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HIGHLIGHTS

e The intrinsic hierarchical, anisotropic, and porous architecture of wood provides a structurally programmable scaffold that supports

subsequent nanoengineering strategies, enabling multiscale property modulation for diverse sustainable applications.

e Wood-specific hierarchical nanoengineering strategies—including carbonization, delignification, laser-induced graphene formation,

and nanomaterial integration—are systematically categorized to enable tunable structures and properties across multiple length scales.

e Functionalized wood with nanostructures enables sustainable solutions in energy storage (e.g., Zn—air batteries, supercapacitors), water

treatment (e.g., adsorption, filtration), and renewable power generation (e.g., solar-thermal, thermoelectric and hydrovoltaic systems).

ABSTRACT Wood, once regarded primarily as a structural material, possesses MateHsh EnginCerife Desien ot Wodde 1 ego: Soie
rich physicochemical complexity that has long been underexplored. In the context
of industrialization and carbon imbalance, it is now emerging as a renewable and
multifunctional platform for green nanotechnologies. Recent advances in wood nano-
technology have enabled the transformation of natural wood into programmable substrates

with tailored nanoarchitectures, establishing it as a representative class of bio-based nano-

materials. This review systematically categorizes wood-specific nanoengineering strate-
gies—including thermal carbonization, laser-induced graphenization, targeted delignification, nanomaterial integration, and mechanical process-
ing—highlighting their mechanisms and impacts on wood’s multiscale structural and functional properties. Importantly, these functionalization
strategies can be flexibly combined in a modular, “Lego-like” manner, enabling wood to be reconfigured and optimized for diverse application
scenarios. We summarize recent progress in applying functionalized wood to sustainable technologies such as energy storage (e.g., metal-ion bat-
teries, Zn—air systems, supercapacitors), water treatment (e.g., adsorption, photothermal filtration, catalytic degradation), and energy conversion
(e.g., solar evaporation, ionic thermoelectrics, hydrovoltaics, and triboelectric nanogenerators). These studies reveal how nanoengineered wood
structures can enable efficient charge transport, selective adsorption, and enhanced light-to-heat conversion. Finally, the review discusses current
challenges—such as scalable fabrication, material integration, and long-term environmental stability—and outlines future directions for the devel-

opment of wood-based platforms in next-generation green energy and environmental systems.
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1 Introduction

Throughout Earth’s evolutionary history, plants—particu-
larly trees—have acted as fundamental agents in maintain-
ing ecological balance and planetary homeostasis, mediating
carbon fluxes, facilitating water transport, and converting
solar energy into storable biological forms [1]. As the core
structural component of terrestrial vegetation, wood has long
contributed to ecological stability through its inherent poros-
ity, carbon fixation capacity, and multiscale architecture.
Yet, despite its ecological significance, human understand-
ing and technological utilization of wood have remained lim-
ited for much of history. The advent of industrialization and
the extensive use of fossil fuels have disrupted this natural
balance, intensifying environmental degradation [2]. Wood
has been redefined as a versatile platform for ecosystem and
energy governance [3]. It embodies both inherent multiscale
porosity and a built-in capacity for carbon storage originat-
ing from the biological growth processes of trees, and is
becoming a multifunctional material that enables the inte-
gration of nature and technology [4]. Functionally, function-
alized wood can simultaneously incorporate pollutant detec-
tion [5], adsorption, and photocatalytic degradation modules
[6], or even be configured as a high-specific-energy storage
device [7]. Functionalization of wood not only enables high
performance beyond the limitations of conventional remedi-
ation methods, but also reduces associated pollution genera-
tion by promoting closed-loop life cycle management. This
material revolution—also inspired by lessons drawn from
natural ecosystems—has created a novel synergy between
earth restoration and clean energy development, addressing
ecological restoration and ensuring technological feasibility
to help sustain human advancement [8].

Wood has tremendous ability for functionalization based
on its hierarchical structure and chemistry [9]. As a bio-
based material, its natural components, architecture, and
physicochemical properties also allow wood to undergo
adaptive treatments including carbonization, delignification,
and incorporation of nanomaterials [10]. Wood is primarily
composed of cellulose, hemicellulose, and lignin, wherein
cellulose and hemicellulose provide mechanical strength
by forming a polymeric network, while lignin imparts both
hydrophobicity and mechanical stability. The complex mul-
tiscale porous structure—composed of vessels, tracheids,
and micropores—provides a high specific surface area and
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excellent permeability, facilitating the formation of conduc-
tive carbon materials during carbonization [11]. In addition,
the aromatic structure in lignin aids in forming high-perfor-
mance carbon during pyrolysis [12]. The abundant surface
hydroxyl (~OH) groups allow effective chemical reactions to
promote lignin removal during delignification, resulting in
enhanced transparency, flexibility, and hydrophilicity. Del-
ignified wood retains the native fibrous and porous struc-
ture, enabling it to serve as a substrate for the incorporation
of nanomaterials [13]. Its porous matrix, combined with a
reactive surface, allows for stable integration with carbon
nanotubes, metal nanoparticles, or metal oxides, thereby pro-
viding multifunctionality such as photocatalysis, antibacte-
rial properties, and improved electrochemical performance.
Functionalization strategies define the future applications of
wood in advanced technologies [14—18].

Functionalized wood has significant applications in green
technology, particularly in energy storage, water treatment,
and energy conversion [19-22]. Treated wood possesses a
native porous structure, high specific surface area, and reac-
tive functional groups. These characteristics enable further
functionalization through processes such as carbonization,
delignification, and nanomaterial integration. As a nano-
engineering platform, wood’s native structure is further
enhanced with nanoscale features, enabling more precise
control over its properties [23]. In practice, these function-
alization strategies can be flexibly assembled in a modular,
“Lego-like” manner, allowing researchers to reconfigure
and tailor wood’s properties toward specific performance
demands across diverse applications. Building upon these
intrinsic structural merits and tunable functionalities, func-
tionalized wood has emerged as a versatile platform in green
technology, with particularly significant applications in
energy storage and conversion as well as water purification.
Its native porous architecture, high specific surface area, and
abundant reactive functional groups enable functionaliza-
tion approaches such as carbonization, delignification, and
nanomaterial integration, which can be further enhanced by
introducing nanoscale features for precise property modu-
lation [24]. In energy storage and conversion, recent stud-
ies have demonstrated that carbonized wood frameworks
[25-28], when combined with strategies such as heteroatom
doping, single-atom catalysis, and hybrid nanomaterial
incorporation, can serve as high-surface-area conductive
electrodes for zinc—air batteries, metal-ion batteries, and
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supercapacitors, delivering improved electrical conductivity,
catalytic activity, and cycling stability, while benefiting from
the intrinsic mechanical robustness and lightweight nature
of wood [29]. However, challenges remain in enhancing
long-term durability under practical operating conditions,
overcoming sluggish oxygen reaction kinetics, and achieving
scalable, cost-effective manufacturing, with future research
trends emphasizing multifunctional electrode architectures
and integrated solid-state systems [30-33]. In water puri-
fication, functionalized wood has been applied in adsorp-
tion of heavy metals and dyes, photothermal desalination,
membrane filtration, and catalytic degradation, with per-
formance enhancements achieved through pore structure
optimization, surface chemistry tuning, and incorporation
of photocatalytic or antibacterial agents; nevertheless, issues
such as maintaining high flux and selectivity under fouling
conditions, enabling efficient regeneration, and integrating
these materials into scalable modular systems persist, and
emerging directions focus on developing hybrid photother-
mal—catalytic systems and adopting green fabrication strate-
gies. Through targeted structural modification and hybridi-
zation, functionalized wood is expected to address critical
challenges in both energy and water domains, supporting
the development of next-generation sustainable technolo-
gies. The purpose of this review is to provide a comprehen-
sive summary of the main functionalization approaches to
wood and their applications in energy storage, water purifi-
cation, solar energy utilization, and hydropower generation.
The review begins with an introduction to the structure and
composition of wood, examining how its porous architec-
ture and mechanical strength create favorable conditions for
functionalization. Subsequently, the review discusses several
key functionalization methods, including chemical modifica-
tion, physical treatment, and nanocomposite integration, and
describes how these processes endow wood with new attrib-
utes. Finally, the review systematically explores the applica-
tion of functionalized wood in green technologies, focusing
on energy storage devices such as supercapacitors, metal-
air batteries, and ion batteries; water treatment strategies
including catalytic degradation, filtration, and adsorption;
and solar-driven wastewater treatment and seawater desali-
nation. In addition, the review offers a prospective view of
future development directions for functionalized wood as a
green technology. Given the urgent demand and accelerating
pace of progress in sustainable technologies, functionalized
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wood is expected to demonstrate tremendous potential in
supporting global sustainable development (Fig. 1).

2 Structural and Chemical Constituents
of Natural Wood

Owing to its hierarchical structure spanning from the macro
to the nanoscale, wood possesses native nanofeatures—such
as aligned cellulose microfibrils and nanoscale pores—that
facilitate surface interactions, molecular transport, and
energy conversion. These characteristics make wood an
ideal substrate for nanoengineering strategies. As shown
in Fig. 2a—c, wood exhibits hierarchical porous and aniso-
tropic structures across scales ranging from the macro-tree
form (approximately 1-30 m) to the nanoscale architecture
of the cell wall [2]. Its multiscale porous system comprises
vessels (approximately 100 pm), tracheids (approximately
20—40 pm), pits (approximately 5 pm), and nanoscale gaps
between cellulose microfibrils, supporting efficient mul-
tiphase transport and energy transfer among ions, molecules,
fluids, and photons [9, 34]. Significant structural differ-
ences exist between softwoods and hardwoods: tracheids
dominate in softwoods for transportation and mechanical
support, whereas hardwoods utilize vessels and fibers for
fluid conduction and mechanical strength. The macroscopic
structures, including bark, cambium, sapwood, heartwood,
and pith, collectively form a concentric network character-
ized by high permeability and water uptake capacity, mak-
ing wood highly amenable to functional modification [11].
At the cellular level, vessels, fibers, and rays, respectively,
facilitate longitudinal transport, mechanical reinforcement,
and radial conduction [35]. As illustrated in Fig. 2d, e, the
cell wall consists of a primary wall and a multilayered sec-
ondary wall (S1-S3), with the S2 layer—rich in cellulose
microfibrils (approximately 3—5 nm) aligned at approxi-
mately 0°-30°—being primarily responsible for mechanical
properties. Within these microfibrils, alternating crystalline
(approximately 100—250 nm) and amorphous domains con-
tribute synergistically to the stiffness, flexibility, and hydro-
philicity of the cell wall[36]. This sophisticated hierarchical
construction underpins the mechanical integrity, transport
capability, and multifunctional potential of wood [37, 38].
As shown in Fig. 2d, wood is a naturally occurring
composite composed of fibers and a cellulose—hemicel-
lulose-lignin matrix, with cellulose being the principal
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Fig. 1 Functionalized natural wood with key processing strategies and representative applications in energy storage, energy conversion and
environmental remediation Reproduced with permission from Elsevier, copyright 2024; Elsevier, copyright 2022; American Chemical Society,
copyright 2024; American Chemical Society, copyright 2020; Wiley—VCH, copyright 2019; American Chemical Society, copyright 2017; Else-
vier, copyright 2024

structural component that forms hydrogen-bonded microfi-  42]. As presented in Fig. 2f, natural cellulose exists pre-
brils. Within these microfibrils, there are crystalline regions ~ dominantly as cellulose I, mainly in the Ip form found in
that confer strength and rigidity, and amorphous regions that ~ woody plants; upon regeneration or alkali treatment, it con-
confer flexibility and extensibility, thus endowing wood with  verts to cellulose II, which is more thermally stable, exhibits
mechanical durability and resistance to biodegradation [41,  enhanced mechanical strength, and demonstrates improved
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biocompatibility [43]. The hierarchical structure, reinforced
by hydrogen bonding and van der Waals forces, provides
wood with outstanding durability, while the abundance of
exposed hydroxyl groups enables chemical modification.
Chemical modification of cellulose permits the introduc-
tion of various functional groups, such as carboxyl, amino,
or sulfonic acid groups, onto the polymer backbone, thereby
modulating its surface charge, hydrophilicity, and reactivity.
These modifications broaden the applicability of cellulose-
based materials in sustainable technologies [44, 45]. Func-
tionalized cellulose can serve as a flexible substrate, binder,
or ion-conducting membrane in energy storage devices
such as batteries and supercapacitors, thereby enhancing
mechanical integrity and electrolyte compatibility. In the
context of water treatment, cellulose derivatives featuring
large surface areas and active binding sites exhibit a high
adsorption capacity for heavy metal ions, dyes, and organic
contaminants, while also providing antimicrobial function-
ality [46—-48]. Regarding solar energy and hydrovoltaic
electricity generation, cellulose-based composites can act
as lightweight, porous scaffolds that are thermally insulat-
ing and capable of harvesting light, evaporating water, and
facilitating ion transport [49-51]. Hemicellulose, a branched
polysaccharide, binds cellulose and lignin together within
the plant cell wall, forming a flexible matrix stabilized by
hydrogen bonds and van der Waals interactions. Hemicel-
lulose is composed of polysaccharides such as xylan, xylose,
mannose, and glucomannan, which are interspersed between
cellulose microfibrils and contribute to enhancing toughness
and elasticity, regulating moisture retention, and limiting
wood decay [52].

Lignin is the second most abundant component in wood
and forms a complex three-dimensional network with cel-
lulose and hemicellulose, contributing to the compressive
strength and structural integrity of the wood matrix. It also
regulates water and nutrient transport within the wood cell
wall and organizes wood density and cellular architecture
through lignin—carbohydrate complexes (LCCs) [53, 54].
The dense and hydrophobic lignin matrix suppresses acces-
sibility to chemical solutions and restricts subsequent modi-
fications or material infusions into the wood structure. To
enhance modifiability and accessibility, delignification—
the effective and selective removal of lignin—has emerged
as a key pretreatment strategy to enable greater tunability
and functionality of the wood framework [13, 55]. Del-
ignification displaces lignin from cellulose by dissolving
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the contiguous micropores formed by lignin deposition,
enhances porosity, increases hydrophilicity, and exposes the
cellulose templating structure [56]. These disruptive changes
create a highly porous and reactive scaffolding architecture
that optimizes the immobilization and insertion of materi-
als to replicate or expand functional capabilities in com-
posite applications. Delignified wood, originally part of
wood-based biomaterials, exhibits improved ion transport
properties and provides a suitable matrix for the incorpora-
tion of conductive fillers, making it applicable for construct-
ing electrodes and separators in conventional batteries and
supercapacitors [57]. Similarly, the enlarged surface area
and enhanced wettability of delignified wood facilitate the
adsorption of contaminants and the immobilization of pho-
tocatalysts or antimicrobial agents for water treatment appli-
cations [58]. Delignification is also advantageous for solar
energy utilization and hydrovoltaic electricity generation, as
it enhances light transmission, water transport, and charge
transfer efficiency, while simultaneously reducing optical
scattering and strengthening capillary action [59, 60]. Over-
all, delignification represents a transformative strategy for
wood, establishing it as a versatile and sustainable platform
for high-performance applications in energy conversion,
environmental remediation, and advanced material systems
[36].

3 Functionalization Treatment Strategies
of Wood

Natural wood architectures can be tailored through func-
tionalization strategies owing to the anisotropic and porous
nature of wood. As a nanoengineering platform, wood’s
inherent structure is enhanced with nanoscale features,
enabling precise control over its properties. Carbonization
transforms wood into ideal carbon frameworks that are both
electrically conductive and mechanically robust [61]; laser-
induced graphene (LIG) enables the localized transforma-
tion of wood surfaces into graphene-like conductive net-
works with strong interfacial bonding to the wood substrate
[62]; delignification enhances porosity, hydrophilicity, and
light transmittance by selectively removing lignin; and the
integration of nanomaterials, such as metal oxides, carbon
nanotubes, or single-atom catalysts, imparts specific electro-
chemical, catalytic, or photothermal functionalities to wood-
based materials [53]. These methods frequently overlap
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and, when combined, can fulfill the multiple functional
requirements demanded by various advanced applications.
For instance, carbonized or LIG-patterned wood facilitates
efficient charge transport as electrode materials for energy
storage devices [63]; delignified structures enhance light
absorption and water interaction for solar steam generation
and water purification [64]; and nanomaterial-functionalized
wood not only improves ionic transport and reaction kinetics
for hydrovoltaic energy harvesting, but also enhances redox
activity, selectivity, and catalytic efficiency across diverse
hydrovoltaic systems [65, 66]. These functionalization strat-
egies significantly expand the tunability of wood properties
and broaden its application landscape.

