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HIGHLIGHTS

e A comprehensive review focused on the recent advancement of artificial intelligence (AI) powered materials research from various

aspects, including material discovery, synthesis, prediction and validation, is presented.

e The design strategies for the enhanced performance of Al for materials can be implemented from various procedures for cognizance
of existing materials and discovery of novel materials with the data processing, algorithm design and automated laboratory construc-

tion included.
® A broad outlook on the future considerations of the Al systems for material is proposed.
ABSTRACT Recent years have witnessed the significant breakthrough in the field

of new materials discovery brought about by the artificial intelligence (AI). Al has

successfully been applied for predicting the formability, revealing the properties, and

guiding the experimental synthesis of materials. Rapid progress has been made in

Data cleaning and
transformation

For material discovery

the integration of increasing database and improved computing power. Though some
reviews present the development from their unique aspects, reviews from the view
of how AI empowered both discovery of new materials and cognition of existing
materials that covers the completed contents with two synergistical aspects are few.

Here, the newest development is systematically reviewed in the field of AI empow-

ered materials, reflecting advanced design of the intelligent systems for discovery,

synthesis, prediction and validation of materials. First, background and mechanisms ICRE S = To provide

. . . . . . ""mP@ ® = 2% mll‘;crlgved yield
are briefed, after which the design for the Al systems with data, machine learning e —
and automated laboratory included is illustrated. Next, strategies are summarized ““Cloud high- ‘f‘J&é’e"!i',:"es S

performance
computing

to obtain the Al systems for materials with improved performance which compre-
hensively cover the aspects from the in-depth cognizance of existing material and
the rapid discovery of new materials, and then, the design thought for future Al systems in material science is pointed out. Finally, some

perspectives are put forward.
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1 Introduction

The discovery and application of advanced materials and
devices have promoted humans to combat the major global
challenges [1-9]. Artificial intelligence (AI) has proved
to be powerful tools for new material discovery [10-18],
device performance prediction [19-24], and system perfor-
mance improvements [25-32], and the emergent predictive
capability has been verified with the assistant of increasing
data, advanced algorithms and improved computing power
[33-41] (Fig. 1). In particular, many novel information
processing systems are developed, which will facilitate the
progress made in the material science [42—46]. At the mean-
time, the rapid progress in the field of functional materials
and devices has proposed high demand for Al [8, 47-50].
Novel methods for generating diverse candidate structures
can be created, which can improve the efficiency of mate-
rial discovery to a large extend [51, 52]. A large number of
novel structures can be discovered by Al, many of which are
beyond what human intuition can reach. Furthermore, as to
the cognition of the existing materials, it is possible for Al to
map the relationships between their structures and properties
so as to make the prediction for previously uncharacterized
properties [53-59] and device performances [60-72]. Al
can also meet the challenge in illustrating the relationship
between the physical properties of the stimuli in the exter-
nal environment and their perceptual signals [73]. AI which
can overcome the shortcomings of traditional trial-and-error
method in material discovery and cognition has found its
wide applications in many advanced functional materials
[74-86], like two-dimensional perovskites [87], multicom-
ponent oxides [88], nanomaterial [89], and silicon-oxygen
compounds [90], which has prompted the development of
many domains, such as information processing, clean energy
harvesting, and catalysis discovery [51, 91-95].

The experimental synthesis of materials is also facilitated
greatly by Al since the data-driven techniques, especially
machine learning (ML), are managed to find the structure-
property relationships of the materials, indicating the types
of materials that are more feasible to be prepared, which
used to be very difficult and time-consuming for humans to
find the suitable methods and prepare new materials [87].
Moreover, efficient synthesis recipes can also be offered with
the assistance from Al, which can simplify the manufac-
turing of complex materials and accelerate the synthesis of
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theoretically predicted materials to a large extend [88]. High
throughput and reproducibility can be realized at the same
time by the robotic laboratories, making the exploration on
the large-scale hypotheses to be rapid and reproducible [88].

Recent years have witnessed a rapid development of the
Al for materials science. The discovery of 2.2 million struc-
tures below the current convex hull has been realized with
the efficiency of materials discovery promoted by an order
of magnitude, among which many have been beyond the
previous human chemical intuition [51]. A principal odor
map has been developed which can make odor quality pre-
diction for previously uncharacterized odorants [53]. The
accurate and fast structure-adsorption prediction has been
made by DeepSorption, a spatial atom interaction learning
network [102]. The structural information has been provided
for the disordered silicon at very-high pressure of up to 20
GPa via atomistic ML models, offering the predications for
the material systems even under experimentally challenging
conditions [103]. As to the Al-assisted material synthesis, a
universal framework has been developed for the preparation
of two-dimensional perovskites with the ability of increas-
ing the success rate of the synthesis feasibility by a factor
of four compared to the traditional methods, which can be
used in the typical laboratory [87]. It is noticeable that an
autonomous laboratory has been successfully developed in
order to achieve the accelerated synthesis of novel materials,
which was managed to realize 41 novel compounds from a
set of 58 targets under continuous operation of over17 days
[101]. As a result, many original works of high quality have
been published with the citation frequency growing sharply
over time (Fig. 2). Tactics have been developed for the Al
empowered materials from many aspects, including synthe-
sis, discovery, prediction, and variation, to realize the large-
scale exploration, high throughput, and accelerated material
discovery, which is demonstrated in Fig. 3. Several reviews
relevant to the Al for material science are reported, and
each of them has its own emphasis, with how Al promotes
the membrane design [104], catalyst exploration [105], and
development of other functional materials [106] included.
Besides, other reviews provide us with the inspirations from
other useful aspects, like the importance of interpretable
ML for materials [107]. However, reviews from the view
of how Al empowered both discovery of new materials and
cognition of existing materials that covers the completed
contents with these two synergistical aspects of cognition
and discovery are few.

https://doi.org/10.1007/s40820-025-01945-4
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Fig. 1 Overview of Al for materials with the data, algorithm, and computing power as fundamentals to support materials discovery and cog-
nizance. a and b Reproduced with permission from Ref. [96]. Copyright 2022, Elsevier. ¢ Reproduced under the terms of the CC-BY license
[97]. Copyright 2024, The Authors, published by Wiley. d Reproduced with permission from Ref. [98]. Copyright 2024, Wiley—VCH GmbH. e
Reproduced with permission from Ref. [99]. Copyright 2024, American Chemical Society. f Reproduced under the terms of the CC-BY license
[100]. Copyright 2024, The Authors, published by Nature. g Reproduced under the terms of the CC-BY license [101]. Copyright 2023, The
Authors, published by Nature. h Reproduced under the terms of the CC-BY license [91]. Copyright 2024, The Authors, published by American
Chemical Society. i Reproduced under the terms of the CC-BY license [51]. Copyright 2023, The Authors, published by Nature

To be specific, the basic background of Al systems pow-
ered material research was introduced first, and then, the lat-
est development in regard to the data collection and process-
ing, the algorithm selection, and the automated laboratory
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design for the Al systems applied in material science were
demonstrated. Some important factors which should be
under consideration when designing the advanced Al sys-
tems were discussed, including the strategies of how to
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Fig. 2 Publication number and citation frequency of the work focused on the artificial intelligence empowered materials discovery and predic-

tion during the recent five years

obtain the systems with enhanced performance, the features
of the future Al systems for materials, and so on. Last but
not least, some ideas with respect to the outlook of Al for
materials were proposed.

2 Mechanism of Al for Cognizance
of Existing Materials and Discovery
of Novel Materials

Computing power plays a fundamental role in Al systems
for materials, and data and algorithm are also of great
importance in these systems [33, 109]. The improved com-
puting power is managed to unlock modeling capabilities,
which is beneficial for highly accurate and robust learn-
ing [51]. First-principles calculations based on density
functional theory (DFT) have been made use of by com-
putational approaches championed by the Materials Pro-
ject (MP) [110], the Open Quantum Materials Database
(OQMD) [111], NOvel MAterials Discovery (NOMAD)
[112], and Automatic FLOW for materials discovery
(AFLOWLIB) [113]. As shown in Fig. 4, the mechanism
related to how Al empowers material research can be

© The authors

mainly illustrated from the aspects of the existing mate-
rial cognizance and the novel materials discovery.

Al makes contribution to map molecular structures to
their properties in regard to cognition of the existing mate-
rials [115], so that the relationships can be got and predic-
tion of the properties for previously uncharacterized mate-
rials can be made [53]. It is worthwhile mentioning that
efforts have been made to deal with the situation where the
structurally similar pair is not the perceptually similar pair,
and the predictive modeling in diverse perceptual aspects
has been realized by neural networks [116]. As a specific
type of graph neural network (GNN), the message pass-
ing neural network (MPNN) can be used to map chemical
structures to percepts. Each molecule was described as a
graph with each atom and bonds represented by a series
of characters in details, after which the fragment weights
can be optimized. A reference dataset of many molecules
described by multiple corresponding property labels is
needed to be curated (Fig. 4a). The models are then to be
trained with their parameters being optimized to generate
the maps (Fig. 4b). The reliability of the model in describ-
ing the properties can then be verified by experiments to

https://doi.org/10.1007/s40820-025-01945-4
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Fig. 3 Tactics for the Al empowered material synthesis, discovery, prediction, and validation. a Reproduced under the terms of the CC-BY
license. [87] Copyright 2024, The Authors, published by Nature. b Reproduced under the terms of the CC-BY license. [51] Copyright 2023, The
Authors, published by Nature. ¢ Reproduced under the terms of the CC-BY license. [108] Copyright 2023, The Authors, published by American
Chemical Society. d Reproduced under the terms of the CC-BY license. [101] Copyright 2023, The Authors, published by Nature

justify whether a generalized description of structure-
property relationships can be obtained (Fig. 4c), and the
results can also be compared with that of the conventional
structure-based maps to verify its efficiency.

In addition to the cognizance of the existing materi-
als, Al also plays a vital role in the discovery of novel
material [117-121]. Researchers are capable of conduct-
ing searches by substituting similar ions and enumerating
prototypes, and endeavors have been made to improve the
search efficiency of these approaches. In order to obtain
more diverse candidates, neural networks can be applied
to guide the searches [51]. It is proposed that a broader
exploration can be made by neural networks while main-
taining the efficiency. To be specific, structural candidates
can be obtained by modifications of available materials,
and methods have been built to enable incomplete replace-
ments, so that the set of substitutions can be augmented

u\
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largely. DFT, which is an important method for calculating
material properties in materials science, plays a fundamen-
tal role of bridging between the microscopic electronic
structure and the macroscopic properties of materials.
As for the structural candidates, the energy and other key
properties of materials are calculated through DFT to ver-
ify the accuracy of the model’s prediction. The new data
obtained from DFT calculations can be added to the train-
ing set to train more powerful and robust models in the
next round of active learning. Large scale of new materials
can also be identified by means of high-throughput com-
putation [101]. For instance, large-scale ab initio phase-
stability data can be gathered from the MP and Google
DeepMind [101].

Al is indispensable for the accelerated realization of new
materials and the optimization of their design rules [91,
122—-127]. After the identification of new materials, ML can

@ Springer
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then be applied to screen the novel materials with excellent
performance and high synthesis feasibility (Fig. 4d-g). The
critical physicochemical parameters related to the measured
performance can be identified as materials genes among many
candidate parameters obtained from experiments and initio

© The authors

simulations. By means of using a ML model, novel materials
with high performance are able to be suggested. Various reac-
tion conditions, including precursors, intermediate products,
additives, solvents, and temperature, should be taken into con-
siderations for materials synthesis, which usually consumes a

https://doi.org/10.1007/s40820-025-01945-4
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lot of time for the experts [128]. The data-driven techniques
are now used for screening out materials with high synthesis
feasibilities by means of finding out the structure-property
relationships, making it possible for the experimental realiza-
tion of computational predictions [87].

The autonomous laboratory can be introduced to bridge the
computational screening and experimental realization [101].
By the combined usage of computations, historical data, and
ML, the plan and interpreting of the experimental outcomes
can be made (Fig. 4h). ML model is able to provide the initial
synthesis recipes for the proposed compounds, which can pro-
mote the material preparation (Fig. 41). To be specific, the ini-
tial synthesis recipes can be obtained by the natural-language
models learning to evaluate target ‘similarity’ via natural-
language processing of a large database from the literature,
which is similar to how a human make an attempt to begin
initial synthesis according to known related materials [129].
It is worthwhile mentioning that analysis of the failed synthe-
ses makes sense to offer direct guidance to improve materials
screening and synthesis design [101], which is illustrated in
Fig. 4j. Experiments will continue by taking advantages of
autonomous reaction route optimization and solid-state synthe-
sis, which is an active learning algorithm integrating ab initio
computed reaction energies with observed outcomes once the
yield does not achieve the expectation [130]. Experiments can
be conducted by robotics. It is verified that autonomous work-
flows based on liquid handling can be demonstrated in organic
chemistry [131-134], and recently, it is also possible for A-Lab
to handle and characterize solid inorganic powders which used
to be a challenge [101].

3 Design of the Intelligent Systems for New
Materials

3.1 Data Collection

Material data paly fundamental and important roles in the
intelligent systems [135]. To be specific, the experimen-
tal synthesis data provided by studies, the first-principles
calculations, and laboratory experience can be served as
resources for the database [87]. For example, a design syn-
thesis paradigm incorporated with ML was developed for
Ni-rich cathode material, in which the boundary condi-
tions for various reactions of precursors were provided by
thermal/kinetic simulations, and a digital image dataset

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

was constructed by some necessary experiments [18]
(Fig. 5a).

Abundant datasets with balanced data to overcome the
problems of overfitting, underfitting, and limited extrapo-
lating abilities of ML are expected to be provided [136,
137]. The data processing that includes data cleaning and
data transformation can be carried out to make sure that
the collected data are integrated [96]. For example, in an
attempt to develop the predictive models for real-time
voltage output of triboelectric nanogenerator (TENG),
data cleaning was conducted to eliminate incomplete or
inconsistent data, leading to a refined dataset with 279
reliable data points, which guaranteed the quality and con-
sistency of the dataset (Fig. 5b). Pearson correlation coef-
ficient which revealed the linear relationship between the
two variables was demonstrated in Fig. 5c. Particularly, a
negative correlation demonstrated that when the values of
these parameters increased, there was a high probability
for the output voltage to decrease, and then, the specific
mechanisms underlying these relationships could be fur-
ther investigated.

Efforts have been made to meet the challenge of limited
available dataset for model evaluation [98]. For instance,
a novel evaluation method was developed to screen small
molecules served as passivation materials for perovskite
solar cell when the available dataset was limited (Fig. 5d).
Particularly, 20% of test data were randomly extracted,
while the remaining parts were used as the training data,
followed by calculating model accuracy which was a crit-
ical criterion for the evaluation of classification model.
The extracted data were then reintegrated into the estab-
lished dataset, and another 20% of the data was randomly
selected as a test set, the process of which was repeated
100 times. The final model accuracy was then obtained
as the averaging of the accuracy values from these 100
calculations.

High-performance computing (HPC) is another strong
support for the accelerated and large-scale material discovery
and cognizance [99]. Endeavors have been made to put for-
ward the strategies which can offer large-scale computational
resources for the screening and experimental validation. It is
pointed out that cloud HPC can meet this challenge which has
been verified to be managed to train and host large-scale Al
models like GPT-4 asking for a massive number of graphi-
cal processing units (GPUs), and therefore, it is promising to
be applied for material research with an increasing number

@ Springer
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Fig. 5 a Schematic illustration of the design synthesis paradigm incorporated with ML, which indicated the resources for the database. Repro-
duced under the terms of the CC-BY license [97]. Copyright 2024, The Authors, published by Wiley. b Schematics of the procedures for mod-
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illustration of the cloud environment for materials discovery workloads. Reproduced with permission from Ref. [99] Copyright 2024, American
Chemical Society

of material candidates to be evaluated computationally. One  materials discovery is shown in Fig. Se. Particularly, the
case in point was that ML and cloud HPC were combined, ML models and DFT code were built into Docker container
and the schematic illustration of the cloud environment for ~ images. When operated, a workstation virtual machine (VM)

© The authors https://doi.org/10.1007/s40820-025-01945-4
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fetched the container images to NetApp Files storage mounted
to the workstation and job queues or VM scale sets. The com-
putational jobs were submitted to the VM scale sets via the
SLURM job scheduler. Data and metadata were kept in a
searchable database. It was proved that the system was man-
aged to quickly navigate through more than 32 million candi-
dates as well as predict around half a million potentially stable
materials.

Another issue that cannot be ignored is that the training
data used in many studies is often biased toward successful
cases reported in the literature or databases, which will lead
to the inconsistence between the data distribution and the real-
world distribution. This imbalance can leave an impact on the
generalization ability and robustness of the models. Some
strategies can be taken advantages of to address these issues.
For instance, negative sample construction is one of the most
fundamental strategies. Besides, active learning enables the
model to actively select the samples that most need labeling,
prioritizing the supplementation of negative or marginal sam-
ples which are most crucial for the model’s improvement. In
addition, the multi-source data integration is another critical
method for solving this problem. By integrating data from dif-
ferent sources and of different types, the sample distribution is
enriched, thereby reducing the bias.

3.2 Machine Learning Algorithms

The development of data-driven techniques has significantly
revolutionized the new material discovery, which is able to
provide physical insights from the existing data in depth
[87]. ML has developed rapidly to meet the multidimen-
sional challenges in the material field [138-146]. ML can
be used to reveal the structure-property relationship hidden
behind a large number of experiments. Materials with high
synthesis feasibility can be screened out with the assistance
from ML, accelerating material synthesis even with limited
experimental support [87]. Rapid predictions for structures
and properties can be made by ML even for new materials.

