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 HIGHLIGHTS

•	 A novel coplanar structure design is proposed for floating-gate antiferroelectric field-effect transistor (FG AFeFET) demonstration 
with enhanced design flexibility and vertical scalability.

•	 Multifunctionality is achieved within a single coplanar FG AFeFET via area ratio engineering, including volatile neuronal behavior, fading 
memory dynamics, and nonvolatile synaptic function. Systematic investigations into its detailed operating principles are conducted.

•	 Seamless integration of a full analog reservoir computing system is demonstrated based on a unified coplanar FG AFeFET architecture, 
realizing satisfactory accuracies for pattern recognition tasks.

ABSTRACT  Analog reservoir 
computing (ARC) systems offer an 
energy-efficient platform for tempo-
ral information processing. However, 
their physical implementation typically 
requires disparate materials and device 
architectures for different system com-
ponents, leading to complicated fabri-
cation processes and increased system 
complexity. In this work, we present a 
coplanar floating-gate antiferroelectric 
field-effect transistor (FG AFeFET) 
that unifies multiple neural function-
alities within a single device, enabling the physical implementation of a complete ARC system. By combining a coplanar layout design with 
an area ratio engineering strategy, we achieve tunable device behaviors, including volatile responses for artificial neuron emulation, nonvolatile 
states for synaptic functions, and fading memory dynamics for reservoir operations. The mechanisms underlying these functionalities and their 
operating mechanism are systematically elucidated using load line analysis and energy band diagrams. Leveraging these insights, we demonstrate 
an all-in-one ARC system based on the unified coplanar FG AFeFET architecture, which achieves recognition accuracies of 95.6% and 83.4% on 
the MNIST and Fashion-MNIST datasets, respectively. These findings highlight the potential of coplanar FG AFeFETs to deliver area-efficient, 
design-flexible neuromorphic hardware for next-generation computing systems.
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1  Introduction

The growing demand for efficient processing of data-inten-
sive and spatiotemporal tasks has spurred interest in special-
ized hardware beyond conventional computing paradigms 
[1, 2]. Inspired by biological neural networks, neuromor-
phic computing provides a promising approach to emulate 
the brain’s information processing through hardware capa-
ble of supporting diverse functionalities. Within this para-
digm, analog reservoir computing (ARC) has emerged as a 
powerful framework for temporal information processing 
[3]. A typical ARC system comprises a dynamic reservoir 
that transforms complex input signals into a high-dimen-
sional state space, thereby enhancing feature differentiation, 
together with a trainable readout layer that performs post-
processing of the resulting reservoir state. A key requirement 
for hardware implementation of such systems is the devel-
opment of compact, energy-efficient, and scalable devices 
capable of emulating diverse neural behaviors, including both 
volatile nonlinear dynamics and nonvolatile characteristics 
within a unified architecture [4–7]. In this context, devices 
with tunable characteristics or multifunctionality are gaining 
attention for their ability to leverage the analog and nonlinear 
characteristics of specific materials and architectures. How-
ever, the conventional complementary metal–oxide–semicon-
ductor (CMOS) technology-based ARC system suffers from 
limited density and energy efficiency because it necessitates 
complex circuit design to mimic nonlinear dynamics and 
neural operations [8–10]. Despite emerging devices such as 
memristors offering alternatives due to their inherent biologi-
cal resemblance [11–15], current physical implementation 
of ARC systems still relies on distinct materials or device 
structures and requires separate fabrication processes, which 
increases fabrication complexity and hinders seamless inte-
gration of the overall system [16].

Hafnium zirconium oxide (HZO) has recently gained atten-
tion owing to its reliable polarization switching characteris-
tic, tunability via material composition engineering, and the 
capability of maintaining ferroelectric and antiferroelectric 
properties at nanoscale thicknesses [17, 18]. However, ferro-
electric Hf0.5Zr0.5O2 is widely used for nonvolatile memories 
and presents intrinsic limitations for implementing neuron-like 
transient behavior without additional feedback circuitry, which 
increases energy consumption and circuit complexity [19, 20]. 
In contrast, antiferroelectric Hf0.25Zr0.75O2 offers spontaneous 

depolarization upon field removal, making it inherently suit-
able for nonlinear dynamics and volatile behavior emulation 
[21–23]. And its incorporation with a floating-gate (FG) 
device structure further enables the realization of nonvolatility 
[24–26]. Despite both volatile and nonvolatile characteristics 
having been demonstrated in HZO-based FETs, their unified 
implementation within a single device remains unachieved. 
Additionally, maintaining nonvolatility in floating-gate antifer-
roelectric field-effect transistor (FG AFeFET) often requires 
constant read bias, leading to increased standby energy con-
sumption. Besides, existing studies primarily focused on the 
static performance of the FG AFeFET, with limited under-
standing of the underlying mechanisms related to its dynamic 
behavior.