3.1 Wood Machining and Cutting Techniques

Mechanical processing is an essential key step in the pro-
cess of transforming natural wood into functional device
substrates or components. Its core goal is to shape the orig-
inal wood into a specific form, laying the foundation for
subsequent functional treatments such as chemical modi-
fication, composite, and deposition. As shown in Fig. 3,
wood mechanical processing can be categorized into four
types based on the target morphology. By strong grinding
(ball milling, hammer milling, etc.), wood is crushed into
micrometer sized powders, significantly increasing the spe-
cific surface area and suitable for high adsorption materials
or composite fillers. As shown in Fig. 4a, Cui et al. [67] used
industrial wood flour waste to prepare biochar (WFB) and
combined it with bismuth oxybromide (BiOBr) as a carbon
carrier to develop an efficient visible light driven photocata-
lyst (WFB/BiOBr) for environmental remediation. As shown
in Fig. 4b, Li et al. [68] used liquefied wood powder to pre-
pare hollow carbon sphere carriers (WHCS) and constructed
high-performance core—shell structure supercapacitor elec-
trodes (NiS/WHCS) by loading nickel sulfide (NiS), achiev-
ing a breakthrough application of biomass carbon materials
in the field of energy storage. Using precision rotary cutting
technology, the raw wood segments are rotated and cut into
large-area thin wood sheets (veneer) with uniform thickness,
suitable for flexible electronic substrates or transparent wood
precursors. As shown in Fig. 4c, Zhu et al. [69] transformed
low-strength wood veneer into a super flexible material
comparable to synthetic materials through molecular level
defect repair, while balancing environmental protection and
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electromagnetic performance, opening up a high-end appli-
cation path for biomass materials. As shown in Fig. 4d, Tang
et al. [70] developed an environmentally friendly quantum
dot photoluminescent film (QDs wood film) using ultra-thin
flexible transparent wood film (instead of traditional plas-
tic) as the substrate for the first time, achieving the unity of
high performance and sustainability. As shown in Fig. 4e,
Xu et al. [71] developed ultra-hard wood-based composite
materials (WBC) with extreme mechanical properties using
natural veneer (thin wood flakes) through biomimetic ligni-
fication strategy and resin composite technology.

By relying on cutting techniques such as sawing, planning,
and milling, sheet or block shaped units of specific sizes/
shapes are prepared as macroscopic structural components
or functional unit carriers. This technology can preserve the
natural pores and cellulose orientation of wood to the greatest
extent possible, making it the preferred processing method
for functional devices such as sensors and electrodes. As
shown in Fig. 4f, Gu et al. [72] used water immersion pre-
treatment combined with blade cutting technology to prepare
thin wooden sheets with smooth surfaces, and successfully
applied them to wooden gas sensors, significantly improv-
ing device performance. Moisture has a plasticizing effect on
lignin, softening the cell wall and effectively reducing fiber
tearing and burr formation during the cutting process. By
using high pressure to cause the collapse of wood pores and
plastic deformation of cell walls, the density and mechanical
strength are significantly improved. As shown in Fig. 4g, Song
et al. [73] reported a revolutionary wood strengthening tech-
nology that combines chemical pretreatment with hot pressing
to transform natural wood into ultra-high strength structural
materials. As shown in Fig. 4h, Fu et al. [55] innovatively
applied compressed wood technology to the field of flexible
electronics and developed all wood based flexible electronic
circuits. The above four types of processing forms provide
diverse material foundations for the multifunctional applica-
tion of wood in energy, electronics, sensing, construction and
other fields, promoting the transformation of renewable mate-
rials into high-performance devices.

3.2 Thermal Carbonization of Wood Substrates
The pyrolytic carbonization of wood occurs under limited-

oxygen or inert atmospheres (e.g., nitrogen gas), where the
organic constituents decompose at elevated temperatures to
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yield primarily carbonaceous or carbon-rich materials [76].
Key parameters—temperature, heating rate, and residence
time—strongly affect the resulting carbon’s microstruc-
ture, porosity, and electrical conductivity [11]. Advances in
pyrolysis control enable the production of nanostructured,
porous activated carbon with large specific surface areas.
The pyrolysis process leads to distinct structural transfor-
mations, progressively evolving toward anisotropic carbon
architectures [77]. Thermal degradation involves charac-
teristic transformation stages depending on the underlying
microstructure. As shown in Fig. 5a, below 200 °C, mois-
ture evaporation dominates. Between 200 and 350 °C, mild
pyrolysis decomposes major biopolymers, forming interme-
diate char-like structures. Between 300 and 400 °C, amor-
phous carbon appears without ordered morphology. Short-
range ordering begins around 800 °C and continues beyond
1000 °C, yielding increasingly ordered carbon frameworks
[74]. Notably, cellulose crystallinity appears to play a
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critical role in predicting carbon structure after pyrolysis, as
reflected in Fig. 4b—d. The measured cellulose crystallinities
of L-wood, M-wood, and H-wood were 49.9%, 53.2%, and
68.4%, respectively. Higher crystallinity during carboniza-
tion was correlated with more organized structures: L-wood
preserved a tubular morphology resembling a honeycomb,
whereas M-wood and H-wood exhibited voids with thicker
walls and more compact fibrous architectures. It is there-
fore inferred that woods with greater crystallinity tend to
form long-range graphitized carbon layers and closed-pore
structures, whereas woods with lower crystallinity yield dis-
ordered carbon architectures with fewer closed pores. These
findings clearly demonstrate that cellulose crystallinity sig-
nificantly impacts the microstructure and pore structure
of hard carbon materials derived from wood, with direct
implications for performance characteristics in applications
such as energy storage and adsorption. Hard carbon (i.e.,
carbonized wood) featuring an organized, highly graphitized
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slices via water immersion and blade cutting for gas sensing devices, reproduced from Ref. [72] with permission from John Wiley and Sons,
copyright 2025. g Chemical pretreatment followed by hot pressing to obtain ultra-densified structural wood, reproduced from Ref. [73] with
permission from Springer Nature, copyright 2018. h Fabrication of all-wood-based flexible electronic circuits through compression and lignin-
derived carbon nanofiber ink printing, reproduced from Ref. [55] with permission from American Chemical Society, copyright 2022
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X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and high-resolution transmission elec-
tron microscopy (HRTEM) images of LIG-wood, M-wood, and H-wood, highlighting changes in cellulose crystallinity, reproduced from Ref.
[74] with permission from Wiley—VCH, copyright 2021. e—f Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of natural
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microstructure exhibits high potential as an anode material
due to its superior electrical conductivity, structural sta-
bility, and ion transport efficiency, particularly for energy
storage devices including lithium-ion and sodium-ion bat-
teries [78, 79]. The presence of closed pores additionally
enhances performance by providing mechanical buffering
during volume expansion and contraction in cycling, thereby
improving cycle life. For instance, closed-pore hard carbon
was fabricated by Gao et al. [80] through carbonization at
750 °C with ZnCl, activation of pine wood, subsequently

© The authors

combined with micron-sized silicon and graphite to produce
a high-performing anode. Similarly, Chen et al. [81] pre-
pared hard carbon by hot-pressing poplar fibers at 1300 °C
under nitrogen, yielding a closed-pore structure with
increased interlayer spacing. This thermal-chemical process
allowed cellulose reorganization and lignin cross-linking,
resulting in enhanced chemical stability. Beyond structural
considerations, it is critical to evaluate carbonized wood
for thermal stability and combustion behavior under opera-
tional conditions. Under nitrogen atmosphere, as depicted in

https://doi.org/10.1007/s40820-025-01953-4
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Fig. Se—i, the thermogravimetric (TG) and derivative ther-
mogravimetric (DTG) analyses reveal that the organic com-
ponents—hemicellulose, cellulose, and lignin—decompose
over different temperature intervals, with raw wood retaining
approximately 18% residual mass after 800 °C, predomi-
nantly consisting of carbonized material [75]. Structural
changes accompanying pyrolytic carbonization under inert
conditions, particularly in substrate-temperature-sensitive
environments, highlight the role of cellulose crystallinity in
promoting graphitization and closed-pore formation, thereby
enhancing conductivity, mechanical integrity, and thermal
resistance.

3.3 Laser-induced Graphene

LIG was initially studied through laser-induced reduction
of graphite oxide on polyimide (PI) substrates, and due
to its rapid, scalable fabrication of transparent conductive
films and other conductive products, LIG has subsequently
been widely explored in lignocellulosic materials such as
wood [62]. Under laser irradiation, lignin can decompose
and rearrange into a three-dimensional conductive porous
graphene framework. Laser-induced graphene (LIG) is
produced through a pyrolytic process in which an ultrafast
laser beam locally heats the surface of a precursor material
at high speed, inducing carbonization and forming micron-
sized graphene structures [82—84]. LIG offers precise control
over the carbonization process, in contrast to conventional
methods such as chemical vapor deposition (CVD) and
hydrothermal synthesis, enabling the production of highly
conductive graphene materials with large surface areas. The
conversion from wood to carbon via photothermal processes
occurs in ambient conditions at room temperature, providing
a low-cost, simple, and sustainable alternative to traditional
three-dimensional graphene fabrication methods [85]. Lin
et al. [86] first demonstrated the production of LIG from PI
substrates using a CO, laser, where sp>-hybridized carbon
was converted to sp>-hybridized carbon via a photothermal
mechanism. As indicated in Fig. 6a, Ye et al. [62] achieved
direct LIG formation on wood surfaces, with increased laser
power promoting C=C bond formation and enhancing con-
ductivity. Chyan et al. [87] demonstrated that increasing the
number of pulsed laser scans could incrementally improve
LIG quality across various substrates. Lengger et al. [12]

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

found that wood species with high soluble lignin content
and uniform porosity were more readily converted into LIG,
whereas those with variable density and distinct growth
rings showed reduced conversion efficiency. As observed
in Fig. 6b, Wang et al. [88] fabricated LIG electrodes from
natural wood in a single-step process, suitable for hydro-
phobic and highly conductive applications such as green
smart roofing devices. As observed in Fig. 6¢, Dreimol et al.
[89] developed iron—tannin coatings to create a one-step
graphitizable wood precursor. Surface pretreatments, such
as boric acid soaking or metal salt impregnation, further
improved electrical conductivity, facilitating applications in
energy storage and sensing. Femtosecond laser technology
provides significant advantages for LIG fabrication on wood,
as the short pulse width enables precise energy delivery with
minimal substrate damage, resulting in high fabrication
efficiency, reduced heat-affected zones, and compatibility
with diverse wood and biomass materials. As evidenced in
Fig. 6d, Le et al. [90] in 2019 achieved direct patterning of
LIG onto wood and leaves using ultraviolet(UV) femtosec-
ond lasers, producing relatively low surface resistance (~ 10
Q sq7!) and fine structural resolution (line width ~40 pm).
Miyakoshi et al. [91] fabricated an environmentally friendly
supercapacitor by patterning LIG directly onto bamboo sur-
faces using femtosecond lasers, subsequently covering the
surfaces with a NaCl-containing agarose gel to form con-
ductive structures with high surface area and excellent rate
capabilities. Nam et al. [92] employed femtosecond lasers
to fabricate LIG electrodes on medium-density fiberboard
(MDF), achieving a reported conductivity of 2.781 Q sq™'.
As observed in Fig. 6e, Kim synthesized LIG on wood and
subsequently fabricated MnO/LIG heteronanostructures by
drop-casting a manganese precursor followed by a second
laser treatment.

Laser-induced graphene facilitates the expeditious fab-
rication of conductive carbon structures, which exhibit
superior electrical conductivity, energy storage, and sens-
ing properties. Moreover, the inherent porosity of wood-
derived LIG enables ion transport in batteries. Consequently,
LIG has the potential to enhance adsorption and catalytic
processes in water treatment and to support solar energy har-
vesting in the future. The combination of sustainability, scal-
ability, and versatility inherent in LIG on wood suggests the
potential for a highly promising platform for next-generation
green technologies [94].
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3.4 Delignification Approaches for Wood
Microstructure Engineering

3.4.1 Traditional Chemical Delignification

Delignified wood serves as a versatile nanoengineering
platform due to the emergence of nanoscale structural
features and the tunable properties induced by controlled
lignin removal. Partial or complete delignification repre-
sents a wood-specific nanostructuring strategy that lever-
ages the intrinsic alignment of cellulose microfibrils and
generates nanopores throughout the hierarchical matrix.
Partial removal of lignin opens up cellulose fibers, forms
nanopores, and improves the porosity, surface area, and
optical properties of wood, while also maintaining its
internal stratification and anisotropic structure [53]. This
process is generally achieved through alkaline treatment,
typically applied to wood chips, involving NaOH in com-
bination with Na,SOs. The alkaline treatment disrupts the
ether bonds in lignin, forming soluble lignin sulfonates
and enabling selective removal of lignin while retaining
the structural dimensionality, provided that the lignin
content remains above 10 wt%. As shown in Fig. 7a—c,
partial lignin removal separates cellulose from the middle
lamella—the region richest in lignin—exposes the cellu-
lose microfibrils, and improves light scattering, thereby
enabling the development of high-performance materials
such as “super wood,” which exhibits superior strength
compared to steel, and elastic wood, which possesses large
deformation capabilities suitable for soft robotics and flex-
ible composites [95]. In contrast, complete removal of
lignin is accomplished using chemical bleaching agents
such as NaClO, or H,0,. Following chemical bleaching,
the residual lignin content is reduced to below 2 wt%, and
the microstructural characteristics of the wood are signifi-
cantly altered, with full exposure of cellulose microfibrils
and the formation of nanoporosity. The reduced lignin
content imparts transparency, enhances chemical reactiv-
ity, and significantly broadens the potential applications in
areas such as transparent wood, energy storage, and green
electronics. Nevertheless, severe oxidation during bleach-
ing can compromise the mechanical strength of wood and
raise environmental concerns, highlighting the need for
more environmentally friendly delignification methods.
Delignification-induced microstructural variation can

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

be observed in Fig. 7d. SEM and SAXS analyses indi-
cated the formation of nanoporous structures, with most
pore diameters being less than 50 nm, confirming the
generation of nanopores. SEM imaging revealed a more
open porous architecture, while two-dimensional SAXS
analysis showed markedly increased scattering in both
horizontal and vertical directions, reflecting the expanded
nanoporous network [96]. These findings demonstrate
that enhanced porosity in wood improves surface area
and opens up new opportunities for functional applica-
tions. As shown in Fig. 7e, chemical and optical property
changes also accompany delignification. FTIR analysis
confirmed lignin removal through the decreased intensity
of the absorption peak at 1505 cm™' [97]. As illustrated
in Fig. 7f, TGA results demonstrated that treated woods
(TW-TES, PEG, PMMA) exhibited considerably improved
thermal stability compared to delignified wood (DW), with
decomposition temperatures exceeding 400 °C (PEG) and
300 °C (TES) [56, 98]. Therefore, such treatments enhance
high-temperature performance by modifying the chemical
composition and broadening potential application areas.
The resulting structural and functional changes induced by
different delignification methods are further summarized
in Table 1, highlighting their impact on the physicochemi-
cal properties and potential applications of wood.

3.4.2 Green Solvent-Based Delignification

Deep eutectic solvents (DES) offer distinct advantages over
conventional chemical delignification methods, such as
strong acid/base treatments or ionic liquid systems [113].
They are more environmentally benign, composed of less
toxic, typically biodegradable and renewable ingredients.
Furthermore, DES presents a sustainable option for bio-
mass valorization owing to their high biodegradability and
renewability. DES are classified as green solvents, formed
by combining a hydrogen bond donor (HBD) and a hydrogen
bond acceptor (HBA) in specific molar ratios, resulting in
extensive hydrogen bonding networks that create a relatively
stable liquid phase [114]. Choline chloride and betaine are
typical HBAs, while lactic acid, oxalic acid, and glycerol
serve as common HBDs, all successfully applied in green
pretreatment of lignocellulosic biomass [115]. In terms of
physicochemical properties, DES typically exhibit low melt-
ing points (<50 °C), moderate viscosity, tunable viscosity,
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and low electrical conductivity, each adjustable through
composition or by adding co-solvents [116]. Their mass
transfer behavior and solvation properties depend strongly
on hydrogen bonding strength and functional group com-
position, both of which can be readily modified by system
conditions. The synthesis of DES is convenient and consid-
erably simpler than that of traditional or ionic liquids [117].
Common preparation techniques include thermal stirring,
vacuum evaporation, grinding, freeze-drying, twin-screw
extrusion, ultrasonic treatment, and microwave-assisted
synthesis [118]. While thermal stirring is the most widely
used method, ultrasonic and microwave-assisted techniques

© The authors

enable faster, greener synthesis, offering promising scalabil-
ity for biomass pretreatment applications [119].