The effective transformation of experimental data into
model-ready input features plays fundamental and important
role in building intelligent models, and some explorations
have been made about how to realize the effective transfor-
mation. In some cases, the differential features, rather than
the original curves or data, are focused. Besides, instead
of processing data with a single branch, the integration of

| SHANGHAI JIAO TONG UNIVERSITY PRESS

two learning perspectives is carried out, making it possi-
ble for the models to learn from two dimensions. Addition-
ally, designs can be conducted by making the input features
highly correlated with the prediction target, reducing the
learning burden of the model, and therefore, the prediction
efficiency can be improved. One case in point was that a
deep learning (DL) framework designed for the prediction
of battery lifetime was developed by introducing an inter-cell
learning mechanism to make prediction of the lifetime differ-
ences between two battery cells with the aim to represent the
connections between cells cycled under different conditions
[147]. In addition, the cycle-level features were fed into two
separate branches, which contains the intra-cell difference
curves and the inter-cell difference curves. Moreover, the
correlations between the constructed features and the predic-
tion targets for both intra-cell and inter-cell learning were
investigated, and it was verified that a simple feature com-
puted on inter-cell difference curves was managed to differ-
entiate lifetime differences, even with a reference cell from a
different battery chemistry, indicating its direct relationship
between the constructed features and the prediction targets.

The appropriate selection and adaptation of models are
imperative to develop the Al systems for the material sci-
ence. It is worthwhile mentioning that the features of the
model should be matched with the task requirements and
data characteristics. To be specific, the complexity of the
data should be evaluated, and then, corresponding models
which are suitable for the tasks can be utilized. For instance,
some basic linear models relying such as the ‘Var.” and ‘Dis.’
can show commendable performance on the initial datasets,
while they are not qualified for some complex datasets.
Besides, some models relying on handcrafted features can
be suitable for the task scenarios with stable data distribu-
tion, while for the tasks with diverse scenarios, models with
the features of automatic learning should be given priority.
Additionally, diverse and highly challenging test sets can be
used to evaluate whether the models are appropriate.

ML algorithms are selected according to classification
accuracy, simplicity, computation efficiency, and so on
[148-151]. Different ML algorithms have their own char-
acteristics. For modeling with small dataset, support vector
machine, linear regression, and gradient boosting are usually
suitable [152, 153]. For example, in an attempt to improve
the output performance of polyvinylidene fluoride (PVDF)
nanogenerators, three decision tree ML models, including
decision tree regression (DTR), random forest (RF), and

@ Springer
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Fig. 6 a Different algorithms with their own characteristics for the » a)
predictive TENG framework. Schematic of b DTR, ¢ RF, and d GBR.

Reproduced with permission from Ref. [96] Copyright 2022, Else-
vier. e Computational flow of the ML for precursor design. f Model
based on PMD-LSTM algorithm. g ML-assisted design for 3 pm
precursors. Reproduced under the terms of the CC-BY license [97].
Copyright 2024, The Authors, published by Wiley. h Workflow of the
efficient screening of 2DEMs. Reproduced with permission from Ref.
[157] Copyright 2024, Wiley. i Details of the A-Lab. Reproduced
under the terms of the CC-BY license. [101] Copyright 2023, The
Authors, published by Nature. j Schematic illustration of the robotic
inorganic materials synthesis, and k photograph of the laboratory. 1
Tllustration for robotic chemists enabled large-scale exploration com-
pared with human chemists. m Illustration for robotic chemists ena-
bled both the high reproducibility and throughput. Reproduced under
the terms of the CC-BY license. [88] Copyright 2024, The Authors,
published by Nature

gradient boosting regression (GBR), were chosen to develop
the predictive models [96], which is illustrated in Fig. 6a. To
be specific, DTR was extensively used for regression tasks, for
which a binary tree structure was constructed by recursively
splitting the TENG data based on the feature values (Fig. 6b).
DTR was featured with its interpretability since the tree struc-
ture provided a clear visualization of the decision-making pro-
cess. As shown in Fig. 6¢, the RF combined multiple decision
trees in order to enhance prediction accuracy, which was able
to capture complex relationships between the input and out-
put. As to GBR, decision trees were built sequentially with
the subsequent tree reducing the errors made by the previous
trees. The predictions of multiple weak models were incorpo-
rated to generate a strong model [154—156] (Fig. 6d). Another
case in point was that the LSTM algorithm was applied in a
design synthesis paradigm assisted with ML for Ni-rich cath-
ode material, since the augmented datasets were still tiny [97]
(Fig. 6e). It was proposed that the LSTM unit possessed its
own advantages over RNN and CNN in the aspects of dealing
with small sample data (Fig. 6f). ML-assisted design for 3 pm
precursors is illustrated in Fig. 6g.

Recently, endeavors have also been made to develop
atomic-scale models of complex materials [158, 159]. Large
datasets and ML have emerged, which are suitable for these
more complex systems [160]. One case in point was that
active machine learning was applied to offer a unified com-
putational description of the silicon-oxygen systems, which
were among the most important materials with complexity
[90].

Various approaches have been used to deal with small
dataset limitations, such as transfer learning [161], autoen-
coders [162], and active learning [163, 164]. These methods

© The authors
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can address the issues including noise, data imputation, and
some other problems. Active learning strategies have been
used more frequently for the classification scenarios compared
to rigorous regression predictions. Recently, ML method has
been adopted as the core component to screen low-contact
electrode when limited data are available [157]. The detailed
workflow is shown in Fig. 6h. To be specific, 2D electrode
materials (2DEMs) were selected as numerical vectors using

https://doi.org/10.1007/s40820-025-01945-4



Nano-Micro Lett. (2026) 18:109

Page 11 of 39 109

feature descriptors for the reason that it was verified to miti-
gate the Fermi level pinning (FLP) effect and maintain excel-
lent gate control in low-dimensional devices (Step 1). The fea-
ture distribution was deemed as a baseline for active learning,
and the representative data points were collected iteratively.
The consistency between the feature distribution of the train-
ing subset and overall sample features was made use of as the
active learning evaluation function (Step 2). An autoencoding
regularized adversarial neural network (ARANet) to perform
model training in a scenario with a limited contact-property
dataset generated through DFT calculations was developed
(Step 3 and 4). Moreover, a novel feature-adaptive variational
active learning (FAVAL) algorithm was introduced to work
with ARANet, obtaining a valuable training subset. It was
worthwhile mentioning that the jointly trained FAVAL and
ARANet schemes outperformed typical small-data models
using the same training datasets. Preliminarily screened mate-
rials could be accomplished (Step 5). It was noticeable that
this scheme showed exceptional performance when trained
with only 15% of the total data points.

The applicability of ML models in dealing with small-
sample data and complex material systems and the generali-
zation ability of the models are all important aspects for the
Al empowered materials systems. Some novel approaches
have been put forward to deal with these problems. For
instance, some new mechanisms have been adopted when
tailoring the frameworks. It was pointed out that many mod-
els for the battery lifetime prediction were developed and
validated only across a restricted set of aging conditions,
and therefore, efforts should be made to improve their exten-
sive applicability. In contrast to many traditional models that
were mainly focused on intra-cell learning by means of cap-
turing early variations of a single cell to implement the pre-
diction of its long-term lifetime, a framework was proposed
to integrate inter-cell learning [147]. It was worthwhile
mentioning that the stability of lifetime predictions for a
target cell under varied aging conditions could be enhanced
by combining it with the conventional single-cell learning.

Another factor that should be taken into considerations is
the general approaches for interpretability, which can be real-
ized by taking advantages of a series of methods, like the
integration of knowledge, algorithm design, and visualiza-
tion techniques. For instance, material knowledge can be inte-
grated with ML to enhance the model generalization. Besides,
design of the algorithm can be conducted. An interpret-
able ML combining the RF model and the Shapley additive

| SHANGHAI JIAO TONG UNIVERSITY PRESS

explanation (SHAP) analysis has been proposed to accelerate
the identification of the critical factors that make influence on
the formation energy among the complex variables introduced
by doping in Ni-rich layered oxide cathodes [165].

The experimental validation of these predictions by quan-
titative metrics is a critical procedure for these Al systems.
It is ideal to conduct the validation by comparing the per-
formance of different models on multiple datasets with a
series of quantitative metrics, like root-mean-squared error
(r.m.s.e.), mean absolute error (MAE), and mean absolute
percentage error (MAPE), for which the smaller deviation
between the predicted value and the true value indicates the
stronger predictive ability. Besides, it is better to make the
comparison between the proposed model and the other mod-
els, and different datasets are expected to be used. Moreover,
it is also of importance to evaluate the reliability in dealing
with critical and complexed tasks in the real-world applica-
tions. Additionally, the error range should also be taken into
considerations to make a full evaluation of these predictions.
For instance, in an attempt to design the DL framework for
making a prediction of battery lifetime, the performance
comparisons among the proposed models and other models
have been made by using a series of indexes, like r.m.s.e. and
MAE with the error range being indicated, as well [147]. It
was noticeable that error bars when combined with other
statistical quantities such as standard deviation could visu-
ally represent the extent of variation of the corresponding
models across multiple trials. In this case, when comparing
the performance of different models, error bars enabled a
more comprehensive assessment of the strengths and weak-
nesses of various models.

3.3 Autonomous Laboratory Validation

Material synthesis is featured with complexity with many
factors like the kinetics and thermodynamic stability of
materials, the synthesis routes, synthetic methods, and pre-
cursor species being taken into considerations [87]. The
automated synthesis and characterization are important parts
of the closed-loop Al systems for materials [166]. Robotic
laboratories can be served as excellent platforms for data-
driven experimental synthesis science to guide human and
robotic chemists [88, 167]. It is worthwhile mentioning that
the autonomous workflows based on liquid handling have
been successfully realized for organic chemistry [131-134].
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In regard to dealing with and characterizing solid inor-
ganic powders, an autonomous laboratory has been built
for the accelerated preparation of new materials [101]. The
A-Lab performed experiments with three integrated stations
for different tasks, including sample preparation, heating
and characterization, and robotic arms were responsible
for transferring samples and labware, which is illustrated in
Fig. 6i. It turned out that the A-Lab was capable of realizing
41 novel compounds from a set of 58 targets with a success
rate of 71% after continuous operating over 17 days.

It was pointed out that both the high reproducibility
and throughput could be realized by the robotic laboratory
simultaneously [88]. For instance, a robotic laboratory was
taken advantages of to carry out the large-scale valida-
tion of precursor selection. As shown in Fig. 6j, k, a full
ceramic synthesis workflow could be accomplished auto-
matedly by a robotic arm, including precursor preparation,
ball milling, oven firing, and product characterization. As
illustrated in Fig. 61, exploration of synthesis hypotheses
in large-scale could be achieved by robotic laboratory,
while it took a lot of human experimentalists many years
to finish such intense work. Furthermore, it was difficult to
weight the throughput and reproducibility for large-scale
human work. In contrast, both the high reproducibility
and throughput could be realized simultaneously by the
robotic laboratory for the reason that it was possible for a
robotic laboratory to produce single-source experimental
data with high reproducibility, which is shown in Fig. 6m.
It turned out that a comprehensive amount of synthesis
hypotheses was managed to be explored rapidly and repro-
ducibly by the robotic laboratory which could be served
as a novel platform for the data-driven synthesis science.

Progress has been made to apply autonomy in a diver-
sity of aspects in materials research, with robotic, the opti-
mization of material yield, the improvement of photovol-
taic performance, and the enhancement of photocatalysis
activity included. However, in contrast to human research-
ers who have rich background knowledge facilitating their
decision-making, some limitations still exist for the A-Lab
in these aspects, and therefore, a fusion of encoded domain
knowledge, the access to various data sources, and active
learning are especially important for the autonomy. In
addition to this issue, discrepancies between the current
predictions and the experimental outcomes are needed to
be further addressed.

© The authors

Another challenge that is met for the Al applied in mate-
rial science is that there is gap between the predicted results
and the feasibility of the experiment. Such an issue in result
from a series of aspects. For example, in the early stage
of new material research and development, the data avail-
able is scarce, and there exists the problem of overfitting
or underfitting. Besides, the economic imbalance between
the verification system and the experimental cost can also
lead to the gap between the predicted results and the experi-
ments. These gaps are usually in high relationship with the
cognitive gap among data, models, and experiments. Cross-
scale data fusion (combining atomic simulation with macro-
scopic characterization), the human-machine collaborative
experimental design (reinforcement learning and domain
experts), and other measures can be taken for narrowing the
gap between the predictions and practice.

4 Strategies to Design Al Systems
for Materials with Enhanced Performance

4.1 For Cognition of Existing Materials
4.1.1 Existing Data Leverage

The materials used for training can be collected from
some datasets [102]. To be specific, the knowledge of
porous materials and their physisorption behaviors are
beneficial for the ML-enabled rapid discovery of mate-
rials with desired adsorption properties [168, 169]. For
instance, in order to develop a spatial atom interaction
learning network for the prediction of gas adsorption
(Fig. 7a), computation-ready, experimental MOF (CoRE-
MOF), hypothetical MOFs (hMOF) and EXPMOF data-
sets were used. To be specific, COREMOF dataset includes
over 11,000 computation-ready and experimental three-
dimensional metal-organic frameworks (MOFs) obtained
from Cambridge Structural Dataset and Web of Science,
while hMOF dataset includes over 300,000 hypothetical
MOFs. Additionally, the EXPMOF dataset is from experi-
ments. In this case, the original data of crystalline materi-
als could be directly used as the input of DeepSorption
without information loss, which is illustrated in Fig. 7b,
and the outputs including gas adsorption isotherms could
then be obtained (Fig. 7d). It is worthwhile mentioning
that targeted data processing methods were developed.

https://doi.org/10.1007/s40820-025-01945-4
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The homemade MatFormer (Fig. 7¢) featured with Multi-
scale Atom-attention (MSA) was used to process crystal-
line material data for the reason that it was managed to
provide conception of the interactions between different
defined atoms, which is shown in Fig. 7e. The judgment
of the interatomic interaction at different scales could be
promoted by the exchange of information between atom
pairs in different distances.

The computations can also be based on experimen-
tal and characterization results [170]. Recently, ML has
been exploited for exploitation of gas-sensing descriptors,
which can predict the gas-sensing performance of oxides
(Fig. 7f). To be specific, data were obtained for five pris-
tine oxides that were commonly applied as gas sensors.
The input features were based on the characterization,
computational results, and physical properties of the mate-
rials and gas molecules. The importance of the features
was ranked, and six important features were proposed as
the descriptors. It was worthwhile mentioning that many
properties such as morphology, band structure, and surface
composition could exert significant effects on gas-sensing
reaction, and therefore, the oxides were characterized by
a series of tests.

For some complex cases, it is necessary to construct big
dataset to fully reveal the underlying mechanisms and the
optimal direction for material design [171]. For example,
carbon—carbon (C—-C) coupling is of importance in the
electrocatalytic reduction of CO, in order to produce green
chemical. However, the reaction network is usually complex.
To address this problem, big data analysis was introduced
into the computational screening of electrocatalysts for
complex C—C coupling reaction networks (Fig. 7g). It was
worthwhile mentioning that a big dataset with over 45,000
data points was constructed, covering all possible coupling
combinations of six precursor species as well as adsorption
configurations on the active site. As illustrated in Fig. 7h,
378 adsorption substrates made use of ABCu triatom active
sites with 27 metal replacements for A and B, and iterative
sampling was taken advantages of to obtain the training set
for ML.

In addition to the construction of big dataset, some
methods have been proposed for the cases in which the
dataset is quantitatively limited and qualitatively biased
[108]. For instance, a ML framework was developed for the
highly generalizable prediction of temperature-dependent
Flory-Huggins x parameters. The experimentally observed

© The authors

X parameters for 1190 samples were used for training the
model. However, this dataset was lack of chemical diver-
sity, and the experimental ¥ parameters were biased, which
limited the application of the model. Another significant
bias existed in the aspect that some observable x param-
eters would be given only for polymer-solvent molecules
in a miscible state due to technical limitations. It could be
observed that the majority in the experimental y parameter
dataset was consisted of soluble samples. Specifically, it was
difficult to realize experimentally determining x parameters
for an immiscible polymer-solvent system in which no single
phase appeared. In order to address this issue, two auxiliary
datasets were constructed, among which one was extracted
from PoLyInfo with a list of 29,777 soluble and insoluble
polymer—solvent pairs and the other was an in-house dataset
obtained by making use of quantum chemistry calculations
with COSMO-RS. It was proposed that polymers and sol-
vents in PoLyInfo were distributed over a wider chemical
space. It was verified that the applicability domain of the
model was managed to be successfully expanded by learning
with the two additional large datasets.

4.1.2 Structure and Property Prediction

As to ML for structure or property prediction of the exist-
ing materials, it is also essential to make selections of dif-
ferent ML methods. One case in point was that knowledge
co-learning (KCL) was chosen when developing a spatial
atom interaction learning network [102]. It was proved that
the KCL could enhance the convergence of the model in the
structure-adsorption space establishment with the assistance
from the expert knowledge in the auxiliary tasks by the com-
parison of the Expert-knowledge-driven learning (Fig. 8a),
Data-driven learning (Fig. 8b), and Data-driven knowledge
co-learning (Fig. 8c), and therefore, the prediction accuracy
could be improved.

