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HIGHLIGHTS

•	 A comprehensive review focused on the recent advancement of artificial intelligence (AI) powered materials research from various 
aspects, including material discovery, synthesis, prediction and validation, is presented.

•	 The design strategies for the enhanced performance of AI for materials can be implemented from various procedures for cognizance 
of existing materials and discovery of novel materials with the data processing, algorithm design and automated laboratory construc-
tion included.

•	 A broad outlook on the future considerations of the AI systems for material is proposed.

ABSTRACT  Recent years have witnessed the significant breakthrough in the field 
of new materials discovery brought about by the artificial intelligence (AI). AI has 
successfully been applied for predicting the formability, revealing the properties, and 
guiding the experimental synthesis of materials. Rapid progress has been made in 
the integration of increasing database and improved computing power. Though some 
reviews present the development from their unique aspects, reviews from the view 
of how AI empowered both discovery of new materials and cognition of existing 
materials that covers the completed contents with two synergistical aspects are few. 
Here, the newest development is systematically reviewed in the field of AI empow-
ered materials, reflecting advanced design of the intelligent systems for discovery, 
synthesis, prediction and validation of materials. First, background and mechanisms 
are briefed, after which the design for the AI systems with data, machine learning 
and automated laboratory included is illustrated. Next, strategies are summarized 
to obtain the AI systems for materials with improved performance which compre-
hensively cover the aspects from the in-depth cognizance of existing material and 
the rapid discovery of new materials, and then, the design thought for future AI systems in material science is pointed out. Finally, some 
perspectives are put forward.
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1  Introduction

The discovery and application of advanced materials and 
devices have promoted humans to combat the major global 
challenges [1–9]. Artificial intelligence (AI) has proved 
to be powerful tools for new material discovery [10–18], 
device performance prediction [19–24], and system perfor-
mance improvements [25–32], and the emergent predictive 
capability has been verified with the assistant of increasing 
data, advanced algorithms and improved computing power 
[33–41] (Fig. 1). In particular, many novel information 
processing systems are developed, which will facilitate the 
progress made in the material science [42–46]. At the mean-
time, the rapid progress in the field of functional materials 
and devices has proposed high demand for AI [8, 47–50]. 
Novel methods for generating diverse candidate structures 
can be created, which can improve the efficiency of mate-
rial discovery to a large extend [51, 52]. A large number of 
novel structures can be discovered by AI, many of which are 
beyond what human intuition can reach. Furthermore, as to 
the cognition of the existing materials, it is possible for AI to 
map the relationships between their structures and properties 
so as to make the prediction for previously uncharacterized 
properties [53–59] and device performances [60–72]. AI 
can also meet the challenge in illustrating the relationship 
between the physical properties of the stimuli in the exter-
nal environment and their perceptual signals [73]. AI which 
can overcome the shortcomings of traditional trial-and-error 
method in material discovery and cognition has found its 
wide applications in many advanced functional materials 
[74–86], like two-dimensional perovskites [87], multicom-
ponent oxides [88], nanomaterial [89], and silicon-oxygen 
compounds [90], which has prompted the development of 
many domains, such as information processing, clean energy 
harvesting, and catalysis discovery [51, 91–95].

The experimental synthesis of materials is also facilitated 
greatly by AI since the data-driven techniques, especially 
machine learning (ML), are managed to find the structure-
property relationships of the materials, indicating the types 
of materials that are more feasible to be prepared, which 
used to be very difficult and time-consuming for humans to 
find the suitable methods and prepare new materials [87]. 
Moreover, efficient synthesis recipes can also be offered with 
the assistance from AI, which can simplify the manufac-
turing of complex materials and accelerate the synthesis of 

theoretically predicted materials to a large extend [88]. High 
throughput and reproducibility can be realized at the same 
time by the robotic laboratories, making the exploration on 
the large-scale hypotheses to be rapid and reproducible [88].

Recent years have witnessed a rapid development of the 
AI for materials science. The discovery of 2.2 million struc-
tures below the current convex hull has been realized with 
the efficiency of materials discovery promoted by an order 
of magnitude, among which many have been beyond the 
previous human chemical intuition [51]. A principal odor 
map has been developed which can make odor quality pre-
diction for previously uncharacterized odorants [53]. The 
accurate and fast structure-adsorption prediction has been 
made by DeepSorption, a spatial atom interaction learning 
network [102]. The structural information has been provided 
for the disordered silicon at very-high pressure of up to 20 
GPa via atomistic ML models, offering the predications for 
the material systems even under experimentally challenging 
conditions [103]. As to the AI-assisted material synthesis, a 
universal framework has been developed for the preparation 
of two-dimensional perovskites with the ability of increas-
ing the success rate of the synthesis feasibility by a factor 
of four compared to the traditional methods, which can be 
used in the typical laboratory [87]. It is noticeable that an 
autonomous laboratory has been successfully developed in 
order to achieve the accelerated synthesis of novel materials, 
which was managed to realize 41 novel compounds from a 
set of 58 targets under continuous operation of over17 days 
[101]. As a result, many original works of high quality have 
been published with the citation frequency growing sharply 
over time (Fig. 2). Tactics have been developed for the AI 
empowered materials from many aspects, including synthe-
sis, discovery, prediction, and variation, to realize the large-
scale exploration, high throughput, and accelerated material 
discovery, which is demonstrated in Fig. 3. Several reviews 
relevant to the AI for material science are reported, and 
each of them has its own emphasis, with how AI promotes 
the membrane design [104], catalyst exploration [105], and 
development of other functional materials [106] included. 
Besides, other reviews provide us with the inspirations from 
other useful aspects, like the importance of interpretable 
ML for materials [107]. However, reviews from the view 
of how AI empowered both discovery of new materials and 
cognition of existing materials that covers the completed 
contents with these two synergistical aspects of cognition 
and discovery are few.
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To be specific, the basic background of AI systems pow-
ered material research was introduced first, and then, the lat-
est development in regard to the data collection and process-
ing, the algorithm selection, and the automated laboratory 

design for the AI systems applied in material science were 
demonstrated. Some important factors which should be 
under consideration when designing the advanced AI sys-
tems were discussed, including the strategies of how to 

Fig. 1   Overview of AI for materials with the data, algorithm, and computing power as fundamentals to support materials discovery and cog-
nizance. a and b Reproduced with permission from Ref. [96].  Copyright 2022, Elsevier. c Reproduced under the terms of the CC-BY license 
[97]. Copyright 2024, The Authors, published by Wiley. d Reproduced with permission from Ref. [98]. Copyright 2024, Wiley–VCH GmbH. e 
Reproduced with permission from Ref. [99]. Copyright 2024, American Chemical Society. f Reproduced under the terms of the CC-BY license 
[100]. Copyright 2024, The Authors, published by Nature. g Reproduced under the terms of the CC-BY license [101]. Copyright 2023, The 
Authors, published by Nature. h Reproduced under the terms of the CC-BY license [91]. Copyright 2024, The Authors, published by American 
Chemical Society. i Reproduced under the terms of the CC-BY license [51]. Copyright 2023, The Authors, published by Nature
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obtain the systems with enhanced performance, the features 
of the future AI systems for materials, and so on. Last but 
not least, some ideas with respect to the outlook of AI for 
materials were proposed.

2 � Mechanism of AI for Cognizance 
of Existing Materials and Discovery 
of Novel Materials

Computing power plays a fundamental role in AI systems 
for materials, and data and algorithm are also of great 
importance in these systems [33, 109]. The improved com-
puting power is managed to unlock modeling capabilities, 
which is beneficial for highly accurate and robust learn-
ing [51]. First-principles calculations based on density 
functional theory (DFT) have been made use of by com-
putational approaches championed by the Materials Pro-
ject (MP) [110], the Open Quantum Materials Database 
(OQMD) [111], NOvel MAterials Discovery (NOMAD) 
[112], and Automatic FLOW for materials discovery 
(AFLOWLIB) [113]. As shown in Fig. 4, the mechanism 
related to how AI empowers material research can be 

mainly illustrated from the aspects of the existing mate-
rial cognizance and the novel materials discovery.

AI makes contribution to map molecular structures to 
their properties in regard to cognition of the existing mate-
rials [115], so that the relationships can be got and predic-
tion of the properties for previously uncharacterized mate-
rials can be made [53]. It is worthwhile mentioning that 
efforts have been made to deal with the situation where the 
structurally similar pair is not the perceptually similar pair, 
and the predictive modeling in diverse perceptual aspects 
has been realized by neural networks [116]. As a specific 
type of graph neural network (GNN), the message pass-
ing neural network (MPNN) can be used to map chemical 
structures to percepts. Each molecule was described as a 
graph with each atom and bonds represented by a series 
of characters in details, after which the fragment weights 
can be optimized. A reference dataset of many molecules 
described by multiple corresponding property labels is 
needed to be curated (Fig. 4a). The models are then to be 
trained with their parameters being optimized to generate 
the maps (Fig. 4b). The reliability of the model in describ-
ing the properties can then be verified by experiments to 

Fig. 2   Publication number and citation frequency of the work focused on the artificial intelligence empowered materials discovery and predic-
tion during the recent five years
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justify whether a generalized description of structure-
property relationships can be obtained (Fig. 4c), and the 
results can also be compared with that of the conventional 
structure-based maps to verify its efficiency.