The delignification mechanisms of deep eutectic solvents
(DES) for lignocellulosic biomass are illustrated in Fig. 8a
[113]. As indicated, DES function through cleavage of key
chemical linkages and exhibit strong solubility for lignin.
DES are capable of cleaving ester and ether bonds between
lignin and hemicellulose, with the predominant cleavage
of B-O-4 linkages, leading to the production of phenolic
hydroxyl groups and depolymerization of lignin into lower-
molecular-weight fragments [122]. Additionally, organic
acid-based DES can simulate acid-catalyzed mechanisms
under mildly acidic conditions to further enhance bond

https://doi.org/10.1007/s40820-025-01953-4
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Table 1 Effects of delignification methods on the physicochemical properties of wood and its functional applications

Application

Wood Species

Delignification Method

Lignin Residue Content

Process Greenness

References

Energy storage
and power gen-
eration

Water treatment

Ochroma lagopus Swartz

Balsa wood/ Basswood/
Poplar wood/ Pine
wood

Birch

Basswood

Natural wood

Balsa wood

Balsa wood

Balsa wood

Balsa wood

Wood strips
Balsa wood

Balsa wood

Balsa wood

Balsa wood

2.5 wt% NaClO, + acetic acid
buffer (pH 4.6), 80 °C, 6 h

2 wt% NaClO, + acetate buffer
(pH4.6),80°C,6h

1 wt% NaClO, solution
(pH adjusted to 4.6 with
CHsCOOH), reacted at 80 'C
until wood chips turned white

2 wt% NaClO, solution (pre-
pared from 80% NaClO, pow-
der, pH adjusted to 4.6 with
glacial acetic acid), 95 °C
water bath for 9 h— rinsed
3 xwith 1:1 ethanol/deionized
water — freeze-dried

5 wt% NaClO, (pH 4.6,
adjusted with CH;:COOH)),
boiled for 2 h

2 wt% NaClO, + CH;COOH
(pH 4-5), 80 °C, 24-48 h

1 wt% NaClO, (pH 4.6, 80 °C,
24 h) — liquid nitrogen freez-
ing + freeze-drying; 6 wt%
NaOH (RT, 8 h) for cellulosic
wood

1 wt% NaClO, + acetate buffer
(pH 4.6), 80 °C, until com-
pletely white

5 wt% NaClO, solution
(pH adjusted to 4 with
CHsCOOH) at 80 C for 8 h,
repeated 3 cycles

8 wt% NaOH solution at 60 ‘C

2.5 M NaOH +0.4 M Na,SO;,
80 °C 4 h—2.5 M H202, 80
‘C4h

2.5 M NaOH +0.4 M Na,SO;,
80 °C, 3 h; H202,80°C,3 h

1 wt% NaClO, + CHs:COOH
(pH 4.6), 80 °C, refreshed
every 6 h, hot water wash,
freeze-dry

1.5 wt% NaClO, + NaAc
buffer, pH 4.6, 80 °C,
8 h— Wash — 8 wt% NaOH,
80 °C, 8 h— Wash — Freeze
at—25 °C> 12 h— Freeze-
dry 36 h

mostly lignin removed

mostly lignin removed

mostly lignin removed

mostly lignin removed

mostly lignin removed

mostly lignin removed

mostly lignin removed

Reduced from 24.9% to 2.9%

mostly lignin removed

mostly lignin removed
mostly lignin removed

mostly lignin removed

mostly lignin removed

mostly lignin removed

Moderate treatment

Moderate treatment

Moderate treatment

Moderate treatment

High Risk

High Risk

Moderate treatment

Moderate treatment

Moderate treatment

High Risk
High Risk

Moderate treatment

Moderate treatment

Moderate treatment

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

[112]

Classification criteria of Process Greenness. Moderate treatment: Conducted with moderate reagent concentrations (e.g., 1-5 wt% NaClO, or
NaOH), medium temperature (60-90 °C), and reaction time of 6-12 h; waste liquids require neutralization or dilution before disposal. High
Risk: Involves high reagent concentrations (>5 wt% oxidants or strong acids/alkalis), high temperature (>90 °C), extended reaction time
(> 12 h), or the use of toxic reagents (e.g., organochlorines); waste disposal requires specialized treatment to avoid environmental hazards
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cleavage and depolymerization [123]. Chloride ions pre-  an average evaporation rate of 1.94 kg m2 h™! under one-
sent in DES can also disrupt hydrogen bonding networks  sun irradiation with 83.4% photothermal efficiency. As illus-
in lignin—carbohydrate complexes (LCCs), promoting the  trated in Fig. 8c, Wang et al. [121] proposed a novel deep
removal of lignin and hemicellulose [124]. Lignin displays  eutectic solvent system (PEA-DESs), composed of pyridine
significantly higher solubility in DES compared to cellulose,  hydrochloride, ethylene glycol, and AICl;, enabling mild
attributed to its less compact hydrogen-bonding network  pretreatment of lignocellulose at a low temperature of 70 °C.
relative to the dense intra- and intermolecular hydrogen  This method effectively achieved delignification while pre-
bonding of cellulose [125]. The Kamlet—Taft parameters serving lignin structure, yielding lignin with a high p-O-4
(a, B, and ©*) are commonly employed to evaluate DES  linkage content (42.1 per 100 aromatic units) and abundant
polarity and hydrogen-bonding capabilities, where higher ~ hydroxyl groups (4.97 mmol g'). The cellulose-rich resi-
B and n* values indicate greater affinity for lignin [126]. dues exhibited a maximum glucose yield of 88.2% through
In addition, molecular dynamics (MD) simulations suggest ~ enzymatic hydrolysis. Moreover, modulation of the hydro-
that DES with low density, low cohesive energy, high molar ~ gen bond acidity (a value) of PEA-DES permitted precise
volume, and optimal hydrogen-bonding properties are most  control over lignin structural evolution. This dual-pathway
effective in disrupting lignocellulosic structures, thereby  approach offers an efficient strategy for the integrated val-
facilitating lignin extraction and separation. As provided in  orization of both lignin and carbohydrates, advancing the
Fig. 8b, Shen et al. [120] used ChCI-LA DESs to extract sustainable utilization of lignocellulosic biomass (Table 2).
lignin while preserving the cellulose framework, enhanc- With adequate engineering strategies, deep eutectic sol-
ing water transport and thermal insulation. A photothermal  vents (DES) offer a green, efficient, and sustainable alter-
polypyrrole (PPy) coating prepared in situ further enabled  native to traditional acid/base or ionic liquid-based meth-
the construction of a solar-driven wood evaporator achieving ~ ods. DES enable targeted cleavage of critical linkages (e.g.,
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B-O-4) in lignin while preserving the cellulose structure,
facilitating effective lignin depolymerization and separation.
Additionally, DES exhibit low toxicity, high biocompatibil-
ity, and are simple to synthesize, positioning them as prime
candidates for the pretreatment of lignocellulosic biomass
[121, 127]. Future developments will focus on designing
DES formulations that selectively and efficiently extract
lignin, as well as engineering multifunctional DES sys-
tems that simultaneously act as catalysts or inhibitors dur-
ing hydrothermal processing. Moreover, attention will be
directed towards the advancement of integrated biorefinery
platforms and energy-efficient, scalable transformation tech-
nologies capable of converting both lignin and carbohydrate
fractions into high-value heterogeneous products [128].

3.5 Wood-Nanomaterial Hybrid Systems

With the growing demand for functionalization, wood—nano-
material hybrid systems have evolved into a promising nano-
structured platform and have been developed along two
primary modification strategies: top-down and bottom-up
[129, 130]. The top-down approach leverages the inherent
hierarchical structure of natural wood, which inherently con-
tains aligned cellulose microfibrils and nanoscale porosity,
imparting new functionalities through structural reconstruc-
tion, surface modification, or nanomaterial integration—a
wood-specific nanoengineering strategy that emphasizes
structural control and interface design. In contrast, the
bottom-up strategy builds functional materials from the
molecular or nanoscale level, using lignin, cellulose, or other
wood-derived units as building blocks through polymeriza-
tion, assembly, or in situ growth—forming tailored nano-
structures with well-defined functionalities [131, 132].
Together, these nano-functionalization strategies establish
wood as a multiscale nanoengineering platform, where both
strategies complement each other in terms of design scale,
structural hierarchy, and performance tuning, jointly ena-
bling the precise construction and high-performance expan-
sion of functionalized wood-based systems.

3.5.1 Top-Down Integration Strategies for Wood—
Nanomaterial Composites

Top-down strategies for wood functionalization involve the
direct modification of bulk wood substrates, leveraging their

| SHANGHAI JIAO TONG UNIVERSITY PRESS

hierarchical porous structures to accommodate and stabilize
nanomaterials [41]. These strategies encompass approaches
ranging from traditional surface coatings to sophisticated
nanoscale engineering, aimed at enhancing physical, chemi-
cal, and interfacial properties [133]. Surface modification
represents a primary method within the top-down func-
tionalization spectrum, providing a platform for the attach-
ment of nanomaterials at the wood interface to modulate
its physicochemical characteristics. Nanostructures can be
uniformly deposited through various techniques, imparting
functionalities such as controlled wettability, photothermal
conversion, and chemical responsiveness. As illustrated in
Fig. 9a, Fe;0,/CNT nanomaterials combined with poly-
vinylidene fluoride (PVDF) via brushing were utilized to
fabricate a magnetic photothermal wood film exhibiting
asymmetric wettability for solar-driven desalination [107].
Similarly, chitosan—silica immersion coatings have been
applied to enhance wood durability under marine expo-
sure [134]. Advanced deposition techniques allow for more
precise nanomaterial integration; for instance, as shown in
Fig. 9b, Ag nanoparticles were loaded onto lignin-derived
porous carbon pretreated with DES via a photoreduction
method, enabling the creation of a bilayer solar steam gen-
erator [135]. Furthermore, plasma magnetron sputtering was
employed to deposit aluminum nanoparticles onto ultra-
sonicated poplar substrates, achieving superhydrophobicity
through the formation of nanoclustered air-trapping struc-
tures [136]. As demonstrated in Fig. 9c, d, layer-by-layer
(LBL) assembly utilizing polydopamine as an adhesive facil-
itated the stabilization of CNC/MXene coatings, imparting
multifunctional properties including fire alarm activation,
smoke suppression, and volatile organic compound (VOC)
removal [137].

As strategies for wood functionalization, in situ growth
processes involve the direct formation of functional mate-
rials within the wood matrix, leveraging its highly porous
architecture and reactive surface chemistry to generate new
functional materials [10]. A wide variety of nanomateri-
als have been developed through this approach, including
both metal and metal oxide nanoparticles (e.g., CoFeO,,
Fe;0,), conductive polymers (e.g., PPy, polythiophene),
metal-organic frameworks (MOFs), covalent organic frame-
works (COFs), including atomically dispersed catalysts such
as the Fe—Ns site [138]. The above formation of all the nano-
structures underwent mechanisms related to redox deposi-
tion, polymerization, coordinated assembly, and pyrolysis
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Fig. 9 Development of wood-based composites for solar-driven water purification and integration of functional nanomaterials. a Honeycomb-
like structure observed in chemically treated wood following freeze-drying (left) and subsequent coating with an Fe;O,/CNT/PVDF composite
to enhance vapor release and water transport for seawater desalination, reproduced from Ref. [107] with permission from American Chemical
Society, copyright 2024. b Processing of wood through delignification, carbonization, and deposition of silver nanoparticles (AgNPs), resulting
in the formation of porous carbon/AgNPs coatings, reproduced from Ref. [135] with permission from Elsevier, copyright 2024. ¢ Preparation
of C-MXene composites via physical entanglement between cellulose nanocrystals (CNC) and Ti;C,Tx MXene, reproduced from Ref. [137]
with permission from Elsevier, copyright 2023. d Surface treatment of wood through polymerization of L-Dopa, incorporation of ammonium
polyphosphate (APP) and C-MXene composites, followed by structural reorganization at the molecular level, reproduced from Ref. [137] with

permission from Elsevier, copyright 2023

with a precursor that can create tightly bonded hybrid inter-
faces with improved structural integrity.

Single-atom anchoring offers high-quality catalytic sites,
while anchoring isolated metal species to wood-derived
carbon with defects is advantageous as it utilizes its highly
hierarchical porosity and the availability of vacancies to
ultimately obtain metal-carbon coordination structures
with strong interactions. In Fig. 10a, Sun et al. [139] have
implemented a cascade strategy to anchor Fe single atoms
as Fe—Nj sites in a delignified wood-derived carbon aerogel,
through adenine-assisted coordination and defect engineer-
ing induced by Zn during pyrolysis. In situ deposition of
metal oxides is valuable for hybridization of patterned nano-
structures in wood-derived carbon. As shown in Fig. 10b,
Long et al. [106] implemented in situ deposition of Fe;0,
nanoparticles that provided a uniform loading of nanopar-
ticles into the lumens and cell walls of delignified wood

SHANGHAI JIAO TONG UNIVERSITY PRESS

to obtain an embedded magnetic composite of MW that
had a high loading content of 35.89 wt%. The embedded
MW composite indicated high Pb?* adsorption capacity
(537.63 mg g~!) and excellent magnetic responsiveness.
The mechanism of adsorption proposed a synergistic effect
of the -COOH, —OH, and Fe—O groups through the pseudo-
second-order kinetic model and Langmuir isotherm model.
Bimetallic alloy embedding can be useful for improving
electrocatalysis by providing asymmetric electronic struc-
tures. The in situ embedding of CoM (M =Ni, Fe, Mn, Cu)
nanoparticles, which Xu et al. [142] performed, was able
to simultaneously grow carbon nanotubes to also provide a
conductive 3D network and demonstrated high conductiv-
ity and charge transfer. The introduction of reactive ionic
liquid (RIL) polymerizations is an ecofriendly and efficient
methodology for the functionalization of wood. The RILs
are polymerizable quaternary ammonium compounds which

@ Springer
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zation, reproduced from Ref. [139] with permission from Elsevier, copyright 2025. b In situ synthesis of Fe;O, nanoparticles within deligni-
fied wood, forming magnetic cellulose frameworks, reproduced from Ref. [106] with permission from Elsevier, copyright 2025. ¢ Formation
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and polymer embedding, reproduced from Ref. [140] with permission from Elsevier, copyright 2025. d Fabrication of photothermal Ag/PPy-
functionalized wood via sequential silver ion reduction and pyrrole polymerization, reproduced from Ref. [141] with permission from Elsevier,

copyright 2025

can be introduced to the wood matrix and can grow cati-
onic polyelectrolytes in situ via nucleophilic addition to the
hydroxyl groups of the hemicellulose. As shown in Fig. 10c,
Ahmed et al. [152. developed GTEAC as an RIL to quater-
nize pine-derived wood membranes in a one-pot, solvent-
free reaction conducted at 90 °C for 1.5 h, producing in situ
poly-GTEAC chains covalently bound to cellulose, hemicel-
lulose, and lignin. Composite in situ growth introduces sev-
eral functional materials into wood structures, using polym-
erization and metal reduction for synergistic assembly. As
observed in Fig. 10d, Lu et al. [141] developed a hydrogen-
bond-stabilized uniform photothermal layer on delignified
balsa wood by in situ polymerizing PPy. Then PPy was used
to reduce silver ions to Ag nanoparticles in situ, forming the
Ag/PPy composite photothermal layer.

Overall, these collectively illustrate the structural versatil-
ity and chemical compatibility of wood as a reactive scaf-
fold for in situ nanomaterial growth. The aforementioned
studies highlight the possibility of embedding reaction path-
ways through single-atom anchoring, oxide nanoparticle

© The authors

deposition, bimetallic alloy inclusion, ionic liquid polym-
erization, and composite polymer—metal inclusion, which
demonstrate highly controlled spatial distribution, strong
interfacial binding, and multifunctional coupling throughout
wood. It is expected that the interweaving of atomic-preci-
sion design, defect engineering, and green synthesis path-
ways will propel the development of in situ routes towards
programmable, scalable, and sustainably manufactured
wood-based nanocomposites for next-generation energy,
environmental, and electronic applications.

3.5.2 Bottom-Up Assembly of Functional
Nanocomposites in Wood Matrix

In contrast to top-down methods that change the overall
bulk wood, bottom-up methods create functional composites
using the sub-units within wood, namely cellulose, hemicel-
lulose, and lignin, by extracting, chemically modifying, and
reorganizing those sub-units [143, 144]. These nanoscale

https://doi.org/10.1007/s40820-025-01953-4
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methods create a more flexible way to control component
identities, morphologies, and interfacial interactions during
the addition of nanomaterials like nanoparticles, nanosheets,
or molecular frameworks into synthesized or novel biomass-
derived matrices. As such, using bottom-up strategies,
wood-derived materials can be synthesized and designed to
personalize and improve mechanical, electrical, and catalytic
properties through environmentally sustainable and scalable
processes that integrate advanced processing capabilities
together with greater compatibility [145, 146].

