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HIGHLIGHTS

•	 This review provides a comprehensive overview of the physical mechanisms, device behaviors, and integration strategies that underpin mul-
timodal signal processing in neuromorphic hardware.

•	 This review examines implementation strategies for multimodal integration, including signal fusion methods and processing techniques for 
handling cross-modal stimuli.

•	 This review categorizes multimodal neuromorphic devices into three distinct frameworks and comprehensively discusses their respective 
advantages and limitations.

ABSTRACT  The increasing complexity of intelligent sensing environments, 
driven by the growth of Internet of Things technologies, has created a strong 
demand for neuromorphic systems capable of real-time, low-power multisensory 
perception. Traditional sensory architectures, constrained by single-modal pro-
cessing and centralized computing, struggle to meet the requirements of diverse 
and dynamic input conditions. Multisensory neuromorphic devices offer a prom-
ising solution by mimicking the distributed, event-driven processing of biological 
systems. Recent efforts have explored synaptic devices and material systems 
that respond to various input modalities, including visual, tactile, thermal, and 
chemical stimuli. However, challenges remain in signal conversion, encoding 
compatibility, and the fusion of heterogeneous inputs without loss of unisensory 
information. This review provides a comprehensive overview of the physical 
mechanisms, device behaviors, and integration strategies that underpin signal 
processing in neuromorphic hardware. We highlight synaptic mechanisms condu-
cive to cross-modal interaction, analyze representative signal fusion approaches 
at the device level, and discuss future directions for constructing efficient, scalable, and biologically inspired multisensory neuromorphic 
systems.
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1  Introduction

With the rapid development of IoT technologies, modern 
sensing systems are increasingly required to collect multi-
modal signals—such as visual, temperature, humidity, gas 
and pressure in real time and under dynamic, noisy environ-
ments [1, 2]. Traditional sensors, with their single-modal 
architectures and centralized data processing pipelines, 
often struggle to meet these demands due to limited signal 
compatibility, inherent stochasticity, and inadequate envi-
ronmental adaptability [3–5]. To address these limitations, 
multisensory neuromorphic devices have attracted growing 
interest for their ability to emulate the brain’s parallel, dis-
tributed, and adaptive information processing capabilities 
[6–9]. By incorporating mechanisms such as synaptic plas-
ticity and distributed computation, these devices perform 
direct, in-memory fusion of heterogeneous sensory inputs 
at the hardware level [10–12]. This biologically inspired 
approach enhances perception accuracy, reduces latency, and 
improves energy efficiency, which holds significant prom-
ise for real-time, energy-constrained applications such as 
autonomous vehicles, wearable electronics, and intelligent 
robotics [13–16].

Biological systems perform multisensory integration 
through highly interconnected and adaptive neural networks 
[17–21]. In these systems, synapses act as dynamic sensing 
and processing units, regulating signal transmission between 
neurons in response to various external stimuli [22, 23]. 
Changes in chemical flux within synapses modulate synap-
tic weights, enabling plasticity and adaptive learning based 
on multisensory input patterns [24, 25]. Sensory neurons 
and synapses integrate signals from different modalities into 
coherent spike trains, which propagate through the brain to 
support perception and decision-making [26]. This decen-
tralized, parallel processing mechanism has inspired the 
development of artificial neuromorphic devices designed 
to emulate the functionalities of biological neurons and 
synapses [27, 28]. For example, neuromorphic systems 
incorporating heterogeneous sensory components, such as 
ferroelectric memristors and piezoresistive thin films, have 
been proposed. These systems achieve synchronous acquisi-
tion and spike-based encoding of multimodal inputs, thereby 
overcoming the serial bottlenecks of traditional architectures 
[29, 30]. These biologically inspired implementations lay the 
groundwork for more efficient and adaptive multisensory 
computing in artificial systems.