In addition to the cognizance of the existing materi-
als, AI also plays a vital role in the discovery of novel 
material [117–121]. Researchers are capable of conduct-
ing searches by substituting similar ions and enumerating 
prototypes, and endeavors have been made to improve the 
search efficiency of these approaches. In order to obtain 
more diverse candidates, neural networks can be applied 
to guide the searches [51]. It is proposed that a broader 
exploration can be made by neural networks while main-
taining the efficiency. To be specific, structural candidates 
can be obtained by modifications of available materials, 
and methods have been built to enable incomplete replace-
ments, so that the set of substitutions can be augmented 

largely. DFT, which is an important method for calculating 
material properties in materials science, plays a fundamen-
tal role of bridging between the microscopic electronic 
structure and the macroscopic properties of materials. 
As for the structural candidates, the energy and other key 
properties of materials are calculated through DFT to ver-
ify the accuracy of the model’s prediction. The new data 
obtained from DFT calculations can be added to the train-
ing set to train more powerful and robust models in the 
next round of active learning. Large scale of new materials 
can also be identified by means of high-throughput com-
putation [101]. For instance, large-scale ab initio phase-
stability data can be gathered from the MP and Google 
DeepMind [101].

AI is indispensable for the accelerated realization of new 
materials and the optimization of their design rules [91, 
122–127]. After the identification of new materials, ML can 

Fig. 3   Tactics for the AI empowered material synthesis, discovery, prediction, and validation. a Reproduced under the terms of the CC-BY 
license. [87] Copyright 2024, The Authors, published by Nature. b Reproduced under the terms of the CC-BY license. [51] Copyright 2023, The 
Authors, published by Nature. c Reproduced under the terms of the CC-BY license. [108] Copyright 2023, The Authors, published by American 
Chemical Society. d Reproduced under the terms of the CC-BY license. [101] Copyright 2023, The Authors, published by Nature
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then be applied to screen the novel materials with excellent 
performance and high synthesis feasibility (Fig. 4d-g). The 
critical physicochemical parameters related to the measured 
performance can be identified as materials genes among many 
candidate parameters obtained from experiments and initio 

simulations. By means of using a ML model, novel materials 
with high performance are able to be suggested. Various reac-
tion conditions, including precursors, intermediate products, 
additives, solvents, and temperature, should be taken into con-
siderations for materials synthesis, which usually consumes a 

Fig. 4   Schematic illustration for the mechanism of AI empowered material discovery and cognizance. a–c Reproduced with permission from 
Ref. [114].  Copyright 2023, The Royal Society of Chemistry. d Reproduced under the terms of the CC-BY license. [51] Copyright 2023, The 
Authors, published by Nature. e–g Reproduced under the terms of the CC-BY license. [87] Copyright 2024, The Authors, published by Nature. 
h–j Reproduced under the terms of the CC-BY license. [101] Copyright 2023, The Authors, published by Nature
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lot of time for the experts [128]. The data-driven techniques 
are now used for screening out materials with high synthesis 
feasibilities by means of finding out the structure-property 
relationships, making it possible for the experimental realiza-
tion of computational predictions [87].

The autonomous laboratory can be introduced to bridge the 
computational screening and experimental realization [101]. 
By the combined usage of computations, historical data, and 
ML, the plan and interpreting of the experimental outcomes 
can be made (Fig. 4h). ML model is able to provide the initial 
synthesis recipes for the proposed compounds, which can pro-
mote the material preparation (Fig. 4i). To be specific, the ini-
tial synthesis recipes can be obtained by the natural-language 
models learning to evaluate target ‘similarity’ via natural-
language processing of a large database from the literature, 
which is similar to how a human make an attempt to begin 
initial synthesis according to known related materials [129]. 
It is worthwhile mentioning that analysis of the failed synthe-
ses makes sense to offer direct guidance to improve materials 
screening and synthesis design [101], which is illustrated in 
Fig. 4j. Experiments will continue by taking advantages of 
autonomous reaction route optimization and solid-state synthe-
sis, which is an active learning algorithm integrating ab initio 
computed reaction energies with observed outcomes once the 
yield does not achieve the expectation [130]. Experiments can 
be conducted by robotics. It is verified that autonomous work-
flows based on liquid handling can be demonstrated in organic 
chemistry [131–134], and recently, it is also possible for A-Lab 
to handle and characterize solid inorganic powders which used 
to be a challenge [101].

3 � Design of the Intelligent Systems for New 
Materials

3.1 � Data Collection

Material data paly fundamental and important roles in the 
intelligent systems [135]. To be specific, the experimen-
tal synthesis data provided by studies, the first-principles 
calculations, and laboratory experience can be served as 
resources for the database [87]. For example, a design syn-
thesis paradigm incorporated with ML was developed for 
Ni-rich cathode material, in which the boundary condi-
tions for various reactions of precursors were provided by 
thermal/kinetic simulations, and a digital image dataset 

was constructed by some necessary experiments [18] 
(Fig. 5a).

Abundant datasets with balanced data to overcome the 
problems of overfitting, underfitting, and limited extrapo-
lating abilities of ML are expected to be provided [136, 
137]. The data processing that includes data cleaning and 
data transformation can be carried out to make sure that 
the collected data are integrated [96]. For example, in an 
attempt to develop the predictive models for real-time 
voltage output of triboelectric nanogenerator (TENG), 
data cleaning was conducted to eliminate incomplete or 
inconsistent data, leading to a refined dataset with 279 
reliable data points, which guaranteed the quality and con-
sistency of the dataset (Fig. 5b). Pearson correlation coef-
ficient which revealed the linear relationship between the 
two variables was demonstrated in Fig. 5c. Particularly, a 
negative correlation demonstrated that when the values of 
these parameters increased, there was a high probability 
for the output voltage to decrease, and then, the specific 
mechanisms underlying these relationships could be fur-
ther investigated.

Efforts have been made to meet the challenge of limited 
available dataset for model evaluation [98]. For instance, 
a novel evaluation method was developed to screen small 
molecules served as passivation materials for perovskite 
solar cell when the available dataset was limited (Fig. 5d). 
Particularly, 20% of test data were randomly extracted, 
while the remaining parts were used as the training data, 
followed by calculating model accuracy which was a crit-
ical criterion for the evaluation of classification model. 
The extracted data were then reintegrated into the estab-
lished dataset, and another 20% of the data was randomly 
selected as a test set, the process of which was repeated 
100 times. The final model accuracy was then obtained 
as the averaging of the accuracy values from these 100 
calculations.

High-performance computing (HPC) is another strong 
support for the accelerated and large-scale material discovery 
and cognizance [99]. Endeavors have been made to put for-
ward the strategies which can offer large-scale computational 
resources for the screening and experimental validation. It is 
pointed out that cloud HPC can meet this challenge which has 
been verified to be managed to train and host large-scale AI 
models like GPT-4 asking for a massive number of graphi-
cal processing units (GPUs), and therefore, it is promising to 
be applied for material research with an increasing number 
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of material candidates to be evaluated computationally. One 
case in point was that ML and cloud HPC were combined, 
and the schematic illustration of the cloud environment for 

materials discovery is shown in Fig. 5e. Particularly, the 
ML models and DFT code were built into Docker container 
images. When operated, a workstation virtual machine (VM) 

Fig. 5   a Schematic illustration of the design synthesis paradigm incorporated with ML, which indicated the resources for the database. Repro-
duced under the terms of the CC-BY license [97]. Copyright 2024, The Authors, published by Wiley. b Schematics of the procedures for mod-
eling the TENG ML models with data cleaning conducted. c Pearson correlation coefficient between input and output.  Reproduced with per-
mission from Ref. [96] Copyright 2022, Elsevier. d Schematic illustration of the ML process with the novel evaluation method to deal with the 
occasion where the available dataset was limited. Reproduced with permission from Ref. [98] Copyright 2024, Wiley–VCH GmbH. e Schematic 
illustration of the cloud environment for materials discovery workloads. Reproduced with permission from Ref. [99] Copyright 2024, American 
Chemical Society
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fetched the container images to NetApp Files storage mounted 
to the workstation and job queues or VM scale sets. The com-
putational jobs were submitted to the VM scale sets via the 
SLURM job scheduler. Data and metadata were kept in a 
searchable database. It was proved that the system was man-
aged to quickly navigate through more than 32 million candi-
dates as well as predict around half a million potentially stable 
materials.

Another issue that cannot be ignored is that the training 
data used in many studies is often biased toward successful 
cases reported in the literature or databases, which will lead 
to the inconsistence between the data distribution and the real-
world distribution. This imbalance can leave an impact on the 
generalization ability and robustness of the models. Some 
strategies can be taken advantages of to address these issues. 
For instance, negative sample construction is one of the most 
fundamental strategies. Besides, active learning enables the 
model to actively select the samples that most need labeling, 
prioritizing the supplementation of negative or marginal sam-
ples which are most crucial for the model’s improvement. In 
addition, the multi-source data integration is another critical 
method for solving this problem. By integrating data from dif-
ferent sources and of different types, the sample distribution is 
enriched, thereby reducing the bias.