Nanofiber building block methods are among the most
well-known bottom-up strategies and most commonly use
wood-derived nanocellulose as the building block [150].
Nanofibers can enhance functional composites by offering
higher crystallinity, providing a large surface area, and pos-
sessing abundant hydroxyl groups that allow for the attach-
ment of various functional materials (such as conductive
polymers or metal oxides) to construct 3D conductive frame-
works [151]. These features create numerous anchor sites
for nanomaterial dissolution and dispersion, while the engi-
neered spatial constraints promote uniform distribution and
improved interfacial performance. Shi et al. [147] illustrated
a process in Fig. 11a, where natural cellulose, sourced from
large wood planks, was downsized into nanocellulose and
subsequently templated with polymerized aniline. A precur-
sor containing molybdenum was then introduced, followed
by hydrothermal treatment to generate MoO, nanoparticles.
Subsequent phosphorization yielded a P-doped form of
MoO, anchored on N,P-codoped porous carbon (P-MoO,_,/
NPC), a hierarchical structure that effectively enhanced par-
ticle dispersion and catalytic efficiency. The incorporation
of heteroatoms further modulated the electronic structure,
resulting in improved conductivity, higher capacity, superior
rate performance, and enhanced cycling stability for use in
lithium—sulfur batteries. Lignin-based reactions and sub-
sequent carbonization of lignin are additional examples of
bottom-up strategies, wherein lignin serves as a stabilizer for
electron-rich metal ions through its functional groups. Pyro-
lyzing lignin leads to the formation of stable carbon-based
transition metal dopants or single-atom catalysts, extending
applications beyond wood materials. The critical outcome
of this approach is to control metal dispersion or prevent
agglomeration while simultaneously valorizing lignin as a
sustainable carbon source [152].

In bottom-up wood functionalization utilizing functionali-
zation design methodologies such as graft polymerization,

| SHANGHAI JIAO TONG UNIVERSITY PRESS

reactive ionic liquid (RIL) polymerization, and multicom-
ponent interfacial assembly, experimental procedures often
have the unique advantage of allowing reconstitution of
the wood-derived interface at the molecular scale. In graft
polymerization, there has been an emphasis on adding func-
tional chains to biomass substrates that can modify surface
reactivity and selectivity. While RIL polymerization repre-
sents a more sustainable and efficient alternative to generate
cationic polyelectrolyte networks in wood microstructures.
Multicomponent assembly can produce hierarchal assem-
blages, or Janus architecture, composed of various compo-
nents based on lignin and cellulose. As shown in Fig. 11b,
Liu et al. [109] prepared hydrophobic lignin-based nano-
spheres (m-LNS) through self-assembly and fluorosilane
modification, which were subsequently spray-coated onto
delignified wood surfaces. The end result yielded a Janus
membrane exhibiting a superhydrophobic side and a super-
hydrophilic side. Also in Fig. 11c, He et al. [148] reported a
nanostructured adsorptive membrane produced from graft-
ing poly(acrylic acid) (PAA) onto wood-derived aerogels
possessing a high surface area and a high density of carboxyl
functional groups. It was indicated that in situ PAA was
polymerized in the wood cell walls and the functionality of
the adsorptive membranes with regards to the removal of
heavy metal ions (e.g., Cu>" and Pb**) was determined to
be maximized following the polymerization of PAA due to
the balanced capacity for adsorption and cycling stability.
As shown in Fig. 11d, Kong et al. [149] constructed a mul-
tiscale fiber network (MFN) by embedding Ti,O, nanofibers
into a TOCNF matrix, enhancing conductivity, porosity, and
water transport. The multiscale interfacial design expanded
solid-liquid contact and facilitated ion and charge trans-
port, significantly boosting evaporation-driven electricity
generation.

These examples exemplify the versatility of bottom-up
strategies for wood-derived material engineering through
molecular-level interface engineering. Functional compos-
ites have been developed by employing graft polymeriza-
tion, RIL polymerization, and multicomponent assembly,
enabling control over wettability, adsorption, and reactivity.
As the area of bottom-up wood functionalization progresses
towards scaled-up integrated systems based on bio-derived
polymers, stimuli-responsive interfaces, and engineered
nanostructures, wood polysaccharides are advancing rap-
idly as functional materials. Such advancements are broad-
ening the application landscape of wood-based materials,
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Fig. 11 Representative bottom-up strategies for wood—nanomaterial composites. a Construction of a nanocellulose-templated three-dimensional
carbon skeleton integrated with in situ grown phosphorus-doped MoO, nanoparticles, enabling enhanced conductivity and sulfur retention for
high-performance lithium—sulfur batteries, reproduced from Ref. [147] with permission from Wiley—VCH, copyright 2025. b Emulsion-based
separation approach utilizing interfacial engineering between natural and delignified wood, achieving efficient oil-water separation by exploiting
anisotropic wettability and surface energy contrasts, reproduced from Ref. [109] with permission from Elsevier, copyright 2025. ¢ Fabrication of
wood-derived aerogels via UV-induced polymerization, resulting in lightweight, porous structures with tunable surface functionalities suitable
for applications such as thermal insulation and environmental remediation, reproduced from Ref. [148] with permission from Elsevier, copyright
2024. d Development of Janus wood membranes through delignification, plasticization, and asymmetric surface treatments, offering directional
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particularly in environmental remediation, energy storage,  or surface-confined faradaic processes, offering ultrafast
and smart membranes, all areas that require multifunctional =~ charge—discharge dynamics and superior power density

performance and structural versatility. [154]. Despite these mechanistic distinctions, both systems
benefit from architectures that promote efficient ion trans-

4 Applications of Functionalized Wood port, structural stability, and interfacial reactivity. The hier-
Materials archical porosity, aligned channels, and modifiable surface

chemistry of wood provide a unifying scaffold that can be
4.1 Energy Storage selectively tuned to accommodate the kinetic demands of
supercapacitors or the capacity requirements of batteries,
Functionalized wood serves as a structurally adaptive and thereby bridging their functional divergence through rational
chemically versatile platform that enables its integration material design.
into both battery and supercapacitor systems—two electro-
chemical technologies distinguished by fundamentally dif-
ferent charge storage mechanisms [153]. Batteries typically 4.1.1 Wood-Based Electrodes for Metal-Ion Batteries
rely on diffusion-limited, faradaic redox reactions involv-
ing bulk ion intercalation or conversion processes, yield- Metal-air batteries operate by utilizing metal oxidation and
ing high energy densities suitable for long-duration energy ~ °*Y&! reduction reactions for energy storage, and in theo-

supply. In contrast, supercapacitors operate via non-faradaic retical evaluations exhibit energy densities that are 3-30

© The authors https://doi.org/10.1007/s40820-025-01953-4
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times higher than those of lithium-ion batteries [155]. The
advantage of metal—air batteries is that they do not require a
fully closed architecture and can scavenge for oxygen from
the macro-environment [156, 157]. They are similar to lith-
ium-ion batteries with respect to their exceedingly low cost
in terms of weight, size, and material costs [158]. There
are numerous types of metal—-air batteries, and recharge-
able zinc—air batteries are considered commercially viable
due to their low cost, abundance of resources, and intrinsic
safety [159]. The practical application of zinc—air batteries
is largely limited by the slow kinetics of the oxygen reaction
occurring at the air electrode [160]. As a result, the energy
efficiency associated with round-trip charges is measured
at 55-65 percent, limiting the overall power output. The
cycling stability is also limited due to corrosion that occurs
within the moving alkaline environment, generally corre-
lating to fewer than 500 cycles [161]. Greater attention has
been placed on the development of advanced air electrode
architectures as sustainability concerns increase [162]. In
this case, the application of natural wood resources has been
recognized as a favorable alternative given their renewable
characteristics and intrinsic hierarchical porous structure
supporting electron transport and gas/ion diffusion in the
air electrode [163-166]. Upon carbonization of either the
phase change material or electroactive component of the
system, wood-derived frameworks can exhibit high surface
area and a large number of active sites [79]. This makes
conductive wood an attractive spatial structure host for metal
nanoparticles, heteroatom doping (nitrogen, phosphorus, and
sulfur), and anchoring single-atom catalysts. Functional
alterations greatly improve the catalytic activity of the air
electrode, leading to clean, lightweight, efficient, and resil-
ient metal—air battery systems.

Wood is an attractive and sustainable medium for fabricat-
ing high-performance air electrodes in Zn-air batteries. Its
natural channel alignment, hierarchical porosity, and renew-
ability provide carbon frameworks for hosting heteroatom
dopants, metal nanoparticles, and single-atom catalysts,
enhancing oxygen reduction reaction (ORR) performance
[164]. These porous structures enable rapid gas/ion trans-
port and support catalytic stability, activity, and durability
[169], making wood-derived carbon a promising lightweight
and flexible electrode for next-generation metal—air batter-
ies [165]. Optimizing catalytic interfaces and using scal-
able, energy-efficient synthesis can further improve perfor-
mance [170]. Enhancing cycling stability and integrating
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with solid-state electrolytes will promote high-performance,
sustainable systems. As illustrated in Fig. 12a, a zinc—air
battery (ZAB) converts chemical to electrical energy via
zinc oxidation and oxygen reduction, and typically consists
of a zinc anode, air cathode, electrolyte, and separator [158].
The air electrode contains a current collector, gas diffusion
layer (GDL), and active catalyst layer in contact with the
electrolyte. Even after carbonization, natural balsa retains
ordered longitudinal channels and hierarchical porosity, ena-
bling fast electrolyte and oxygen transport.

The transition from natural wood to carbonized material
was achieved by simultaneously incorporating nitrogen and
sulfur dopants, creating a blend of heteroatoms within the
carbonized material that altered the electronic structure of
the carbon matrix, thus creating distinct active catalytic sites
such as pyridinic nitrogen, graphitic nitrogen, and thiophene
sulfur, leading to improved ORR activity. As demonstrated
in Fig. 12b, Zhang et al. [167] constructed a nitrogen and
sulfur co-doped wood-derived carbon material (NSCW-
900) via one-step carbonization, resulting in the incorpora-
tion of pyridinic N, graphitic N, and thiophene S into the
structure, resulting in excellent ORR performance, with an
onset potential of 0.93 V, a half-wave potential of 0.832 V,
a diffusion current density of 4.9 mA cm™2, a Tafel slope of
80.54 mV dec™!, and excellent methanol tolerance. Beyond
heteroatom doping, the presence of metal nanoparticles
(NPs) on the carbonized wood-derived carbon yielded more
available active sites and enabled enhanced electron trans-
fer through the metal mixture, thereby achieving synergis-
tic effects. As highlighted in Fig. 12c, Zhang et al. [166]
produced a dual-function electrocatalyst, CoMn-N@NCW,
through the anchoring of Mn-doped Co NPs onto nitrogen-
doped carbon derived from cedar wood (NCW). The catalyst
was produced using a co-pyrolysis process at 900 °C under
an argon atmosphere, with the porous carbon skeleton origi-
nating from wood and an in situ metal-organic framework
(MOF) precursor, which facilitated the uniform dispersion
of metal nanoparticles. In Fig. 12d, Li et al. [168] designed
a self-supporting chainmail-like electrode that contained
cobalt nanoparticles encapsulated within graphitic carbon
shells and uniformly embedded in nitrogen-doped carbon-
ized wood. The ordered porous structure of the wood carbon
is conducive to rapid transport of oxygen and electrolyte
species, while the cobalt nanoparticles and carbon shells
produce a synergistic effect that allows for enhanced electron
transfer and an abundance of three-phase reaction sites. In
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Fig. 12e, Xu et al. [142] developed wood-derived carbon
(WCC) with a hierarchical porous structure by carbonizing
natural pine wood. Carbon nanotubes (CNTs) were in situ
grown within the hierarchical porous carbon framework via
electrochemical deposition and nitrogen-assisted pyroly-
sis, and asymmetric bimetallic CoM (M =Ni, Fe, Mn, Cu)
nanoparticles were embedded in situ to create an integrated
self-supporting electrode (CoM@NWCC). In Fig. 12f, Chen
et al. [152] proposed an all-wood-based, wide-temperature

© The authors

flexible zinc—air battery strategy by incorporating an Fe clus-
ter-enhanced asymmetric single-atom catalyst (Fex/FeN,S,-
C) and a weather-resistant organic hydrogel electrolyte
(CNF@PVA-SSE). By utilizing lignin-derived, cellulose-
rich constituent species from black liquor, the researchers
developed a sustainable single-atom catalyst and solid-state
electrolyte. The Fe catalyst exhibited exceptional oxygen
reduction performance. Metal—air batteries, such as zinc—air
and lithium-—air systems, are open electrochemical cells that

https://doi.org/10.1007/s40820-025-01953-4
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use a metal anode and ambient oxygen as the cathodic reac-
tant [80, 147, 178]. Their energy storage and release pro-
cesses are governed by gas—electrolyte—solid three-phase
reactions, with the discharge driven by the oxygen reduc-
tion reaction (ORR) and the charge involving the oxygen
evolution reaction (OER). This design offers exceptionally
high theoretical energy densities, but the systems often face
challenges including sluggish oxygen reaction kinetics, lim-
ited cycle life, and complex air—electrode engineering [178].
In contrast, metal-ion batteries—including lithium-ion,
sodium-ion, and potassium-ion batteries—are closed sys-
tems in which energy conversion occurs through the revers-
ible intercalation and deintercalation of metal ions between
the anode and cathode. Unlike metal—-air batteries, no atmos-
pheric oxygen participates in the reactions, resulting in dif-
ferent electrode architectures, electrolyte choices, and seal-
ing requirements. Lithium-ion batteries (LIBs), in particular,
have become dominant in electric vehicles and renewable
energy storage due to their high round-trip efficiency, long
cycle life, and mature manufacturing infrastructure [179].
Lithium-ion batteries (LIBs) are critical components in
electric vehicles and renewable energy storage systems
[180-182]. Wood-based hard carbon materials are gaining
interest in LIB applications due to their excellent electro-
chemical performance and sustainability [183]. Specifically,
wood-derived closed-cell hard carbon limits the volume
expansion of silicon-based anodes during charge—discharge
cycles via its pore structure. Carbon nanotubes (CNTs) can
further improve the structural stability and conductivity of
silicon composites, thus enhancing the overall performance
of the battery [184]. As shown in Fig. 13a, Gao et al. [80]
designed an anode composed of wood-derived closed-cell
hard carbon and CNT-wrapped micron-sized silicon (SiG/
HC@CNTs) to mitigate the volume expansion of silicon and
achieved a reversible capacity of 750 mAh g™' at 0.2 A g™!
with 91.21% capacity retention after 500 cycles. As shown
in Fig. 13b, Yang et al. [176] developed a wood-derived
self-supporting membrane that served as an efficient sepa-
rator, exhibiting excellent mechanical strength, high ionic
conductivity, and thermal stability. As shown in Fig. 13c,
Liet al. [177] described a direct synthesis process for a car-
boxymethyl cellulose-lithium (CMC-Li) binder derived from
wood dissolving pulp that improved the electrochemical per-
formance of LiFePO, cathodes. The role of wood products
is transitioning in lithium-ion batteries from a simple carbon
source to a multiuse structural tuning vehicle. Wood-derived

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

closed-cell hard carbon helps provide stable anchoring posi-
tions and limit the volume expansion of silicon, while facili-
tating stable electron and ion transport through reconstructed
conductive networks. Wood separators and binders, by regu-
lating the orientation of the fibers and the configuration of
the functional groups, provide good thermal stability and
interfacial compatibility. Further research is needed to elu-
cidate programmable transformation mechanisms of wood
microstructures and develop multi-scale electrode systems
for synergistic functionality in structurally integrated high-
energy—density batteries [185].

Sodium-ion batteries (SIBs) offer a low-cost and sustain-
able option compared to lithium-ion batteries (LIBs) [187].
This is due to the abundant resources of sodium with the
use of aluminum current collectors [188]. Although sodium
has a larger ionic radius, its chemistry is similar to lithium
allowing for a rocking-chair mechanism [189-191]. Wood-
derived hard carbon has become a promising anode mate-
rial in SIBs based on its tunable pore structure, increase
in interlayer spacing, and good conductivity [192]. Closed
pores can improve the low-voltage plateau capacity, open
pores can enhance ion diffusion, and natural wood channels
could allow for low tortuosity, thick electrodes [4]. Together,
this offers green pathway towards high-performance SIBs.
As shown in Fig. 14a, sodium-ion batteries (SIBs) work in
a rocking-chair manner by utilizing sodium ions shuttling
between a hard carbon anode film and a sodium-containing
cathode film typically consisting of layered transition metal
oxides (TMOy) [178]. The carbon anode can store sodium
ions within its matrix and the electrolyte simulates ion trans-
port while the separator separates the anode and cathode and
prevents short circuits.