In this work, we introduce a coplanar floating-gate AFeFET 
through device configuration engineering to realize ARC sys-
tem implementation within a unified device platform (Fig. 1a). 
The incorporation of a multigate coplanar FG architecture 
allows flexible modulation of device behavior through area 
ratio (AR) engineering, enabling three distinct operational 
modes: leaky–integrate–fire (LIF) neuron behavior, physi-
cal reservoir dynamics, and synaptic plasticity. This unified 
approach integrates multiple neural functionalities within a 
single device, eliminating the need for heterogeneous device 
types or separate fabrication processes. Besides, the proposed 
control-gate-last fabrication process for coplanar FG AFeFET 
enables floating-gate functionality through a metal–antifer-
roelectric–insulator–semiconductor (MFIS) stack without 
requiring complex additional steps. This approach not only 
simplifies the fabrication process but also enhances the verti-
cal scalability compared to conventional FG AFeFETs. Using 
this architecture, we demonstrate a coplanar FG AFeFET-
based ARC system, achieving recognition accuracies of 95.6% 
and 83.4% on MNIST and Fashion-MNIST datasets, respec-
tively. These results underscore the potential of coplanar FG 
AFeFET for compact and energy-efficient neuromorphic hard-
ware with high functional integration.

2 � Experimental Section

2.1 � Device Fabrication

A 30 nm tungsten (W) layer was first sputtered on a p-type 
silicon substrate with 285 nm SiO2 and followed by a lithog-
raphy process to form the pattern of the back electrode, which 
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is used as the floating gate. Then the area uncovered by the 
photoresist is etched using tungsten etchant with DI water 
rinsing. Then 10 nm Hf0.25Zr0.75O2 film was deposited using 
the thermal atomic layer deposition (ALD) at 250 °C. The 
Tetrakis (ethylmethylamido) hafnium, Hf[N-(C2H5)CH3]4 and 
Tetrakis (ethylmethylamino) zirconium, Zr[N-(C2H5)CH3]4, 
and ozone were used as precursors during the deposition pro-
cess. Following this, 30 nm W layer was sputtered on top of 
the Hf0.25Zr0.75O2 before subjecting the device to the rapid 
thermal annealing process at 500 °C for 60 s. The sacrificial 
W layer was removed by tungsten etchant after the annealing, 
and a 3 nm Al2O3 layer was deposited with ALD at 150 °C as 
the insulating layer. Next, exfoliated few-layer MoS2 flakes 
were transferred, serving as the semiconducting channel. 
Finally, the patterns of source/drain contacts together with the 
top gate electrodes (control gates) were defined by the elec-
tron beam lithography, followed by 25 nm Ni evaporated on 
top using the electron beam evaporator and a lift-off process. 
The Ni deposition rate is optimally selected at 0.3 Å s−1 to 
minimize the bombardment damage on the MoS2 top surface.

2.2 � Characterization and Measurement

The electrical characterizations, including DC I-V measure-
ments and transient pulse I-V measurements, were done by the 
Keysight B1500A semiconductor analyzer under the dark ambi-
ent environment at room temperature. The Keysight B1530 
with a waveform generator fast measurement unit (WGFMU) 
was used to generate the designed waveforms for pulse I-V 
measurements. In addition, the antiferroelectric characteristics 
related to the MFM and MFIM capacitors were measured using 
an aixACCT TF 3000 analyzer. Cross-sectional transmission 
electron microscopy (TEM) and energy-dispersive X-ray spec-
troscopy (EDS) mapping were conducted using a Talos F200X 
TEM to confirm the device structure of the fabricated coplanar 
FG AFeFET. And grazing incidence X-ray diffraction using Cu 
kα radiation is utilized to characterize the crystalline phase of 
the deposited antiferroelectric Hf0.25Zr0.75O2 film.

3 � Results and Discussion

3.1 � Area Ratio Engineering of Coplanar FG AFeFET 
with Multigate Design

The device structure of the fabricated FG AFeFET is 
illustrated in Fig. 1a, b. To enhance vertical scalability by 

reducing the required thickness of the HZO layer tHZO while 
preserving the tunability of the floating-gate architecture, 
a coplanar structure design employing a control-gate-last 
fabrication process is adopted. Unlike the conventional FG 
structure, where the bottom electrode serves as the control 
gate (CG), the coplanar FG AFeFET utilizes the bottom 
electrode as the floating gate. The control gate is formed on 
the top surface in the final fabrication step, alongside the 
source and drain formation. This configuration decouples 
the device into the channel region (metal–antiferroelec-
tric–insulator–semiconductor: MFIS) and the AFE region 
(metal–antiferroelectric–insulator–metal: MFIM). The area 
of these two regions is denoted as AMFIS and AMFIM and 
determined by the FG/CG overlap (labeled with the white 
rectangle in Fig. 1a) and FG/channel overlap (red rectangle), 
respectively. These regions form two capacitive elements, 
CMFIS and CMFIM, and make the voltage division across the 
device governed by the designed area ratio AMFIM/AMFIS, as 
described in Eq. 1 and detailed in Fig. S1 and Note S1.