3.2 � Machine Learning Algorithms

The development of data-driven techniques has significantly 
revolutionized the new material discovery, which is able to 
provide physical insights from the existing data in depth 
[87]. ML has developed rapidly to meet the multidimen-
sional challenges in the material field [138–146]. ML can 
be used to reveal the structure-property relationship hidden 
behind a large number of experiments. Materials with high 
synthesis feasibility can be screened out with the assistance 
from ML, accelerating material synthesis even with limited 
experimental support [87]. Rapid predictions for structures 
and properties can be made by ML even for new materials.

The effective transformation of experimental data into 
model-ready input features plays fundamental and important 
role in building intelligent models, and some explorations 
have been made about how to realize the effective transfor-
mation. In some cases, the differential features, rather than 
the original curves or data, are focused. Besides, instead 
of processing data with a single branch, the integration of 

two learning perspectives is carried out, making it possi-
ble for the models to learn from two dimensions. Addition-
ally, designs can be conducted by making the input features 
highly correlated with the prediction target, reducing the 
learning burden of the model, and therefore, the prediction 
efficiency can be improved. One case in point was that a 
deep learning (DL) framework designed for the prediction 
of battery lifetime was developed by introducing an inter-cell 
learning mechanism to make prediction of the lifetime differ-
ences between two battery cells with the aim to represent the 
connections between cells cycled under different conditions 
[147]. In addition, the cycle-level features were fed into two 
separate branches, which contains the intra-cell difference 
curves and the inter-cell difference curves. Moreover, the 
correlations between the constructed features and the predic-
tion targets for both intra-cell and inter-cell learning were 
investigated, and it was verified that a simple feature com-
puted on inter-cell difference curves was managed to differ-
entiate lifetime differences, even with a reference cell from a 
different battery chemistry, indicating its direct relationship 
between the constructed features and the prediction targets.

The appropriate selection and adaptation of models are 
imperative to develop the AI systems for the material sci-
ence. It is worthwhile mentioning that the features of the 
model should be matched with the task requirements and 
data characteristics. To be specific, the complexity of the 
data should be evaluated, and then, corresponding models 
which are suitable for the tasks can be utilized. For instance, 
some basic linear models relying such as the ‘Var.’ and ‘Dis.’ 
can show commendable performance on the initial datasets, 
while they are not qualified for some complex datasets. 
Besides, some models relying on handcrafted features can 
be suitable for the task scenarios with stable data distribu-
tion, while for the tasks with diverse scenarios, models with 
the features of automatic learning should be given priority. 
Additionally, diverse and highly challenging test sets can be 
used to evaluate whether the models are appropriate.

ML algorithms are selected according to classification 
accuracy, simplicity, computation efficiency, and so on 
[148–151]. Different ML algorithms have their own char-
acteristics. For modeling with small dataset, support vector 
machine, linear regression, and gradient boosting are usually 
suitable [152, 153]. For example, in an attempt to improve 
the output performance of polyvinylidene fluoride (PVDF) 
nanogenerators, three decision tree ML models, including 
decision tree regression (DTR), random forest (RF), and 
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gradient boosting regression (GBR), were chosen to develop 
the predictive models [96], which is illustrated in Fig. 6a. To 
be specific, DTR was extensively used for regression tasks, for 
which a binary tree structure was constructed by recursively 
splitting the TENG data based on the feature values (Fig. 6b). 
DTR was featured with its interpretability since the tree struc-
ture provided a clear visualization of the decision-making pro-
cess. As shown in Fig. 6c, the RF combined multiple decision 
trees in order to enhance prediction accuracy, which was able 
to capture complex relationships between the input and out-
put. As to GBR, decision trees were built sequentially with 
the subsequent tree reducing the errors made by the previous 
trees. The predictions of multiple weak models were incorpo-
rated to generate a strong model [154–156] (Fig. 6d). Another 
case in point was that the LSTM algorithm was applied in a 
design synthesis paradigm assisted with ML for Ni-rich cath-
ode material, since the augmented datasets were still tiny [97] 
(Fig. 6e). It was proposed that the LSTM unit possessed its 
own advantages over RNN and CNN in the aspects of dealing 
with small sample data (Fig. 6f). ML-assisted design for 3 μm 
precursors is illustrated in Fig. 6g.

Recently, endeavors have also been made to develop 
atomic-scale models of complex materials [158, 159]. Large 
datasets and ML have emerged, which are suitable for these 
more complex systems [160]. One case in point was that 
active machine learning was applied to offer a unified com-
putational description of the silicon-oxygen systems, which 
were among the most important materials with complexity 
[90].

Various approaches have been used to deal with small 
dataset limitations, such as transfer learning [161], autoen-
coders [162], and active learning [163, 164]. These methods 

can address the issues including noise, data imputation, and 
some other problems. Active learning strategies have been 
used more frequently for the classification scenarios compared 
to rigorous regression predictions. Recently, ML method has 
been adopted as the core component to screen low-contact 
electrode when limited data are available [157]. The detailed 
workflow is shown in Fig. 6h. To be specific, 2D electrode 
materials (2DEMs) were selected as numerical vectors using 

Fig. 6   a Different algorithms with their own characteristics for the 
predictive TENG framework. Schematic of b DTR, c RF, and d GBR. 
Reproduced with permission from Ref. [96] Copyright 2022, Else-
vier. e Computational flow of the ML for precursor design. f Model 
based on PMD-LSTM algorithm. g ML-assisted design for 3  μm 
precursors. Reproduced under the terms of the CC-BY license [97]. 
Copyright 2024, The Authors, published by Wiley. h Workflow of the 
efficient screening of 2DEMs. Reproduced with permission from Ref. 
[157] Copyright 2024, Wiley. i Details of the A-Lab. Reproduced 
under the terms of the CC-BY license. [101] Copyright 2023, The 
Authors, published by Nature. j Schematic illustration of the robotic 
inorganic materials synthesis, and k photograph of the laboratory. l 
Illustration for robotic chemists enabled large-scale exploration com-
pared with human chemists. m Illustration for robotic chemists ena-
bled both the high reproducibility and throughput. Reproduced under 
the terms of the CC-BY license. [88] Copyright 2024, The Authors, 
published by Nature

▸
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feature descriptors for the reason that it was verified to miti-
gate the Fermi level pinning (FLP) effect and maintain excel-
lent gate control in low-dimensional devices (Step 1). The fea-
ture distribution was deemed as a baseline for active learning, 
and the representative data points were collected iteratively. 
The consistency between the feature distribution of the train-
ing subset and overall sample features was made use of as the 
active learning evaluation function (Step 2). An autoencoding 
regularized adversarial neural network (ARANet) to perform 
model training in a scenario with a limited contact-property 
dataset generated through DFT calculations was developed 
(Step 3 and 4). Moreover, a novel feature-adaptive variational 
active learning (FAVAL) algorithm was introduced to work 
with ARANet, obtaining a valuable training subset. It was 
worthwhile mentioning that the jointly trained FAVAL and 
ARANet schemes outperformed typical small-data models 
using the same training datasets. Preliminarily screened mate-
rials could be accomplished (Step 5). It was noticeable that 
this scheme showed exceptional performance when trained 
with only 15% of the total data points.

The applicability of ML models in dealing with small-
sample data and complex material systems and the generali-
zation ability of the models are all important aspects for the 
AI empowered materials systems. Some novel approaches 
have been put forward to deal with these problems. For 
instance, some new mechanisms have been adopted when 
tailoring the frameworks. It was pointed out that many mod-
els for the battery lifetime prediction were developed and 
validated only across a restricted set of aging conditions, 
and therefore, efforts should be made to improve their exten-
sive applicability. In contrast to many traditional models that 
were mainly focused on intra-cell learning by means of cap-
turing early variations of a single cell to implement the pre-
diction of its long-term lifetime, a framework was proposed 
to integrate inter-cell learning [147]. It was worthwhile 
mentioning that the stability of lifetime predictions for a 
target cell under varied aging conditions could be enhanced 
by combining it with the conventional single-cell learning.

Another factor that should be taken into considerations is 
the general approaches for interpretability, which can be real-
ized by taking advantages of a series of methods, like the 
integration of knowledge, algorithm design, and visualiza-
tion techniques. For instance, material knowledge can be inte-
grated with ML to enhance the model generalization. Besides, 
design of the algorithm can be conducted. An interpret-
able ML combining the RF model and the Shapley additive 

explanation (SHAP) analysis has been proposed to accelerate 
the identification of the critical factors that make influence on 
the formation energy among the complex variables introduced 
by doping in Ni-rich layered oxide cathodes [165].