Another case in point was that three ML models were
developed for the optimal preparation of biochar-based elec-
trodes [172]. As illustrated in Fig. 8d, 14 key parameters
from recent articles focused on the preparation of activated
biochar-based supercapacitor electrode with urea as the
nitrogen source and KOH as the activator were collected.
Three classic ML prediction models, with RF, GBR, and
extra tree regression (ETR) included, were made used of to
make an exploration of the response relationship between

https://doi.org/10.1007/s40820-025-01945-4
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Fig. 8 Schematic illustration of a Expert-knowledge-driven learning, »

b Data-driven learning, and ¢ Data-driven knowledge co-learning.
Reproduced under the terms of the CC-BY license. [102] Copyright
2023, The Authors, published by Nature. d Schematic illustration of
ML enabled the optimal preparation method of biochar-based elec-
trodes. Reproduced with permission from Ref. [172]. Copyright
2024, Elsevier. e Schematic relationship between different parameters
and performances. Reproduced with permission from Ref. [114].
Copyright 2023, The Royal Society of Chemistry. f Schematic illus-
tration of frontier digital twin-based battery sustainability platform.
Reproduced with permission from Ref. [173]. Copyright 2024, Else-
vier

various factors and the energy storage properties. It turned
out that the GBR demonstrated the best prediction perfor-
mance with an R value of 0.93.

Methods have been come up with to handle the issue
of limited data supplying in the primary tasks [108]. For
instance, in a neural network architecture developed for
the prediction of the x parameter with limited data pro-
viding for the parameters in the primary task, multitask
learning was applied, in which different related tasks with
common underlying mechanisms shared were learned
simultaneously via a unified model. It was clarified that
the multitask learning was able to boost the predictive
performance by leveraging and transferring feature repre-
sentations learned from two auxiliary tasks.

ML can be used to predict the relationship between dif-
ferent parameters and performance with the suitable mod-
els [114]. For instance, a strategy to construct hierarchi-
cal porous sponge-like carbon was launched for advanced
potassium-ion batteries, in which cases ML was taken
advantages of to offer further evidence of the excellent
performance. Papers focused on layered carbon materials
for potassium batteries were made use of to construct the
structural parameter performance database. The complete
initial coulombic efficiency (ICE) and capacity structural
parameters performance database were input into ANN,
which is demonstrated in Fig. 8e. It was verified that the
predicted capacity and ICE were almost equal to the exper-
imental values.

4.1.3 Experimental Validation

The prediction capacities for structures or properties are usu-
ally examined by experiments comprehensively. It is notice-
able that the prediction performance could then be evaluated
from various aspects and in a diversity of conditions [102].
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For example, the spatial atom interaction learning network
was employed for prediction of gas adsorption, and it was
verified that the predicted gas uptake was consistent with the
actual value on CoOREMOF-CO, and hMOF-CO,. In con-
trast to the other models, there absolute errors were much
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smaller and more distributed centralized for DeepSorption.
Furthermore, higher coefficient of determination (R?) values
could be realized. It turned out that both the highest R* value
and the lowest MAE could be achieved by DeepSorption
compared with the other models.

As a powerful tool for material research, Al has been inte-
grated with other advanced technologies for the formation of
more complex platforms [173]. For instance, a cross-scale
multi-stage analytic platform featured with inter-discipli-
nary and trans-disciplinary was developed for the lifecycle
carbon intensity investigation of electrochemical batteries,
including battery materials, charging/discharging behaviors,
recycling, and reproduction (Fig. 8f). ML was applied to
address the issues that the collected data from controlled test
conditions in the laboratory were not managed to represent
various real application scenarios, and the state-of-charge
prediction could be made. Besides, ML-assisted computa-
tion could promote the sustainability and climate adaption
for this framework. Furthermore, by taking advantages of
the digital twin, the performance estimation could be cost-
saving and time-efficient.

In addition to the theoretical approaches, how these Al
systems for material discovery and synthesis make contri-
bution to the real-world examples with experimental imple-
mentation and practical validation is another valuable aspect
to be explored, and more researches have been carried out
focused on how to utilize these systems to address the practi-
cal issues. The lithium-ion batteries, which are featured with
high energy densities and low production costs, have drawn
great attention in many modern industries, serving as renew-
able energy solutions for many fields, like electric vehicles.

It is worthwhile mentioning that the combination of Al
with battery lifetime prediction is also one of the research
hotspots, since the capacity of these batteries fades inevita-
bly with cyclic operations, which is attributed to the intrinsic
electrochemical mechanisms. Great challenges have been
met due to a variety of factors that influence the complex
battery capacity degradation, like electrode materials,
cycling protocols, ambient temperatures, and so on. Some
cutting-edge researches have been conducted with the effec-
tive solutions to address these issues. For instance, a DL
framework, BatLiNet, which was designed to predict battery
lifetime reliably across a variety of aging conditions, was
proposed [147]. In contrast to the traditional models which
solely focused on individual cells, this framework adopted
inter-cell learning which contrasted pairs of battery cells

© The authors

for discerning lifetime differences. It was noticeable that
the experimental results, derived from a broad spectrum of
aging conditions, verified its superior accuracy and robust-
ness in this research when comparing to other existing mod-
els. In addition to the design of the frameworks, efforts have
also been made to meet the challenges proposed by the inter-
section of electrochemical science and ML, and accordingly,
an open-source platform with data preprocessing, feature
extraction, and the implementation of both conventional and
state-of-the art models integrated has been developed, which
aims to provide a collaborative platform on which experts
from diverse specializations can contribute their own efforts
[174].

4.2 For Discovery of New Materials
4.2.1 Excavating the Existing Data

The dataset used for training is the cornerstone of ML mod-
els [175]. The experimental synthesis data provided by stud-
ies serve as important resources for the material synthesis.
However, only successful cases are usually included in these
studies, resulting in the imbalanced distribution of data cate-
gory. Another important resource is from the first-principles
calculations. Besides, previous studies and extensive labora-
tory experience can offer valuable intuitions for the prepara-
tion of new materials. For instance, in an attempt to explore
the synthesis feasibility of two-dimensional silver/bismuth
(2D AgBi) iodide perovskites, organic spacers from both the
previously reported 2D perovskites and the chemical intui-
tions were exploited [87]. The high-throughput experiments
(HTE) were made use of to acquire the material dataset.
It was proved that only 13 kinds of organic spacers were
able to form 2D AgBi iodide perovskite structures, and the
organic spacers were sorted into ‘2D perovskite’ and ‘non-
2D perovskite’ accordingly, which is shown in Fig. 9a.
DFT calculations which are quantum mechanical theory-
based tools also play an important role in high-throughput
computational material design for the reason that they can
characterize material properties and produce data directly
[18]. For example, in an attempt to develop Co-free and low
strain cathode materials for sodium-ion batteries with the
assistance of ML (Fig. 9b), 1451 O3 and P3 layered transi-
tion metal oxides (LTMOs) were generated via DFT cal-
culations, which is illustrated in Fig. 9c. The classification
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ML models were then constructed to evaluate the structural
stability and phase transition (Fig. 9d), leading to the iden-
tification of 128 highly reversible high-performance cath-
ode material candidates (Fig. 9¢). In this study, endeavors
have been made to solve the problem of imbalanced data by
a data sampling technique. In particular, a stratified k-fold
importing data hierarchically from every class were taken
advantages for the construction of a balanced train set,
which is shown in Fig. 9f. Given the fact that there were not
enough data, it was conducted in fivefold (train set/valida-
tion set =8:2), so that the number of validation set could be
guaranteed.

Although there are both positive and negative material
data in the datasets from HTE, subjective preferences still
exist. As a result, it is difficult for ML to obtain reliable
conclusions. Efforts have been made to address this issue.
For example, in the framework to guide the experimental
synthesis of two-dimensional perovskites, data-mining
approaches were taken advantages of to identify the appli-
cable subdomains for ML models, and then, models were
trained on the identified subdomain, which showed more
distinctive descriptors than models training on the whole
biased dataset [87]. To be specific, subgroup discovery was
used to get the suitable subdomains for ML models. It turned
out that the molecular weight and the third ordered kappa
index were the two descriptors standing out since they had
a high correlation with the synthesis feasibility. Besides,
based on the derivation of the rigid sphere model, the width
of organic spacers was also of importance for the structural
stability. In addition, 2D projections of this 3D data distribu-
tion map were generated. The distribution of 2D perovskites
and non-2D perovskites was balanced in the determined spe-
cific subdomain.

A series of steps are taken for the preparation and pre-
processing of data. In an attempt to discover new Hae-
ckelite compounds for optoelectronic devices with the
assistant from ML, data preparation and preprocessing
were carried out [52], and the workflow of screening and
predicting is shown in Fig. 9g. To be specific, the selected
chemical space of the ML dataset with X and Y elements
was demonstrated in red and blue, and 1083 square-
octagon XY form structures were created. After that,
the compounds with altered symmetry and duplication
were removed. A base dataset for the train structure was
selected, which was both quantitatively and qualitatively
accurate when compared with other benchmarks, and then,
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more compatible optimal features to predict each target
with high accuracy and minimum error were constructed.
It turned out that 350 materials were got after the investi-
gation of the formation energy, bandgap, and convex hull
energy by comparing them with the experimental targets
using ML, and 13 semiconducting Haeckelite structures
were obtained after the calculations of electronic struc-
tures, dynamic stability, and the multistep evolutionary.
It is noticeable that in some cases the space of possible
materials is far too large, and it is difficult to sample in an
unbiased manner [51]. Under the condition that there is no
reliable model available to approximate the energy of candi-
dates cheaply, the substitution of similar ions or enumeration
of prototypes has been made use of according to chemical
intuition. There still exists limitations in regard to the diver-
sity of candidates even though the search efficiency has been
improved, and therefore, it is critical to build new method
to make more diverse candidates available. In an attempt to
solve this problem, two frameworks were taken advantages
of to generate and filtrate these candidates, which is illus-
trated in Fig. 9h. Particularly, the structural candidates were
managed to be generated by modifying available crystals.
It was worthwhile mentioning that efforts have been made
to augment the set of substitutions by means of adjusting
ionic substitution probabilities to give priority to discovery.
Moreover, newly proposed symmetry aware partial substitu-
tions (SAPS) were used to enable incomplete replacement
efficiently. As to the second framework, compositional mod-
els could predict stability free of structural information. The
graph networks for materials exploration (GNoME) were
trained on available data to filter candidate structures. It was
worthwhile mentioning that for the models, the crystal defini-
tion, which encoded the lattice, structure, and atom defini-
tions, was served as the input. In particular, each atom was
represented as a single node in the graph, and edges were
defined on the occasion where the interatomic distance was
less than the defined threshold. Nodes were embedded by
atom type and edge, and they were embedded on the basis of
the interatomic distance. A global feature that was connected
in the graph representation to all nodes was also made use
of. At every step of the GNN, neighboring nodes and edge
features were aggregated, and they were utilized to update
the corresponding representations of nodes, edges, or globals
individually. After 3-6 layers of message passing, an output
layer projected the global vector so as to obtain an estimate of
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the energy. It was verified that almost an order of magnitude
larger than previous work could be achieved via GNoME.

4.2.2 Screening for Excellent Performance and High
Synthesis Feasibility

Al can meet the demand for screening the materials with
excellent properties and high synthesis feasibilities, which
has significantly promoted the discovery and realization of
new materials with excellent performance for various appli-
cations, such as catalysts, lithium-ion batteries, and perovs-
kite solar cells [91]. Endeavors have been made to identify
the key parameters of materials and suggest the new candi-
dates which can be verified experimentally. For instance,
in an attempt to address the issue about the catalyst design
existing in the aspect that their performance was influenced
by an intricate interplay of various multiscale factors, like
the chemical reactions on surfaces, the type of support mate-
rials, and the material restructuring during the catalytic
period, symbolic-regression Al was taken advantages of to
extract the key physicochemical parameters related to the
performance successfully (Fig. 10a). It was proposed that
the Sure-Independence Screening and Sparsifying Operator
(SISSO) had been introduced into data-centric methods for
heterogeneous catalysis with a series of advantages [176,
177]. To be specific, analytical expressions related to the
target catalytic performance could be identified by SISSO
with few key parameters out of many offered parameters,
which were regarded as materials genes to demonstrate the
catalytic function of the materials. The intricate correla-
tions between small datasets could be demonstrated with an
immense amount of candidate functions being under consid-
eration during the analysis process. In particular, the theoret-
ical, experimental, and elemental parameters as the primary
features were made use of to efficiently model the catalytic
performance. The analytical expressions were pointed out.
It was noticeable that the key descriptive parameters deemed
as materials genes which were in close relationship with the
property were obtained. By using the Al model with low
costs, new additives could also be suggested, which pro-
moted the discovery of new catalysts with high performance.

When it comes to new material synthesis, a diversity of
factors should be taken into consideration, such as the pre-
cursors, the by-product, the feasibility of experimental con-
ditions, and the availability of experimental raw materials,
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which makes it a more complex and time-consuming task for
chemists due to the limitation of experimental instruments
and the heavy workload. As a result, only a small subset of
the potential conditions can be evaluated with a rather small
proportion of theoretically predicted materials being synthe-
sized successfully, and this work heavily relies on the experi-
ence of chemists. In this case, the data-driven techniques can
be applied for screening out materials with high synthesis
feasibilities to provide guidance for the material synthesis
[87]. It is worthwhile mentioning that efforts have also been
made to extract meaningful physical and chemical insights
from trained ML models in order to have a better understand
the ML predictions. For instance, ML techniques were made
use of to screen two-dimensional hybrid organic—inorganic
perovskites (2D HOIPs) with high synthesis feasibility rap-
idly. A lot of distinctive descriptors relevant to the synthesis
feasibility were developed (Fig. 10b). The support vector
classification (SVC) algorithm was applied to develop the
equation for the synthesis feasibility. The receiver operat-
ing characteristic (ROC) curve and confusion matrix which
were used to evaluate the accuracy and the error are shown
in Fig. 10c, and the area under the ROC curve was as high
as 85% where only 1 out of 10 molecules was misclassified.
The marginal contribution of individual descriptors was ana-
lyzed by SHAP analysis, the result of which demonstrated
that the number of rotational bonds in the alkyl tail (Numg,,)
was the most important factor for the synthesis feasibility.
The relationships between the feature values and SHAP val-
ues are illustrated in Fig. 10d. A positive SHAP value indi-
cated that the feature led to high synthesis feasibility, while
a negative one resulted in low synthesis feasibility. The pre-
dicted synthesis feasibility is demonstrated in Fig. 10e.
ML also plays an important role in planning and interpret-
ing the outcomes of experiments, which is critical to bridge
the gap between computational screening and experimental
realization of new materials. For instance, by combining
with other tools, including computations and historical data
getting from the studies, it was possible for ML model to
provide up to five initial synthesis recipes for the proposed
compounds [101]. Specifically, target ‘similarity’ was eval-
uated by means of natural-language processing of a large
database extracted from the literature, during which process
the behaviors of a human carrying out the initial synthesis
referred to known related materials were mimicked [129].
Furthermore, the active learning was made use of to identify
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Fig. 10 a Schematic illustration of SISSO Al for integration of materi-
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Copyright 2024, The Authors, published by American Chemical Society.
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of the CC-BY license. [87] Copyright 2024, The Authors, published by
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h schematic illustration of the successful precursor set. i Free energy at
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terms of the CC-BY license. [101] Copyright 2023, The Authors, pub-
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lished by Nature
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synthesis routes with improved yield. A database of pairwise
reactions was continuously constructed by the autonomous
laboratory from its experiments, which made it possible for
the products of some recipes to be inferred (Fig. 10f, g). As
aresult, the search space of possible synthesis recipes could
be reduced by up to 80% as many precursor sets reacted to
form the same intermediates (Fig. 10j). Besides, knowledge
of reaction pathways was used to give priority to the inter-
mediates with large driving force to form the target which
could be obtained from the formation energies provided by
the Materials Project (Fig. 10h, 1i).

4.2.3 Experimental Realization

Experiments are usually carried out in order to realize the
new materials either by researchers or by autonomous labo-
ratories. Some equations obtained can be used to predict
unexplored molecules. For instance, 344 2D perovskites
with high synthesis feasibility were screened out [87], which
is illustrated in Fig. 10k. Given the fact that organic spacers
in the prediction set were gathered from PubChem, some
amines were commercial unavailable, leading to only 123
predicted 2D AgBi iodide perovskites to be possible for
further experimental synthesis. Experiment validation was
then carried out. The synthetic chemical reagents were used
as received. In order to eliminate the competing Bi-based
phases, an excess amount of Ag,CO; was made use of. For
instance, an amount of Ag,CO; and Bi,05 were dissolved in
concentrated hydroiodic acid with the heating temperature
of 393 K. 1-(4-chlorophenyl) ethan-1- amine was added to
H,PO, in another beaker, and then, the two solutions were
mixed, which was allowed to evaporate at the hot plate with
the temperature of 323 K for a day. Finally, brownish red
crystals precipitated at the bottom of the beaker could be
obtained successfully. As for validation of the ML model,
13 commercially available organic spacers without hydroxyl
and ether were unbiased selected, and 8§ of 13 predicted 2D
AgBi iodide perovskites which showed high synthesis feasi-
bility were successfully synthesized with the success rate of
61.5%, indicating a much higher success rate than chemical
intuition (16.4%) (Fig. 101). It was worthwhile mentioning
that the repeatability and stability are critical to the experi-
ment validation, and some measures can be taken to ensure
the repeatability. For instance, in this case, ten individual
repetitions of the synthesis process for (NH,CsHgF,),AgBilg
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were implemented to make an assess of the experimental
reproducibility of the synthesis experiments.

An autonomous laboratory was designed for the acceler-
ated synthesis of novel materials integrated with compu-
tations, historical data, ML, and robots to conduct experi-
ments [101]. Recipes for synthesis of the novel materials
were tested using a robotic laboratory, which was managed
to perform the powder dosing, sample heating, and product
characterization. The experimental outcome is demonstrated
in Fig. 10m. It is proposed that the robotic experimentation
efficiently accelerated the experimental synthesis of materi-
als. The high success rate also verified that it was possible
for comprehensive ab initio calculations to discover novel
and synthesizable materials effectively.