This straightforward inverse relationship between the volt-
age distribution and designed area ratio outperforms con-
ventional FG FE/AFeFETs, where the voltage division is 
more complex, and the area ratio is fixed once the channel 
is formed. Such constraints limit the range of achievable 
ARs in conventional FG FE/AFeFETs, especially in devices 
with two-dimensional (2D) material channels, which often 
exhibit irregular shapes and limited size. Differently, in the 
coplanar structure, AMFIM can be defined after channel for-
mation, offering greater flexibility in AR design. This ena-
bles the fabrication of multiple control gates to form vary-
ing AMFIM within a single device, facilitating the systematic 
investigation of AR-dependent device behavior. Moreover, 
the floating-gate-like structure is successfully incorporated 
into the coplanar FG AFeFET with a simplified MFIS fab-
rication process, requiring only a 10 nm thin Hf0.25Zr0.75O2 
layer. As shown in Fig. 1c, the multilayer gate stacks of the 
fabricated device were characterized using cross-sectional 
transmission electron microscopy (TEM), revealing sharp 
and well-defined interfaces between the different layers. 
Energy-dispersive spectrometry (EDS) shown in Fig. S2 
confirms a uniform elemental distribution across the device, 
with no detectable interdiffusion between layers. A 2D MoS2 
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Fig. 1   Coplanar floating-gate AFeFET with tunable area ratio for biological system emulation. a Schematic demonstration of the projection 
between biological neural functionalities and tunable electrical behaviors of coplanar FG AFeFET. The 3D schematic illustrates the device struc-
ture of the coplanar FG AFeFET, featuring a tunable area ratio. b Cross-sectional view of the coplanar FG AFeFET, further clarifying the pro-
posed coplanar FG architecture with the control-gate last fabrication process. c Cross-sectional TEM images of the gate stack for the fabricated 
coplanar FG AFeFET. d Grazing incidence X-ray diffraction (GIXRD) spectrum of the Hf0.25Zr0.75O2 layer, with 2θ ranging from 25° to 80°. 
The presence of the (011)t diffraction peak at 2θ ≈ 30.7° indicates the existence of the antiferroelectric tetragonal phase
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channel was utilized due to its high mobility at atomic thick-
ness and superior gate control capability in thin-film devices 
[27–30]. Additionally, peaks at 2θ ≈ 30.7° shown in grazing 
incidence X-ray diffraction (GIXRD) confirm the presence 
of the antiferroelectric tetragonal phase in the deposited 
Hf0.25Zr0.75O2 thin film (Fig. 1d).

In Fig. 2a, polarization data extracted from metal–anti-
ferroelectric–metal (MFM) capacitors fabricated at various 
deposition temperatures TDEP and rapid thermal annealing 
temperatures TRTA​ show that the highest polarization differ-
ence between saturation and remanent polarization (Ps-Pr) 
is achieved at TDEP = 250 °C with TRTA​ = 500 °C, indicating 
a promising AFE characteristic. This fabrication condition 
is adopted in the following discussion. The corresponding 
polarization–voltage (P–V) hysteresis, displacement cur-
rent–voltage (I–V) loops, and capacitance–voltage (C–V) 
curves of the deposited Hf0.25Zr0.75O2 film are shown in 
Figs. 2b and S3a, which exhibit a representative double 
hysteresis in the measured P–V curve and a double-humped 
shape with four capacitance peaks in the C-V curve. The 
obtained AFE behavior can sustain over 107 cycles of 
repeated stressing pulses (Fig. S4). To accurately capture 
the antiferroelectric behavior of the deposited Hf0.25Zr0.75O2 
film in the designed gate stack, an MFIM capacitor is further 
fabricated for characterization. Compared to the representa-
tive AFE double hysteresis P–V loop in the MFM capacitor, 
the insertion of a 3 nm thin Al2O3 layer results in a shift 
toward ferroelectric-like (FE-like) behavior, as evidenced 
by a single hysteresis loop and significantly increased Pr, 
as well as butterfly-shaped capacitance curves (Fig. S3b). 
This interlayer-caused P–V hysteresis shift together with 
the symmetric gate stack design results in distinct operating 
principles within the device compared to conventional FG 
AFeFET, which will be discussed in detail in the following 
sections.

Following the characterization of antiferroelectricity in 
the AFE gate stack, the transfer characteristics of the fabri-
cated FG AFeFET were evaluated across area ratios ranging 
from 1:34 to 1:1 under a ± 5 V gate voltage VGS applied to 
different control gates (Fig. 2d). All configurations exhibit 
counterclockwise hysteresis, and the corresponding memory 
window (MW) extracted from the transfer curves shows a 
monotonic increase as AR decreases (Fig. 2e). Ultimately, a 
large memory window of around 10 V is achieved at a small 
AR of 1:34 (under a ± 6.5 V applied VGS) with a high on/
off ratio > 107 obtained at the same time, exhibiting overall 

improvement compared to previously reported ferroelec-
tric devices (Fig. 2f) [31–41]. In Fig. 2g–i, cycling tests for 
three representative AR conditions are conducted, including 
AR = 1:1 (MFIS and MFIM balanced condition), AR = 1:5 
(intermediate condition), and AR = 1:34 (MFIM-dominated 
condition). The obtained results show stable transfer char-
acteristics across 50 cycles, with minimal cycle-to-cycle 
variation and a well-sustained high on/off ratio. Besides the 
AR-dependent memory window expansion, the coplanar FG 
AFeFET also exhibits an AR engineering-enabled tunable 
memory behavior. Detailed characterization of the device’s 
memory behavior under different ARs and corresponding 
operating principles is provided in the following discussion.