The experimental validation of these predictions by quan-
titative metrics is a critical procedure for these AI systems. 
It is ideal to conduct the validation by comparing the per-
formance of different models on multiple datasets with a 
series of quantitative metrics, like root-mean-squared error 
(r.m.s.e.), mean absolute error (MAE), and mean absolute 
percentage error (MAPE), for which the smaller deviation 
between the predicted value and the true value indicates the 
stronger predictive ability. Besides, it is better to make the 
comparison between the proposed model and the other mod-
els, and different datasets are expected to be used. Moreover, 
it is also of importance to evaluate the reliability in dealing 
with critical and complexed tasks in the real-world applica-
tions. Additionally, the error range should also be taken into 
considerations to make a full evaluation of these predictions. 
For instance, in an attempt to design the DL framework for 
making a prediction of battery lifetime, the performance 
comparisons among the proposed models and other models 
have been made by using a series of indexes, like r.m.s.e. and 
MAE with the error range being indicated, as well [147]. It 
was noticeable that error bars when combined with other 
statistical quantities such as standard deviation could visu-
ally represent the extent of variation of the corresponding 
models across multiple trials. In this case, when comparing 
the performance of different models, error bars enabled a 
more comprehensive assessment of the strengths and weak-
nesses of various models.

3.3 � Autonomous Laboratory Validation

Material synthesis is featured with complexity with many 
factors like the kinetics and thermodynamic stability of 
materials, the synthesis routes, synthetic methods, and pre-
cursor species being taken into considerations [87]. The 
automated synthesis and characterization are important parts 
of the closed-loop AI systems for materials [166]. Robotic 
laboratories can be served as excellent platforms for data-
driven experimental synthesis science to guide human and 
robotic chemists [88, 167]. It is worthwhile mentioning that 
the autonomous workflows based on liquid handling have 
been successfully realized for organic chemistry [131–134].
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In regard to dealing with and characterizing solid inor-
ganic powders, an autonomous laboratory has been built 
for the accelerated preparation of new materials [101]. The 
A-Lab performed experiments with three integrated stations 
for different tasks, including sample preparation, heating 
and characterization, and robotic arms were responsible 
for transferring samples and labware, which is illustrated in 
Fig. 6i. It turned out that the A-Lab was capable of realizing 
41 novel compounds from a set of 58 targets with a success 
rate of 71% after continuous operating over 17 days.

It was pointed out that both the high reproducibility 
and throughput could be realized by the robotic laboratory 
simultaneously [88]. For instance, a robotic laboratory was 
taken advantages of to carry out the large-scale valida-
tion of precursor selection. As shown in Fig. 6j, k, a full 
ceramic synthesis workflow could be accomplished auto-
matedly by a robotic arm, including precursor preparation, 
ball milling, oven firing, and product characterization. As 
illustrated in Fig. 6l, exploration of synthesis hypotheses 
in large-scale could be achieved by robotic laboratory, 
while it took a lot of human experimentalists many years 
to finish such intense work. Furthermore, it was difficult to 
weight the throughput and reproducibility for large-scale 
human work. In contrast, both the high reproducibility 
and throughput could be realized simultaneously by the 
robotic laboratory for the reason that it was possible for a 
robotic laboratory to produce single-source experimental 
data with high reproducibility, which is shown in Fig. 6m. 
It turned out that a comprehensive amount of synthesis 
hypotheses was managed to be explored rapidly and repro-
ducibly by the robotic laboratory which could be served 
as a novel platform for the data-driven synthesis science.

Progress has been made to apply autonomy in a diver-
sity of aspects in materials research, with robotic, the opti-
mization of material yield, the improvement of photovol-
taic performance, and the enhancement of photocatalysis 
activity included. However, in contrast to human research-
ers who have rich background knowledge facilitating their 
decision-making, some limitations still exist for the A-Lab 
in these aspects, and therefore, a fusion of encoded domain 
knowledge, the access to various data sources, and active 
learning are especially important for the autonomy. In 
addition to this issue, discrepancies between the current 
predictions and the experimental outcomes are needed to 
be further addressed.

Another challenge that is met for the AI applied in mate-
rial science is that there is gap between the predicted results 
and the feasibility of the experiment. Such an issue in result 
from a series of aspects. For example, in the early stage 
of new material research and development, the data avail-
able is scarce, and there exists the problem of overfitting 
or underfitting. Besides, the economic imbalance between 
the verification system and the experimental cost can also 
lead to the gap between the predicted results and the experi-
ments. These gaps are usually in high relationship with the 
cognitive gap among data, models, and experiments. Cross-
scale data fusion (combining atomic simulation with macro-
scopic characterization), the human-machine collaborative 
experimental design (reinforcement learning and domain 
experts), and other measures can be taken for narrowing the 
gap between the predictions and practice.

4 � Strategies to Design AI Systems 
for Materials with Enhanced Performance

4.1 � For Cognition of Existing Materials

4.1.1 � Existing Data Leverage

The materials used for training can be collected from 
some datasets [102]. To be specific, the knowledge of 
porous materials and their physisorption behaviors are 
beneficial for the ML-enabled rapid discovery of mate-
rials with desired adsorption properties [168, 169]. For 
instance, in order to develop a spatial atom interaction 
learning network for the prediction of gas adsorption 
(Fig. 7a), computation-ready, experimental MOF (CoRE-
MOF), hypothetical MOFs (hMOF) and EXPMOF data-
sets were used. To be specific, CoREMOF dataset includes 
over 11,000 computation-ready and experimental three-
dimensional metal-organic frameworks (MOFs) obtained 
from Cambridge Structural Dataset and Web of Science, 
while hMOF dataset includes over 300,000 hypothetical 
MOFs. Additionally, the EXPMOF dataset is from experi-
ments. In this case, the original data of crystalline materi-
als could be directly used as the input of DeepSorption 
without information loss, which is illustrated in Fig. 7b, 
and the outputs including gas adsorption isotherms could 
then be obtained (Fig. 7d). It is worthwhile mentioning 
that targeted data processing methods were developed. 
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Fig. 7   a Schematic of the physisorption process with the materials used for training collected from some datasets. b Inputs of DeepSorption. c Architecture of 
MatFormer. d Outputs of DeepSorption. e Schematic of MSA. Reproduced under the terms of the CC-BY license. [102] Copyright 2023, The Authors, published by 
Nature. f ML-enabled exploitation of gas-sensing descriptors with the computations based on experimental and characterization results.  Reproduced with permis-
sion from Ref. [170]. Copyright 2024, Elsevier. g Schematic illustration of ML big dataset analysis, and h the construction and sampling of big dataset. Reproduced 
with permission from Ref. [171]. Copyright 2024, American Chemical Society
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The homemade MatFormer (Fig. 7c) featured with Multi-
scale Atom-attention (MSA) was used to process crystal-
line material data for the reason that it was managed to 
provide conception of the interactions between different 
defined atoms, which is shown in Fig. 7e. The judgment 
of the interatomic interaction at different scales could be 
promoted by the exchange of information between atom 
pairs in different distances.

The computations can also be based on experimen-
tal and characterization results [170]. Recently, ML has 
been exploited for exploitation of gas-sensing descriptors, 
which can predict the gas-sensing performance of oxides 
(Fig. 7f). To be specific, data were obtained for five pris-
tine oxides that were commonly applied as gas sensors. 
The input features were based on the characterization, 
computational results, and physical properties of the mate-
rials and gas molecules. The importance of the features 
was ranked, and six important features were proposed as 
the descriptors. It was worthwhile mentioning that many 
properties such as morphology, band structure, and surface 
composition could exert significant effects on gas-sensing 
reaction, and therefore, the oxides were characterized by 
a series of tests.

For some complex cases, it is necessary to construct big 
dataset to fully reveal the underlying mechanisms and the 
optimal direction for material design [171]. For example, 
carbon–carbon (C–C) coupling is of importance in the 
electrocatalytic reduction of CO2 in order to produce green 
chemical. However, the reaction network is usually complex. 
To address this problem, big data analysis was introduced 
into the computational screening of electrocatalysts for 
complex C–C coupling reaction networks (Fig. 7g). It was 
worthwhile mentioning that a big dataset with over 45,000 
data points was constructed, covering all possible coupling 
combinations of six precursor species as well as adsorption 
configurations on the active site. As illustrated in Fig. 7h, 
378 adsorption substrates made use of ABCu triatom active 
sites with 27 metal replacements for A and B, and iterative 
sampling was taken advantages of to obtain the training set 
for ML.

In addition to the construction of big dataset, some 
methods have been proposed for the cases in which the 
dataset is quantitatively limited and qualitatively biased 
[108]. For instance, a ML framework was developed for the 
highly generalizable prediction of temperature-dependent 
Flory–Huggins χ parameters. The experimentally observed 

χ parameters for 1190 samples were used for training the 
model. However, this dataset was lack of chemical diver-
sity, and the experimental χ parameters were biased, which 
limited the application of the model. Another significant 
bias existed in the aspect that some observable χ param-
eters would be given only for polymer-solvent molecules 
in a miscible state due to technical limitations. It could be 
observed that the majority in the experimental χ parameter 
dataset was consisted of soluble samples. Specifically, it was 
difficult to realize experimentally determining χ parameters 
for an immiscible polymer-solvent system in which no single 
phase appeared. In order to address this issue, two auxiliary 
datasets were constructed, among which one was extracted 
from PoLyInfo with a list of 29,777 soluble and insoluble 
polymer–solvent pairs and the other was an in-house dataset 
obtained by making use of quantum chemistry calculations 
with COSMO-RS. It was proposed that polymers and sol-
vents in PoLyInfo were distributed over a wider chemical 
space. It was verified that the applicability domain of the 
model was managed to be successfully expanded by learning 
with the two additional large datasets.