As depicted in Fig. 14b, Shen et al. [76] built an ultra-
thick, low tortuosity mesoporous carbon anode straight from
the thermal treatment of natural wood and obtained its final
film state followed the vertically aligned natural wood chan-
nel structure. This design greatly improved the performance
associated with sodium-ion batteries. The resultant electrode
that exhibited a thickness of 850 pm and areal mass loading
of 55 mg cm~2 reported a high areal capacity of 13.6 mAh
cm~2. The film maintained excellent capacity and stability
at a current density of 0.55 mA cm™ that far exceeded the
performance of commercially available graphite anodes. As
shown in Fig. 14c, a derived open-pore hard carbon (OP-
HC) anode material was synthesized by using waste wood
and PVP-assisted carbonization to form a porous structure
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with increased interlayer spacing (dgg, =0.414 nm) [4]. This
structure allowed for a high reversible capacity of 350.7
mAh g™! at 0.05 C and a high initial Coulombic efficiency
(ICE) of 94.9%. The OP-HC also showed a good capacity
of 204.8 mAh g~! when cycled at a high rate of 3.0 C, and
after 500 cycles at 1.0 C, the OP-HC had a good capacity of
245.2 mAh g~! with good cyclic stability. The OP-HC was
found to have much improved rate capability and cycling
performance compared to a conventional closed-pore hard
carbon (HC). As shown in Fig. 14d, Zhou et al. [186] also
created a closed-pore structured hard carbon through selec-
tive removal of lignin and hemicellulose, allowing for low-
temperature pyrolysis (1100 °C). The optimized sample

© The authors

(ChT-1100) contained closed pores that were thinner-walled
as well as a larger interlayer spacing of 0.386 nm, and a
greater pore volume (0.055 cm® g™, leading to excellent
sodium storage properties with a capacity of 326 mAh g~!
at 20 mA g~ and 230 mAh g~! at 5000 mA g~!. Figure 14e
shows Chen et al. [81] incorporated a heat-pressing method
to modify the wood structure before carbonization to pro-
duce a hard carbon containing an abundance of closed pores
and increased interlayer spacing. The optimized sample
(DCWF-6) gave a reversible capacity of 427.1 mAh g7},
an ICE of 86% and a retained capacity of 197.7 mAh g~!
at arate of 4.0 A g~!. The improved capacity was linked to

https://doi.org/10.1007/s40820-025-01953-4
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cellulose reorganization and carbon layer alignment, which
increased plateau capacity.

Functionalized wood, as a platform with both programma-
ble structural architecture and tunable chemical properties,
demonstrates remarkable performance advantages and sus-
tainability potential across diverse electrochemical energy
systems [4, 178, 189]. In metal-air batteries, carbonized
wood frameworks preserve the natural longitudinal chan-
nels and hierarchical porosity of raw wood, enabling simul-
taneous rapid gas/liquid/ion transport and the construction
of high-surface-area catalytic sites [152]. Nitrogen—sulfur
co-doping introduces catalytically active sites such as pyri-
dinic N, graphitic N, and thiophene S (e.g., onset potential
of 0.93 V, half-wave potential of 0.832 V, and diffusion cur-
rent density of 4.9 mA cm2), while the in situ anchoring of
Co, Mn, Ni nanoparticles or single-atom catalysts signifi-
cantly enhances oxygen reduction reaction (ORR) kinetics,
catalytic durability, and round-trip efficiency, resulting in
lightweight, high-power-density, and durable Zn—air battery

SHANGHAI JIAO TONG UNIVERSITY PRESS

systems. For lithium-ion batteries, wood-derived closed-
pore hard carbon effectively buffers the volumetric expan-
sion of silicon-based anodes during cycling, while providing
stable electron/ion transport pathways; its integration with
carbon nanotubes forms a three-dimensional conductive
network that delivers a reversible capacity of 750 mAh g™
with 91.21% capacity retention after 500 cycles at 0.2 A
g~!. Furthermore, wood-based separators and wood-derived
binders, through control of fiber alignment and functional
group chemistry, achieve excellent thermal stability, electro-
lyte wettability, and interfacial compatibility. In sodium-ion
batteries, wood-derived hard carbon enables optimization
of ion diffusion kinetics and low-voltage plateau capacity
via control of open/closed pore ratios and interlayer spac-
ing (e.g., 0.386-0.414 nm for closed-pore structures); closed
pores improve low-voltage plateau capacity and cycling sta-
bility, while open pores enhance rate capability. Low-tortu-
osity, ultra-thick electrodes templated directly from natural
wood channels (thickness up to 850 pm, areal capacity of
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13.6 mAh cm™2) exhibit superior areal capacity and cycling
stability compared to commercial graphite anodes. Collec-
tively, functionalized wood enables precise structure—prop-
erty synergy across different electrochemical platforms,
providing a feasible pathway for the deep integration of
sustainable materials with high-performance energy storage
devices. Future efforts should focus on scalable, low-energy
manufacturing strategies, atomic-level construction of cata-
lytic interfaces, and integration with solid-state electrolyte
systems to achieve long-term stability, cost-effectiveness,
and environmental compatibility, thereby accelerating the
transition of wood-based electrochemical technologies from
laboratory prototypes to commercial applications.

4.1.2 Functional Wood Electrodes for Supercapacitors

A supercapacitor combines the best features of a conven-
tional capacitor and a conventional battery into a single
device that has high capacitance, fast charge/discharge
rates, long cycle life, and is environmentally friendly [7].
Supercapacitors fall into diverse classifications of superca-
pacitor types—including electric double layer capacitors
(EDLCs), pseudocapacitors (PCs), and hybrid supercapaci-
tors (SCs)—as shown in Fig. 15a. Each type of superca-
pacitor employs distinct mechanisms for energy storage, but
shares the same basic components: active electrodes, ion-
conducting electrolytes, and separators [193]. EDLCs store
charge via physical adsorption at the electrode—electrolyte
interface, forming an electric double layer. In contrast, PCs
(pseudocapacitors) utilize fast and reversible redox reactions
or ion intercalation/de-intercalation to store charge, while
hybrid SCs (supercapacitors) combine carbon-based elec-
trodes from EDLCs and metal oxide or conducting polymer
electrodes from PCs, achieving superior energy and power
densities [194]. A supercapacitor consists of electrodes, a
separator, and an electrolyte. The electrodes contain active
materials and a current collector for charge transfer. The
separator is porous and optimally sized to enhance ion
transport while preventing short-circuiting. The electrolyte
facilitates charge exchange between ions and active mate-
rials and must be chemically compatible with the current
collector. The hierarchical porous structure of wood pro-
vides channels for efficient ion transport and spaces for ion
storage. During biochar production or carbonization, wood
retains mechanical strength from the cellulose framework,

© The authors

allowing transformation into conductive electrode materi-
als via carbonization and/or functionalization. Carbonization
and pyrolysis, involving controlled thermal decomposition,
spatially transform natural wood into graphitized carbon.
In situ graphitization reduces the internal resistance of the
electrode. Additional porosity, resulting from internal pres-
sure during charring and polymer decomposition, enhances
ion transport, indicating that carbonized wood has signifi-
cant potential as an electrode material for energy storage
devices. As shown in Fig. 15b, a high-performance all-
solid-state asymmetric supercapacitor was fabricated using
wood-derived multilayer porous electrodes [195]. Carbon-
ized wood was used as the negative electrode, and Co(OH),
was electro-deposited to form the positive electrode. Fig-
ure 15c demonstrates the use of white-rot fungus biologi-
cal treatment to optimize the pore structure of wood-based
carbon and improve supercapacitor electrode performance
[196]. Following carbonization and MnO, hydrothermal
deposition, the HWC-3 M electrode achieved an areal spe-
cific capacitance of 3395 mF cm™2, a gravimetric specific
capacitance of 138.3 F g~!, and good cycling stability with
a capacitance retention of 88.6%.

In addition to carbonization, heteroatom doping, either
with O, N, P, or S, can enhance the performance of wood-
derived carbon through polar covalent bonding and inten-
tional introduction of structural defects (due to varying elec-
tronegativities). This results in improved wettability at the
electrode—electrolyte interface, thereby enhancing specific
capacitance. Inorganic compounds, through redox reactions
and phase changes, can also function as pseudocapacitive
materials, thus improving energy density, particularly metal
oxides. Metal oxides are widely employed in supercapaci-
tors due to their high electrochemical reversibility, excellent
cycling stability, morphological tunability, and high theoreti-
cal specific capacitance, superior to many conventional elec-
trode materials. Besides metal oxides, conductive polymers
(such as polyaniline [PANI], PPY, polythiophene [PTH], and
poly(3,4-ethylenedioxythiophene) [PEDOT]) are commonly
used and are often combined with metal oxides. Their con-
jugated m-bond structures enable reversible redox reactions
(doping—de-doping) along the polymer chains, allowing effi-
cient charge storage and providing high theoretical specific
capacitance.

Wood can still serve as a high-performance supercapacitor
electrode without requiring high-temperature carbonization
[199]. As revealed in Fig. 15d, Xiong et al. [197] developed

https://doi.org/10.1007/s40820-025-01953-4
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the Ni/NiO/CoO-CW-4 electrode via carbonization, oxida-
tive activation, and acid etching, achieving a high specific
surface area, optimized pore structure, and excellent con-
ductivity. It delivered an areal capacitance of 16.76 F cm™>
at 5 mA cm~2, while the assembled symmetric all-solid-
state supercapacitor exhibited an energy density of 0.67
mWh cm™ and a cycling stability of 96.21%. As illustrated
in Fig. 15e, Yu et al. [100] employed a steam-driven self-
assembly strategy to deposit MXene onto carbonization-free
delignified balsa wood (DBW), constructing a three-dimen-
sional conductive electrode and assembling a symmetrical
all-wood supercapacitor. The electrode exhibited a specific
capacitance of 580.55 F g~! (5.16 mg cm™2) with stable
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performance over 10,000 cycles. The all-solid-state device
achieved an energy density of 19.22 pWh cm~2 and a power
density of 0.58 mW cm™2 As illustrated in Fig. 15f. Chen
et al. [198] developed a water evaporation-induced self-
assembly strategy to integrate Ti;C, (MXene) nanosheets
into non-carbonized wood, leveraging its aligned channels
for high-quality MXene deposition (mass ratio up to 50%).
Dopamine microspheres prevented MXene restacking,
enhancing surface area and electrochemical activity. The
freestanding electrode achieved an areal capacitance of 1060
mF cm™2 at 0.5 mA cm ™2,

Wood-based materials for supercapacitor electrodes lever-
age their inherent multiscale porous architecture, excellent
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ion transport capability, and sustainability advantages. Car-
bonized wood, which retains the mechanical strength of
its cellulose framework, can be engineered via pyrolysis,
graphitization, and chemical activation with ZnCl, to yield
a high specific surface area and hierarchical porosity. Subse-
quent deposition of metal oxides such as MnO, and Co(OH),
enables high specific capacitance (e.g., 3395 mF cm~2, 138.3
F g!) and outstanding cycling stability (88.6% capacitance
retention). Heteroatom doping (N, O, P, S) enhances elec-
trode—electrolyte interfacial wettability by introducing polar
covalent bonds and structural defects, thereby improving
capacitance, while the integration of metal oxides with con-
ductive polymers (e.g., PANI, PPY, PEDOT) imparts pseu-
docapacitive behavior, significantly boosting energy density
and rate performance. Furthermore, non-carbonized wood,
modified through biodegradation, multi-step chemical treat-
ments, or vapor-driven self-assembly, and composited with
two-dimensional conductors such as MXenes, can achieve
high conductivity and abundant active sites while maintain-
ing excellent mechanical flexibility, enabling the fabrica-
tion of free-standing, flexible electrodes (e.g., 580.55 F g~
with > 10,000 cycle stability). These findings demonstrate
that through carbonized/non-carbonized pathways, precise
pore structure regulation, heteroatom doping, and functional
material integration, wood-derived electrodes can achieve
high specific capacitance, high power density, long cycle
life, and environmental compatibility, offering a sustainable
strategy for high-performance supercapacitors and hybrid
energy storage devices.

4.2 Wastewater Treatment and Environmental
Remediation

Wood’s multifunctional potential for water treatment is very
high and highly correlated, with many targeted applications
including catalytic degradation, filtration—adsorption, and
solar-driven evaporation [3]. As a natural nanoengineering
platform, wood combines intrinsic micro- and nanoscale
structures—including aligned cellulose microfibrils, nanofi-
brillar pores, and modifiable surface chemistries—that
enable diverse nano-functionalization strategies tailored
for water treatment [200]. In catalytic degradation, wood’s
embedded three-dimensional porous architecture has made
it particularly suitable as a supporting material for Fenton
systems, utilizing transition metals such as Fe, Cu, and Mn
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to promote the development of effective Fenton, Fenton-
like, and photo-Fenton systems to generate reactive oxygen
species (ROS, e.g., -OH and SO,") from H,0, or PMS,
enabling deep oxidation of challenging organic pollutants
[201]. The introduction of metal-based nanocatalysts into
wood’s porous network represents a core nano-functionali-
zation approach, leveraging nanoscale dispersion and strong
interfacial contact [58]. Wood can serve as a metal redox
cycling site, enhancing ROS production under visible and
UV light through photo-excited electron generation. In the
dark, wood-derived biochar with bimetallic active sites can
efficiently activate PMS, enabling rapid removal of com-
plex contaminants including antibiotics and dyes [59, 202].
For filtration—adsorption, wood’s innate channel morphol-
ogy provides effective physical sieving potential, enabling
high-flux and selective separation of multiphase pollutants
such as oil-water emulsions. Additionally, nanoscale sur-
face engineering allows for the introduction of functional
groups such as carboxyl, amino, ethylenediaminetetraacetic
acid (EDTA), or MOFs, facilitating the selective chemical
adsorption of heavy metals and cationic dyes [60]. Further
surface functionalization with quaternary ammonium salts
or cationic polyelectrolytes would impart positive surface
charges that allow for efficient removal of anionic contami-
nants (NO;™, S0,%), with highly acceptable fluid perme-
ability and selectivity, enabling potential recovery and reuse
of chemical entities [203].

4.2.1 Catalytic Decomposition of Pollutants Using
Wood-Derived Systems

In the area of wood-derived catalytic degradation of water
pollutants, photo-Fenton and Fenton-like mechanisms are
efficient advanced oxidation processes (AOPs) [204], using
transition metal catalysts (Fe, Cu, Mn) supported on porous
wood to degrade recalcitrant organic contaminants [193,
205-209]. With oxidants such as hydrogen peroxide (H,0,)
or peroxymonosulfate (PMS), these metals generate reac-
tive oxidative species (ROS) like hydroxyl (-OH) and sulfate
(SO,4-7) radicals and sustain their regeneration cycles. Light
irradiation accelerates the Fe** — Fe?* reduction, enhancing
ROS generation and the photo-Fenton effect. As shown in
Fig. 16a, Fang et al. [210] developed a wood-based mem-
brane filtration—photo-Fenton system with CuFeMn oxide
catalysts, synergistically producing -OH and SO,-~ radicals
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with H,0O,, while light promoted the metal redox cycle and
electron—hole pair excitation. In contrast, photocatalysis
generates ROS from light-excited charge carriers without
external oxidants. As shown in Fig. 16b, Liu et al. [211]
synthesized a W-NCQDs@Cu,O composite by combin-
ing nitrogen-doped carbon quantum dots (NCQDs) with
Cu,0 on wood. NCQDs reduced charge recombination and
enhanced -OH and -O,~ generation, enabling effective meth-
ylene blue degradation.

Advanced oxidation processes in wood systems do not
rely on photolysis but instead use transition metals (e.g.,
Fe, Mn, Cu) to activate peroxymonosulfate (PMS) or hydro-
gen peroxide (H,0,) and produce reactive oxygen species
(ROS) under dark conditions (e.g., SO4-7, -OH, '02_, and
10,) for effective degradation of organic pollutants via redox
cycling of metal ions. This form of AOP would be useful for
removing a variety of contaminants (e.g., antibiotics, dyes)
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and requires no external light. As shown in Fig. 16c, Liang
et al. [212] developed a NaOH-modified biochar-supported
Fe—Mn bimetallic catalyst (Fe-Mn/AW-BC) for PMS activa-
tion, successfully removing tetracycline (TC) in the absence
of light with a removal efficiency of 97.9% within 60 min.
The catalyst operated by taking advantage of Fe/Mn redox
cycles and surface C =0 functional groups on biochar to
generate multiple ROS via both radical and non-radical
degradation pathways. The system exhibited great catalytic
activity, broad pH adaptability, and good reusability, provid-
ing an effective strategy for non-photocatalytic wood-based
advanced oxidation processes. In Fig. 16d, Pang et al. [213]
fabricated a non-photocatalytic degradation system from
natural wood-derived biochar. Using bimetallic Fe/Co sites
embedded in NaOH-functionalized wood biochar, they cre-
ated a Fe/Co@WC-800 composite that effectively activated
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Fig. 16 Wood-derived composite catalysts for water purification and advanced oxidation processes. a Hydrothermal synthesis of a lignin-based
wood composite with CuFe,0, nanoparticles for efficient oxidation of organic pollutants via Fenton-like reactions, reproduced from Ref. [210]
with permission from Elsevier, copyright 2023. b Fabrication of porous oxidized wood loaded with CoMn,0O, and CuMn,0, catalysts, enabling
the combination of catalytic oxidation and filtration for integrated water treatment, reproduced from Ref. [211] with permission from Springer
Nature, copyright 2024. ¢ Construction of a Fe-Mo—-Mn/wood-activated carbon composite applied in PMS-based advanced oxidation processes
for efficient dye degradation through synergistic mechanisms, reproduced from Ref. [212] with permission from Elsevier, copyright 2024. d
Preparation of a FeCo@NC/BC multifunctional catalyst derived from wood components by delignification, heteroatom doping, and carboniza-
tion, enhancing overall remediation performance, reproduced from Ref. [213] with permission from Elsevier, copyright 2023
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PMS for the rapid degradation of ciprofloxacin (CIP) in the
dark, achieving 100% removal within 4 min.