3.2 � Volatile FG AFeFET for LIF Neuron

Taking advantage of the coplanar device structure, vari-
ous area ratios are achieved by designing multiple FG/CG 
overlaps to create different AMFIM while keeping the AMFIS 
unchanged. The optical microscopy image of the control 
gate design is shown in Fig. 3a, and detailed geometric 
parameters are provided in Fig. S5 and Tables S1 and S2. 
During characterization of the AR engineering effect in the 
multigate structure, the large AR of 1:1 functions as a tran-
sition point for the device to operate from an MFIS-domi-
nated regime (large AR ≥ 1) to an MFIM-dominated regime 
(AR < 1), during which the majority of the applied voltage 
drop gradually shifts from the MFIS region to the MFIM 
region. To carefully investigate the device performance 
under this specific AR, we model the device as serial-con-
nected MFIM and MFIS stacks (Fig. 3a). Through load line 
analysis combined with the corresponding energy band dia-
gram, its operating principle is systematically investigated 
(Fig. 3b, c). A detailed description of analytical procedures 
and the basis of the load line method are provided in Note 
S2 and Fig. S6 [42]. In addition, the load line graph for the 
device operating under a fixed + VGS is exhibited in Fig. S7 
as an example to explain the analysis process.

In Fig. 3b, the upper panel depicts the analysis process 
when VGS sweeps from + VGS to 0 V and then back to VTH,P. 
For the device in the on-state, the voltage drop across the 
channel layer is negligible, thereby the Q–V relations of 
the gate stacks on both sides of the FG are nearly identical, 
leading to an equal voltage division. When + VGS is applied, 
the HZO layers on both sides of the FG reach the same 
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polarization state, and an operating point with a high Q value 
can be obtained from the load line graph (labeled using a 
purple dot in the upper panel). This high total charge indi-
cates carrier accumulation in the channel layer and results 
in a large drain current ID, as labeled by the purple dot on 
the ID–VGS curve in the middle panel. When VGS returns to 
0 V, the Pr of the HZO layer preserves the channel carri-
ers, maintaining the on-state (orange operation point). The 
corresponding band diagram evolution from the purple to 
orange operation points is illustrated in Fig. 3c. However, 

the depolarization field (Edep) and finite coercive field (Ec) 
inevitably degrade polarization stability, leading to lim-
ited retention. (A detailed investigation of back-switching 
characteristic in intrinsic AFE film is provided in Fig. S8 
and Note S3.) Finally, the red load line in the upper panel 
of Fig. 3b and its associated operation point represent the 
transition of the channel into depletion. Beyond this stage, 
the finite dielectric constant and voltage drop in the channel 
layer can no longer be neglected; the effective area of the 
MFIS region decreases, synergistically compressing the Q–V 

Fig. 2   Device performance of coplanar FG AFeFET. a Evolution of (Ps−Pr) value under different fabrication conditions. b Polarization and 
displacement current of the MFM capacitor as a function of applied voltages. Typical double hysteresis curves with partial polarization effect 
under low sweeping voltages are obtained. c P–V and I-V curves of the MFIM capacitor, showing a transition toward FE-like behavior. d Vari-
ation of transfer characteristics with different area ratios, revealing the effective tunability of area ratio on the memory window. e Evolution of 
VTH for both program state VTH,P and erase state VTH,E, and the obtained memory window as a function of area ratio. f Benchmark of memory 
window efficiency and on/off ratio of the coplanar FG AFeFET compared to previously reported ferroelectric devices. Transfer characteristic of 
the device with g AR = 1:1. h AR = 1:5. i AR = 1:34. Stable counterclockwise hysteresis with a high on/off ratio is well-sustained under 50 con-
secutive dual-sweeping cycles



Nano-Micro Lett.          (2026) 18:202 	 Page 7 of 16    202 

curve of the MFIS part. Consequently, in the bottom panel 
of load line analysis for applying − VGS, the HZO layer in the 
MFIM region cannot achieve saturated switching. This leads 
to asymmetric threshold voltages VTH,E and VTH,P, with VTH,E 
shifted closer to 0 V. Details related to different operating 
points in Fig. 3b are illustrated in Fig. S9. These operating 
points obtained via load line analysis constitute an analytical 
ID-VGS curve, as shown in the middle panel of Fig. 3b. The 
obtained curve through this analysis shows strong agreement 
with the measured ID–VGS characteristics (Fig. 2g), offering 
a qualitative explanation of the experimental results.

After the theoretical analysis, the volatile response is 
verified through excitatory-post-synaptic-current (EPSC) 
measurements (Fig. 3d). Upon the application of an excita-
tory pulse, progressive polarization switching in the AFE 
layer results in obvious current integration, with increas-
ing pulse widths yielding stronger responses. The subse-
quent rapid decay in ID upon voltage removal confirms the 
volatility of the device. The observed volatile behavior is 
further validated by EPSC measurement on 10 devices, all 
of which show a consistent fast decay with small device-
to-device (D2D) variation (Fig. S10). This current integra-
tion and leaky behavior preserve over a wide range of gate 
voltages, enabling self-reset functionality analogous to bio-
logical neurons and obviating the need for external reset cir-
cuitry. Figure 3e presents the device response to excitatory 
pulses, which exhibits gradual current integration during 
pulses and spontaneous decay in between. Upon reaching 
a threshold value (ITH = 2 µA), a firing event occurs, fol-
lowed by a spontaneous reset to its initial state. Notably, 
this LIF behavior is sensitive to pulse parameters. Increas-
ing pulse amplitude (Fig. 3e) or width (Fig. 3f) reduces the 
number of pulses required for firing, which can be attributed 
to enhanced tetragonal-to-orthorhombic phase transitions 
in the AFE layer under stronger fields [43]. The resulting 
increase in polarized dipoles modulates channel conductance 
more effectively, accelerating current integration. The pulse 
interval also plays a critical role. Longer intervals exacerbate 
depolarization-driven decay, requiring more pulses to reach 
the threshold (Fig. 3g). However, if pulse intensity is insuffi-
cient due to low amplitude, short duration, or long intervals, 
the device fails to fire. The suppression of firing behavior 
occurs because the weak current integration fails to com-
pensate for the leaky component, or the pronounced leakage 
effect surpasses the accumulation of polarized charges. This 
characteristic further demonstrates the filtering function of 