4.1.2 � Structure and Property Prediction

As to ML for structure or property prediction of the exist-
ing materials, it is also essential to make selections of dif-
ferent ML methods. One case in point was that knowledge 
co-learning (KCL) was chosen when developing a spatial 
atom interaction learning network [102]. It was proved that 
the KCL could enhance the convergence of the model in the 
structure-adsorption space establishment with the assistance 
from the expert knowledge in the auxiliary tasks by the com-
parison of the Expert-knowledge-driven learning (Fig. 8a), 
Data-driven learning (Fig. 8b), and Data-driven knowledge 
co-learning (Fig. 8c), and therefore, the prediction accuracy 
could be improved.

Another case in point was that three ML models were 
developed for the optimal preparation of biochar-based elec-
trodes [172]. As illustrated in Fig. 8d, 14 key parameters 
from recent articles focused on the preparation of activated 
biochar-based supercapacitor electrode with urea as the 
nitrogen source and KOH as the activator were collected. 
Three classic ML prediction models, with RF, GBR, and 
extra tree regression (ETR) included, were made used of to 
make an exploration of the response relationship between 
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various factors and the energy storage properties. It turned 
out that the GBR demonstrated the best prediction perfor-
mance with an R2 value of 0.93.

Methods have been come up with to handle the issue 
of limited data supplying in the primary tasks [108]. For 
instance, in a neural network architecture developed for 
the prediction of the χ parameter with limited data pro-
viding for the parameters in the primary task, multitask 
learning was applied, in which different related tasks with 
common underlying mechanisms shared were learned 
simultaneously via a unified model. It was clarified that 
the multitask learning was able to boost the predictive 
performance by leveraging and transferring feature repre-
sentations learned from two auxiliary tasks.

ML can be used to predict the relationship between dif-
ferent parameters and performance with the suitable mod-
els [114]. For instance, a strategy to construct hierarchi-
cal porous sponge-like carbon was launched for advanced 
potassium-ion batteries, in which cases ML was taken 
advantages of to offer further evidence of the excellent 
performance. Papers focused on layered carbon materials 
for potassium batteries were made use of to construct the 
structural parameter performance database. The complete 
initial coulombic efficiency (ICE) and capacity structural 
parameters performance database were input into ANN, 
which is demonstrated in Fig. 8e. It was verified that the 
predicted capacity and ICE were almost equal to the exper-
imental values.

4.1.3 � Experimental Validation

The prediction capacities for structures or properties are usu-
ally examined by experiments comprehensively. It is notice-
able that the prediction performance could then be evaluated 
from various aspects and in a diversity of conditions [102]. 

For example, the spatial atom interaction learning network 
was employed for prediction of gas adsorption, and it was 
verified that the predicted gas uptake was consistent with the 
actual value on CoREMOF-CO2 and hMOF-CO2. In con-
trast to the other models, there absolute errors were much 

Fig. 8   Schematic illustration of a Expert-knowledge-driven learning, 
b Data-driven learning, and c Data-driven knowledge co-learning. 
Reproduced under the terms of the CC-BY license. [102] Copyright 
2023, The Authors, published by Nature. d Schematic illustration of 
ML enabled the optimal preparation method of biochar-based elec-
trodes.  Reproduced with permission from Ref. [172]. Copyright 
2024, Elsevier. e Schematic relationship between different parameters 
and performances. Reproduced with permission from Ref. [114]. 
Copyright 2023, The Royal Society of Chemistry. f Schematic illus-
tration of frontier digital twin-based battery sustainability platform. 
Reproduced with permission from Ref. [173]. Copyright 2024, Else-
vier

▸
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smaller and more distributed centralized for DeepSorption. 
Furthermore, higher coefficient of determination (R2) values 
could be realized. It turned out that both the highest R2 value 
and the lowest MAE could be achieved by DeepSorption 
compared with the other models.

As a powerful tool for material research, AI has been inte-
grated with other advanced technologies for the formation of 
more complex platforms [173]. For instance, a cross-scale 
multi-stage analytic platform featured with inter-discipli-
nary and trans-disciplinary was developed for the lifecycle 
carbon intensity investigation of electrochemical batteries, 
including battery materials, charging/discharging behaviors, 
recycling, and reproduction (Fig. 8f). ML was applied to 
address the issues that the collected data from controlled test 
conditions in the laboratory were not managed to represent 
various real application scenarios, and the state-of-charge 
prediction could be made. Besides, ML-assisted computa-
tion could promote the sustainability and climate adaption 
for this framework. Furthermore, by taking advantages of 
the digital twin, the performance estimation could be cost-
saving and time-efficient.

In addition to the theoretical approaches, how these AI 
systems for material discovery and synthesis make contri-
bution to the real-world examples with experimental imple-
mentation and practical validation is another valuable aspect 
to be explored, and more researches have been carried out 
focused on how to utilize these systems to address the practi-
cal issues. The lithium-ion batteries, which are featured with 
high energy densities and low production costs, have drawn 
great attention in many modern industries, serving as renew-
able energy solutions for many fields, like electric vehicles.

It is worthwhile mentioning that the combination of AI 
with battery lifetime prediction is also one of the research 
hotspots, since the capacity of these batteries fades inevita-
bly with cyclic operations, which is attributed to the intrinsic 
electrochemical mechanisms. Great challenges have been 
met due to a variety of factors that influence the complex 
battery capacity degradation, like electrode materials, 
cycling protocols, ambient temperatures, and so on. Some 
cutting-edge researches have been conducted with the effec-
tive solutions to address these issues. For instance, a DL 
framework, BatLiNet, which was designed to predict battery 
lifetime reliably across a variety of aging conditions, was 
proposed [147]. In contrast to the traditional models which 
solely focused on individual cells, this framework adopted 
inter-cell learning which contrasted pairs of battery cells 

for discerning lifetime differences. It was noticeable that 
the experimental results, derived from a broad spectrum of 
aging conditions, verified its superior accuracy and robust-
ness in this research when comparing to other existing mod-
els. In addition to the design of the frameworks, efforts have 
also been made to meet the challenges proposed by the inter-
section of electrochemical science and ML, and accordingly, 
an open-source platform with data preprocessing, feature 
extraction, and the implementation of both conventional and 
state-of-the art models integrated has been developed, which 
aims to provide a collaborative platform on which experts 
from diverse specializations can contribute their own efforts 
[174].

4.2 � For Discovery of New Materials

4.2.1 � Excavating the Existing Data

The dataset used for training is the cornerstone of ML mod-
els [175]. The experimental synthesis data provided by stud-
ies serve as important resources for the material synthesis. 
However, only successful cases are usually included in these 
studies, resulting in the imbalanced distribution of data cate-
gory. Another important resource is from the first-principles 
calculations. Besides, previous studies and extensive labora-
tory experience can offer valuable intuitions for the prepara-
tion of new materials. For instance, in an attempt to explore 
the synthesis feasibility of two-dimensional silver/bismuth 
(2D AgBi) iodide perovskites, organic spacers from both the 
previously reported 2D perovskites and the chemical intui-
tions were exploited [87]. The high-throughput experiments 
(HTE) were made use of to acquire the material dataset. 
It was proved that only 13 kinds of organic spacers were 
able to form 2D AgBi iodide perovskite structures, and the 
organic spacers were sorted into ‘2D perovskite’ and ‘non-
2D perovskite’ accordingly, which is shown in Fig. 9a.

DFT calculations which are quantum mechanical theory-
based tools also play an important role in high-throughput 
computational material design for the reason that they can 
characterize material properties and produce data directly 
[18]. For example, in an attempt to develop Co-free and low 
strain cathode materials for sodium-ion batteries with the 
assistance of ML (Fig. 9b), 1451 O3 and P3 layered transi-
tion metal oxides (LTMOs) were generated via DFT cal-
culations, which is illustrated in Fig. 9c. The classification 
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Fig. 9   a Synthesis results of high-throughput experiments. Reproduced under the terms of the CC-BY license. [87] Copyright 2024, The 
Authors, published by Nature. Schematic illustration of b problem statement, c database construction, d ML classification, and e screening 
result. f Schematic of the classification model.  Reproduced with permission from Ref. [18]. Copyright 2024, Elsevier. g Workflow of ML for 
new Haeckelite compounds discovery. Reproduced with permission from Ref. [52]. Copyright 2024, Wiley. h Schematic illustration of two 
frameworks to for generation and filtration. Reproduced under the terms of the CC-BY license. [51] Copyright 2023, The Authors, published by 
Nature
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ML models were then constructed to evaluate the structural 
stability and phase transition (Fig. 9d), leading to the iden-
tification of 128 highly reversible high-performance cath-
ode material candidates (Fig. 9e). In this study, endeavors 
have been made to solve the problem of imbalanced data by 
a data sampling technique. In particular, a stratified k-fold 
importing data hierarchically from every class were taken 
advantages for the construction of a balanced train set, 
which is shown in Fig. 9f. Given the fact that there were not 
enough data, it was conducted in fivefold (train set/valida-
tion set = 8:2), so that the number of validation set could be 
guaranteed.