Some further analysis can be carried out about the barri-
ers for the synthesis of the targets [101]. For example, for the
17 of the 58 targets evaluated by the A-Lab which were not
realized even though active learning was taken advantages
of, the ‘failure modes’ were classified as experimental bar-
riers which were marked as blue and computational barri-
ers which were marked as green in Fig. 10n. The continued
efforts have been made by researchers to create new materi-
als experimentally in order to offer a way to validate the Al
findings.

S Design Consideration of the AI Systems
for New Materials

5.1 To be More Autonomous

The intelligent systems are expected to be more autono-
mous with the capability to interpret data and make deci-
sions. Autonomy has realized from some aspects in regard
to materials science. It is widely considered that a fusion
of encoded domain knowledge, access to a variety of data
sources, and active learning are critical for the accomplish-
ment of enhanced autonomy [178, 179].

One case in point was that an autonomous laboratory was
successfully constructed which was managed to realize 41
novel compounds after more than 17 days of continuous
operation [101] (Fig. 11a). To be specific, the targets which
were air-stable and unreported were identified via DFT-
calculated convex hulls consisting of ground states from the
Materials Project and Google DeepMind, after which the
synthesis recipes were pointed out by means of ML models
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that were trained on synthesis data from the studies. The
recipes were then tested via a robotic laboratory through
the powder dosing, sample heating, and characterization
procedures. Phase purity was evaluated via X-ray diffrac-
tion (XRD), which was then analyzed by ML models trained
on structures from the Materials Project and the Inorganic
Crystal Structure Database (ICSD). In particular, both the
phase and weight fractions of the synthesis products were
extracted from their XRD patterns by probabilistic ML mod-
els that were trained on experimental structures from the
ICSD. By inverting the container, the powder was dispensed
through the mesh onto an XRD sample holder, after which it
was flattened with an acrylic disk. The flattened sample was
transferred into the diffractometer for X-ray measurements
with 8-min scans that range from 26=10° to 100°. For n
given XRD pattern got from an unknown sample, XRD-
Auto Analyzer was utilized to recognize the constituent
phases, and their weight fractions were also estimated. In
the cases where high (> 50%) target yield was not achieved,
new synthesis recipes would then be proposed by means of
an active learning algorithm. It was noticeable that the whole
sequence was fully automated.

Both the exploration and optimization were able to be
realized via a chemical robot for the autonomous synthe-
sis of nanomaterials [89] (Fig. 11b). Particularly, as for the
exploration mode, the structural diversity was accomplished
via searching for diversity in the behavior space. The fitness
was evaluated based on peak prominence and broadness cor-
related with the yield and mono-dispersity. A new batch of
experiments was generated from previous synthetic condi-
tions for the realization of higher-performance samples. As
to the optimization cycle, the target spectrum was defined
via the extinction spectrum simulation of the nanoparticle
with the shape derived from electron micrographs. The simi-
larity to the target spectrum and the sampling density in the
synthetic space were taken into consideration by the algo-
rithm in order to come up with multiple optimal conditions.
The workflow of the closed loop with the procedures of syn-
thesis, analysis, and design of new experiments is illustrated
in Fig. 11c. A chemical reaction module that was able to
perform parallel synthesis with up to 24 reactors was served
as the core robotic hardware. The rotation of the Geneva
wheel was taken advantages of to carry out the synthesis
efficiently. The liquid handling, pH control, sample trans-
fer, and spectroscopic analysis could be successfully con-
ducted. CAD design and the experimental setup are shown in
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Fig. 11d, e. The detailed setup of the autonomous platform
for the exploration and optimization of the nanomaterials is
demonstrated in Fig. 11f.

5.2 To be More Universally Applicable

For the integration of material science and data-driven tech-
niques, it is always in high demand to provide some practi-
cal routes for typical laboratory environment even though
limited experimental resources are available [87]. Addi-
tionally, for the materials highly dependent on the synthetic
conditions, it is expected for the Al systems to be standard
and robust, so that the high reproducibility can be realized
[89]. When it comes to the guarantee of the synthesis repro-
ducibility, certain design of the platforms should be taken
into consideration, and it is also essential to conduct the
characterization at each step. For example, in an attempt
to construct the autonomous platform for the synthesis of
high yield and monodispersed nanomaterials which were
very sensitivity to the synthetic conditions with the reagent
concentrations, temperature, the order of reagent addition,
and many other analogous factors included, workflow of
the autonomous multistep synthesis was designed [89] as
in Fig. 12a. Three graphs including synthesis, reaction, and
hardware were required in this case, which was demonstrated
by manes of synthesizing six uniquely shaped gold nanopar-
ticles obtained from the previous exploration (Fig. 12b). It
was noted that the synthesis graph represented the multistep
synthetic procedure in which each node represented a unique
nanoparticle and each directed edge showed the hierarchi-
cal relation between these nanoparticles (Fig. 12c). It was
worthwhile mentioning that in order to verify the reproduc-
ibility, the parallel synthesis of six gold nanoparticles was
repeated three times, and the standard deviation in the UV-
Vis spectra could then be obtained, which is illustrated in
Fig. 12d, e. Moreover, it was proposed that the unique sig-
natures for nanomaterials in accordance with their distinc-
tive synthetic protocols were in high demand, and therefore,
the universal chemical description language x DL was taken
advantages of to create the unique digital signatures, which
is demonstrated in Fig. 12f.

In order to enhance the feasibility, it is ideal for the model
trained on one dataset is managed to be used for other occa-
sions operated under different scenarios while using few
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training data. One case in point was that the battery charg-
ing curve prediction was able to be made by deep neural
network (DNN) with 30 points collected in 10 min [180].
Particularly, a piece of the charging curve was applied as the
input of a DNN. Key states could then be derived from the
estimated entire charging curve. It turned out that a brand
new DNN was expensive in regard to cost and time for the
reason that extensive battery degradation tests for collecting
new training data were required, and data in the real-world
were usually incomplete and sparse. DNNs were effective
to accomplish this task, which was attributing to its transfer
learning feature. The transfer learning was able to resort to
the similar knowledge learned from the source dataset so
as to improve its performance on the target dataset, reduc-
ing the required data amount and saving computational
resources. Voltage and capacity sequences gathered from
any part of the charging curve could be made use of as the
input to the DNN, which facilitated the collection of the
input data for the real-world battery management (Fig. 12g,
h). The entire constant-current charging curves could be
estimated (Fig. 12i). Moreover, the proposed method was
able to be quickly adapt to different batteries without much
training effort.

In addition to the methods mentioned above, some other
approaches can also be taken advantages of to make the
intelligent systems more universally applicable. Particu-
larly, cross-scale data fusion is useful for mapping between
microstructure and macroscopic performance by combining
atomic simulation with macroscopic characterization, which
makes sense for the autonomy and universalization of Al
systems for materials. Besides, more comprehensive factors
affecting the systems are required to be taken into considera-
tions. For example, the aggregation of most publicly avail-
able datasets was utilized for gathering various aging factors
when designing the models for making battery lifetime pre-
diction. Moreover, a diversity of dataset is taken advantages
of to make an investigation focused on the adaptation of the
current models to different cycling protocols.

6 Perspectives

Overall, the recent development, including but not lim-
ited to Al-assisted cognizance of existing materials and Al
empowered new materials discovery, is reviewed in depth.
Great progress has been made in the field of Al for material
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science, owing to the enhanced intelligence and high-effi-
ciency (Table 1). The elaborate design lies in every aspect
ranging from data exploits to the selection of algorithm
(Tables 2 and 3). Progress has been made on the data clean-
ing, transformation, and processing, as well as proposing
the approaches to address the problems when limited data
are available. The elaborate selections of models have been
made to enable the accuracy, simplicity, and computation
efficiency. The diverse experiments have been conducted
either by chemists or by robots so that the timely and accu-
rate validation can be guaranteed. Al has boosted the devel-
opment of various functional materials applied in a diversity
of field, including solar cells, nanogenerators, crystals, semi-
conductors, and so on. There is a growing trend toward the
Al systems that are fully autonomous and universally appli-
cable, which lead to the large-scale exploration and more
abundant materials to be discovered. This review offers a
keen insight into the design ideas for the Al empowered
deep cognition of existing materials and fast discovery of
novel materials, and some perspectives of the Al systems
for materials applied in the future are proposed as follows:

(1) Itis ideal for input data more flexible and easier avail-
able in the real-world applications. For instance, the
intelligent systems for material discovery are expected
to be effective even in a standard and simple labora-
tory. A lot of experimental synthesis data are required
by the conventional ML, which proposes big challenge
for simple laboratories. Recently, the scheme has been
provided for the feasibility of material synthesis in
the cases where the available experimental resources
are limited, which combined ML techniques with
small-scale experiments to accelerate the synthesis of
two-dimensional perovskites in a typical laboratory.
Additionally, it is also difficult for the investigation of
catalysts in which occasion the collection of a large
amount of consistent experimental data is always time-
consuming. This problem has been successfully solved
by the SISSO that can identify potentially nonlinear
and intricate correlations between small datasets with
a large amount of candidate analytic functions taken
into consideration. Besides, the similar issues also exist
for the Al-assisted estimation of the maximum battery
capacity where a complete charging/discharging curve
is needed. However, the complete charge curves are
hard to be obtained, since the charging process can start
at various states, leading to the record of only pieces
of charging/discharging curves. Accordingly, battery
charging curve prediction can be made via DNN with

| SHANGHAI JIAO TONG UNIVERSITY PRESS
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3)

voltage and capacity sequences collected from any
part of the charging curve as the input. In the future
research, more approaches are expected to be proposed
to make the input data much easier to be collected in
the real-world applications.

The accurate and comprehensive estimations and pre-
dictions about materials assisted by Al are always in
high demand. (a) It is expected that the accurate predic-
tion even for some complex issues which are strongly
influenced by a series of factors can be realized.
Recently, some efforts have been made for the accu-
rate prediction of gas adsorption by the DeepSorption
which is a data-driven network with a KCL module,
even though every piece of subtle structural informa-
tion is important for the correct description of adsorp-
tion properties. (b) Further to the accurate prediction,
the comprehensive reflection of materials is also essen-
tial. For the degradation monitoring of battery which
calls for the evaluation of battery states over the battery
life, method has been developed so that the multiple
states can be comprehensively reflected by means of
using signals collected from daily battery operation.
In the future work, more efforts can be made focused
on the fully estimation of the materials with the data
obtained from their daily operations when it is required
by the practical application.

Endeavors can be made on enhancing the transpar-
ency in the predictions of the ML models, which
can facilitate the extracting of physical and chemical
insights. (a) It is critical to select the models with bal-
anced predictive accuracy and interpretability, which
can promote the development of new theories, for the
reason that knowledge obtained from the interpretable
ML models can accelerate the scientific understand-
ing. For instance, more reliable explanations can be
offered by inherently interpretable ML models with
functions that can be approximated well via simpler
functions concerned with priori knowledge, playing a
more important role in extrapolating. Universal ML has
been developed for the synthesis of two-dimensional
perovskites recently, which can underlie the structure—
property relationship in the HTE. (b) Moreover, the
unveiling of predictive insights for properties by ML
can further facilitate the optimization of the devices
with enhanced performance. Efforts have also been
made to unveil the complex relationships between pie-
zoelectricity and TENG performance via the principal
component analysis (PCA). The in-depth understand-
ing of output offers insights into the energy conversion
efficiency, and then the nanogenerator performance can
be optimized.
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(4) The explorations on more abundant types and proper-
. ties of functional materials assisted by Al are expected
E to be made, so as to make full use of Al. a) More fac-
& tors and indexes are expected to be investigated by
E the data-driven techniques in material science. The
Q@; synthesizability of novel materials with a variety of
= g oxides and phosphates included has been explored by
S L% .. .
cz an autonomous laboratory combining computations,

o . .

5 3 historical data, and ML. In the future, more factors
g g with microstructures of materials and performances
L . . . . .
z E of various devices can be taken into consideration. b)

o % 5 In addition to inorganic materials and metals, Al can

< |& E also be applied in the research of organic materials and

o 5 composites. Multitask ML has been taken advantages
g g —éf = g of to predict the polymer—solvent miscibility. Active
852 b learning has also been used to make exploration of tran-
S é‘ E E, g sition metal complexes. In the future work, more efforts
_o§ £= E- % can be made to investigate abundant types of materials
=] . . .
g 5 - S g assisted by Al to achieve the large-scale exploration
= o § E z and accelerated material discovery. c) In regard to the

NEEREE in-depth cognition of existing materials, the mapping

s % B ég E s of physical stimuli to a variety of perceptual features

2 | S 2 = < .. . .

2l gg g@h = is in high demand. Detailed maps have led to a better

g £z 3 g ﬁ % understanding of visual and auditory coding. A princi-

£ E §§ §. LQ): 2 pal odor map has also been proposed for olfactory per-

o |= — . .

K = ception. Accordingly, future research can be conducted
focused on the revealing of the relationships between
the physical stimuli and more diverse perceptual char-
acteristics.

£

Q

2|8

o <

O [A

=)
Q
=
g
=
o
S
« L
2 |e &
222
ez I&

© The authors https://doi.org/10.1007/s40820-025-01945-4



109

Page 31 of 39

109

(2026) 18

Nano-Micro Lett.

suorne)
-ndwoo [euonIppe JNOYIIM SUTUSIOS
ndysnory-y31y ay) 2)eIS[3098 0)

SOV S-QUIXA PIZISayIuAs (] £q

18AT€)BO0103[0 SQUSKAl PRIOYOUE
woje

[£81]  101d1I0SOp OISULNUI QATIOAYS U YIIA\  POASIYOE Sem UONEpI[eA [ejuswLiodxy -9[3uIs Jo SUIUAAIDS PILI[OIIE 10, [opow $931], BIXH s1sATeIRD
(Do SFE=06L U 000L <)
108 AIqe)s wie)-Suoy pue 9oue)SISaI
Jururen ozIs-[[ewWS B YIIM PIZI[edX QIn)sIow pue Inj[ns JUIpuL)SINO SISAT
[981] 2q prnoos Aoernooe uonorpard Y31y oy,  SMOYS JSA[eIeD Je[NTOLIl PAUSIOS A, -BJBD JO KIQAODSIP 9} 9JRID[Q0J8 O, S[opOW UOISSAITY sisATere)
1y paziear A[[ejuow
XOAUOD JUALIND AY) MO[Oq SINJONTS -11adxe Apyuapuadopur uoaq Apeaife KI9A0DSIp S[eLT
[16] uoIIw 7'z JO AISAODSIP AU} J[qRUS O], 9ABY 9¢/ ‘SoImonns 9[qels oy} Suowy  -9)ew Jo Aouapoye oyl Suraoxduwr Jog syqom)au ydein S[eIskID
A319U9 uonBWLIO} I0J | Kyanoe
woje A9 [](°() PUB UIens Q0B}INs 10§ ogroads pue AjAnoe ssew ysyen[n (MYO) uonoeaI uononpal
€00°0 JO SIOIIQ 2IN[OSqE UBAW [)IM )M PIZISOYIUAS A[[NJSS00NS ST ua3Axo JurzATeres 10y punoduwrod o1y SyIom)aU
[sg1] Aorinooe uonorpaid Y3y e opraoid o, 9z1s oponaed [fews YPIm JsA[eed Ay,  -rerewroiur Adonua-y3ry v uisop of, [eanau [euonnjoAuod ydeis [e1ski) s1sk[ere)
seyej[nsAjod 000°0S Apreau Do 00 & AoudIoL2 %06
Jo Axe1qr[ e woiy sayeprpued IowA[od  10A0 Im AJISUSP ASI0UQ paSIeyosip
JO UONI[AS UMOPp pue s1ojowered ySIyen[n pue 9dUSI[ISAI [BULIAY) sarej[nsAjod jue)sisax
[#81] Axoi1d Koy Jo uonorpaid oy opraoid o, poo3 Suniqryx? areynsAjod e Y -183 JO KIA0DSIP I} 2JBIS[AIB O], YIOMIQU [RINJU PIBMIOJ-PI] sIowA[0d
s[e301pAy pands BJIA T SuIpaaoxe anjea
-uro1q ()87 JO 19selep [enIUl Ue WOIJ WNWIXeW © YIIM ‘qISudns dAISoype sfoSo1pAy oatsaype (IY) uorssarSar 1sa10y sjeSoIpAH
[e81] suore[nuLIoy [950IpAY 9zrundo 0, Ul JUSWIOURYUD S[QEIBWI ZI[BdI O], Qouewioy1od-y31y jo u3isap oY) 104 wopuel pue (dD) sseooid uerssnen /s1owk[od
syromiau [einau ydeid pue s)sa1oy
wopuel a1] ‘spoyiow T Tendod
I9YJ0 19A0 JuauraAoIduwr oourwr SISA[eIed oL
[z81] -10319d JueoyIUIIS 9JBNSUOWAP O], —  -JowrwAse ur uonorpaid AJIATIOJ[AS 10 [opow FuruIed[-eIoIA sIsA[eie)
%81 PUE %61 Aq D/ [erosow
-wod Jurssedims ‘. _wo yw 0| pue
07 e sTenuslodIoAo YHH MO[-PI0daT
SINOY 0} BIuu9] oy} SIQIYXd sisA1eres (VHH) £Lofre (syD) swyiriose o1ouad
[181] - woxy sy AI9A0ISIP Y} YSB[S O, 1sA1e180 DNIPJINNDI] Tewndo ayy,  Adonue-y3iy jo Juowdofoadp ayy 104  pue (SIN'TT) s[epouwr oSenJue| o51e] s)sAere)
NEN| JUSUWIIAJIYOY doueurioyred rejuowriodxyg wry S[OPOJA/SWILIOS[Y  s[errjew Jo sadAg,

S[erIojew Jo sadA) JULIQJIp J0J S[OPOW pUE SWILIOS[e SNOLIBA JO ATewwung ¢ d[qe],

pringer

A's

»
7
e
4
&~
>
=
7
&
]
2
z
j]
&}
z
(o]
=
Q
=
<
jeny
o
b4
<
Jeny
&




109 Page 32 of 39

Nano-Micro Lett. (2026) 18:109

Acknowledgements This work was supported by the
Hong Kong Polytechnic University (Project No. 4-ZZW1,
4-YWER, 97D9, 4-W443).