the AFeFET neuron. The reproducibility of LIF behavior is 
demonstrated in Fig. 3h, where the device successfully resets 
and fires under two successive groups of excitatory pulses. 
Furthermore, inhibitory pulse responses are illustrated in 
Fig. 3i. The insertion of inhibitory pulses between excitatory 
pulse trains effectively suppresses current integration and 
resets the neuron, highlighting the AFeFET’s bidirectional 
response capability.

3.3 � Nonvolatile FG AFeFET for Synaptic Function

In contrast to the volatile behavior obtained under a large AR 
of 1:1, nonvolatile characteristics become dominant when 
the size of AMFIM is significantly reduced to form a small 
AR of 1:34 (AR ≪ 1), where AMFIM is far smaller than AMFIS 
(Fig. 4a). The corresponding load line analysis is demon-
strated in Fig. 4b. In this case, the MFIS and MFIM regions 
experience a highly unbalanced voltage distribution. Consid-
ering that the area of the MFIS region remains unchanged in 
practical devices, the reduced MFIM area is reflected in the 
load line plot as a compression of its Q–V curve along the 
y-axis. For example, when AR = 1:34, the Q value is reduced 
by a factor of 34. As a result, when + VGS is applied, a large 
portion of the voltage drop occurs across the MFIM region 
to maintain the continuity of the electric displacement. Due 
to the very small voltage drop across the MFIS region, the 
HZO layer within it hardly undergoes polarization switch-
ing. For clarity, we use straight lines to represent the Q–V 
relations of both MFIM and MFIS regions, with their slope 
ratio approximately equal to AR. This simplification does 
not affect the mechanism analysis.

Referring to the experimentally measured memory win-
dow, which already far exceeds the upper limit solely attrib-
utable to the ferroelectricity of HZO (2Ec × tHZO), it is evi-
dent that charge trapping dominates the device operation in 
this regime. Under + VGS, non-negligible positive charges are 
trapped within FG because VMFIM is significantly larger than 
VMFIS, leading to a substantial negative shift in the VTH of 
the device. Based on the load line analysis, trapped charges 
QTrap manifest as a vertical shift of the Q–V curve (refer to 
Note S2), as indicated by the pink x-axis in Fig. 4b. There-
fore, channel charges QCH remain positive when VGS sweeps 
from + VGS to 0 V, keeping the device in the on-state (from 
the purple operation point to the orange operation point) 
until reaching VTH,P (red operation point). The bottom panel 
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Fig. 3   LIF characteristic of coplanar FG AFeFET with a large AR. a Schematic of the equivalent capacitance model and optical microscopy image of the control 
gate design. b Load line analysis of coplanar FG AFeFET with AR = 1:1. Upper panel: processes from applying + VGS to VGS = 0 V to VGS = VTH, P; bottom panel: 
process from applying -VGS to VGS = VTH, E. Middle panel: theoretical ID−VGS curve obtained from load line analysis. c Band diagram of the gate stack corresponds 
to processes from applying + VGS to VGS = 0 V. It is consistent with the load line analysis, while the Pr of HZO can retain the carriers in the channel after remov-
ing + VGS. However, poor retention could be expected due to the depolarization field and the limited Ec of HZO layer. d Drain current integration and leaky process 
of the FG AFeFET under the stimulation of a single positive pulse ranging from 3.0 V to 4.0 V, showing volatile behavior with fast current decay. The inset sche-
matic demonstration shows the activation of CG1 under a large AR configuration. Demonstration of neuronal behavior modulation through e different applied volt-
age amplitudes (fixed 50 µs pulse width and 100 µs pulse interval), f different pulse widths (fixed 3.8 V pulse amplitude and 100 µs pulse interval), and g different 
pulse intervals (fixed 3.8 V pulse amplitude and 50 µs pulse width). Higher stimulation intensity accelerates the arrival of firing events, while insufficient stimula-
tion is unable to activate the firing events. h Device response to two successive groups of stimulation pulses, showing self-reset characteristic during the voltage 
removal and reactivation of LIF behavior after the reset. i Response of the device to inhibitory stimuli
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of Fig. 4b shows the load line plot while applying − VGS and 
VTH,E. The overall device operation mechanism is similar to 
that of FG memories. Given the relatively small electric field 
for detrapping and the effective blocking provided by the 
Al2O3 layer, good retention performance can be expected. A 
consistent process can also be obtained from the energy band 
diagram evolution shown in Fig. 4c. Under this small AR, 
the significantly enhanced voltage drop across the MFIM 
region (VMFIM) strengthens corresponding polarization and 
induces significant electron trapping along the FG to CG 
direction. Upon voltage removal, the positive trapped charge 
in the FG layer maintains the downward band bending in 
the channel, enabling long-term memory functionality. This 
nonvolatile behavior, combined with partial polarization 
switching, allows the device to mimic synaptic plasticity.