Although there are both positive and negative material 
data in the datasets from HTE, subjective preferences still 
exist. As a result, it is difficult for ML to obtain reliable 
conclusions. Efforts have been made to address this issue. 
For example, in the framework to guide the experimental 
synthesis of two-dimensional perovskites, data-mining 
approaches were taken advantages of to identify the appli-
cable subdomains for ML models, and then, models were 
trained on the identified subdomain, which showed more 
distinctive descriptors than models training on the whole 
biased dataset [87]. To be specific, subgroup discovery was 
used to get the suitable subdomains for ML models. It turned 
out that the molecular weight and the third ordered kappa 
index were the two descriptors standing out since they had 
a high correlation with the synthesis feasibility. Besides, 
based on the derivation of the rigid sphere model, the width 
of organic spacers was also of importance for the structural 
stability. In addition, 2D projections of this 3D data distribu-
tion map were generated. The distribution of 2D perovskites 
and non-2D perovskites was balanced in the determined spe-
cific subdomain.

A series of steps are taken for the preparation and pre-
processing of data. In an attempt to discover new Hae-
ckelite compounds for optoelectronic devices with the 
assistant from ML, data preparation and preprocessing 
were carried out [52], and the workflow of screening and 
predicting is shown in Fig. 9g. To be specific, the selected 
chemical space of the ML dataset with X and Y elements 
was demonstrated in red and blue, and 1083 square-
octagon XY form structures were created. After that, 
the compounds with altered symmetry and duplication 
were removed. A base dataset for the train structure was 
selected, which was both quantitatively and qualitatively 
accurate when compared with other benchmarks, and then, 

more compatible optimal features to predict each target 
with high accuracy and minimum error were constructed. 
It turned out that 350 materials were got after the investi-
gation of the formation energy, bandgap, and convex hull 
energy by comparing them with the experimental targets 
using ML, and 13 semiconducting Haeckelite structures 
were obtained after the calculations of electronic struc-
tures, dynamic stability, and the multistep evolutionary.

It is noticeable that in some cases the space of possible 
materials is far too large, and it is difficult to sample in an 
unbiased manner [51]. Under the condition that there is no 
reliable model available to approximate the energy of candi-
dates cheaply, the substitution of similar ions or enumeration 
of prototypes has been made use of according to chemical 
intuition. There still exists limitations in regard to the diver-
sity of candidates even though the search efficiency has been 
improved, and therefore, it is critical to build new method 
to make more diverse candidates available. In an attempt to 
solve this problem, two frameworks were taken advantages 
of to generate and filtrate these candidates, which is illus-
trated in Fig. 9h. Particularly, the structural candidates were 
managed to be generated by modifying available crystals. 
It was worthwhile mentioning that efforts have been made 
to augment the set of substitutions by means of adjusting 
ionic substitution probabilities to give priority to discovery. 
Moreover, newly proposed symmetry aware partial substitu-
tions (SAPS) were used to enable incomplete replacement 
efficiently. As to the second framework, compositional mod-
els could predict stability free of structural information. The 
graph networks for materials exploration (GNoME) were 
trained on available data to filter candidate structures. It was 
worthwhile mentioning that for the models, the crystal defini-
tion, which encoded the lattice, structure, and atom defini-
tions, was served as the input. In particular, each atom was 
represented as a single node in the graph, and edges were 
defined on the occasion where the interatomic distance was 
less than the defined threshold. Nodes were embedded by 
atom type and edge, and they were embedded on the basis of 
the interatomic distance. A global feature that was connected 
in the graph representation to all nodes was also made use 
of. At every step of the GNN, neighboring nodes and edge 
features were aggregated, and they were utilized to update 
the corresponding representations of nodes, edges, or globals 
individually. After 3-6 layers of message passing, an output 
layer projected the global vector so as to obtain an estimate of 
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the energy. It was verified that almost an order of magnitude 
larger than previous work could be achieved via GNoME.

4.2.2 � Screening for Excellent Performance and High 
Synthesis Feasibility

AI can meet the demand for screening the materials with 
excellent properties and high synthesis feasibilities, which 
has significantly promoted the discovery and realization of 
new materials with excellent performance for various appli-
cations, such as catalysts, lithium-ion batteries, and perovs-
kite solar cells [91]. Endeavors have been made to identify 
the key parameters of materials and suggest the new candi-
dates which can be verified experimentally. For instance, 
in an attempt to address the issue about the catalyst design 
existing in the aspect that their performance was influenced 
by an intricate interplay of various multiscale factors, like 
the chemical reactions on surfaces, the type of support mate-
rials, and the material restructuring during the catalytic 
period, symbolic-regression AI was taken advantages of to 
extract the key physicochemical parameters related to the 
performance successfully (Fig. 10a). It was proposed that 
the Sure-Independence Screening and Sparsifying Operator 
(SISSO) had been introduced into data-centric methods for 
heterogeneous catalysis with a series of advantages [176, 
177]. To be specific, analytical expressions related to the 
target catalytic performance could be identified by SISSO 
with few key parameters out of many offered parameters, 
which were regarded as materials genes to demonstrate the 
catalytic function of the materials. The intricate correla-
tions between small datasets could be demonstrated with an 
immense amount of candidate functions being under consid-
eration during the analysis process. In particular, the theoret-
ical, experimental, and elemental parameters as the primary 
features were made use of to efficiently model the catalytic 
performance. The analytical expressions were pointed out. 
It was noticeable that the key descriptive parameters deemed 
as materials genes which were in close relationship with the 
property were obtained. By using the AI model with low 
costs, new additives could also be suggested, which pro-
moted the discovery of new catalysts with high performance.

When it comes to new material synthesis, a diversity of 
factors should be taken into consideration, such as the pre-
cursors, the by-product, the feasibility of experimental con-
ditions, and the availability of experimental raw materials, 

which makes it a more complex and time-consuming task for 
chemists due to the limitation of experimental instruments 
and the heavy workload. As a result, only a small subset of 
the potential conditions can be evaluated with a rather small 
proportion of theoretically predicted materials being synthe-
sized successfully, and this work heavily relies on the experi-
ence of chemists. In this case, the data-driven techniques can 
be applied for screening out materials with high synthesis 
feasibilities to provide guidance for the material synthesis 
[87]. It is worthwhile mentioning that efforts have also been 
made to extract meaningful physical and chemical insights 
from trained ML models in order to have a better understand 
the ML predictions. For instance, ML techniques were made 
use of to screen two-dimensional hybrid organic–inorganic 
perovskites (2D HOIPs) with high synthesis feasibility rap-
idly. A lot of distinctive descriptors relevant to the synthesis 
feasibility were developed (Fig. 10b). The support vector 
classification (SVC) algorithm was applied to develop the 
equation for the synthesis feasibility. The receiver operat-
ing characteristic (ROC) curve and confusion matrix which 
were used to evaluate the accuracy and the error are shown 
in Fig. 10c, and the area under the ROC curve was as high 
as 85% where only 1 out of 10 molecules was misclassified. 
The marginal contribution of individual descriptors was ana-
lyzed by SHAP analysis, the result of which demonstrated 
that the number of rotational bonds in the alkyl tail (NumRot) 
was the most important factor for the synthesis feasibility. 
The relationships between the feature values and SHAP val-
ues are illustrated in Fig. 10d. A positive SHAP value indi-
cated that the feature led to high synthesis feasibility, while 
a negative one resulted in low synthesis feasibility. The pre-
dicted synthesis feasibility is demonstrated in Fig. 10e.

ML also plays an important role in planning and interpret-
ing the outcomes of experiments, which is critical to bridge 
the gap between computational screening and experimental 
realization of new materials. For instance, by combining 
with other tools, including computations and historical data 
getting from the studies, it was possible for ML model to 
provide up to five initial synthesis recipes for the proposed 
compounds [101]. Specifically, target ‘similarity’ was eval-
uated by means of natural-language processing of a large 
database extracted from the literature, during which process 
the behaviors of a human carrying out the initial synthesis 
referred to known related materials were mimicked [129]. 
Furthermore, the active learning was made use of to identify 
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synthesis routes with improved yield. A database of pairwise 
reactions was continuously constructed by the autonomous 
laboratory from its experiments, which made it possible for 
the products of some recipes to be inferred (Fig. 10f, g). As 
a result, the search space of possible synthesis recipes could 
be reduced by up to 80% as many precursor sets reacted to 
form the same intermediates (Fig. 10j). Besides, knowledge 
of reaction pathways was used to give priority to the inter-
mediates with large driving force to form the target which 
could be obtained from the formation energies provided by 
the Materials Project (Fig. 10h, i).

