on the
Fashion-MNIST dataset, with confusion matrices presented
in Fig. 5i. The reduced accuracy for the Fashion-MNIST
dataset is attributed to its greater intrinsic complexity in both
interclass and intraclass image variations compared to the
MNIST dataset [52]. While this demonstration of the ARC
system serves as a proof-of-concept, the modular and mul-
tifunctional nature of the device offers high design flexibil-
ity, enabling seamless integration of diverse neural network
functionalities in a unified platform. The combination of
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high state separability, low energy consumption, and strong
thermal stability (Fig. S19) underscores the suitability of this
approach for the physical realization of large-scale ARC sys-
tems. A detailed discussion of the integration prospects and
application potential of the coplanar FG AFeFET for scal-
able neuromorphic computing hardware is provided in Note
S4 and Fig. S20. Moreover, the device’s key performance
metrics against previously reported ferroelectric transistors
are benchmarked in Table S5. Besides the demonstrated
pattern recognition tasks, the coplanar FG AFeFET-based
ARC system can also be adopted for processing dynamic and
complex tasks. In Fig. S21, a time series prediction task is
also conducted to provide a validation of its capability for
temporal information processing.

4 Conclusions

In this work, we have demonstrated a coplanar floating-gate
antiferroelectric field-effect transistor that achieves tun-
able memory behavior through structural design and area
ratio engineering. By employing independent control gates,
the device consolidates three distinct neural functionalities
within a single unit, including volatile leaky—integrate—fire
neuron dynamics, physical reservoir responses, and non-
volatile synaptic characteristics. The LIF mode accommo-
dates both excitatory and inhibitory stimuli while exhibiting
intrinsic self-resetting behavior, thereby eliminating the need
for external reset circuitry. The reservoir mode enables dis-
tinct reservoir states and multi-timescale dynamics via Vg,
modulation, while the synaptic mode provides symmetric,
linear conductance updates across 128 states (7-bit resolu-
tion). Beyond functional versatility, the coplanar architecture
enhances the vertical scalability of conventional FG con-
figurations, delivering both a large memory window and a
high on/off ratio. The mechanisms underpinning these tun-
able functionalities are systematically elucidated through
load line analysis and energy band diagrams. Harnessing
these multifunctional capabilities, a complete ARC sys-
tem is successfully realized within a unified coplanar FG
AFeFET framework, achieving high recognition accuracies
on the MNIST and Fashion-MNIST datasets. These results
establish the coplanar FG AFeFET as a promising building
block for compact, scalable, and energy-efficient neuromor-
phic computing systems.
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