The nonvolatile behavior of the device is first evaluated 
using a read-after-write measurement (Fig. 4d). A single 
programming pulse induces a clear increase in ID, which 
remains stable for over 100 s with minimal decay. Robust 
nonvolatile retention is sustained across various pulse con-
ditions, with higher programming voltages amplifying 
the response. In addition, the device’s multilevel memory 
capability is demonstrated through a sequence of program-
ming pulses. Under ten consecutive pulses, the drain cur-
rent accumulates and remains stable between pulses, veri-
fying the device’s ability to support continuous and stable 
conductance updates (Fig. 4e). The varying pulse width 
shows a clear modulation effect on the linearity of the syn-
aptic response. As good linearity is crucial for the synaptic 
device to realize reliable and stable weight updates, long-
term potentiation (LTP) measurement over a wide range of 
pulse width tpw is further performed to explore the influence 
of pulsing parameters on synaptic plasticity. As shown in 
Fig. 4f, multilevel synaptic weights are obtained across all 
tpw conditions when a sequence of 128 pulses with identi-
cal pulsing parameters is applied to the control gate. High 
linearity is observed for tpw shorter than 200 µs but begins to 
degrade at a tpw of 500 µs due to enhanced dipoles switching 
under a high applied electric field, which makes the polariza-
tion in the AFE layer approach the saturation state after only 
a few pulses. Consequently, the available current increment 
per pulse gradually decreases, leading to a loss of linearity in 
synaptic weight updates. To further evaluate complete long-
term plasticity, both LTP and long-term depression (LTD) 
pulse schemes are applied. Ultimately, optimal linearity 
and symmetry are achieved using identical LTP pulses and 

tailored LTD pulses, yielding nonlinearity coefficient values 
of αLTP = 0.35 and αLTD =  − 2.09 (Fig. S11). Figure 4g shows 
the repeatedly measured LTP and LTD over 20 cycles using 
the determined pulse scheme; highly linear 7-bit synaptic 
responses with low cycle-to-cycle variation were obtained, 
suggesting the stability of the device for synaptic function 
emulation. Retention of multiple conductance levels is fur-
ther confirmed in Fig. 4h. Ten distinct conductance states 
remain well-separated with no significant degradation over 
103 s, underscoring the robust nonvolatile performance of 
the device. In addition, a good endurance of over 104 cycles 
is achieved, rendering the potential of the device for demon-
strating reliable weight update (Fig. 4i). The D2D variation 
in nonvolatile behavior is also investigated in Figs. S12 and 
S13. A stable transfer characteristic with a large memory 
window is obtained across devices, confirming robust reten-
tion of the nonvolatile state. Furthermore, LTP measure-
ments demonstrate a repeatable weight update, yielding an 
overall low D2D variation of 9% across all programmed 
states.

3.4 � Fading Memory in FG AFeFET for Physical 
Reservoir Demonstration

In the ARC system, the fading memory and nonlinear 
dynamics serve as pivotal properties for the system to per-
form temporal summation and compress abundant sequen-
tial data, enabling efficient signal fusion. To emulate such 
behaviors, the AR of the device was further engineered to 
a medium value of 1:5 by adjusting the CG/FG overlap-
ping area AMFIM (Fig. 5a). Within this regime, the device 
exhibits a transient response that lies between purely volatile 
and fully nonvolatile operation, resulting in a semi-retentive 
characteristic. To evaluate this transition, a single program-
ming pulse (1 ms, 5 V) was applied to the CG, followed by a 
read operation at VGS = 0 V. As shown in Fig. S14, the device 
exhibits current integration during the applied pulse and a 
gradual current decay that stabilizes at a non-zero level after 
voltage removal, demonstrating a hybrid response shaped by 
dipole depolarization and weak memory effects.

This graded current integration and decay aligns with key 
features of physical reservoirs, namely nonlinearity and fad-
ing memory. Nonlinear current integration enables the non-
linear transformation of the input signals into high-dimen-
sional space, and the gradual decay facilitates the internal 
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Fig. 4   Nonvolatile characteristic of coplanar FG AFeFET with small AR for biological synapse emulation. a Schematic demonstration that shows activation of CG3 under 
the small AR configuration. b Load line analysis of coplanar FG AFeFET with AR ≪ 1. The Q–V curves of MFIM part and MFIS part are simplified into straight lines, 
due to the small AMFIM and the extremely limited switching of the HZO layer within MFIS part, respectively. c Band diagram of the gate stack corresponds to the processes 
from applying + VGS to VGS = 0 V. d Evolution of drain current under the stimulation of a single excitatory pulse with varying pulse amplitudes (tpw = 3 ms). e Modulation 
of current integration behavior with different pulse widths (Vset = 5.5 V). The negligible current decay during pulse interval (left panel) and maintained drain current after 
removing applied pulses (right panel) provide further evidence for the presence of nonvolatility. f Long-term potentiation characteristic of the FG AFeFET under 128 identi-
cal programming pulses when different pulse widths are adopted. g Cycling validation of LTP and LTD characteristics of the device with 256 pulses included in each cycle 
(LTP: identical pulses VGS = 5.5 V, tPW = 200 µs, interval = 50 µs, LTD: nonidentical pulses VGS =  − 4.53 V to − 5.8 V with a step of − 0.01 V, tPW = 200 µs, interval = 50 µs). 
h Retention characteristics of drain current corresponding to ten different conductance states across 1000 s. i Endurance characteristic of the device
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connections between the input signals in the recent past, 
which assist in clarifying the underlying correlation between 
temporal inputs [44, 45]. Moreover, its weak memory effect 
provides additional flexibility in physical reservoir design. 
As shown in Fig. 5b, an additional modulation parameter 
“base voltage (Vbase)” is applied to the control gate to finely 
tune the decay characteristic of the residual ID during the 
read process, thereby enabling controlled adjustment of the 
device dynamics. With the application of this small nega-
tive base voltage, the polarized dipoles originally retained 
during the read process are gradually forced to switch back, 
resulting in an accelerated recovery of the drain current. 
By modulating the amplitude of the Vbase, the drain current 
ID relaxation speed varies distinctly, and a more negative 
Vbase causes faster relaxation. To quantify this modulation 
effect, ID was fitted using a stretched exponential model as 
expressed in Eq. 2 to extract the responsive current ΔID and 
characteristic time constant τ corresponding to varying Vbase 
conditions.