Author Contributions Ying Cao helped in methodology, inves-
tigation, and writing—original draft. Jian Lu, Yuejiao Chen, Titao
Jing, and Xi Fan contributed to methodology. Hong Fu helped in
resources, methodology, and writing—review and editing. Bingang
Xu led in conceptualization, funding acquisition, methodology,
supervision, and writing—review and editing.

Declarations

Conflict of interest The authors declare no conflict of interest. They
have no known competing financial interests or personal relationships
that could have influenced the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Com-
mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Com-
mons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. AM. Mroz, V. Posligua, A. Tarzia, E.H. Wolpert, K.E.
Jelfs, Into the unknown: how computation can help explore
uncharted material space. J. Am. Chem. Soc. 144(41),
18730-18743 (2022). https://doi.org/10.1021/jacs.2c06833

2. J.Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library
of atomically thin metal chalcogenides. Nature 556(7701),
355-359 (2018). https://doi.org/10.1038/s41586-018-0008-3

3. S. Jiang, Y. Zhou, W. Xu, Q. Xia, M. Yi et al., Machine
learning-driven optimization and application of bimetallic
catalysts in peroxymonosulfate activation for degradation
of fluoroquinolone antibiotics. Chem. Eng. J. 486, 150297
(2024). https://doi.org/10.1016/j.cej.2024.150297

4. T.Jing, B. Xu, Y. Yang, M. Li, Y. Gao, Organogel electrode
enables highly transparent and stretchable triboelectric
nanogenerators of high power density for robust and reliable
energy harvesting. Nano Energy 78, 105373 (2020). https:/
doi.org/10.1016/j.nanoen.2020.105373

5. Y. Liu, B. Xie, Q. Hu, R. Zhao, Q. Zheng et al., Regulating
the Helmholtz plane by trace polarity additive for long-life
Zn ion batteries. Energy Storage Mater. 66, 103202 (2024).
https://doi.org/10.1016/j.ensm.2024.103202

© The authors

10.

11.

12.

13.

14.

15.

16.

17.

18.

. J. Wen, B. Xu, J. Zhou, Toward flexible and wearable embroi-
dered supercapacitors from cobalt phosphides-decorated con-
ductive fibers. Nano-Micro Lett. 11(1), 89 (2019). https://doi.
org/10.1007/s40820-019-0321-x

J. Li, B. Xu, Novel highly sensitive and wearable pressure
sensors from conductive three-dimensional fabric structures.
Smart Mater. Struct. 24(12), 125022 (2015). https://doi.org/
10.1088/0964-1726/24/12/125022

X. Guan, B. Xu, J. Huang, T. Jing, Y. Gao, Fiber-shaped
stretchable triboelectric nanogenerator with a novel synergis-
tic structure of opposite Poisson’s ratios. Chem. Eng. J. 427,
131698 (2022). https://doi.org/10.1016/j.cej.2021.131698
B. Niu, T. Hua, B. Xu, Robust deposition of silver nanoparti-
cles on paper assisted by polydopamine for green and flexible
electrodes. ACS Sustainable Chem. Eng. 8(34), 12842-12851
(2020). https://doi.org/10.1021/acssuschemeng.0c03098

K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A.
Walsh, Machine learning for molecular and materials sci-
ence. Nature 559(7715), 547-555 (2018). https://doi.org/10.
1038/s41586-018-0337-2

P.M. Attia, A. Grover, N. Jin, K.A. Severson, T.M. Markov
et al., Closed-loop optimization of fast-charging protocols for
batteries with machine learning. Nature 578(7795), 397402
(2020). https://doi.org/10.1038/s41586-020-1994-5

Q. Zhou, S. Lu, Y. Wu, J. Wang, Property-oriented material
design based on a data-driven machine learning technique.
J. Phys. Chem. Lett. 11(10), 3920-3927 (2020). https://doi.
org/10.1021/acs.jpclett.0c00665

S. Lu, Q. Zhou, X. Chen, Z. Song, J. Wang, Inverse design
with deep generative models: next step in materials discovery.
Natl. Sci. Rev. 9(8), nwac111 (2022). https://doi.org/10.1093/
nsr/nwacl11

H. Shi, Y. Shi, Z. Liang, S. Zhao, B. Qiao et al., Machine
learning-enabled discovery of multi-resonance TADF mol-
ecules: unraveling PLQY predictions from molecular struc-
tures. Chem. Eng. J. 494, 153150 (2024). https://doi.org/10.
1016/j.cej.2024.153150

J. Sun, D. Li, Y. Wang, T. Xie, Y. Zou et al., Accelerating the
generation and discovery of high-performance donor materi-
als for organic solar cells by deep learning. J. Mater. Chem. A
12(33), 21813-21823 (2024). https://doi.org/10.1039/D4TAO
3944K

Y. Li, X. Zhang, T. Li, Y. Chen, Y. Liu et al., Accelerating
materials discovery for electrocatalytic water oxidation via
center-environment deep learning in spinel oxides. J. Mater.
Chem. A 12(30), 19362-19377 (2024). https://doi.org/10.
1039/d4ta02771j

M. Omidvar, H. Zhang, A.A. Thalage, T.G. Saunders, H. Gid-
dens et al., Accelerated discovery of perovskite solid solu-
tions through automated materials synthesis and characteri-
zation. Nat. Commun. 15(1), 6554 (2024). https://doi.org/10.
1038/541467-024-50884-y

M. Kim, W.-H. Yeo, K. Min, Co-free and low strain cathode
materials for sodium-ion batteries: machine learning-based
materials discovery. Energy Storage Mater. 69, 103405
(2024). https://doi.org/10.1016/j.ensm.2024.103405

https://doi.org/10.1007/s40820-025-01945-4


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1021/jacs.2c06833
https://doi.org/10.1038/s41586-018-0008-3
https://doi.org/10.1016/j.cej.2024.150297
https://doi.org/10.1016/j.nanoen.2020.105373
https://doi.org/10.1016/j.nanoen.2020.105373
https://doi.org/10.1016/j.ensm.2024.103202
https://doi.org/10.1007/s40820-019-0321-x
https://doi.org/10.1007/s40820-019-0321-x
https://doi.org/10.1088/0964-1726/24/12/125022
https://doi.org/10.1088/0964-1726/24/12/125022
https://doi.org/10.1016/j.cej.2021.131698
https://doi.org/10.1021/acssuschemeng.0c03098
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-020-1994-5
https://doi.org/10.1021/acs.jpclett.0c00665
https://doi.org/10.1021/acs.jpclett.0c00665
https://doi.org/10.1093/nsr/nwac111
https://doi.org/10.1093/nsr/nwac111
https://doi.org/10.1016/j.cej.2024.153150
https://doi.org/10.1016/j.cej.2024.153150
https://doi.org/10.1039/D4TA03944K
https://doi.org/10.1039/D4TA03944K
https://doi.org/10.1039/d4ta02771j
https://doi.org/10.1039/d4ta02771j
https://doi.org/10.1038/s41467-024-50884-y
https://doi.org/10.1038/s41467-024-50884-y
https://doi.org/10.1016/j.ensm.2024.103405

Nano-Micro Lett.

(2026) 18:109

Page 33 0f39 109

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

H. Wang, M. Jiang, G. Xu, C. Wang, X. Xu et al., Machine
learning-guided prediction of desalination capacity and rate
of porous carbons for capacitive deionization. Small 20(42),
€2401214 (2024). https://doi.org/10.1002/sml11.202401214
J. Liu, R. Sun, X. Bao, J. Yang, Y. Chen et al., Machine learn-
ing driven atom-thin materials for fragrance sensing. Small
21(28), 2401066 (2025). https://doi.org/10.1002/smll.20240
1066

M. Wu, Z. Song, Y. Cui, Z. Fu, K. Hong et al., Machine learn-
ing-assisted design of nitrogen-rich covalent triazine frame-
works photocatalysts. Adv. Funct. Mater. 35(3), 2413453
(2025). https://doi.org/10.1002/adfm.2024 13453

A. Magbool, A. Khalad, N.Z. Khan, Prediction of corrosion
rate for friction stir processed WE43 alloy by combining
PSO-based virtual sample generation and machine learning.
J. Magnes. Alloys 12(4), 1518-1528 (2024). https://doi.org/
10.1016/j.jma.2024.04.012

C. Li, L. Bao, Y. Ji, Z. Tian, M. Cui et al., Combining
machine learning and metal-organic frameworks research:
novel modeling, performance prediction, and materials dis-
covery. Coord. Chem. Rev. 514, 215888 (2024). https://doi.
org/10.1016/j.ccr.2024.215888

G. Huang, F. Huang, W. Dong, Machine learning in energy
storage material discovery and performance prediction.
Chem. Eng. J. 492, 152294 (2024). https://doi.org/10.1016/].
cej.2024.152294

Y. She, H. Liu, H. Yuan, Y. Li, X. Liu et al., Artificial intelli-
gence-assisted conductive hydrogel dressings for refractory
wounds monitoring. Nano-Micro Lett. 17(1), 319 (2025).
https://doi.org/10.1007/s40820-025-01834-w

S. Wang, J. Liu, X. Song, H. Xu, Y. Gu et al., Artificial intel-
ligence empowers solid-state batteries for material screening
and performance evaluation. Nano-Micro Lett. 17(1), 287
(2025). https://doi.org/10.1007/s40820-025-01797-y

K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine
learning enabled reusable adhesion, entangled network-based
hydrogel for long-term, high-fidelity EEG recording and
attention assessment. Nano-Micro Lett. 17(1), 281 (2025).
https://doi.org/10.1007/s40820-025-01780-7

F. Zheng, B. Yuan, Y. Cai, H. Xiang, C. Tang et al., Machine
learning tailored anodes for efficient hydrogen energy gen-
eration in proton-conducting solid oxide electrolysis cells.
Nano-Micro Lett. 17(1), 274 (2025). https://doi.org/10.1007/
s40820-025-01764-7

J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., Al-enabled
piezoelectric wearable for joint torque monitoring. Nano-
Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/
s40820-025-01753-w

Y. Xiao, H. Li, T. Gu, X. Jia, S. Sun et al., Ti;C,T, composite
aerogels enable pressure sensors for dialect speech recogni-
tion assisted by deep learning. Nano-Micro Lett. 17(1), 101
(2024). https://doi.org/10.1007/s40820-024-01605-z

B.H. Jeong, J. Lee, M. Ku, J. Lee, D. Kim et al., RGB color-
discriminable photonic synapse for neuromorphic vision
system. Nano-Micro Lett 17(1), 78 (2024). https://doi.org/
10.1007/s40820-024-01579-y

/‘\ SHANGHAI JIAO TONG UNIVERSITY PRESS

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Z. Zhou, Z. Zhang, P. Li, Z. Guan, Y. Li et al., Low energy
consumption photoelectric memristors with multi-level linear
conductance modulation in artificial visual systems applica-
tion. Nano-Micro Lett. 17(1), 317 (2025). https://doi.org/10.
1007/s40820-025-01816-y

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov et al.,
Highly accurate protein structure prediction with AlphaFold.
Nature 596(7873), 583-589 (2021). https://doi.org/10.1038/
s41586-021-03819-2

R. Unni, M. Zhou, P.R. Wiecha, Y. Zheng, Advancing materi-
als science through next-generation machine learning. Curr.
Opin. Solid State Mater. Sci. 30, 101157 (2024). https://doi.
org/10.1016/j.cossms.2024.101157

Y. Wang, K. Wang, C. Zhang, Applications of artificial intel-
ligence/machine learning to high-performance composites.
Compos. Part B Eng. 285, 111740 (2024). https://doi.org/10.
1016/j.compositesb.2024.111740

R. Du, R. Xin, H. Wang, W. Zhu, R. Li et al., Machine learn-
ing: an accelerator for the exploration and application of
advanced metal-organic frameworks. Chem. Eng. J. 490,
151828 (2024). https://doi.org/10.1016/j.cej.2024.151828
N. Ling, Y. Wang, S. Song, C. Liu, F. Yang et al., Experimen-
tally validated screening strategy for alloys as anode in Mg-
air battery with multi-target machine learning predictions.
Chem. Eng. J. 496, 153824 (2024). https://doi.org/10.1016/].
cej.2024.153824

S. Gao, Y. Cheng, L. Chen, S. Huang, Rapid discovery of
gas response in materials via density functional theory and
machine learning. Energy Environ. Mater. 8(1), e12816
(2025). https://doi.org/10.1002/eem?2.12816

S. Poudel, R. Thapa, R. Basnet, A. Timofiejczuk, A. Kun-
war, PiezoTensorNet: Crystallography informed multi-scale
hierarchical machine learning model for rapid piezoelectric
performance finetuning. Appl. Energy 361, 122901 (2024).
https://doi.org/10.1016/j.apenergy.2024.122901

L. Wang, H. Chen, L. Yang, J. Li, Y. Li et al., Single-atom
catalysts property prediction via supervised and self-super-
vised pre-training models. Chem. Eng. J. 487, 150626 (2024).
https://doi.org/10.1016/j.cej.2024.150626

P. Guo, W. Meng, Y. Bao, Knowledge-guided data-driven
design of ultra-high-performance geopolymer (UHPG).
Cem. Concr. Compos. 153, 105723 (2024). https://doi.org/
10.1016/j.cemconcomp.2024.105723

L. Chen, M. Ren, J. Zhou, X. Zhou, F. Liu et al., Bioinspired
iontronic synapse fibers for ultralow-power multiplexing
neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci.
U.S.A. 121(33), €2407971121 (2024). https://doi.org/10.
1073/pnas.2407971121

Y. Li, Z. Qiu, H. Kan, Y. Yang, J. Liu et al., A human-com-
puter interaction strategy for an FPGA platform boosted
integrated “perception-memory” system based on electronic
tattoos and memristors. Adv. Sci. 11(39), 2402582 (2024).
https://doi.org/10.1002/advs.202402582

H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots
aiming at superior dynamic-static perception and material
cognition based on triboelectric-piezoresistive effects. Nano

@ Springer


https://doi.org/10.1002/smll.202401214
https://doi.org/10.1002/smll.202401066
https://doi.org/10.1002/smll.202401066
https://doi.org/10.1002/adfm.202413453
https://doi.org/10.1016/j.jma.2024.04.012
https://doi.org/10.1016/j.jma.2024.04.012
https://doi.org/10.1016/j.ccr.2024.215888
https://doi.org/10.1016/j.ccr.2024.215888
https://doi.org/10.1016/j.cej.2024.152294
https://doi.org/10.1016/j.cej.2024.152294
https://doi.org/10.1007/s40820-025-01834-w
https://doi.org/10.1007/s40820-025-01797-y
https://doi.org/10.1007/s40820-025-01780-7
https://doi.org/10.1007/s40820-025-01764-7
https://doi.org/10.1007/s40820-025-01764-7
https://doi.org/10.1007/s40820-025-01753-w
https://doi.org/10.1007/s40820-025-01753-w
https://doi.org/10.1007/s40820-024-01605-z
https://doi.org/10.1007/s40820-024-01579-y
https://doi.org/10.1007/s40820-024-01579-y
https://doi.org/10.1007/s40820-025-01816-y
https://doi.org/10.1007/s40820-025-01816-y
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/j.cossms.2024.101157
https://doi.org/10.1016/j.cossms.2024.101157
https://doi.org/10.1016/j.compositesb.2024.111740
https://doi.org/10.1016/j.compositesb.2024.111740
https://doi.org/10.1016/j.cej.2024.151828
https://doi.org/10.1016/j.cej.2024.153824
https://doi.org/10.1016/j.cej.2024.153824
https://doi.org/10.1002/eem2.12816
https://doi.org/10.1016/j.apenergy.2024.122901
https://doi.org/10.1016/j.cej.2024.150626
https://doi.org/10.1016/j.cemconcomp.2024.105723
https://doi.org/10.1016/j.cemconcomp.2024.105723
https://doi.org/10.1073/pnas.2407971121
https://doi.org/10.1073/pnas.2407971121
https://doi.org/10.1002/advs.202402582

109

Page 34 of 39

Nano-Micro Lett. (2026) 18:109

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Lett. 24(13), 4002—4011 (2024). https://doi.org/10.1021/acs.
nanolett.4c00623

Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual
and interactive integration strategy toward telemedicine
healthcare based on electroluminescent display and triboe-
lectric sensing 3d stacked device. Adv. Funct. Mater. 34(40),
2402356 (2024). https://doi.org/10.1002/adfm.202402356

W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detec-
tion system with broadband WO;_,/WO;_,-Ag/WO;_, opto-
electronic memristor. Adv. Funct. Mater. 34(23), 2312885
(2024). https://doi.org/10.1002/adfm.202312885

S. Deng, B. Xu, J. Zhao, C.W. Kan, X. Liu, Unlocking dou-
ble redox reaction of metal-organic framework for aqueous
zinc-ion battery. Angew. Chem. Int. Ed. 63(17), €202401996
(2024). https://doi.org/10.1002/anie.202401996