4.2.2 Wood-Based Filtration and Adsorption Interfaces

Wood is a natural filter medium that is highly suitable for
water filtration and related applications due to its three-
dimensional porous architecture, derived from vessels, fiber
lumens, and pits [214-216]. In the “filtration—adsorption”
model, three-dimensional porous media incorporate hierar-
chical features, creating size-selective sieving and extended
diffusion pathways for contaminants. Hence, it can serve as
an efficient and effective filtering medium to separate com-
plex oil-water emulsions. The delignification process accel-
erates the porosity of wood, thereby enhancing water flux
and providing a substrate for coatings or functionalization
[214, 217]. Wood can be transformed into Janus structures,
exhibiting asymmetric wettability, with the hydrophilic
side dispersing water while the hydrophobic side collects
oil [216]. This structural transformation provides opportu-
nities for selective separation of O/W and W/O emulsions.
By phase separation, strategies to improve flux, selectivity,
and stability can be further implemented to meet the require-
ments of field applications, whether for oil-water emulsion
separation or contaminated industrial wastewater treatment,
as demonstrated in Fig. 17a. Liu et al. [109] used delignified
balsa wood as a substrate, onto which hydrophobic lignin
nanospheres (m-LNS), derived from waste lignin in the pulp
industry, were sprayed to fabricate a Janus membrane with
asymmetric wettability, featuring one superhydrophobic
surface and one superhydrophilic surface. This all-wood
Janus membrane (JW membrane) achieved a separation effi-
ciency of 99.3% and maintained over 98.9% efficiency after
10 cycles, while demonstrating directional and switchable
separation for six oil-in-water (O/W) and four water-in-oil
(W/0O) emulsions.

The physical filtration and emulsion separation mecha-
nisms based on the porous structure of wood which rely
on size exclusion and wettability modulation, allow for the
physical isolation of droplets or particles, thus enabling
the removal of multiphase pollutants such as emulsions.
Another example is the selective adsorption of heavy met-
als via modification with functional groups, whereby coor-
dination groups (i.e., carboxyl, amino, and EDTA) form
stable complexes with heavy metal ions, enabling chemical
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adsorption in a selective and efficient manner [219, 220].
Functionalized wood elements provide enhanced adsorp-
tion capacity and selectivity, and exhibit a high degree
of pH tolerance. Typically, active sites can be introduced
through oxidation, graft polymerization, or the grafting of
metal-organic frameworks (MOFs). Functionalization, com-
bined with the existing channel structure of wood, facili-
tates ion transport and improves adsorption performance. As
illustrated in Fig. 17b, Yue et al. [218] developed a wood-
based bifunctional membrane modified with MOF-EDTA
by leveraging the high surface area of MOF-808 and the
multidentate coordination properties of EDTA. This mem-
brane also exploited the innate porous architecture of wood
to provide abundant negatively charged sites for the efficient
adsorption of cationic dyes such as methylene blue (MB),
crystal violet (CV), and rhodamine B (RhB), demonstrating
a functional-group-mediated selective adsorption process.
The membrane achieved dye removal efficiencies above 94%
while maintaining a water flux of 1360 L m~2h™!, indicating
an excellent compromise between adsorption capacity and
permeability.

For anion removal based on charge regulation and ion
exchange, cationic groups, such as quaternary ammonium
salts or cationic polyelectrolytes, are grafted onto the wood
surface to impose a positive surface charge, allowing selec-
tive adsorption of common anions present in water, includ-
ing NO;™, SO42_, and PO43_, through electrostatic attraction
and ion exchange. Taking advantage of the natural hierar-
chical porous structure of wood, which augments adsorp-
tion kinetics and water flow rate, the charge regulation and
ion-exchange approach offers a highly efficient, renewable,
and viable material for anionic removal in sustainable water
treatment. As documented in Fig. 17c, Ahmed et al. [140]
prepared a quaternized wood membrane (QWM) by graft-
ing glycidyltriethylammonium chloride (GTEAC) onto
pine wood to introduce quaternary ammonium groups for
efficient anion removal. The membrane effectively removed
SO,*~ with a removal efficiency of 98.3%, while maintaining
a reasonable water flux (385 to 440 L m~2 h™"). Moreover,
the membrane exhibited good reusability, demonstrating that
charge-regulated wood-based materials can be effectively
utilized for sustainable water purification.

Wood demonstrates high relevance and multifunctional-
ity in water treatment, enabled by its hierarchical porous
structure and tunable surface chemistry. Its 3D architecture
supports catalytic degradation via Fenton, Fenton-like,
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and photo-Fenton systems, where transition metals (e.g.,
Fe, Cu, Mn) generate reactive oxygen species (ROS) from
H,0, or PMS, achieving deep oxidation of organic pollut-
ants under light or dark conditions. In parallel, wood’s ani-
sotropic channels facilitate high-throughput separation of
multiphase pollutants, while functionalization with groups
such as EDTA, MOFs, or quaternary ammonium salts ena-
bles selective adsorption of heavy metals, dyes, and anions.
These features render wood a versatile and regenerable plat-
form for integrated water purification.

4.2.3 Solar-Driven Interfacial Water Evaporation

The transpiration mechanism exhibited in natural trees
has inspired the use of natural wood as a substrate for
solar evaporators, as it possesses good hydrophilicity, low
thermal conductivity, and a porous structure facilitating
evaporation [108]. Photothermal conversion efficiency can
be further enhanced by depositing light-absorbing materi-
als such as plasmonic metals, semiconductor materials,
carbonized coatings, polydopamine, or graphite onto the
wood surface [64, 221, 222]. Evaporators made from wood
substrates functionalized in this manner have been widely
used for water purification applications, achieving very
good operational parameters for removing heavy metal
ions (Cr**, Cu®*, Pb**) and organic dyes (methylene blue,
methyl orange). However, these pollutants do not vapor-
ize and may remain in the condensed water along with the
vapor; therefore, complete separation cannot be achieved
solely through water evaporation. This creates a potential
risk of secondary contamination, highlighting the need
for synergistic designs that integrate bulk photothermal
conversion with additional functionalities such as pollutant
retention or degradation.

As illustrated in Fig. 18a, Jiang et al. [223] achieved a
synergistic effect of photothermal conversion and pollutant
adsorption by in situ growth of Fe;0, nanoparticles within
the channels of delignified wood (DW), followed by coating
with polydopamine (PDA). The catechol and amine func-
tional groups in the PDA provided strong adsorption sites
for heavy metals and organic pollutants, enabling simul-
taneous purification of dyes, oils, water, and metal ions.
Additionally, Yu et al. [224] demonstrated the development
of a hierarchical-like graphene (HLG) layer on the cross-
section of lightweight delignified wood (DW, Fig. 18b). Fe**
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addition improved the interfacial bonding between graphene
oxide and the wood substrate, and the formation of slanted
HLG layers was achieved through vacuum impregnation,
freeze-drying, and light-assisted reduction. This structure
enhanced light absorption, suppressed thermal diffusion, and
functioned as a “filtration layer” which substantially sup-
pressed the upward diffusion of dyes and heavy metal ions
into condensed water. Their device achieved an evaporation
rate of 1.96 kg m~> h™! with a remarkable solar-to-vapor
conversion efficiency of 94.2% under 1 kW m~2 solar flux.
As depicted in Fig. 18c, Li et al. [221] developed an ultrathin
wood-based interfacial solar steam generator inspired by the
structural morphology of butterfly wings, where poly(3,4-
ethylenedioxythiophene) (PEDOT) nanowire and button
structures were physically grown onto fir (Pseudotsuga
menziesii) wood veneers via in situ vapor-phase polymeri-
zation. This was identified as the thinnest and self-floating
photothermal material based on wood to date, with a thick-
ness of only 0.6 mm. The effective structural design helped
prevent direct contaminant transfer with evaporating water
vapor, thereby reducing the risk of secondary pollution. Cui
et al. [225] also developed a bifunctional wood membrane
incorporating MoS,/covalent organic framework (COF) het-
erojunctions, utilizing the inherent porosity of wood, the
thin structure of n-conjugated COFs, and the photochemi-
cal properties of MoS,. This architecture provided efficient
solar-driven water evaporation (2.17 kg m~> h™!) and simul-
taneously achieved organic dye waste degradation (removal
efficiency > 99%). Combining photocatalysis with water
evaporation limits the deposition of non-volatile contami-
nants on the evaporator surface, thereby minimizing the risk
of secondary pollution in condensed water.

With respect to freshwater harvesting, wood-based solar
evaporators have gained worldwide attention for seawater
desalination, where the research focus has shifted signifi-
cantly from the traditional goals of pollutant adsorption and
catalytic degradation in wastewater treatment [141]. Sea-
water desalination aims to provide continuous and stable
freshwater production while including high salinity toler-
ance, floating ability, self-cleaning, and resistance to salt
crystallization through sustained evaporation [107]. There-
fore, critical objectives include maintaining overall struc-
tural stability, ensuring long-term tolerance against salt, and
achieving sustainable evaporation efficiency [226]. To meet
these demands, researchers primarily regulate the porous
architecture of wood, enhance buoyancy and mechanical
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support in design, incorporate anti-salt fouling interfaces,
and develop self-cleaning or self-rotating functions. These
strategies minimize salt accumulation and crystallization at
the evaporation interface, enabling the system to operate
stably and sustain evaporation even under prolonged or high-
salinity conditions. For example, as shown in Fig. 19a, Wang
et al. [108] designed and constructed a self-rotating, floating
wood-based solar evaporator composed of delignified wood
spheres (DWS) coated with PPy to enhance hydrophilicity
and light absorption. The asymmetric design enabled auton-
omous rotation, preventing salt accumulation and maintain-
ing evaporation rates of 2.43 kg m™> h~! in 3.5 wt% saline
and 1.52 kg m~2h~! in 20 wt% saline, respectively. As illus-
trated in Fig. 19b, Zhang et al. [107] fabricated a multifunc-
tional evaporative membrane by brush-coating delignified
wood with a Fe;O0,/CNT-PVDF composite. The membrane
exhibited asymmetric wettability, magnetic position-
ing, and wind resistance, achieving an evaporation rate of
1.92 kg m~2h~! and 129.08% photothermal efficiency, while

SHANGHAI JIAO TONG UNIVERSITY PRESS

maintaining stability under salinity, oil fouling, and 6.6 m/s
wind. As presented in Fig. 19c, Wo et al. [64] constructed an
integrated evaporator (DBW-GC) using partially delignified
wood loaded with reduced graphene oxide (rGO) and CuO/
Cu,0 nanocomposites. It maintained an evaporation rate
of 1.79 kg m~2 h~! in 20 wt% saline through a synergistic
mechanism of salt diffusion, capillary transport, and self-
cleaning during dark cycles, ensuring long-term operational
stability. As observed in Fig. 19d, Lu et al. [141] prepared a
Ag/PPy composite evaporator by in situ polymerization and
AgNP deposition onto delignified wood. By combining dual
photothermal mechanisms with efficient water transport, the
device achieved an evaporation rate of 2.04 kg m~>h~! at
90.7% efficiency, and generated stable electricity output
(27.5 mV), while exhibiting strong salt resistance, antibac-
terial activity, and environmental adaptability.
Wood-based materials have emerged as multifunctional
platforms for water purification owing to their hierarchical
porous architecture, tunable surface chemistry, and inherent
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sustainability, enabling integration of catalytic degradation,
adsorption/filtration, and solar-driven interfacial evaporation
within a single material framework. In catalytic systems,
wood serves as a robust scaffold for transition-metal-based
Fenton, photo-Fenton, and Fenton-like catalysts (e.g., Fe,
Cu, Mn), facilitating the generation of reactive oxygen
species (:OH, SO,~, -0,™!, O,) from H,0, or PMS under
light or dark conditions, achieving rapid and deep oxida-
tion of recalcitrant organic pollutants with high efficiency
(e.g.,>97% removal of tetracycline within 60 min, complete
ciprofloxacin degradation in 4 min). In adsorption—filtration
interfaces, delignification and surface functionalization with
hydrophobic coatings, MOFs—EDTA, or quaternary ammo-
nium groups endow wood membranes with directional liquid
transport, high separation efficiency for oil-water emulsions
(>99%), and selective removal of dyes, heavy metals, and
anions, while maintaining high flux and reusability [108].
In solar-driven evaporation, photothermal functionalization
with Fe;0,, graphene, MXene, PEDOT, or polydopamine
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enables high evaporation rates (up to 2.43 kg m~> h™!) and
solar-to-vapor conversion efficiencies (>94%), combined
with pollutant adsorption/degradation and anti-salt-fouling
capabilities for stable long-term seawater desalination [202].
Collectively, these studies reveal that precise structural regu-
lation, catalytic interface engineering, and multifunctional
surface modification can transform wood into an integrated,
high-performance, and sustainable water treatment platform
capable of addressing diverse pollutant classes and opera-
tional scenarios [222].

4.3 Energy Harvesting Using Functionalized Wood

4.3.1 Photothermal and Photovoltaic Energy Conversion
Using Functionalized Wood

Interfacial solar steam generation (ISSG) is a proficient solar
energy conversion technology that offers a cost-effective

https://doi.org/10.1007/s40820-025-01953-4
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solution that alternative methods struggle to achieve in
addressing the energy crisis and freshwater scarcity. The
inherent porous structure of wood and its capacity for water
transport provide essential features suitable for enhancing
water evaporation and photothermal conversion in wood-
based ISSG systems [227-231]. Recently, wood-based
evaporators have been extensively engineered to maximize
energy utilization, benefiting from the development of car-
bonized wood evaporators, MXene composites, and metal
nanoparticles (e.g., Ag, Fe;O0,, MgFe,0,), while 3D print-
ing techniques have facilitated advanced structural designs.
In addition, ISSG has been explored for integrated power
generation, including thermoelectric conversion (Bi,Te;,
Sb,Te;), steam-powered micro-turbines, and hydrovoltaic
energy harvesting via ion gradient-initiated processes [232].
However, challenges remain to address photothermal conver-
sion inefficiencies leading to energy losses, and to improve
thermal management by optimizing nanoporous composites
and thermoelectric recovery modules, thereby enhancing
overall ISSG performance [233].

Photothermal conversion is the process by which energy
from incident light is transformed into thermal energy
within a material [231]. Photothermal materials play a criti-
cal role in this process, efficiently converting absorbed light
into heat through photoexcitation. Ideally, such materials
should exhibit broad-spectrum absorption across the solar
spectrum to maximize thermal energy output [230]. Strong
light absorption capabilities have been demonstrated by
various materials, including carbon-based nanomaterials,
plasmonic nanomaterials, and inorganic semiconductors.
Generally, the main mechanisms behind their photoexcita-
tion include nonradiative relaxation leading to molecular
thermal vibration, plasmonic heating, and the generation
and relaxation of electron—hole pairs. Six representative
energy conversion pathways are illustrated in Fig. 20a [234].
Beyond simple heat generation, the thermal energy absorbed
by photothermal materials can also be further converted into
electricity through mechanisms within solar-driven steam
generation systems, including triboelectric, piezoelectric,
thermoelectric, thermoelectrochemical, and salinity gradi-
ent effects. In these systems, the triboelectric effect captures
energy in the form of charges generated by the condensation
of vapor or the movement of liquid droplets on surfaces. The
piezoelectric effect produces an electric potential from mate-
rial deformation caused by steam flow or droplet impacts.
The thermoelectric effect enables the direct conversion of
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thermal gradients into electricity through carrier migration,
typically via the Seebeck effect. Meanwhile, the thermo-
electrochemical effect utilizes temperature gradients to drive
redox reactions, enabling continuous power output. Lastly,
the salinity gradient effect exploits localized differences in
salt concentrations induced by evaporation to generate elec-
tric potentials across electrodes or ion-selective membranes.
These mechanisms can function independently or synergisti-
cally, significantly enhancing the overall energy efficiency of
solar steam generation systems that simultaneously produce
freshwater and electrical energy.