where I0 is the rest state of the current relaxation and β is 
the stretch component. From the fitting results in Fig. 5c, 
the characteristic time constant τ decreases by three orders 
of magnitude as Vbase decreases from 0 to − 1 V, while ΔID 
exhibits only a small variation. This indicates that the tem-
poral dynamics of the device can be freely controlled to meet 
the needs of different systems containing temporal informa-
tion across multiple timescales. This characteristic greatly 
improves the design efficiency of the physical reservoir, as 
most physical reservoirs implemented by electronic devices 
usually possess a fixed timescale that is determined once 
the fabrication process is completed, which makes them 
only applicable for specific tasks [46, 47]. Furthermore, by 
exploiting these tunable temporal dynamics, the system can 
generate a rich set of reservoir states without compromis-
ing processing speed or increasing hardware complexity 
[48, 49]. This represents a significant advantage over con-
ventional approaches that depend on large parallel reser-
voir arrays or deep cascaded architectures to enhance state 
diversity [50, 51], as further discussed and benchmarked 
in Table S3. In addition, the fitting parameter β shows no 
obvious dependence on the Vbase, which suggests the domi-
nating influence of Vbase on the time constant τ (Fig. S15). 
The fading memory property is further validated via paired-
pulse facilitation (PPF) measurements. The second pulse 
induces a stronger ID response compared to the first one, 

(2)ID(t) = I0 + ΔID ⋅ exp

[

−

(

t

�

)�
]

and this enhancement gradually diminishes with increas-
ing intervals between the two pulses (inset of Fig. 5d). The 
extracted PPF indices fit a double exponential decay model, 
and the obtained time constant (τ1 = 34.6 µs, τ2 = 533 µs at 
Vbase =  − 0.6 V) is consistent with the result extracted from 
EPSC measurement (Fig. 5c). To further confirm its abil-
ity to function appropriately as an effective physical reser-
voir, reservoir states separability was evaluated. Figure S16 
demonstrates the dynamic evolution of the device response 
to the 4-bit sequential input sequences. Distinct reservoir 
states corresponding to 16 different combinations of input 
sequences are obtained by sampling the response current 
at the end of each input combination (Fig. 5e). The well-
separated reservoir states demonstrate the high capability 
of the FG AFeFET for input signal encoding. Additionally, 
the cycle-to-cycle uniformity of the device in response to 
a specific input sequence is verified. As shown in Fig. 5f, 
the input sequence “1111” is repeatedly sent into the device 
for 10 consecutive cycles with identical pulsing parameters 
(VGS = 5 V, Vbase =  − 0.6 V, pulse width = 500 µs, inter-
val = 500 µs). To statistically evaluate the state separability 
of the coplanar AFeFET-based reservoir, cycling tests were 
performed for all 16 input sequences (Fig. S17), thereby 
accounting for both cycle-to-cycle variation and unavoidable 
measurement noise. The resulting reservoir states were plot-
ted as cumulative probability distributions (Fig. S18), reveal-
ing clearly distinguishable states with no apparent overlap. 
As summarized in Table S4, the small cycle-to-cycle varia-
tion and strong state separability demonstrate reliable input 
discrimination and a reduced processing error, marking a 
substantial improvement over conventional physical RC 
systems.

3.5 � All‑in‑One FG AFeFET‑Based Analog Reservoir 
Computing System

Through effective AR engineering utilizing a coplanar struc-
ture and multigate design, both volatile, fading memory, and 
nonvolatile behaviors can be realized in a single FG AFeFET 
by selectively activating different control gates that define 
distinct AR configurations. Leveraging these diversifying 
functionalities, an all-in-one ARC system is constructed 
based on coplanar FG AFeFETs. As shown in Fig. 5g, all 
components inside the system can be realized with a multi-
gate coplanar FG AFeFET structure, the volatile leaky–inte-
grate–fire characteristic obtained under a large AR configu-
ration is used to implement LIF neurons, the fading memory 
characteristic obtained under a medium AR configuration 
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Fig. 5   Fading memory characteristic of coplanar FG AFeFET with a medium AR and FG AFeFET-based all-in-one analog reservoir computing system. a Schematic 
demonstration that shows the activation of CG2 under the medium AR configuration. b Excitatory post-synaptic current as a function of time, the variation of base voltage 
Vbase shows effective modulation on the current decay process. c Characteristic time constant τ and drain current ΔID extracted from the corresponding current decay pro-
cess under varying Vbase conditions. The negative shift of Vbase results in a smaller τ and shows an acceleration effect on the current decay process, enabling multiple time-
scales to exist in a single device. d The inset shows paired-pulse facilitation (PPF) measurement of the FG AFeFET with Vset = 5.0 V, pulse width 1 ms, and Vbase fixed 
at − 0.6 V. The corresponding PPF index is extracted from the measurement results. e Experimental readout current of the FG AFeFET in response to 16 pulse sequences 
that represent the 4-bit input signals (Vbase is fixed at − 0.6 V). f Evolution of readout current under the stimulation of "1111", ten consecutive cycles are applied, with low 
cycle-to-cycle variation obtained. g Schematic of the all-in-one FG AFeFET-based analog reservoir computing (ARC) system. h Proposed hardware implementation for 
the demonstrated ARC system. i Test accuracies and corresponding confusion matrices for MNIST dataset and Fashion-MNIST dataset recognition tasks
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is adopted for physical reservoir implementation, and the 
nonvolatile memory characteristic obtained under a small 
AR configuration is utilized for synaptic weight update in 
the readout layer.