B. Niu, T. Hua, H. Hu, B. Xu, X. Tian et al., A highly dura-
ble textile-based sensor as a human-worn material interface
for long-term multiple mechanical deformation sensing. J.
Mater. Chem. C 7(46), 14651-14663 (2019). https://doi.org/
10.1039/C9TC04006D

J. Xu, K.K. Wang, T. Liu, Y. Peng, B.G. Xu, Br-doped
Bi,0,CO; exposed (001) crystal facets with enhanced photo-
catalytic activity. CrystEngComm 19(34), 5001-5007 (2017).
https://doi.org/10.1039/c7ce00924k

Y. Wang, Z. Li, H. Fu, B. Xu, Sustainable triboelectric nano-
generators based on recycled materials for biomechanical
energy harvesting and self-powered sensing. Nano Energy
115, 108717 (2023). https://doi.org/10.1016/j.nanoen.2023.
108717

A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G.
Cheon et al., Scaling deep learning for materials discovery.
Nature 624(7990), 80-85 (2023). https://doi.org/10.1038/
$41586-023-06735-9

E. Alibagheri, A. Ranjbar, M. Khazaei, T.D. Kiihne, S.M.
Vaez Allaei, Remarkable optoelectronic characteristics of
synthesizable square-octagon haeckelite structures: machine
learning materials discovery. Adv. Funct. Mater. 34(27),
2402390 (2024). https://doi.org/10.1002/adfm.202402390

B.K. Lee, E.J. Mayhew, B. Sanchez-Lengeling, J.N. Wei,
W.W. Qian et al., A principal odor map unifies diverse
tasks in olfactory perception. Science 381(6661), 999-1006
(2023). https://doi.org/10.1126/science.ade4401

V.S. Tuchin, E.A. Stepanidenko, A.A. Vedernikova, S.A.
Cherevkov, D. Li et al., Optical properties prediction for red
and near-infrared emitting carbon dots using machine learn-
ing. Small 20(29), 2310402 (2024). https://doi.org/10.1002/
smll.202310402

S. Lu, A. Jayaraman, Machine learning for analyses and auto-
mation of structural characterization of polymer materials.
Prog. Polym. Sci. 153, 101828 (2024). https://doi.org/10.
1016/j.progpolymsci.2024.101828

Y. Srivastava, A. Jain, Accelerating thermal conductivity
prediction through machine-learning: two orders of magni-
tude reduction in phonon-phonon scattering rates calculation.
Mater. Today Phys. 41, 101345 (2024). https://doi.org/10.
1016/j.mtphys.2024.101345

© The authors

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

L. Guo, X. Xu, Q. Wang, J. Park, H. Lei et al., Machine
learning-based prediction of heavy metal immobilization
rate in the solidification/stabilization of municipal solid
waste incineration fly ash (MSWIFA) by geopolymers.
J. Hazard. Mater. 467, 133682 (2024). https://doi.org/10.
1016/j.jhazmat.2024.133682

Q. Liu, W. Chen, V. Yakubov, J.J. Kruzic, C.H. Wang et al.,
Interpretable machine learning approach for exploring
process-structure-property relationships in metal additive
manufacturing. Addit. Manuf. 85, 104187 (2024). https://
doi.org/10.1016/j.addma.2024.104187

X. Chen, S. Lu, Q. Chen, Q. Zhou, J. Wang, From bulk
effective mass to 2D carrier mobility accurate prediction
via adversarial transfer learning. Nat. Commun. 15(1), 5391
(2024). https://doi.org/10.1038/s41467-024-49686-z

D. Kwon, D. Kim, Machine learning interatomic potentials
in engineering perspective for developing cathode mate-
rials. J. Mater. Chem. A 12(35), 23837-23847 (2024).
https://doi.org/10.1039/D4TA03452]

W.A. Dunlap-Shohl, Y. Meng, P.P. Sunkari, D.A.C. Beck,
M. Meild et al., Physiochemical machine learning models
predict operational lifetimes of CH;NH;Pbl; perovskite
solar cells. J. Mater. Chem. A 12(16), 9730-9746 (2024).
https://doi.org/10.1039/D3TA06668 A

Z. Wang, L. Wang, H. Zhang, H. Xu, X. He, Materials
descriptors of machine learning to boost development of
lithium-ion batteries. Nano Convergence 11(1), 8 (2024).
https://doi.org/10.1186/s40580-024-00417-6

C. Jin, C. Zhang, P. Yan, M. Jiang, R. Yin et al., A super-
human sensing triboelectric nanogenerator with boosted
power density and durability via a bio-inspired Janus struc-
ture. Adv. Funct. Mater. 34(37), 2402233 (2024). https://
doi.org/10.1002/adfm.202402233

J. Li, M. Zhou, H.-H. Wu, L. Wang, J. Zhang et al., Machine
learning-assisted property prediction of solid-state electro-
lyte. Adv. Energy Mater. 14(20), 2304480 (2024). https://
doi.org/10.1002/aenm.202304480

X. Zhang, B. Ding, Y. Wang, Y. Liu, G. Zhang et al.,
Machine learning for screening small molecules as pas-
sivation materials for enhanced perovskite solar cells. Adv.
Funct. Mater. 34(30), 2314529 (2024). https://doi.org/10.
1002/adfm.202314529

Z. Zheng, J. Zhou, Y. Zhu, Computational approach
inspired advancements of solid-state electrolytes for lithium
secondary batteries: from first-principles to machine learn-
ing. Chem. Soc. Rev. 53(6), 3134-3166 (2024). https://doi.
org/10.1039/D3CS00572K

H. Mai, X. Wen, X. Li, N.S.L. Dissanayake, X. Sun et al.,
Data driven high quantum yield halide perovskite phos-
phors design and fabrication. Mater. Today 74, 12-21
(2024). https://doi.org/10.1016/j.mattod.2024.02.002

Y. Liu, X. Tan, P. Xiang, Y. Tu, T. Shao et al., Machine
learning as a characterization method for analysis and
design of perovskite solar cells. Mater. Today Phys. 42,
101359 (2024). https://doi.org/10.1016/j.mtphys.2024.
101359

https://doi.org/10.1007/s40820-025-01945-4


https://doi.org/10.1021/acs.nanolett.4c00623
https://doi.org/10.1021/acs.nanolett.4c00623
https://doi.org/10.1002/adfm.202402356
https://doi.org/10.1002/adfm.202312885
https://doi.org/10.1002/anie.202401996
https://doi.org/10.1039/C9TC04006D
https://doi.org/10.1039/C9TC04006D
https://doi.org/10.1039/c7ce00924k
https://doi.org/10.1016/j.nanoen.2023.108717
https://doi.org/10.1016/j.nanoen.2023.108717
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1002/adfm.202402390
https://doi.org/10.1126/science.ade4401
https://doi.org/10.1002/smll.202310402
https://doi.org/10.1002/smll.202310402
https://doi.org/10.1016/j.progpolymsci.2024.101828
https://doi.org/10.1016/j.progpolymsci.2024.101828
https://doi.org/10.1016/j.mtphys.2024.101345
https://doi.org/10.1016/j.mtphys.2024.101345
https://doi.org/10.1016/j.jhazmat.2024.133682
https://doi.org/10.1016/j.jhazmat.2024.133682
https://doi.org/10.1016/j.addma.2024.104187
https://doi.org/10.1016/j.addma.2024.104187
https://doi.org/10.1038/s41467-024-49686-z
https://doi.org/10.1039/D4TA03452J
https://doi.org/10.1039/D3TA06668A
https://doi.org/10.1186/s40580-024-00417-6
https://doi.org/10.1002/adfm.202402233
https://doi.org/10.1002/adfm.202402233
https://doi.org/10.1002/aenm.202304480
https://doi.org/10.1002/aenm.202304480
https://doi.org/10.1002/adfm.202314529
https://doi.org/10.1002/adfm.202314529
https://doi.org/10.1039/D3CS00572K
https://doi.org/10.1039/D3CS00572K
https://doi.org/10.1016/j.mattod.2024.02.002
https://doi.org/10.1016/j.mtphys.2024.101359
https://doi.org/10.1016/j.mtphys.2024.101359

Nano-Micro Lett.

(2026) 18:109

Page 350f39 109

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

Y. Haghshenas, W.P. Wong, V. Sethu, R. Amal, P.V. Kumar
et al., Full prediction of band potentials in semiconductor
materials. Mater. Today Phys. 46, 101519 (2024). https://doi.
org/10.1016/j.mtphys.2024.101519

H. Ji, Y. Tian, C. Fu, H. Ye, Transfer learning enables pre-
diction of steel corrosion in concrete under natural environ-
ments. Cem. Concr. Compos. 148, 105488 (2024). https://doi.
org/10.1016/j.cemconcomp.2024.105488

P. Akbari, M. Zamani, A. Mostafaei, Machine learning pre-
diction of mechanical properties in metal additive manufac-
turing. Addit. Manuf. 91, 104320 (2024). https://doi.org/10.
1016/j.addma.2024.104320

Y. Fu, A. Howard, C. Zeng, Y. Chen, P. Gao et al., Physics-
guided continual learning for predicting emerging aque-
ous organic redox flow battery material performance. ACS
Energy Lett. 9(6), 2767-2774 (2024). https://doi.org/10.1021/
acsenergylett.4c00493

X. Mei, T. Miyoshi, Y. Suzuki, A dynamic model of wrist-
worn rotational electret energy harvester: theoretical inves-
tigation and experimental validations. Appl. Energy 373,
123888 (2024). https://doi.org/10.1016/j.apenergy.2024.
123888

W. Hamada, M. Hishida, R. Sugiura, H. Tobita, H. Imai et al.,
Efficient design and synthesis of an amorphous conjugated
polymer network for a metal-free electrocatalyst of hydro-
gen evolution reaction. J. Mater. Chem. A 12(6), 3294-3303
(2024). https://doi.org/10.1039/D3TA06447F

Y. Gu, S. Tang, X. Liu, X. Liang, Q. Zhu et al., Stability pre-
diction of gold nanoclusters with different ligands and doped
metals: deep learning and experimental tests. J. Mater. Chem.
A 12(8), 44604472 (2024). https://doi.org/10.1039/d3ta0
6892¢g

Z.-P. Lin, Y. Li, S.A. Haque, A.M. Ganose, A. Kafizas,
Insights from experiment and machine learning for enhanced
TiO, coated glazing for photocatalytic NO, remediation. J.
Mater. Chem. A 12(22), 13281-13298 (2024). https://doi.org/
10.1039/D4ATA01319K

W.Li, Y. Wen, K. Wang, Z. Ding, L. Wang et al., Developing
a machine learning model for accurate nucleoside hydrogels
prediction based on descriptors. Nat. Commun. 15(1), 2603
(2024). https://doi.org/10.1038/s41467-024-46866-9

X. Sun, L. Yue, L. Yu, C.T. Forte, C.D. Armstrong et al.,
Machine learning-enabled forward prediction and inverse
design of 4D-printed active plates. Nat. Commun. 15(1),
5509 (2024). https://doi.org/10.1038/s41467-024-49775-z

L. Gao, J. Lin, L. Wang et al., Machine learning-assisted
design of advanced polymeric materials. Acc. Mater. Res.
5(5), 571-584 (2024). https://doi.org/10.1021/accountsmr.
3c00288

S. Jiang, W. Xu, Q. Xia, M. Yi, Y. Zhou et al., Application of
machine learning in the study of cobalt-based oxide catalysts
for antibiotic degradation: an innovative reverse synthesis
strategy. J. Hazard. Mater. 471, 134309 (2024). https://doi.
org/10.1016/j.jhazmat.2024.134309

Y. Zhang, C. Wen, P. Dang, T. Lookman, D. Xue et al.,
Toward ultra-high strength high entropy alloys via feature

/‘\ SHANGHAI JIAO TONG UNIVERSITY PRESS

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

engineering. J. Mater. Sci. Technol. 200, 243-252 (2024).
https://doi.org/10.1016/j.jmst.2024.02.058

D. Park, J. Lee, H. Lee, G.X. Gu, S. Ryu, Deep generative
spatiotemporal learning for integrating fracture mechanics in
composite materials: inverse design, discovery, and optimiza-
tion. Mater. Horiz. 11(13), 3048-3065 (2024). https://doi.org/
10.1039/D4AMH00337C

M. Seifrid, S. Lo, D.G. Choi, G. Tom, M.L. Le et al., Beyond
molecular structure: critically assessing machine learning
for designing organic photovoltaic materials and devices. J.
Mater. Chem. A 12(24), 14540-14558 (2024). https://doi.org/
10.1039/D4TA01942C

K. Li, K. Choudhary, B. DeCost, M. Greenwood, J. Hattrick-
Simpers, Efficient first principles based modeling via machine
learning: from simple representations to high entropy materi-
als. J. Mater. Chem. A 12(21), 12412-12422 (2024). https://
doi.org/10.1039/D4TA00982G

M. Chen, Z. Yin, Z. Shan, X. Zheng, L. Liu et al., Applica-
tion of machine learning in perovskite materials and devices:
a review. J. Energy Chem. 94, 254-272 (2024). https://doi.
org/10.1016/j.jechem.2024.02.035

R.-L. Liu, J. Wang, Z.-H. Shen, Y. Shen, Ai for dielectric
capacitors. Energy Storage Mater. 71, 103612 (2024). https://
doi.org/10.1016/j.ensm.2024.103612

Y. Wu, C.-F. Wang, M.-G. Ju, Q. Jia, Q. Zhou et al., Uni-
versal machine learning aided synthesis approach of
two-dimensional perovskites in a typical laboratory. Nat.
Commun. 15(1), 138 (2024). https://doi.org/10.1038/
s41467-023-44236-5

J. Chen, S.R. Cross, L.J. Miara, J.-J. Cho, Y. Wang et al.,
Navigating phase diagram complexity to guide robotic inor-
ganic materials synthesis. Nat. Synth. 3(5), 606-614 (2024).
https://doi.org/10.1038/s44160-024-00502-y

Y. Jiang, D. Salley, A. Sharma, G. Keenan, M. Mullin et al.,
An artificial intelligence enabled chemical synthesis robot
for exploration and optimization of nanomaterials. Sci. Adv.
8(40), eab02626 (2022). https://doi.org/10.1126/sciadv.abo26
26

L.C. Erhard, J. Rohrer, K. Albe, V.L. Deringer, Modelling
atomic and nanoscale structure in the silicon—oxygen system
through active machine learning. Nat. Commun. 15, 1927
(2024). https://doi.org/10.1038/s41467-024-45840-9

R. Miyazaki, K.S. Belthle, H. Tiiysiiz, L. Foppa, M. Scheffler,
Materials genes of CO, hydrogenation on supported cobalt
catalysts: an artificial intelligence approach integrating the-
oretical and experimental data. J. Am. Chem. Soc. 146(8),
5433-5444 (2024). https://doi.org/10.1021/jacs.3c12984

Q. Zhai, H. Jiang, N. Long, Q. Kang, X. Meng et al., Machine
learning for full lifecycle management of lithium-ion batter-
ies. Renew. Sustain. Energy Rev. 202, 114647 (2024). https://
doi.org/10.1016/j.rser.2024.114647

L. Ma, J. Tian, T. Zhang, Q. Guo, C. Hu, Accurate and effi-
cient remaining useful life prediction of batteries enabled
by physics-informed machine learning. J. Energy Chem. 91,
512-521 (2024). https://doi.org/10.1016/j.jechem.2023.12.
043

@ Springer


https://doi.org/10.1016/j.mtphys.2024.101519
https://doi.org/10.1016/j.mtphys.2024.101519
https://doi.org/10.1016/j.cemconcomp.2024.105488
https://doi.org/10.1016/j.cemconcomp.2024.105488
https://doi.org/10.1016/j.addma.2024.104320
https://doi.org/10.1016/j.addma.2024.104320
https://doi.org/10.1021/acsenergylett.4c00493
https://doi.org/10.1021/acsenergylett.4c00493
https://doi.org/10.1016/j.apenergy.2024.123888
https://doi.org/10.1016/j.apenergy.2024.123888
https://doi.org/10.1039/D3TA06447F
https://doi.org/10.1039/d3ta06892g
https://doi.org/10.1039/d3ta06892g
https://doi.org/10.1039/D4TA01319K
https://doi.org/10.1039/D4TA01319K
https://doi.org/10.1038/s41467-024-46866-9
https://doi.org/10.1038/s41467-024-49775-z
https://doi.org/10.1021/accountsmr.3c00288
https://doi.org/10.1021/accountsmr.3c00288
https://doi.org/10.1016/j.jhazmat.2024.134309
https://doi.org/10.1016/j.jhazmat.2024.134309
https://doi.org/10.1016/j.jmst.2024.02.058
https://doi.org/10.1039/D4MH00337C
https://doi.org/10.1039/D4MH00337C
https://doi.org/10.1039/D4TA01942C
https://doi.org/10.1039/D4TA01942C
https://doi.org/10.1039/D4TA00982G
https://doi.org/10.1039/D4TA00982G
https://doi.org/10.1016/j.jechem.2024.02.035
https://doi.org/10.1016/j.jechem.2024.02.035
https://doi.org/10.1016/j.ensm.2024.103612
https://doi.org/10.1016/j.ensm.2024.103612
https://doi.org/10.1038/s41467-023-44236-5
https://doi.org/10.1038/s41467-023-44236-5
https://doi.org/10.1038/s44160-024-00502-y
https://doi.org/10.1126/sciadv.abo2626
https://doi.org/10.1126/sciadv.abo2626
https://doi.org/10.1038/s41467-024-45840-9
https://doi.org/10.1021/jacs.3c12984
https://doi.org/10.1016/j.rser.2024.114647
https://doi.org/10.1016/j.rser.2024.114647
https://doi.org/10.1016/j.jechem.2023.12.043
https://doi.org/10.1016/j.jechem.2023.12.043