For solar-driven evaporation systems, thermoelectric
power generation plays a dominant role. A thermoelectric
system exploits the Seebeck effect, where electron flow
is driven by a temperature gradient, converting thermal
energy directly into electrical energy. After absorbing
solar radiation, thermoelectric materials generate ther-
mal gradients by heating the interfacial water layer while
maintaining a cooler bulk water temperature, supporting
simultaneous vapor generation and electricity harvesting.
The thermoelectric module is positioned across this gra-
dient to promote electron migration and generate electric
output. As can be seen in Fig. 20b,Wu et al. [101] pro-
posed a flexible wood-based composite material (PMD/
MXene-WCM), where MXene nanosheets were incorpo-
rated into the porous wood framework to enhance photo-
thermal conversion efficiency. A thermoelectric generator
(TEG) module was also attached to the bottom surface to
recover waste heat through the Seebeck effect by utilizing
the temperature difference between the evaporation inter-
face and the bulk water. Under 1 kW m™2 solar irradiation,
the PMD/MXene-WCM achieved an evaporation rate of
1.59 kg m~2 h~!, a photothermal conversion efficiency of
95.24%, and a thermoelectric power density of 0.71 W
m~2, establishing a high-performance water-electricity
co-generation system. As recorded in Fig. 20c, Lu et al.
[141] developed a PPy/AgNPs-functionalized wood-based
evaporator (AgPW) and utilized residual heat to drive a
thermoelectric generator (TEG) for stable power genera-
tion. The AgPW was fabricated via in situ polymeriza-
tion, enhancing light absorption, while the delignified
wood’s vertical porous structure optimized water trans-
port, achieving a synergistic thermal-water management
system. Under 1 kW m~2 solar irradiation, the optimized
AgPW50 exhibited an evaporation rate of 2.04 kg m=2h~!
and a solar-to-vapor conversion efficiency of 90.7%, while
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Fig. 20 Wood-based systems for solar energy harvesting and electricity
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generation. a Schematic of integrated energy harvesting via thermoelec-

tric, triboelectric, pyroelectric, piezoelectric, and salinity gradient effects enabled by wood-derived platforms, reproduced from Ref. [234] with
permission from Royal Society of Chemistry, copyright 2024. b PMD/MXene-coated wood combined with thermoelectric modules achieves
higher output through optimized soaking, reproduced from Ref. [101] with permission from Elsevier, copyright 2024. ¢ AgNP-functionalized
wood evaporators enhance photothermal conversion via localized surface plasmon resonance and thermal vibration, reproduced from Ref. [141]
with permission from Elsevier, copyright 2025. d Bilayer Janus wood evaporator engineered with narrowed water channels reduces heat loss and
achieves over 90% evaporation efficiency under 1 sun, reproduced from Ref. [235] with permission from Elsevier, copyright 2024

the TEG module generated a maximum power density of
0.71 W m~2, realizing efficient water-electricity cogenera-
tion. As presented in Fig. 20d, Dai et al. [235] inspired by
the unidirectional transpiration mechanism of apple leaves,
proposed a bilayer Janus wood evaporator (BJWE) that
optimizes water-thermal transport by decoupling light
absorption and water evaporation interfaces. The BJIWE
consists of a longitudinal wood layer (W-layer) for effi-
cient water transport and a carbonized transverse wood

© The authors

layer (P-layer) to enhance photothermal conversion, with
polydimethylsiloxane (PDMS) modification to improve
thermal management. Under 1 kW m~2 solar irradiation,
BJWE achieved an evaporation rate of 2.12 kg m~2 h~!and
a solar-to-vapor conversion efficiency of 92.3%, outper-
forming conventional wood-based evaporators. Moreo-
ver, it demonstrated stable operation for 8 h in 3.5 wt%
saline water, effectively purifying organic pollutants and
oil-water emulsions.

https://doi.org/10.1007/s40820-025-01953-4
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Wood-based photothermal and photovoltaic energy con-
version systems leverage their inherent multiscale porous
architecture, efficient water transport capability, and func-
tionalizable surfaces to achieve multimodal energy harvest-
ing and conversion (light-heat—electricity) in interfacial
solar steam generation (ISSG) [236]. Studies have dem-
onstrated that carbonization, MXene integration, metal
nanoparticle modification (e.g., Ag, Fe;0,, MgFe,0,), and
biomimetic structural designs (such as bilayer Janus wood
structures) can markedly enhance light absorption efficiency,
interfacial thermal management, and evaporation rates (up
to 2.12 kg m~2 h™!), attaining solar-to-vapor conversion
efficiencies exceeding 90%. Moreover, coupling the pho-
tothermal system with thermoelectric (TEG) modules ena-
bles Seebeck effect-based power generation by exploiting
the temperature gradient between the interfacial and bulk
water, achieving a thermoelectric power density of up to
0.71 W m~2 for simultaneous water and electricity produc-
tion. In addition, integrating plasmonic resonance, thermal
conductivity regulation, and water/heat separation interfa-
cial designs effectively reduces energy losses and extends
operational stability in seawater and complex water treat-
ment processes. These findings indicate that wood-based
ISSG, through precise structural engineering, functional
material hybridization, and multisource energy harvesting
strategies, offers a high-efficiency, sustainable solar energy
platform with light-heat—electricity multifunctional conver-
sion capability, providing a promising pathway for solar-
driven freshwater production and distributed energy supply
[227, 228, 237].

4.3.2 Hydropower Generation

As the global energy crisis and environmental pollution
intensify, hydrovoltaic generation has emerged as a sustain-
able solution for harvesting electricity from water sources,
including bulk water, flowing water, and humidity, without
relying on external light, heat, or mechanical input [238].
Wood, with its hierarchical porous structure and hydrophilic
cellulose nanofibrils, enhances ion transport and charge
migration, optimizing hydrovoltaic energy conversion. As
indicated in Fig. 21a, streaming potential, an electrokinetic
phenomenon first described by Quincke in 1859, and ion
gradient diffusion serve as key mechanisms. Streaming
potential arises from charge migration at the water—solid

| SHANGHAI JIAO TONG UNIVERSITY PRESS

interface due to the formation of an electric double layer
(EDL), while ion gradient diffusion is driven by concentra-
tion gradients of dissociated ions [239-241]. As detailed in
Fig. 21b, asymmetric humidity exposure or functional group
gradients can further enhance ion diffusion and energy har-
vesting efficiency. The natural capillary action and reversible
moisture adsorption of wood ensure stable power generation
under varying humidity conditions, making it a promising,
biodegradable, and cost-effective material for next-genera-
tion hydrovoltaic applications [242-245].

However, natural wood has many limitations in meet-
ing the conditions of use, mainly in terms of low electri-
cal conductivity, limited environmental adaptability, low
power output, and long-term stability issues. Therefore,
wood-based MENGs require modification through struc-
tural optimization, surface functionalization, or nanoma-
terial integration to enhance their electrical performance,
durability, and energy conversion efficiency [149]. As
reflected in Fig. 21c, in order to solve the problem of
power output, Zhang et al. [249] modified the surface of
wood by coating the surface of wood sponge with car-
bon black ink and using lithium chloride (LiCl) solution
as a hygroscopic agent. After this treatment, the power
output of the generator reached 216 pW. In addition, the
performance of the generator was further enhanced by
adding copper electrodes and constructing a primary bat-
tery system. Zhang et al. [250] immersed natural wood in
Chinese ink and coated the surface of its microchannels
with charged carbon nanoparticles, which could generate
an open-circuit voltage of about 250 mV under ambient
conditions and work stably for more than 72 h. In addition,
an electronic calculator can be driven by connecting six
WMEG devices in series. As documented in Fig. 21d, Li
et al. [246] partially dissolved the wood cell walls using
NaOH/urea treatment, followed by freeze-drying to recon-
struct a nanostructured fiber network, thereby enhancing
water transport capability. Subsequently, the wood was
immersed in an 8 wt% LiCl solution, leading to the forma-
tion of spiderweb-like ionic bridges within the microchan-
nels, which facilitated ion migration efficiency.

Apart from wood-based materials for moisture-electric
generation, cellulose derived from wood can also be utilized
for this purpose, leveraging its superior hydrophilicity and
ionic conductivity. The ordered porous structure constructed
by nanocellulose (CNF/CNC) effectively enhances water
absorption and ion transport efficiency, thereby improving
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the performance of moisture-driven power generation. As
indicated in Fig. 21e, Huang et al. [247] developed a moist-
electric generator (MEG) based on oxidized and aminated
regenerated cellulose (ORC/ARC), which exploits its high

© The authors

hydrophilicity and functional groups to achieve moisture-
driven energy conversion. ORC and ARC were prepared
via TEMPO oxidation and ethylenediamine amination,
followed by cross-linking and freeze-drying to fabricate a

https://doi.org/10.1007/s40820-025-01953-4
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porous aerogel, thereby enhancing the MEG’s performance.
As illustrated in Fig. 21f, Zhang et al. [248] employed a
delignification (DL) treatment on balsa wood, exposing
more hydrophilic cellulose fibers. Furthermore, they incor-
porated a polyvinyl alcohol (PVA)/polyacrylic acid (PAA)
ionic hydrogel to enhance ionic conductivity and moisture
absorption capacity, thereby improving the overall efficiency
of moisture-electric conversion.

As revealed in Fig. 22a, the microchannel structure of
natural wood enables ion migration driven by water evapo-
ration, facilitating energy harvesting. The wood’s micro-
channels absorb water through capillary action and allow
evaporation at the top, establishing a continuous water flow
process [253]. Due to the hydroxyl (-OH) groups on the
wood cell walls, which dissociate to form negatively charged
surfaces in aqueous solutions, cations (e.g., H, Na™)
migrate along the flow direction under the electric double-
layer effect, while anions are retained within the channels,
leading to charge separation between the two ends of the
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wood, generating a streaming potential. This electrokinetic
effect is sustained during continuous water evaporation,
driving steady DC current output [103, 254].

Studies have shown that microchannel size and align-
ment significantly impact power generation efficiency, with
optimal diameters between 5 and 40 pm. Longitudinally
aligned channels facilitate water transport and ion migra-
tion, enhancing energy output. Furthermore, citric acid
modification improved the zeta potential of the wood sur-
face, increasing the hydrophilicity and charge separation,
thereby enhancing electrical output. A single wood-based
nanogenerator achieved an open-circuit voltage (V) of
300 mV and a short-circuit current (I,.) of 10 pA [251].
As depicted in Fig. 22b, Piao et al. [252] employed balsa
wood as a porous substrate and conducted in-situ polym-
erization of PPy within the wood microchannels to enhance
water transport and ion migration capabilities. Optimizing
wood porosity and evaporation interfaces further improves
energy conversion efficiency. Lin et al. [104] developed an
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Fig. 22 Wood-based strategies for hydrovoltaic and ionic thermoelectric energy harvesting. a Evaporation-driven electricity generation using
wood channels for capillary water transport and ion diffusion, reproduced from Ref. [251] with permission from American Chemical Society,
copyright 2020. b Stable voltage output from a wood-based device tested in different aqueous solutions under ion gradient conditions, repro-
duced from Ref. [252] with permission from American Chemical Society, copyright 2020. ¢ Hydrovoltaic energy harvesting achieved by con-
verting natural wood into a cellulose nanofiber hydrogel via one-step partial dissolution, reproduced from Ref. [244] with permission from
Wiley—VCH, copyright 2022. d Fabrication of a delignified wood nanocomposite embedded with polyanionic polymers and hydrogels to con-
struct an ionic thermoelectric generator, reproduced from Ref. [103] with permission from Elsevier, copyright 2022. e Comparison of output
voltages from various wood-based ionic thermoelectric materials and voltage response under moisture variation, reproduced from Ref. [103]

with permission from Elsevier, copyright 2022
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all-wood evaporation-induced electricity generator (WEIG),
utilizing delignified wood (DBW) and delignified-hemicellu-
lose-removed wood (CBW) to optimize charge transport and
power output. The CBW-based WEIG (CBWG) achieved
a V.. of 0.4V in deionized (DI) water, significantly sur-
passing DBWG (0.2 V) and untreated wood (BWG, 0.1 V).
Moreover, both I.c and maximum power output (P) were
substantially enhanced with increased modification levels.
As demonstrated in Fig. 22¢, Garemark et al. [244] treated
wood with 8 wt% NaOH solution at —6 C for 48 h, increas-
ing its specific surface area from 1-2 to 210 m? g~!. The
functionalized wood achieved a V,, of 140 mV in DI water,
a tenfold increase compared to untreated wood, and further
improved to 550 mV in pH 13.4 alkaline solution. Addi-
tionally, carboxyl (-COOH) and phenolic hydroxyl (-OH)
groups on the wood surface underwent charge dissociation
at different pH levels, shifting the zeta potential from -33 to
-48 mV, enhancing charge separation and power generation
efficiency. As presented in Fig. 22d, e, Zhang et al. [103]
developed a wastewater-driven ionic gradient energy har-
vesting system. In deionized water, the system achieved a
V,. of 0.25 V, which increased to 1.1 V in 4 M NaOH solu-
tion, with a maximum short-circuit current (I,.) of 320 pA
and a maximum power density of 6.75 pW cm~2. By regulat-
ing water evaporation rates and ion concentration gradients,
the generator demonstrated long-term stability in highly
alkaline wastewater environments (e.g., black liquor from
pulp production), providing power to electronic devices.
Wood-based hydrovoltaic energy harvesting systems
exploit the hierarchical porous structure and hydrophilic cel-
lulose nanofibrils of wood to facilitate efficient ion transport
and charge separation via streaming potential and ion-gradi-
ent diffusion [255], enabling sustainable electricity genera-
tion from bulk water, flowing water, and ambient moisture
without reliance on light, heat, or mechanical input. Through
structural optimization (e.g., delignification, hemicellulose
removal, microchannel alignment), surface functionalization
(e.g., citric acid modification, charged carbon nanoparticle
coating, ionic hydrogels), and nanomaterial integration (e.g.,
carbon black, PPy, MXene), these systems achieve signifi-
cant performance enhancements, with open-circuit voltages
up to 1.1V, short-circuit currents of 320 pA, and maximum
power densities of 6.75 pW cm™2 [103]. Functionalized
designs not only improve hydrophilicity, zeta potential, and
evaporation-driven ion migration efficiency but also deliver
long-term operational stability in challenging environments

© The authors

such as high-salinity or alkaline wastewater (e.g., black lig-
uor), enabling direct powering of low-energy electronics.
These advances position wood-based hydrovoltaic platforms
as biodegradable, low-cost, and high-efficiency candidates
for next-generation distributed energy systems [247].

4.3.3 Wood-Based Triboelectric Nanogenerators

Triboelectric nanogenerators (TENG) have become an
important technological choice for implantable and wear-
able electronic devices due to their self-powered capability,
efficient energy conversion and stable power output [256,
257, 278-280]. Since Wang et al. [258] proposed TENG
based on contact charge effect and electrostatic induction
effect in 2012, the technology has been widely used in the
fields of wearable devices, sports medicine, and smart home
by virtue of its high efficiency of low-frequency energy cap-
ture, abundant material choices, flexible structural design,
and low cost. In recent years, TENG, as an efficient mechan-
ical-to-electrical energy conversion technology, combines
the coupling effect of friction charging and electrostatic
induction to realize a low-cost and simple structure of
self-powered energy system, which can be integrated with
energy storage devices to provide sustainable power supply
for microelectronic devices [259]. In addition, TENG, based
on Maxwell’s principle of displacement current, can effi-
ciently harvest mechanical energy and operate independently
without an external power source, increasing the spatial flex-
ibility of the system [260]. Its applications have expanded
to include self-powered sensors such as pressure, haptic and
motion sensing, and it has shown great potential in the fields
of sensor networks, artificial intelligence and the Internet
of Things (IoT) [261]. However, conventional TENGs are
mostly made of metal or polymer materials that are difficult
to recycle and degrade, and their long-term use may pose
environmental pollution problems [262]. Therefore, the use
of wood as a friction electric layer explores the sustainable
application of TENG in the field of green energy with its
natural biodegradable and non-polluting properties. Wood
is not only a common and widely used decorative material,
but also plays an important role in interior design, provid-
ing TENG with both functional and eco-friendly material
options [263-266, 281-284].