Pattern recognition tasks are performed using two dif-
ferent datasets to thoroughly assess the performance of 
the system, including the MNIST dataset containing hand-
written digits and the Fashion-MNIST dataset consisting of 
different clothing patterns. In both datasets, each image con-
taining 28 × 28 pixels is preprocessed by segmenting rows 
into seven 4-pixel blocks. Each block is binarized into a 
4-time-step pulse sequence, which is then fed into the FG 
AFeFET-based reservoir layer. The device response at the 
last time step is collected as the reservoir states and transmit-
ted into the next layer. With the application of this encoding 
method, each input image is scaled down to a size of 7 × 28 
pixels while maintaining the spatial information. Next, the 
encoded information is input into a 196 × 128 × 10 fully con-
nected readout network for processing, and the ten output 
neurons in the output layer generate distinct outputs based 
on the rate coding method. To closely emulate the practical 
system performance, experimentally extracted parameters 
from the device, such as reservoir responses to 4-bit inputs, 
multilevel synaptic weights, and the time constant τ of the 
LIF neuron, were incorporated into the simulation. In addi-
tion, a schematic demonstration of corresponding hardware 
implementation using coplanar FG AFeFET for the designed 
ARC system is illustrated in Fig. 5h. Within the system, the 
preprocessed input images first go through the FG AFeFET-
based physical reservoir layer (medium AR configuration) 
for transformation. The transformed signals are then fed into 
a readout network composed of FG AFeFET-based synaptic 
devices (small AR configuration), where the bit-line cur-
rent of the synaptic array is subsequently transmitted to FG 
AFeFET-based LIF neurons (large AR configuration) for 
spike generation. The system achieves recognition accu-
racies of 95.6% on the MNIST dataset and 83.4% on the 
Fashion-MNIST dataset, with confusion matrices presented 
in Fig. 5i. The reduced accuracy for the Fashion-MNIST 
dataset is attributed to its greater intrinsic complexity in both 
interclass and intraclass image variations compared to the 
MNIST dataset [52]. While this demonstration of the ARC 
system serves as a proof-of-concept, the modular and mul-
tifunctional nature of the device offers high design flexibil-
ity, enabling seamless integration of diverse neural network 
functionalities in a unified platform. The combination of 

high state separability, low energy consumption, and strong 
thermal stability (Fig. S19) underscores the suitability of this 
approach for the physical realization of large-scale ARC sys-
tems. A detailed discussion of the integration prospects and 
application potential of the coplanar FG AFeFET for scal-
able neuromorphic computing hardware is provided in Note 
S4 and Fig. S20. Moreover, the device’s key performance 
metrics against previously reported ferroelectric transistors 
are benchmarked in Table S5. Besides the demonstrated 
pattern recognition tasks, the coplanar FG AFeFET-based 
ARC system can also be adopted for processing dynamic and 
complex tasks. In Fig. S21, a time series prediction task is 
also conducted to provide a validation of its capability for 
temporal information processing.

4 � Conclusions

In this work, we have demonstrated a coplanar floating-gate 
antiferroelectric field-effect transistor that achieves tun-
able memory behavior through structural design and area 
ratio engineering. By employing independent control gates, 
the device consolidates three distinct neural functionalities 
within a single unit, including volatile leaky–integrate–fire 
neuron dynamics, physical reservoir responses, and non-
volatile synaptic characteristics. The LIF mode accommo-
dates both excitatory and inhibitory stimuli while exhibiting 
intrinsic self-resetting behavior, thereby eliminating the need 
for external reset circuitry. The reservoir mode enables dis-
tinct reservoir states and multi-timescale dynamics via Vbase 
modulation, while the synaptic mode provides symmetric, 
linear conductance updates across 128 states (7-bit resolu-
tion). Beyond functional versatility, the coplanar architecture 
enhances the vertical scalability of conventional FG con-
figurations, delivering both a large memory window and a 
high on/off ratio. The mechanisms underpinning these tun-
able functionalities are systematically elucidated through 
load line analysis and energy band diagrams. Harnessing 
these multifunctional capabilities, a complete ARC sys-
tem is successfully realized within a unified coplanar FG 
AFeFET framework, achieving high recognition accuracies 
on the MNIST and Fashion-MNIST datasets. These results 
establish the coplanar FG AFeFET as a promising building 
block for compact, scalable, and energy-efficient neuromor-
phic computing systems.
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