109

Page 36 of 39

Nano-Micro Lett. (2026) 18:109

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

T. Zheng, Z. Huang, H. Ge, P. Hu, X. Fan et al., Applying
machine learning to design delicate amorphous micro-nano
materials for rechargeable batteries. Energy Storage Mater.
71, 103614 (2024). https://doi.org/10.1016/j.ensm.2024.
103614

Y. Wang, X. Feng, D. Guo, H. Hsu, J. Hou et al., Temperature
excavation to boost machine learning battery thermochemical
predictions. Joule 8(9), 2639-2651 (2024). https://doi.org/10.
1016/j.joule.2024.07.002

S. Varun, A.M. Chandran, K.P. Minhaj, V. Shaju, L.A. Var-
ghese et al., Unveiling predictive insights for enhanced per-
formance of PVDF-based nanogenerators via machine learn-
ing modeling. Chem. Eng. J. 484, 149661 (2024). https://doi.
org/10.1016/j.cej.2024.149661

X.Zhang, D. Mu, S. Lu, Y. Zhang, Y. Zhang et al., Ab initio
design of Ni-rich cathode material with assistance of machine
learning for high energy lithium-ion batteries. Energy Envi-
ron. Mater. 7(6), e12744 (2024). https://doi.org/10.1002/
eem?2.12744

X.Zhang, B. Ding, Y. Wang, Y. Liu, G. Zhang et al., Machine
learning for screening small molecules as passivation materi-
als for enhanced perovskite solar cells. Adv. Funct. Mater.
34(30), 2314529 (2024). https://doi.org/10.1002/adfm.20231
4529

C. Chen, D.T. Nguyen, S.J. Lee, N.A. Baker, A.S. Karakoti
et al., Accelerating computational materials discovery with
machine learning and cloud high-performance computing:
from large-scale screening to experimental validation. J. Am.
Chem. Soc. 146(29), 20009-20018 (2024). https://doi.org/10.
1021/jacs.4c03849

J. Liu, M. Liu, J.-P. Liu, Z. Ye, Y. Wang et al., Towards prov-
ably efficient quantum algorithms for large-scale machine-
learning models. Nat. Commun. 15, 434 (2024). https://doi.
org/10.1038/s41467-023-43957-x

N.J. Szymanski, B. Rendy, Y. Fei, R.E. Kumar, T. He et al.,
An autonomous laboratory for the accelerated synthesis of
novel materials. Nature 624(7990), 86-91 (2023). https://doi.
org/10.1038/341586-023-06734-w

J. Cui, F. Wu, W. Zhang, L. Yang, J. Hu et al., Direct predic-
tion of gas adsorption via spatial atom interaction learning.
Nat. Commun. 14(1), 7043 (2023). https://doi.org/10.1038/
s41467-023-42863-6

V.L. Deringer, N. Bernstein, G. Csanyi, C. Ben Mahmoud,
M. Ceriotti et al., Origins of structural and electronic transi-
tions in disordered silicon. Nature 589(7840), 59-64 (2021).
https://doi.org/10.1038/s41586-020-03072-z

H. Yin, M. Xu, Z. Luo, X. Bi, J. Li et al., Machine learning
for membrane design and discovery. Green Energy Environ.
9(1), 54-70 (2024). https://doi.org/10.1016/j.gee.2022.12.001
N. Han, B.-L. Su, Ai-driven material discovery for energy,
catalysis and sustainability. Natl. Sci. Rev. 12(5), nwaf110
(2025). https://doi.org/10.1093/nsr/nwaf110

A. Jaison, A. Mohan, Y.-C. Lee, Machine learning-enhanced
photocatalysis for environmental sustainability: integration
and applications. Mater. Sci. Eng. R. Rep. 161, 100880
(2024). https://doi.org/10.1016/j.mser.2024.100880

© The authors

107

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

. X.Jiang, H. Fu, Y. Bai, L. Jiang, H. Zhang et al., Interpretable
machine learning applications: a promising prospect of Al for
materials. Adv. Funct. Mater. 2507734 (2025). https://doi.org/
10.1002/adfm.202507734

Y. Aoki, S. Wu, T. Tsurimoto, Y. Hayashi, S. Minami et al.,
Multitask machine learning to predict polymer—solvent mis-
cibility using flory—huggins interaction parameters. Mac-
romolecules 56(14), 5446-5456 (2023). https://doi.org/10.
1021/acs.macromol.2c02600

V. Kuznetsova, A. Coogan, D. Botov, Y. Gromova, E.V. Usha-
kova et al., Expanding the horizons of machine learning in
nanomaterials to chiral nanostructures. Adv. Mater. 36(18),
2308912 (2024). https://doi.org/10.1002/adma.202308912

A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards et al.,
Commentary: The Materials Project: a materials genome
approach to accelerating materials innovation. APL Mater.
1, 011002 (2013). https://doi.org/10.1063/1.4812323

J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton,
Materials design and discovery with high-throughput den-
sity functional theory: the open quantum materials database
(OQMD). JOM 65(11), 1501-1509 (2013). https://doi.org/
10.1007/s11837-013-0755-4

C. Draxl, M. Scheffler, The NOMAD laboratory: from data
sharing to artificial intelligence. J. Phys. Mater. 2(3), 036001
(2019). https://doi.org/10.1088/2515-7639/ab13bb

S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang et al.,
AFLOWLIB.ORG: a distributed materials properties reposi-
tory from high-throughput ab initio calculations. Comput.
Mater. Sci. 58, 227-235 (2012). https://doi.org/10.1016/].
commatsci.2012.02.002

K. Bi, Y. Wang, G. Zhou, Hierarchical porous N/S-doped car-
bon with machine learning to predict advanced potassium-ion
batteries. J. Mater. Chem. A 11(22), 11696-11703 (2023).
https://doi.org/10.1039/D3TA00247K

L.E. Vivanco-Benavides, C.L. Martinez-Gonzalez, C. Mer-
cado-Zuiiiga, C. Torres-Torres, Machine learning and materi-
als informatics approaches in the analysis of physical proper-
ties of carbon nanotubes: a review. Comput. Mater. Sci. 201,
110939 (2022). https://doi.org/10.1016/j.commatsci.2021.
110939

A. Krizhevsky, 1. Sutskever, G.E. Hinton, Imagenet classifi-
cation with deep convolutional neural networks. Commun.
ACM 60(6), 84-90 (2017). https://doi.org/10.1145/3065386

P.Z. Moghadam, Y.G. Chung, R.Q. Snurr, Progress toward the
computational discovery of new metal-organic framework
adsorbents for energy applications. Nat. Energy 9(2), 121—
133 (2024). https://doi.org/10.1038/s41560-023-01417-2

T. Chen, Z. Pang, S. He, Y. Li, S. Shrestha et al., Machine
intelligence-accelerated discovery of all-natural plastic sub-
stitutes. Nat. Nanotechnol. 19(6), 782-791 (2024). https://doi.
org/10.1038/341565-024-01635-z

J. Benavides-Hern4ndez, F. Dumeignil, From characteriza-
tion to discovery: artificial intelligence, machine learning
and high-throughput experiments for heterogeneous catalyst
design. ACS Catal. 14(15), 11749-11779 (2024). https://doi.
org/10.1021/acscatal.3¢06293

https://doi.org/10.1007/s40820-025-01945-4


https://doi.org/10.1016/j.ensm.2024.103614
https://doi.org/10.1016/j.ensm.2024.103614
https://doi.org/10.1016/j.joule.2024.07.002
https://doi.org/10.1016/j.joule.2024.07.002
https://doi.org/10.1016/j.cej.2024.149661
https://doi.org/10.1016/j.cej.2024.149661
https://doi.org/10.1002/eem2.12744
https://doi.org/10.1002/eem2.12744
https://doi.org/10.1002/adfm.202314529
https://doi.org/10.1002/adfm.202314529
https://doi.org/10.1021/jacs.4c03849
https://doi.org/10.1021/jacs.4c03849
https://doi.org/10.1038/s41467-023-43957-x
https://doi.org/10.1038/s41467-023-43957-x
https://doi.org/10.1038/s41586-023-06734-w
https://doi.org/10.1038/s41586-023-06734-w
https://doi.org/10.1038/s41467-023-42863-6
https://doi.org/10.1038/s41467-023-42863-6
https://doi.org/10.1038/s41586-020-03072-z
https://doi.org/10.1016/j.gee.2022.12.001
https://doi.org/10.1093/nsr/nwaf110
https://doi.org/10.1016/j.mser.2024.100880
https://doi.org/10.1002/adfm.202507734
https://doi.org/10.1002/adfm.202507734
https://doi.org/10.1021/acs.macromol.2c02600
https://doi.org/10.1021/acs.macromol.2c02600
https://doi.org/10.1002/adma.202308912
https://doi.org/10.1063/1.4812323
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1088/2515-7639/ab13bb
https://doi.org/10.1016/j.commatsci.2012.02.002
https://doi.org/10.1016/j.commatsci.2012.02.002
https://doi.org/10.1039/D3TA00247K
https://doi.org/10.1016/j.commatsci.2021.110939
https://doi.org/10.1016/j.commatsci.2021.110939
https://doi.org/10.1145/3065386
https://doi.org/10.1038/s41560-023-01417-2
https://doi.org/10.1038/s41565-024-01635-z
https://doi.org/10.1038/s41565-024-01635-z
https://doi.org/10.1021/acscatal.3c06293
https://doi.org/10.1021/acscatal.3c06293

Nano-Micro Lett.

(2026) 18:109

Page 37 0f39 109

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

L. Xiang, J. Chen, X. Zhao, J. Hu, J. Yu et al., Synergis-
tic machine learning accelerated discovery of nanoporous
inorganic crystals as non-absorbable oral drugs. Adv. Mater.
36(32), 2404688 (2024). https://doi.org/10.1002/adma.20240
4688

V. Stanev, K. Choudhary, A.G. Kusne, J. Paglione, I.
Takeuchi, Artificial intelligence for search and discovery of
quantum materials. Commun. Mater. 2, 105 (2021). https://
doi.org/10.1038/s43246-021-00209-z

Y. Wang, Z.-J. Jiang, D.-R. Wang, W. Lu, D. Li, Machine
learning-assisted discovery of propane-selective metal—
organic frameworks. J. Am. Chem. Soc. 146(10), 6955-6961
(2024). https://doi.org/10.1021/jacs.3¢14610

H.M. Johnson, F. Gusev, J.T. Dull, Y. Seo, R.D. Priestley
et al., Discovery of crystallizable organic semiconductors
with machine learning. J. Am. Chem. Soc. 146(31), 21583—
21590 (2024). https://doi.org/10.1021/jacs.4c05245

Z. Zhang, F. Pan, S.A. Mohamed, C. Ji, K. Zhang et al.,
Accelerating discovery of water stable metal—organic frame-
works by machine learning. Small 20(42), 2405087 (2024).
https://doi.org/10.1002/smll.202405087

X. Zhou, C. Xu, X. Guo, P. Apostol, A. Vlad et al., Compu-
tational and machine learning-assisted discovery and exper-
imental validation of conjugated sulfonamide cathodes for
lithium-ion batteries. Adv. Energy Mater. 15(25), 2401658
(2025). https://doi.org/10.1002/aenm.202401658

X. Liu, K. Fan, X. Huang, J. Ge, Y. Liu et al., Recent advances
in artificial intelligence boosting materials design for electro-
chemical energy storage. Chem. Eng. J. 490, 151625 (2024).
https://doi.org/10.1016/j.cej.2024.151625

G. Xu, M. Jiang, J. Li, X. Xuan, J. Li et al., Machine learning-
accelerated discovery and design of electrode materials and
electrolytes for lithium ion batteries. Energy Storage Materi-
als 72, 103710 (2024). https://doi.org/10.1016/j.ensm.2024.
103710

B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani et al.,
Bayesian reaction optimization as a tool for chemical synthe-
sis. Nature 590(7844), 89-96 (2021). https://doi.org/10.1038/
s41586-021-03213-y

T. He, H. Huo, C.J. Bartel, Z. Wang, K. Cruse et al., Precursor
recommendation for inorganic synthesis by machine learning
materials similarity from scientific literature. Sci. Adv. 9(23),
eadg8180 (2023). https://doi.org/10.1126/sciadv.adg8180

N.J. Szymanski, P. Nevatia, C.J. Bartel, Y. Zeng, G. Ceder,
Autonomous and dynamic precursor selection for solid-state
materials synthesis. Nat. Commun. 14, 6956 (2023). https://
doi.org/10.1038/s41467-023-42329-9

J. Li, S.G. Ballmer, E.P. Gillis, S. Fujii, M.J. Schmidt et al.,
Synthesis of many different types of organic small molecules
using one automated process. Science 347(6227), 1221-1226
(2015). https://doi.org/10.1126/science.aaa5414

PJ. Kitson, G. Marie, J.-P. Francoia, S.S. Zalesskiy, R.C.
Sigerson et al., Digitization of multistep organic synthesis
in reactionware for on-demand pharmaceuticals. Science
359(6373), 314-319 (2018). https://doi.org/10.1126/scien
ce.aa03466

/‘\ SHANGHAI JIAO TONG UNIVERSITY PRESS

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

C.W. Coley, D.A. Thomas 3rd, J.A.M. Lummiss, J.N. Jawor-
ski, C.P. Breen et al., A robotic platform for flow synthesis
of organic compounds informed by Al planning. Science
365(6453), eaax1566 (2019). https://doi.org/10.1126/scien
ce.aax1566

J.S. Manzano, W. Hou, S.S. Zalesskiy, P. Frei, H. Wang et al.,
An autonomous portable platform for universal chemical syn-
thesis. Nat. Chem. 14(11), 1311-1318 (2022). https://doi.org/
10.1038/s41557-022-01016-w

A. Chen, Z. Wang, K.L.L. Vidaurre, Y. Han, S. Ye et al,,
Knowledge-reused transfer learning for molecular and mate-
rials science. J. Energy Chem. 98, 149-168 (2024). https://
doi.org/10.1016/j.jechem.2024.06.013

X.-Y. Liu, J. Wu, Z.-H. Zhou, Exploratory undersampling for
class-imbalance learning. IEEE Trans. Syst., Man, Cybern. B
39(2), 539-550 (2009). https://doi.org/10.1109/tsmcb.2008.
2007853

N. Qu, M. Chen, M. Liao, Y. Cheng, Z. Lai et al., Accelerat-
ing density functional calculation of adatom adsorption on
graphene via machine learning. Materials 16(7), 2633 (2023).
https://doi.org/10.3390/mal16072633

M. Agarwal, P. Pasupathy, X. Wu, S.S. Recchia, A.A. Pelegri,
Multiscale computational and artificial intelligence models
of linear and nonlinear composites: a review. Small Science
4(5), 2300185 (2024). https://doi.org/10.1002/smsc.20230
0185

W.L. Ng, G.L. Goh, G.D. Goh, J.S.J. Ten, W.Y. Yeong, Pro-
gress and opportunities for machine learning in materials and
processes of additive manufacturing. Adv. Mater. 36(34),
2310006 (2024). https://doi.org/10.1002/adma.202310006

K. Zhang, X. Gong, Y. Jiang, Machine learning in soft matter:
from simulations to experiments. Adv. Funct. Mater. 34(24),
2315177 (2024). https://doi.org/10.1002/adfm.202315177

M. Delpisheh, B. Ebrahimpour, A. Fattahi, M. Siavashi, H.
Mir et al., Leveraging machine learning in porous media. J.
Mater. Chem. A 12(32), 20717-20782 (2024). https://doi.org/
10.1039/d4ta00251b

V. Karkaria, A. Goeckner, R. Zha, J. Chen, J. Zhang et al.,
Towards a digital twin framework in additive manufacturing:
machine learning and bayesian optimization for time series
process optimization. J. Manuf. Syst. 75, 322-332 (2024).
https://doi.org/10.1016/j.jmsy.2024.04.023

Y. Ren, M. Cui, Y. Zhou, S. Sun, F. Guo et al., Utilizing
machine learning for reactive material selection and width
design in permeable reactive barrier (PRB). Water Res. 251,
121097 (2024). https://doi.org/10.1016/j.watres.2023.121097
H. Wang, S.L. Gao, B.T. Wang, Y.T. Ma, Z.J. Guo et al.,
Recent advances in machine learning-assisted fatigue life pre-
diction of additive manufactured metallic materials: a review.
J. Mater. Sci. Technol. 198, 111-136 (2024). https://doi.org/
10.1016/j.jmst.2024.01.086

B.Lu, Y. Xia, Y. Ren, M. Xie, L. Zhou et al., When machine
learning meets 2D materials: a review. Adv. Sci. 11(13),
2305277 (2024). https://doi.org/10.1002/advs.202305277
S.V. Thummalapalli, D. Patil, A. Ramanathan, D. Ravi-
chandran, Y. Zhu et al., Machine learning—enabled direct