4.2.3 � Experimental Realization

Experiments are usually carried out in order to realize the 
new materials either by researchers or by autonomous labo-
ratories. Some equations obtained can be used to predict 
unexplored molecules. For instance, 344 2D perovskites 
with high synthesis feasibility were screened out [87], which 
is illustrated in Fig. 10k. Given the fact that organic spacers 
in the prediction set were gathered from PubChem, some 
amines were commercial unavailable, leading to only 123 
predicted 2D AgBi iodide perovskites to be possible for 
further experimental synthesis. Experiment validation was 
then carried out. The synthetic chemical reagents were used 
as received. In order to eliminate the competing Bi-based 
phases, an excess amount of Ag2CO3 was made use of. For 
instance, an amount of Ag2CO3 and Bi2O3 were dissolved in 
concentrated hydroiodic acid with the heating temperature 
of 393 K. 1-(4-chlorophenyl) ethan-1- amine was added to 
H3PO2 in another beaker, and then, the two solutions were 
mixed, which was allowed to evaporate at the hot plate with 
the temperature of 323 K for a day. Finally, brownish red 
crystals precipitated at the bottom of the beaker could be 
obtained successfully. As for validation of the ML model, 
13 commercially available organic spacers without hydroxyl 
and ether were unbiased selected, and 8 of 13 predicted 2D 
AgBi iodide perovskites which showed high synthesis feasi-
bility were successfully synthesized with the success rate of 
61.5%, indicating a much higher success rate than chemical 
intuition (16.4%) (Fig. 10l). It was worthwhile mentioning 
that the repeatability and stability are critical to the experi-
ment validation, and some measures can be taken to ensure 
the repeatability. For instance, in this case, ten individual 
repetitions of the synthesis process for (NH2C5H8F2)4AgBiI8 

Fig. 10   a Schematic illustration of SISSO AI for integration of materi-
als parameters. Reproduced under the terms of the CC-BY license. [91] 
Copyright 2024, The Authors, published by American Chemical Society. 
b Schematic of the problem specific descriptors. c Receiver operating 
characteristic (ROC) curve and confusion matrix. d SHAP values for the 
six features. e Predicted synthesis feasibility. Reproduced under the terms 
of the CC-BY license. [87] Copyright 2024, The Authors, published by 
Nature. f Schematic of how to estimate which pairwise reactions occurred 
from a failed attempt. g Schematic of new precursors recommended by 
substituting at precursor relevant to the unfavorable pairwise reaction and 
h schematic illustration of the successful precursor set. i Free energy at 
each step. j Number of experiments for exhausting all unique reaction 
paths of each target or identifying an optimal path. Reproduced under the 
terms of the CC-BY license. [101] Copyright 2023, The Authors, pub-
lished by Nature. k Schematic of screening for the prediction set, and l the 
experiment validation. Reproduced under the terms of the CC-BY license. 
[87] Copyright 2024, The Authors, published by Nature. m Experimen-
tal outcome. n Barriers for the synthesis of the targets. Reproduced under 
the terms of the CC-BY license. [101] Copyright 2023, The Authors, pub-
lished by Nature
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were implemented to make an assess of the experimental 
reproducibility of the synthesis experiments.

An autonomous laboratory was designed for the acceler-
ated synthesis of novel materials integrated with compu-
tations, historical data, ML, and robots to conduct experi-
ments [101]. Recipes for synthesis of the novel materials 
were tested using a robotic laboratory, which was managed 
to perform the powder dosing, sample heating, and product 
characterization. The experimental outcome is demonstrated 
in Fig. 10m. It is proposed that the robotic experimentation 
efficiently accelerated the experimental synthesis of materi-
als. The high success rate also verified that it was possible 
for comprehensive ab initio calculations to discover novel 
and synthesizable materials effectively.

Some further analysis can be carried out about the barri-
ers for the synthesis of the targets [101]. For example, for the 
17 of the 58 targets evaluated by the A-Lab which were not 
realized even though active learning was taken advantages 
of, the ‘failure modes’ were classified as experimental bar-
riers which were marked as blue and computational barri-
ers which were marked as green in Fig. 10n. The continued 
efforts have been made by researchers to create new materi-
als experimentally in order to offer a way to validate the AI 
findings.

5 � Design Consideration of the AI Systems 
for New Materials

5.1 � To be More Autonomous

The intelligent systems are expected to be more autono-
mous with the capability to interpret data and make deci-
sions. Autonomy has realized from some aspects in regard 
to materials science. It is widely considered that a fusion 
of encoded domain knowledge, access to a variety of data 
sources, and active learning are critical for the accomplish-
ment of enhanced autonomy [178, 179].

One case in point was that an autonomous laboratory was 
successfully constructed which was managed to realize 41 
novel compounds after more than 17 days of continuous 
operation [101] (Fig. 11a). To be specific, the targets which 
were air-stable and unreported were identified via DFT-
calculated convex hulls consisting of ground states from the 
Materials Project and Google DeepMind, after which the 
synthesis recipes were pointed out by means of ML models 

that were trained on synthesis data from the studies. The 
recipes were then tested via a robotic laboratory through 
the powder dosing, sample heating, and characterization 
procedures. Phase purity was evaluated via X-ray diffrac-
tion (XRD), which was then analyzed by ML models trained 
on structures from the Materials Project and the Inorganic 
Crystal Structure Database (ICSD). In particular, both the 
phase and weight fractions of the synthesis products were 
extracted from their XRD patterns by probabilistic ML mod-
els that were trained on experimental structures from the 
ICSD. By inverting the container, the powder was dispensed 
through the mesh onto an XRD sample holder, after which it 
was flattened with an acrylic disk. The flattened sample was 
transferred into the diffractometer for X-ray measurements 
with 8-min scans that range from 2θ = 10° to 100°. For n 
given XRD pattern got from an unknown sample, XRD-
Auto Analyzer was utilized to recognize the constituent 
phases, and their weight fractions were also estimated. In 
the cases where high (> 50%) target yield was not achieved, 
new synthesis recipes would then be proposed by means of 
an active learning algorithm. It was noticeable that the whole 
sequence was fully automated.

Both the exploration and optimization were able to be 
realized via a chemical robot for the autonomous synthe-
sis of nanomaterials [89] (Fig. 11b). Particularly, as for the 
exploration mode, the structural diversity was accomplished 
via searching for diversity in the behavior space. The fitness 
was evaluated based on peak prominence and broadness cor-
related with the yield and mono-dispersity. A new batch of 
experiments was generated from previous synthetic condi-
tions for the realization of higher-performance samples. As 
to the optimization cycle, the target spectrum was defined 
via the extinction spectrum simulation of the nanoparticle 
with the shape derived from electron micrographs. The simi-
larity to the target spectrum and the sampling density in the 
synthetic space were taken into consideration by the algo-
rithm in order to come up with multiple optimal conditions. 
The workflow of the closed loop with the procedures of syn-
thesis, analysis, and design of new experiments is illustrated 
in Fig. 11c. A chemical reaction module that was able to 
perform parallel synthesis with up to 24 reactors was served 
as the core robotic hardware. The rotation of the Geneva 
wheel was taken advantages of to carry out the synthesis 
efficiently. The liquid handling, pH control, sample trans-
fer, and spectroscopic analysis could be successfully con-
ducted. CAD design and the experimental setup are shown in 
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Fig. 11d, e. The detailed setup of the autonomous platform 
for the exploration and optimization of the nanomaterials is 
demonstrated in Fig. 11f.

5.2 � To be More Universally Applicable

For the integration of material science and data-driven tech-
niques, it is always in high demand to provide some practi-
cal routes for typical laboratory environment even though 
limited experimental resources are available [87]. Addi-
tionally, for the materials highly dependent on the synthetic 
conditions, it is expected for the AI systems to be standard 
and robust, so that the high reproducibility can be realized 
[89]. When it comes to the guarantee of the synthesis repro-
ducibility, certain design of the platforms should be taken 
into consideration, and it is also essential to conduct the 
characterization at each step. For example, in an attempt 
to construct the autonomous platform for the synthesis of 
high yield and monodispersed nanomaterials which were 
very sensitivity to the synthetic conditions with the reagent 
concentrations, temperature, the order of reagent addition, 
and many other analogous factors included, workflow of 
the autonomous multistep synthesis was designed [89] as 
in Fig. 12a. Three graphs including synthesis, reaction, and 
hardware were required in this case, which was demonstrated 
by manes of synthesizing six uniquely shaped gold nanopar-
ticles obtained from the previous exploration (Fig. 12b). It 
was noted that the synthesis graph represented the multistep 
synthetic procedure in which each node represented a unique 
nanoparticle and each directed edge showed the hierarchi-
cal relation between these nanoparticles (Fig. 12c). It was 
worthwhile mentioning that in order to verify the reproduc-
ibility, the parallel synthesis of six gold nanoparticles was 
repeated three times, and the standard deviation in the UV-
Vis spectra could then be obtained, which is illustrated in 
Fig. 12d, e. Moreover, it was proposed that the unique sig-
natures for nanomaterials in accordance with their distinc-
tive synthetic protocols were in high demand, and therefore, 
the universal chemical description language χDL was taken 
advantages of to create the unique digital signatures, which 
is demonstrated in Fig. 12f.