The wood-based triboelectric nanogenerator (W-TENG)
is an environmentally friendly, renewable, and easily

https://doi.org/10.1007/s40820-025-01953-4
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manufacturable self-powered device. As shown in Fig. 23a,
Hao et al. [265] developed a single-electrode mode W-TENG
utilizing New Zealand Pine and polytetrafluoroethylene
(PTFE) as the triboelectric layers, with copper (Cu) as the
electrode. The device, with dimensions of 8 cm X 8 cm,
achieves an open-circuit voltage of 220+20 V and a short-
circuit current of 5.8 +£0.5 pA at a frequency of 2 Hz, with
a maximum power density of 158.2 mW m™, capable of
driving 42 commercial LEDs. Based on W-TENG, the intro-
duction of laser-induced graphene (LIG) further improves
the performance of TENG, while enhancing its green and
sustainability. As a metal-free, highly conductive electrode
material with porous structure, LIG can not only replace
the traditional metal electrodes and reduce resource con-
sumption and environmental pollution, but also reduce
the fabrication cost, as well as enhance the flexibility and
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degradability of the device. As shown in Fig. 23b, Stanford
et al. [267] carbonized the surface of cork by CO, laser irra-
diation to directly generate LIG layers with high conductiv-
ity and porous structure. The resulting LIG/cork composite
has a LIG layer thickness of ~300 pm, a surface resistance
of ~115 Q sq~!, and exhibits a typical graphene 2D peak
(~2690 cm™') in Raman spectroscopy, which demonstrates
its successful conversion to LIG. Based on this, the research-
ers constructed a single-electrode model TENG (STENG)
in which LIG serves as the conducting layer while retaining
the natural porous properties of cork to enhance charge stor-
age capacity. The TENG achieves an open-circuit voltage of
35 to -105 V and a maximum power density of about 0.76
W m~2 at 2 N force. Furthermore, Funayama et al. [269]
fabricated conductive graphitic carbon structures on degra-
dable lignin/poly(lactic acid) (PLLA) composite films by
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Fig. 23 Structural designs, fabrication processes, and surface modification strategies of wood-based triboelectric nanogenerators (W-TENG). a
Single-electrode W-TENG using New Zealand Pine/PTFE triboelectric layers and Cu electrode, showing device structure and contact—separation
working principle. Reproduced from Ref. [265] with permission from Elsevier, copyright 2020. b LIG-based TENGs prepared by laser irradia-
tion of cork or lignin/PLLA composites, enhancing conductivity, sustainability, and charge storage capacity. Reproduced from Ref. [267] with
permission from the American Chemical Society, copyright 2019. ¢ Surface modification of wood via plasma treatment and chemical functional-
ization to tune triboelectric properties and improve output performance. Adapted from Ref. [268] with permission from The Author(s), copyright

2022, under Creative Commons CC BY license
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femtosecond laser pulse irradiation. The prepared TENG
% at a load resist-
ance of 200 MQ at a frequency of 1 Hz with 1 N contact

exhibited a power density of 1.98 mW m™

pressure. The TENG is also capable of harvesting electrical
energy from natural resources, such as water droplet contact
and plant leaf touch, demonstrating its potential for appli-
cation in environmental energy harvesting. Surface modi-
fication In addition to laser-induced graphene, as shown
in Fig. 23c, Sun et al. [268] used oxygen (O,) plasma and
C,Fg+ O, hybrid plasma to treat wood to modulate the fric-
tion electrical properties of wood. The maximum output
voltage was up to 227 V with a current of 4.8 pA. Liao
et al. [270] used 3-aminopropyltriethoxysilane (APTES) and
fluorinated silane (PFDTMS) to chemically modify wood to
enhance its hydrophobicity and optimize its friction charge
storage capacity.

The application of wood as TENG is not only limited to
surface modification, but further optimizing its performance
through structural modification has become an important
direction of current research. By modulating the cell wall
structure, delignification can effectively increase the poros-
ity of wood and improve its charge storage capacity, thus
improving the friction electrical characteristics. As shown

in Fig. 24a, Ma et al. [257]modified eucalyptus wood by
delignification through NaOH/Na,SO; treatment for 12 h
and heat treatment at 100 °C for 5 h to form a highly porous
structure to enhance the charge storage and transport capac-
ity. Subsequently, a highly conductive wood-based carbon
electrode was prepared by carbonization at 800 °C, and a
single-electrode TENG was constructed, which showed that
the open-circuit voltage of the FW-TENG reached 208 V
at 5 Hz, much higher than that of the unlignified eucalyp-
tus TENG of 28 V, and the amount of charge transferred
was increased to 30 nC, which was a significant enhance-
ment compared with that of natural wood. This study dem-
onstrates that delignification can effectively optimize the
charge regulation ability of wood and enhance the energy
conversion efficiency of TENG. As shown in Fig. 24b, Shi
et al. [271] used the deep eutectic solvent (DES) method for
in-situ regeneration and chemical cross-linking modifica-
tion of lignin by employing a DES system consisting of bile
chloride and oxalic acid to dissolve the lignin in the wood,
thereby breaking the hydrogen bonds between cellulose, and
lemon as a natural cross-linking agent to form stable lignin-
cellulose composite networks suitable for degradable fric-
tion nanogenerators. Luo et al. [266] treated the wood with
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triboelectric performance. Reproduced from Ref. [271] with permission from Royal Society of Chemistry, copyright 2023. ¢ Preparation of
transparent wood-based TENGs via delignification and UV-curable resin impregnation, achieving high transparency and improved triboelectric
output. Reproduced from Ref. [272] with permission from Elsevier, copyright 2024
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NaOH/Na,SO; solution for 7 h to partially remove lignin and
hemicellulose and successfully optimized the microstructure
of the wood, which was modified to exhibit 7.5-fold mechan-
ical strength enhancement and a 71% increase in the surface
charge density, which helped to enhance the friction charge
storage capacity. These findings highlight the crucial role
of structural modifications, such as partial delignification
and polymer impregnation, in optimizing the performance
of wood-based TENGs. As shown in Fig. 24c, Cheng et al.
[272] further advanced this concept by developing a trans-
parent wood-based triboelectric nanogenerator (TW-TENG),
integrating delignification with UV-curable resin impregna-
tion to achieve a synergistic enhancement in transparency,
triboelectric output, and aesthetic appeal, resulting in a 6.5-
fold voltage increase and 88.8% light transmittance.

In addition to improving the porosity of wood, the over-
all performance and application potential of TENG can be
enhanced by compositing with functional materials to form
wood-based composites or wood-derived materials, thereby
optimizing charge transfer efficiency, mechanical durability
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and energy conversion properties. As shown in Fig. 25a, Sun
et al.[273] constructed a single-electrode mode TENG (FW-
TENG) by growing ZIF-8 in situ to impart friction-positive
polarity to wood, spin-coating PDMS to enhance its friction-
negative polarity, and forming a friction interface with high
polarity contrasts, FW-TENG can charge a 0.1 pF capacitor
up to 8.9 V in 30 s, and outputs 79.6 V and 0.94 mA at a
scale of 10 cm x 8 cm, which is significantly better than that
of unfunctionalized wood and demonstrates great poten-
tial for large-scale applications. As shown in Fig. 25b, the
wood-derived nanofiber mats (NFs) prepared by Park et al.
[274] electrospinning were optimized for friction initiation
characteristics by enhancing the specific surface area and
hydrophilicity through the composite modification of WDE
and PCL, so that the output voltage of wood-TENG was
significantly higher than that of PCL-TENG, up to 80 V,
which demonstrated the excellent energy conversion per-
formance. Additionally, beyond direct wood modification,
utilizing wood-derived nanofibers as functional components
further expands the potential of TENGs. By retaining lignin
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and optimizing the nanostructure, these materials enhance
surface properties, charge transfer efficiency, and overall
device performance. As shown in Fig. 25c, Tanguy et al.
[262] prepared lignin-retained cellulose nanofibers (LCNF)
by alkaline treatment of cedar bark with NaOH to remove
the extracts, which were hydrolyzed and swollen, and then
mechanically dissociated by milling at 1500 rpm for 20
cycles. LCNF exhibited enhanced hydrophobicity due to
the lignin-rich surface, reached a contact angle of 67°, and
acted as an efficient friction-negative material in TENG.
Compared to conventional PTFE materials, LCNF-TENG
increases output voltage by 160% to 360 V and short-circuit
current by 120% to 28 pA. As shown in Fig. 25d, Li et al.
[256] proposed an abrasion-resistant enhanced cellulose-
based friction electronic material (CLZ composite) for
high-performance self-powered sensors and human—machine
interfaces. ZIF-8 nanoparticles were grown in a homogene-
ous system by methanol-extracted lignin (MeOH-lignin) as
a soft template and deposited on a cellulose network by a

a 0
s s
P b ST A )
s
" 3
S 10
o] Figorasong
s
B t+—
£
3
e contct
1 2 3 . v
4 5 6 -A-A/\«— ™
4 8 9
FW-TENG based
Smart Device
Tepoing 08
s
& o}—N— = &
. H
H
. H
£ { -3
Fall
s, H
3 3
Time®

| “‘Jﬁ’ﬁ'ﬁ“ ]

Output Voltage (V)
A K © N »

layer-by-layer assembly (LBA) method, and the optimized
CL,Z; TENG showed a wear rate reduction of 64.96% after
5,000 friction cycles, the optimized CL7Z8 TENG achieved
a 64.96% reduction in wear rate after 5,000 friction cycles,
and the TENG achieved a maximum instantaneous power
density of 346.41 mW m~2, which is 21 times higher than
that of the pure cellulose TENG.

Smart home has attracted much attention due to its sig-
nificant advantages in enhancing the quality of human life.
As the core components of smart home systems, electronic
devices need to be environmentally friendly, with excellent
stability and efficient energy conversion performance. In
this context, friction nanogenerators (TENG) are one of the
most promising solutions to this problem due to their abil-
ity to efficiently convert low-frequency mechanical energy
into electrical energy. As shown in Fig. 26a, the all-wood
friction nanogenerator (FW-TENG) developed by Ma et al.
[257] can efficiently collect the mechanical energy gener-
ated by human body movements (e.g., walking, jumping,
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Fig. 26 Applications of wood-based triboelectric nanogenerators (W-TENG) in smart home systems. a FW-TENG harvesting mechanical
energy from human activities (walking, running, bending, etc.) for energy storage and short-term power supply. Reproduced from Ref. [257]
with permission from Springer Nature, copyright 2024. b Intelligent floor sensor array based on FW-TENG for real-time walking trajectory
monitoring and fall detection. Reproduced from Ref. [257] with permission from Springer Nature, copyright 2024. ¢ Humidity sensing capabil-
ity of FW-TENG for adaptive environmental control. Reproduced from Ref. [257] with permission from Springer Nature, copyright 2024. d
TW-TENG for smart lighting, luminous signage, and wireless target shooting systems with real-time monitoring and scoring. Reproduced from
Ref. [272] with permission from Elsevier, copyright 2024. e W-TENG for self-powered sensing applications in smart home and floor monitoring.
Reproduced from Ref. [265] with permission from Elsevier, copyright 2020
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knocking, bending, etc.) and convert it into electrical energy.
For example, FW-TENG can generate an output voltage of
210 V when walking and 300 V when running, and it can
also be used for energy storage, as experimental data show
that a 1 pF capacitor can be charged to 3 V in 10 s, and
a 47 pF capacitor can be charged to 0.2 V, which can be
used to provide short-term power supply for small electronic
devices. As shown in Fig. 26b, In terms of intelligent sens-
ing, an intelligent floor sensor array based on FW-TENG is
constructed, which can monitor the user’s walking trajec-
tory in real time and automatically trigger an alarm when an
abnormal fall is detected. In addition, FW-TENG can also be
used for environmental monitoring. As shown in Fig. 26c,
Experiments show that when the humidity increases from
30% to 80%, the TENG output voltage decreases by 82%,
and this feature can be used in the automatic humidity
adjustment system of the smart home to realize adaptive
dehumidification control. As shown in Fig. 26d, Cheng
et al. [272] utilized the high transparency of TW-TENG to
enable the LED light source to penetrate through its struc-
ture for smart lighting or luminous signage applications
such as emergency escape routes. In addition, TW-TENG
can also charge energy storage devices and drive LED bulbs.
Experimental data showed that the 0.47 pF capacitor was
charged to 1.83 V in 50 s, while the 10 and 100 pF capaci-
tors were charged to 0.53 and 0.18 V, respectively, which
further validated its energy storage and power supply capa-
bilities. Meanwhile, the study also demonstrated the applica-
tion of TW-TENG in a smart target shooting system, which
can realize remote real-time monitoring and smart scoring
by transmitting wireless signals to cell phones. As shown
in Fig. 26e, Hao et al. [265] Natural wood-based friction
nanogenerator (W-TENG) for self-powered sensing in smart
homes and floors.

Wood-based triboelectric nanogenerators (W-TENG)
integrate the intrinsic biodegradability, renewability, and
hierarchical porous structure of wood with advanced tri-
boelectric and structural engineering strategies to achieve
sustainable, high-efficiency mechanical-to-electrical energy
conversion for self-powered systems [273, 275]. Through
surface modification (e.g., oxygen plasma, chemical func-
tionalization, laser-induced graphene), structural optimiza-
tion (e.g., delignification, carbonization, polymer impreg-
nation), and functional material integration (e.g., ZIF-8,
PDMS, wood-derived nanofibers, lignin-retained cellulose
nanofibers), W-TENG exhibit significant enhancements in

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

voltage output (up to 360 V), current (up to 0.94 mA), and
power density (up to 0.76 W m~2), with greatly improved
durability (e.g.,~65% wear reduction after 5000 cycles).
These advancements enable diverse smart home applica-
tions—including energy harvesting from human motion,
intelligent floor sensing for gait and fall detection, humid-
ity monitoring for adaptive climate control, and transparent
TENG-based smart lighting and signage—while maintaining
environmental compatibility [276]. Collectively, W-TENG
research demonstrates that precise microstructural tailoring,
hybrid material assembly, and application-driven design can
transform wood into a high-performance, multifunctional,
and eco-friendly energy platform for next-generation IoT
and smart living systems [277].

S Summary and Prospects

In this review, we systematically summarize the structural
characteristics, performance advantages, and multidimen-
sional functionalization pathways of wood as a natural and
renewable material. As a fundamental step in functionali-
zation, mechanical processing—including pulverization,
rotary cutting, precision sawing, and compression—can
increase the specific surface area, expose more active sites,
and preserve the natural porous structure and cellulose ori-
entation, thereby optimizing mechanical and conductive
properties while providing an ideal substrate for subsequent
treatments. On this basis, carbonization transforms wood
into carbon-based materials with high electrical conductiv-
ity and hierarchical porosity, which, when combined with
the deposition of metal oxides (e.g., MnO,, Co(OH),), can
achieve high specific capacitance (up to 3,395 mF cm™2)
and excellent cycling stability (88.6% capacitance reten-
tion). Laser-induced graphene (LIG) technology enables
the direct fabrication of highly conductive micro/nanopat-
terns on wood surfaces, offering a low-cost, biodegradable
platform for flexible electronics and sensors. Delignification
selectively removes lignin, significantly enhancing optical
transmittance, hydrophilicity, and interfacial bonding capac-
ity. Nanocomposite strategies—based on in situ growth,
surface compositing, and structural regulation—integrate
metals, metal oxides, carbon-based, and polymeric nano-
materials into the multiscale architecture of wood, markedly
improving its electrochemical, optical, and mechanical per-
formance. Benefiting from these functionalization strategies,
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wood-based materials have demonstrated outstanding per-
formance and sustainability potential in diverse applications,
including energy storage devices (lithium/sodium-ion bat-
teries, metal—air batteries), water treatment (photocatalytic
degradation, adsorption—filtration, solar-driven evaporation),
solar energy harvesting (photovoltaic and photothermal con-
version), hydrovoltaic power generation (maximum power
density of 6.75 pW cm™2), and triboelectric nanogenera-
tors (output voltage up to 360 V, power density of 0.76 W
m~2). These advances have accelerated the transformation
of wood from a traditional structural material into a high-
performance, multifunctional, and cross-disciplinary green
technology platform.

Despite these advancements, several fundamental and
practical challenges remain. Although functionalized
wood integrates structural versatility, renewable origin,
and multifunctional capabilities, its practical deployment
is still constrained by a series of intrinsic and process-
related limitations. These include the need for precise con-
trol over wood’s microstructure and chemical uniformity
during processing, as natural variability in species and
growth conditions often leads to performance inconsist-
ency. Furthermore, the long-term mechanical robustness
and functional stability of functionalized wood under
fluctuating environmental conditions—such as humid-
ity, temperature, and mechanical stress—require system-
atic evaluation. Scalability also presents a bottleneck, as
many current fabrication methods are energy-intensive
or involve hazardous chemicals. Therefore, it is critical
to develop green, scalable, and reproducible processing
routes that align with sustainable manufacturing princi-
ples and lifecycle safety. Additionally, wood’s intrinsic
anisotropy complicates its integration into conventional
device architectures, requiring innovative strategies in
interfacial design and material coupling to ensure con-
sistent performance. Addressing these bottlenecks will be
key to translating the conceptual advantages into deploy-
able, high-impact solutions. Nevertheless, the conver-
gence of material sustainability, structural versatility, and
multifunctional capability positions functionalized wood
as a transformative candidate in the future landscape of
green technologies. As science and technology continue
to advance, functionalized wood is expected to assume a
greater role in shaping a sustainable and intelligent world.
Beyond its conventional structural use, wood will serve
as an active material foundation—integrating ecological

© The authors

wisdom with technological innovation—to help build a
greener, more resilient, and harmonized planet.

Building on this potential, functionalized wood is
finding opportunities across multiple frontiers where its
unique structural features and tunable properties can be
harnessed for advanced applications. In biomedical engi-
neering, wood-derived scaffolds with aligned channels and
controllable porosity may serve as promising candidates
for tissue engineering, drug delivery, and biosensing, by
mimicking vascular architectures and supporting bio-
compatibility. In the domain of electronics, functional-
ized wood can be engineered into dielectric substrates,
ionic conductors, and carbonized components, enabling
the development of flexible, biodegradable devices such
as transient sensors and bioresorbable circuits. Addition-
ally, the anisotropic thermal and electrical properties of
wood offer opportunities for passive cooling and directed
signal transport. In environmental science, the material’s
high porosity and surface modifiability make it suitable
for applications including solar-driven water purification,
pollutant removal, and carbon capture, particularly when
integrated with photocatalytic or bioactive functionalities.
While much work remains to fully realize these applica-
tions, we are optimistic that continued advances in nanoen-
gineering and functional integration will further enhance
the role of functionalized wood as a cross-disciplinary
platform to address pressing global challenges.
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