@ Springer


https://doi.org/10.1002/adma.202404688
https://doi.org/10.1002/adma.202404688
https://doi.org/10.1038/s43246-021-00209-z
https://doi.org/10.1038/s43246-021-00209-z
https://doi.org/10.1021/jacs.3c14610
https://doi.org/10.1021/jacs.4c05245
https://doi.org/10.1002/smll.202405087
https://doi.org/10.1002/aenm.202401658
https://doi.org/10.1016/j.cej.2024.151625
https://doi.org/10.1016/j.ensm.2024.103710
https://doi.org/10.1016/j.ensm.2024.103710
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1126/sciadv.adg8180
https://doi.org/10.1038/s41467-023-42329-9
https://doi.org/10.1038/s41467-023-42329-9
https://doi.org/10.1126/science.aaa5414
https://doi.org/10.1126/science.aao3466
https://doi.org/10.1126/science.aao3466
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1038/s41557-022-01016-w
https://doi.org/10.1038/s41557-022-01016-w
https://doi.org/10.1016/j.jechem.2024.06.013
https://doi.org/10.1016/j.jechem.2024.06.013
https://doi.org/10.1109/tsmcb.2008.2007853
https://doi.org/10.1109/tsmcb.2008.2007853
https://doi.org/10.3390/ma16072633
https://doi.org/10.1002/smsc.202300185
https://doi.org/10.1002/smsc.202300185
https://doi.org/10.1002/adma.202310006
https://doi.org/10.1002/adfm.202315177
https://doi.org/10.1039/d4ta00251b
https://doi.org/10.1039/d4ta00251b
https://doi.org/10.1016/j.jmsy.2024.04.023
https://doi.org/10.1016/j.watres.2023.121097
https://doi.org/10.1016/j.jmst.2024.01.086
https://doi.org/10.1016/j.jmst.2024.01.086
https://doi.org/10.1002/advs.202305277

109

Page 38 of 39

Nano-Micro Lett. (2026) 18:109

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

ink writing of conductive polymer composites for enhanced
performance in thermal management and current protection.
Energy Storage Materials 71, 103670 (2024). https://doi.org/
10.1016/j.ensm.2024.103670

H. Zhang, Y. Li, S. Zheng, Z. Lu, X. Gui et al., Battery life-
time prediction across diverse ageing conditions with inter-
cell deep learning. Nat. Mach. Intell. 7(2), 270-277 (2025).
https://doi.org/10.1038/s42256-024-00972-x

A. Keddouda, R. Thaddadene, A. Boukhari, A. Atia, M. Aric1
et al., Photovoltaic module temperature prediction using vari-
ous machine learning algorithms: performance evaluation.
Appl. Energy 363, 123064 (2024). https://doi.org/10.1016/j.
apenergy.2024.123064

M.F. Tahir, M.Z. Yousaf, A. Tzes, M.S. El Moursi, T.H.M.
El-Fouly, Enhanced solar photovoltaic power prediction using
diverse machine learning algorithms with hyperparameter
optimization. Renew. Sustain. Energy Rev. 200, 114581
(2024). https://doi.org/10.1016/j.rser.2024.114581

B. Bai, L. Wang, F. Guan, Y. Cui, M. Bao et al., Prediction
models for bioavailability of Cu and Zn during composting:
insights into machine learning. J. Hazard. Mater. 471, 134392
(2024). https://doi.org/10.1016/j.jhazmat.2024.134392

G. Yin, FJ.I. Alazzawi, S. Mironov, F. Reegu, A.S. El-Shafay
et al., Machine learning method for simulation of adsorption
separation: comparisons of model’s performance in predict-
ing equilibrium concentrations. Arab. J. Chem. 15(3), 103612
(2022). https://doi.org/10.1016/j.arabjc.2021.103612

R. Lyu, C.E. Moore, T. Liu, Y. Yu, Y. Wu, Predictive design
model for low-dimensional organic—inorganic halide per-
ovskites assisted by machine learning. J. Am. Chem. Soc.
143(32), 12766-12776 (2021). https://doi.org/10.1021/jacs.
1c05441

S. Lu, Q. Zhou, Y. Ouyang, Y. Guo, Q. Li et al., Acceler-
ated discovery of stable lead-free hybrid organic-inorganic
perovskites via machine learning. Nat. Commun. 9(1), 3405
(2018). https://doi.org/10.1038/s41467-018-05761-w

A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, S.D. Brown,
An introduction to decision tree modeling. J. Chemom. 18(6),
275-285 (2004). https://doi.org/10.1002/cem.873

V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo,
M. Chica-Rivas, Machine learning predictive models for min-
eral prospectivity: an evaluation of neural networks, random
forest, regression trees and support vector machines. Ore
Geol. Rev. 71, 804-818 (2015). https://doi.org/10.1016/j.
oregeorev.2015.01.001

A.V. Konstantinov, L.V. Utkin, Interpretable machine learn-
ing with an ensemble of gradient boosting machines. Knowl.
Based Syst. 222, 106993 (2021). https://doi.org/10.1016/j.
knosys.2021.106993

P. Li, L. Dong, C. Li, Y. Li, J. Zhao et al., Machine learning
to promote efficient screening of low-contact electrode for
2D semiconductor transistor under limited data. Adv. Mater.
36(26), 2312887 (2024). https://doi.org/10.1002/adma.20231
2887

A.P. Bartdk, J. Kermode, N. Bernstein, G. Csanyi, Machine
learning a general-purpose interatomic potential for silicon.

© The authors

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

Phys. Rev. X 8(4), 041048 (2018). https://doi.org/10.1103/
physrevx.8.041048

L.C. Erhard, J. Rohrer, K. Albe, V.L. Deringer, A machine-
learned interatomic potential for silica and its relation to
empirical models. NPJ Comput. Mater. 8, 90 (2022). https://
doi.org/10.1038/541524-022-00768-w

Z. Liu, M. Jiang, T. Luo, Leveraging low-fidelity data to
improve machine learning of sparse high-fidelity thermal
conductivity data via transfer learning. Mater. Today Phys.
28, 100868 (2022). https://doi.org/10.1016/j.mtphys.2022.
100868

Y. Kang, H. Park, B. Smit, J. Kim, A multi-modal pre-training
transformer for universal transfer learning in metal-organic
frameworks. Nat. Mach. Intell. 5(3), 309-318 (2023). https://
doi.org/10.1038/s42256-023-00628-2

H. Wang, T. Fu, Y. Du, W. Gao, K. Huang et al., Scientific dis-
covery in the age of artificial intelligence. Nature 620(7972),
47-60 (2023). https://doi.org/10.1038/s41586-023-06221-2

B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen et al., Machine
learning methods for small data challenges in molecular sci-
ence. Chem. Rev. 123(13), 8736-8780 (2023). https://doi.org/
10.1021/acs.chemrev.3c00189

D. Azzimonti, C. Rottondi, A. Giusti, M. Tornatore, A.
Bianco, Comparison of domain adaptation and active learn-
ing techniques for quality of transmission estimation with
small-sized training datasets. J. Opt. Commun. Netw. 13(1),
A56 (2021). https://doi.org/10.1364/jocn.401918

Y. Jia, R. Zhang, C. Fang, J. Zheng, Interpretable machine
learning to accelerate the analysis of doping effect on Li/Ni
exchange in Ni-rich layered oxide cathodes. J. Phys. Chem.
Lett. 15(6), 1765-1773 (2024). https://doi.org/10.1021/acs.
jpclett.3¢03294

J. Bai, L. Cao, S. Mosbach, J. Akroyd, A.A. Lapkin et al.,
From platform to knowledge graph: evolution of laboratory
automation. JACS Au 2(2), 292-309 (2022). https://doi.org/
10.1021/jacsau.1c00438

O. Bayley, E. Savino, A. Slattery, T. Noé&l, Autonomous
chemistry: navigating self-driving labs in chemical and mate-
rial sciences. Matter 7(7), 2382-2398 (2024). https://doi.org/
10.1016/j.matt.2024.06.003

P. Chen, R. Jiao, J. Liu, Y. Liu, Y. Lu, Interpretable graph
transformer network for predicting adsorption isotherms of
metal-organic frameworks. J. Chem. Inf. Model. 62(22),
5446-5456 (2022). https://doi.org/10.1021/acs.jcim.2c00876

K.M. Jablonka, D. Ongari, S.M. Moosavi, B. Smit, Using col-
lective knowledge to assign oxidation states of metal cations
in metal-organic frameworks. Nat. Chem. 13(8), 771-777
(2021). https://doi.org/10.1038/s41557-021-00717-y

Y. Guo, M. Yang, G. Huang, Y. Zheng, Machine-learning-
enabled exploitation of gas-sensing descriptors: a case study
of five pristine metal oxides. Chem. Eng. J. 492, 152280
(2024). https://doi.org/10.1016/j.cej.2024.152280

H. Li, X. Li, P. Wang, Z. Zhang, K. Davey et al., Machine
learning big data set analysis reveals C-C electro-coupling
mechanism. J. Am. Chem. Soc. 146(32), 22850-22858
(2024). https://doi.org/10.1021/jacs.4c09079

https://doi.org/10.1007/s40820-025-01945-4


https://doi.org/10.1016/j.ensm.2024.103670
https://doi.org/10.1016/j.ensm.2024.103670
https://doi.org/10.1038/s42256-024-00972-x
https://doi.org/10.1016/j.apenergy.2024.123064
https://doi.org/10.1016/j.apenergy.2024.123064
https://doi.org/10.1016/j.rser.2024.114581
https://doi.org/10.1016/j.jhazmat.2024.134392
https://doi.org/10.1016/j.arabjc.2021.103612
https://doi.org/10.1021/jacs.1c05441
https://doi.org/10.1021/jacs.1c05441
https://doi.org/10.1038/s41467-018-05761-w
https://doi.org/10.1002/cem.873
https://doi.org/10.1016/j.oregeorev.2015.01.001
https://doi.org/10.1016/j.oregeorev.2015.01.001
https://doi.org/10.1016/j.knosys.2021.106993
https://doi.org/10.1016/j.knosys.2021.106993
https://doi.org/10.1002/adma.202312887
https://doi.org/10.1002/adma.202312887
https://doi.org/10.1103/physrevx.8.041048
https://doi.org/10.1103/physrevx.8.041048
https://doi.org/10.1038/s41524-022-00768-w
https://doi.org/10.1038/s41524-022-00768-w
https://doi.org/10.1016/j.mtphys.2022.100868
https://doi.org/10.1016/j.mtphys.2022.100868
https://doi.org/10.1038/s42256-023-00628-2
https://doi.org/10.1038/s42256-023-00628-2
https://doi.org/10.1038/s41586-023-06221-2
https://doi.org/10.1021/acs.chemrev.3c00189
https://doi.org/10.1021/acs.chemrev.3c00189
https://doi.org/10.1364/jocn.401918
https://doi.org/10.1021/acs.jpclett.3c03294
https://doi.org/10.1021/acs.jpclett.3c03294
https://doi.org/10.1021/jacsau.1c00438
https://doi.org/10.1021/jacsau.1c00438
https://doi.org/10.1016/j.matt.2024.06.003
https://doi.org/10.1016/j.matt.2024.06.003
https://doi.org/10.1021/acs.jcim.2c00876
https://doi.org/10.1038/s41557-021-00717-y
https://doi.org/10.1016/j.cej.2024.152280
https://doi.org/10.1021/jacs.4c09079

Nano-Micro Lett.

(2026) 18:109

Page 39 of 39 109

172.

173.

174.

175.

176.

177.

178.

179.

180.

Y. Sun, P. Sun, J. Jia, Z. Liu, L. Huo et al., Machine learning
in clarifying complex relationships: biochar preparation pro-
cedures and capacitance characteristics. Chem. Eng. J. 485,
149975 (2024). https://doi.org/10.1016/j.cej.2024.149975
Y. Zhou, Lifecycle battery carbon footprint analysis for bat-
tery sustainability with energy digitalization and artificial
intelligence. Appl. Energy 371, 123665 (2024). https://doi.
org/10.1016/j.apenergy.2024.123665

H. Zhang, X. Gui, S. Zheng, Z. Lu, Y. Li, J. Bian. Batteryml:
An open-source platform for machine learning on battery
degradation. arXiv preprint arXiv:231014714. (2023).

X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide per-
ovskite rulebook: how the spacer influences everything from
the structure to optoelectronic device efficiency. Chem. Rev.
121(4), 2230-2291 (2021). https://doi.org/10.1021/acs.chemr
ev.0c01006

R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler, L.M.
Ghiringhelli, Simultaneous learning of several materials
properties from incomplete databases with multi-task SISSO.
J. Phys. Mater. 2(2), 024002 (2019). https://doi.org/10.1088/
2515-7639/ab077b

R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M.
Ghiringhelli, SISSO: a compressed-sensing method for iden-
tifying the best low-dimensional descriptor in an immensity
of offered candidates. Phys. Rev. Mater. 2(8), 083802 (2018).
https://doi.org/10.1103/physrevmaterials.2.083802

A. Ludwig, Discovery of new materials using combinatorial
synthesis and high-throughput characterization of thin-film
materials libraries combined with computational methods.
NPJ Comput. Mater. 5, 70 (2019). https://doi.org/10.1038/
s41524-019-0205-0

Z. Ren, F. Oviedo, M. Thway, S.I.P. Tian, Y. Wang et al.,
Embedding physics domain knowledge into a Bayesian net-
work enables layer-by-layer process innovation for photo-
voltaics. NPJ Comput. Mater. 6, 9 (2020). https://doi.org/10.
1038/541524-020-0277-x

J. Tian, R. Xiong, W. Shen, J. Lu, X.-G. Yang, Deep neural
network battery charging curve prediction using 30 points
collected in 10 min. Joule 5(6), 1521-1534 (2021). https://
doi.org/10.1016/j.joule.2021.05.012

/‘\ SHANGHAI JIAO TONG UNIVERSITY PRESS

181.

182.

183.

184.

185.

186.

187.

Z. Fu, P. Huang, X. Wang, W.-D. Liu, L. Kong et al., Artifi-
cial intelligence-assisted ultrafast high-throughput screening
of high-entropy hydrogen evolution reaction catalysts. Adv.
Energy Mater. 15(30), 2500744 (2025). https://doi.org/10.
1002/aenm.202500744

S. Singh, J.M. Hernandez-Lobato, A meta-learning
approach for selectivity prediction in asymmetric catalysis.
Nat. Commun. 16, 3599 (2025). https://doi.org/10.1038/
s41467-025-58854-8

H. Liao, S. Hu, H. Yang, L. Wang, S. Tanaka et al., Data-
driven de novo design of super-adhesive hydrogels.
Nature 644(8075), 89-95 (2025). https://doi.org/10.1038/
s41586-025-09269-4

H. Li, H. Zheng, T. Yue, Z. Xie, S. Yu et al., Machine learn-
ing-accelerated discovery of heat-resistant polysulfates for
electrostatic energy storage. Nat. Energy 10(1), 90-100
(2025). https://doi.org/10.1038/s41560-024-01670-z

L. Zhang, X. Zhang, C. Chen, J. Zhang, W. Tan et al.,
Machine learning-aided discovery of low-Pt high entropy
intermetallic compounds for electrochemical oxygen reduc-
tion reaction. Angew. Chem. Int. Ed. 63(51), €202411123
(2024). https://doi.org/10.1002/anie.202411123

X. Duan, Y. Li, J. Zhao, M. Zhang, X. Wang et al., Machine
learning accelerated discovery of entropy-stabilized oxide
catalysts for catalytic oxidation. J. Am. Chem. Soc. 147(1),
651-661 (2025). https://doi.org/10.1021/jacs.4c12838

G. Lin, Z. University, T. Guo, Z. University et al., Machine
learning accelerated screening advanced single-atom
anchored MXenes electrocatalyst for nitrogen fixation. ACS
Catal. 15(15), 13534—13548 (2025). https://doi.org/10.1021/
acscatal.4c06914

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1016/j.cej.2024.149975
https://doi.org/10.1016/j.apenergy.2024.123665
https://doi.org/10.1016/j.apenergy.2024.123665
https://doi.org/10.1021/acs.chemrev.0c01006
https://doi.org/10.1021/acs.chemrev.0c01006
https://doi.org/10.1088/2515-7639/ab077b
https://doi.org/10.1088/2515-7639/ab077b
https://doi.org/10.1103/physrevmaterials.2.083802
https://doi.org/10.1038/s41524-019-0205-0
https://doi.org/10.1038/s41524-019-0205-0
https://doi.org/10.1038/s41524-020-0277-x
https://doi.org/10.1038/s41524-020-0277-x
https://doi.org/10.1016/j.joule.2021.05.012
https://doi.org/10.1016/j.joule.2021.05.012
https://doi.org/10.1002/aenm.202500744
https://doi.org/10.1002/aenm.202500744
https://doi.org/10.1038/s41467-025-58854-8
https://doi.org/10.1038/s41467-025-58854-8
https://doi.org/10.1038/s41586-025-09269-4
https://doi.org/10.1038/s41586-025-09269-4
https://doi.org/10.1038/s41560-024-01670-z
https://doi.org/10.1002/anie.202411123
https://doi.org/10.1021/jacs.4c12838
https://doi.org/10.1021/acscatal.4c06914
https://doi.org/10.1021/acscatal.4c06914

	Artificial Intelligence Empowered New Materials: Discovery, Synthesis, Prediction to Validation
	Highlights
	Abstract 
	1 Introduction
	2 Mechanism of AI for Cognizance of Existing Materials and Discovery of Novel Materials
	3 Design of the Intelligent Systems for New Materials
	3.1 Data Collection
	3.2 Machine Learning Algorithms
	3.3 Autonomous Laboratory Validation

	4 Strategies to Design AI Systems for Materials with Enhanced Performance
	4.1 For Cognition of Existing Materials
	4.1.1 Existing Data Leverage
	4.1.2 Structure and Property Prediction
	4.1.3 Experimental Validation

	4.2 For Discovery of New Materials
	4.2.1 Excavating the Existing Data
	4.2.2 Screening for Excellent Performance and High Synthesis Feasibility
	4.2.3 Experimental Realization


	5 Design Consideration of the AI Systems for New Materials
	5.1 To be More Autonomous
	5.2 To be More Universally Applicable

	6 Perspectives
	Acknowledgements 
	References