In order to enhance the feasibility, it is ideal for the model 
trained on one dataset is managed to be used for other occa-
sions operated under different scenarios while using few 

training data. One case in point was that the battery charg-
ing curve prediction was able to be made by deep neural 
network (DNN) with 30 points collected in 10 min [180]. 
Particularly, a piece of the charging curve was applied as the 
input of a DNN. Key states could then be derived from the 
estimated entire charging curve. It turned out that a brand 
new DNN was expensive in regard to cost and time for the 
reason that extensive battery degradation tests for collecting 
new training data were required, and data in the real-world 
were usually incomplete and sparse. DNNs were effective 
to accomplish this task, which was attributing to its transfer 
learning feature. The transfer learning was able to resort to 
the similar knowledge learned from the source dataset so 
as to improve its performance on the target dataset, reduc-
ing the required data amount and saving computational 
resources. Voltage and capacity sequences gathered from 
any part of the charging curve could be made use of as the 
input to the DNN, which facilitated the collection of the 
input data for the real-world battery management (Fig. 12g, 
h). The entire constant-current charging curves could be 
estimated (Fig. 12i). Moreover, the proposed method was 
able to be quickly adapt to different batteries without much 
training effort.

In addition to the methods mentioned above, some other 
approaches can also be taken advantages of to make the 
intelligent systems more universally applicable. Particu-
larly, cross-scale data fusion is useful for mapping between 
microstructure and macroscopic performance by combining 
atomic simulation with macroscopic characterization, which 
makes sense for the autonomy and universalization of AI 
systems for materials. Besides, more comprehensive factors 
affecting the systems are required to be taken into considera-
tions. For example, the aggregation of most publicly avail-
able datasets was utilized for gathering various aging factors 
when designing the models for making battery lifetime pre-
diction. Moreover, a diversity of dataset is taken advantages 
of to make an investigation focused on the adaptation of the 
current models to different cycling protocols.

6 � Perspectives

Overall, the recent development, including but not lim-
ited to AI-assisted cognizance of existing materials and AI 
empowered new materials discovery, is reviewed in depth. 
Great progress has been made in the field of AI for material 
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Fig. 11   a Schematic of A-Lab to discover materials autonomously. Reproduced under the terms of the CC-BY license. [101] Copyright 2023, 
The Authors, published by Nature. b Closed-loop approach of exploration and optimization. c Workflow of the closed loop. d and e CAD 
design and the experimental setup. f Overall setup of the platform. Reproduced under the terms of the CC-BY license. [89] Copyright 2022, The 
Authors, published by American Association for the Advancement of Science
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Fig. 12   a Workflow of the autonomous multistep synthesis platform. b Six target nanoparticles. c Synthesis, reaction, and hardware graph. d 
UV–Vis spectra of samples. e Photographs of the distributed samples. f Illustrations of how to generate the unique digital signatures. Repro-
duced under the terms of the CC-BY license. [89] Copyright 2022, The Authors, published by American Association for the Advancement of 
Science. g and h Voltage and capacity sequences gathered as the input of DNN. i Output of the complete charging curve.  Reproduced with per-
mission from Ref. [180]. Copyright 2021, Elsevier
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science, owing to the enhanced intelligence and high-effi-
ciency (Table 1). The elaborate design lies in every aspect 
ranging from data exploits to the selection of algorithm 
(Tables 2 and 3). Progress has been made on the data clean-
ing, transformation, and processing, as well as proposing 
the approaches to address the problems when limited data 
are available. The elaborate selections of models have been 
made to enable the accuracy, simplicity, and computation 
efficiency. The diverse experiments have been conducted 
either by chemists or by robots so that the timely and accu-
rate validation can be guaranteed. AI has boosted the devel-
opment of various functional materials applied in a diversity 
of field, including solar cells, nanogenerators, crystals, semi-
conductors, and so on. There is a growing trend toward the 
AI systems that are fully autonomous and universally appli-
cable, which lead to the large-scale exploration and more 
abundant materials to be discovered. This review offers a 
keen insight into the design ideas for the AI empowered 
deep cognition of existing materials and fast discovery of 
novel materials, and some perspectives of the AI systems 
for materials applied in the future are proposed as follows:

(1)	 It is ideal for input data more flexible and easier avail-
able in the real-world applications. For instance, the 
intelligent systems for material discovery are expected 
to be effective even in a standard and simple labora-
tory. A lot of experimental synthesis data are required 
by the conventional ML, which proposes big challenge 
for simple laboratories. Recently, the scheme has been 
provided for the feasibility of material synthesis in 
the cases where the available experimental resources 
are limited, which combined ML techniques with 
small-scale experiments to accelerate the synthesis of 
two-dimensional perovskites in a typical laboratory. 
Additionally, it is also difficult for the investigation of 
catalysts in which occasion the collection of a large 
amount of consistent experimental data is always time-
consuming. This problem has been successfully solved 
by the SISSO that can identify potentially nonlinear 
and intricate correlations between small datasets with 
a large amount of candidate analytic functions taken 
into consideration. Besides, the similar issues also exist 
for the AI-assisted estimation of the maximum battery 
capacity where a complete charging/discharging curve 
is needed. However, the complete charge curves are 
hard to be obtained, since the charging process can start 
at various states, leading to the record of only pieces 
of charging/discharging curves. Accordingly, battery 
charging curve prediction can be made via DNN with 

voltage and capacity sequences collected from any 
part of the charging curve as the input. In the future 
research, more approaches are expected to be proposed 
to make the input data much easier to be collected in 
the real-world applications.

(2)	 The accurate and comprehensive estimations and pre-
dictions about materials assisted by AI are always in 
high demand. (a) It is expected that the accurate predic-
tion even for some complex issues which are strongly 
influenced by a series of factors can be realized. 
Recently, some efforts have been made for the accu-
rate prediction of gas adsorption by the DeepSorption 
which is a data-driven network with a KCL module, 
even though every piece of subtle structural informa-
tion is important for the correct description of adsorp-
tion properties. (b) Further to the accurate prediction, 
the comprehensive reflection of materials is also essen-
tial. For the degradation monitoring of battery which 
calls for the evaluation of battery states over the battery 
life, method has been developed so that the multiple 
states can be comprehensively reflected by means of 
using signals collected from daily battery operation. 
In the future work, more efforts can be made focused 
on the fully estimation of the materials with the data 
obtained from their daily operations when it is required 
by the practical application.

(3)	 Endeavors can be made on enhancing the transpar-
ency in the predictions of the ML models, which 
can facilitate the extracting of physical and chemical 
insights. (a) It is critical to select the models with bal-
anced predictive accuracy and interpretability, which 
can promote the development of new theories, for the 
reason that knowledge obtained from the interpretable 
ML models can accelerate the scientific understand-
ing. For instance, more reliable explanations can be 
offered by inherently interpretable ML models with 
functions that can be approximated well via simpler 
functions concerned with priori knowledge, playing a 
more important role in extrapolating. Universal ML has 
been developed for the synthesis of two-dimensional 
perovskites recently, which can underlie the structure–
property relationship in the HTE. (b) Moreover, the 
unveiling of predictive insights for properties by ML 
can further facilitate the optimization of the devices 
with enhanced performance. Efforts have also been 
made to unveil the complex relationships between pie-
zoelectricity and TENG performance via the principal 
component analysis (PCA). The in-depth understand-
ing of output offers insights into the energy conversion 
efficiency, and then the nanogenerator performance can 
be optimized.
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(4)	 The explorations on more abundant types and proper-
ties of functional materials assisted by AI are expected 
to be made, so as to make full use of AI. a) More fac-
tors and indexes are expected to be investigated by 
the data-driven techniques in material science. The 
synthesizability of novel materials with a variety of 
oxides and phosphates included has been explored by 
an autonomous laboratory combining computations, 
historical data, and ML. In the future, more factors 
with microstructures of materials and performances 
of various devices can be taken into consideration. b) 
In addition to inorganic materials and metals, AI can 
also be applied in the research of organic materials and 
composites. Multitask ML has been taken advantages 
of to predict the polymer–solvent miscibility. Active 
learning has also been used to make exploration of tran-
sition metal complexes. In the future work, more efforts 
can be made to investigate abundant types of materials 
assisted by AI to achieve the large-scale exploration 
and accelerated material discovery. c) In regard to the 
in-depth cognition of existing materials, the mapping 
of physical stimuli to a variety of perceptual features 
is in high demand. Detailed maps have led to a better 
understanding of visual and auditory coding. A princi-
pal odor map has also been proposed for olfactory per-
ception. Accordingly, future research can be conducted 
focused on the revealing of the relationships between 
the physical stimuli and more diverse perceptual char-
acteristics.
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