Recent studies have demonstrated neuromorphic devices 
capable of processing multimodal information by inte-
grating visual, tactile, thermal, and chemical inputs into a 
unified hardware platform [31–33]. These systems mark a 
significant departure from traditional architectures by ena-
bling in-memory and event-driven computation [28, 34, 
35]. However, challenges remain in signal conversion and 
fusion. Diverse modalities differ in physical properties and 
encoding requirements, often requiring additional conver-
sion modules that increase latency and energy consump-
tion [36]. Moreover, naïve fusion strategies can result in 
the loss of key unisensory information, particularly under 
unbalanced input conditions [37]. Material incompatibility 
and limited integration scalability also hinder device perfor-
mance and system robustness [38]. These limitations under-
score the need to deepen our understanding of the physical 
mechanisms and fusion principles governing multisensory 
neuromorphic systems.

In this review, we provide an overview of multisensory 
neuromorphic devices. We analyze the operating principles 
by which different physical mechanisms respond to diverse 
input signals across visual, tactile, thermal, and chemical 
modalities. We then have discussed the requirements of 
mechanisms for achieving multimodal integration and which 
types of physical mechanisms are more conducive to mul-
timodal fusion. Additionally, we examine implementation 
strategies for multimodal integration, including signal fusion 
methods and processing techniques for handling cross-modal 
stimuli. Finally, we highlight challenges in data conversion 
and fusion, and discuss future directions for constructing 
versatile neuromorphic systems with parallel processing 
capabilities.

2 � Mechanisms and Characteristics 
of Neuromorphic Devices

2.1 � Characteristics of Neuromorphic Devices

In this study, multimodal specifically denotes the intrinsic 
fusion of heterogeneous physical stimuli into unified electri-
cal representations at the device level, where a single device 
or array concurrently responds to multiple stimulus modali-
ties (e.g., optical/electrical/thermal/pressure) [39]. This 
term describes hardware-centric capabilities, exemplified 
by phase-change materials simultaneously encoding diverse 
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inputs. Multisensory describes bio-inspired system architec-
tures that mimic neural integration of segregated sensory 
pathways [20]. This concept operates at the algorithmic/
system level, utilizing neuromorphic computing principles 
(e.g., synaptic weight updates, spatiotemporal integration) to 
fuse signals into unified perceptual outputs, thereby emulat-
ing biological multisensory processing in the brain. Human 
multimodal perception integrates sensory information from 

various sources such as tactile, olfaction, hearing, and vision 
to make accurate judgments about object properties. Inspired 
by biological perception, neuromorphic systems based on 
multisensory memristors support efficient information inte-
gration and exhibit high fault tolerance. They are capable 
of perceiving multiple signals, including electrical, optical, 
pressure, voice, gas, humidity, temperature, and chemical 
signals (Fig. 1) [40–42].

Fig. 1   Schematic illustrating multisensory neuromorphic device with cross-modal stimuli integration and three multisensory fusion frameworks
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The development of neuromorphic devices has the 
potential to overcome the limitations of the von Neumann 
architecture by mimicking the operation of biological brain 
function. The transmission, processing, and memorization 
of information in the human brain primarily depend on the 
intricate neuron network, comprising a vast number of neu-
rons (approximately 1011) and their gapped junctions known 
as synapses (approximately 1015) [43]. Neurons serve as 
the fundamental units of brain function in humans, while 
synapses play a crucial role in enabling neurons to carry 
out signal transmission and information exchange [44, 45]. 
External information can be perceived and converted into 
chemical signals by neurons, and synapses facilitate the 
transmission of these signals from presynaptic neurons to 
postsynaptic neurons via neurotransmitters [46, 47]. Diverse 
external stimuli can influence the chemical fluxes within 
these synapses, thereby modulating the synaptic strength or 
weight.

In neuromorphic devices, synaptic plasticity induced 
by various input stimuli can have an impact on the con-
struction of neuromorphic systems [48]. The simulation of 
biological synapses plasticity in neuromorphic devices is 
achieved by operating various resistance switching mecha-
nisms [39, 49]. The switching mechanisms of neuromorphic 
include conductive filament, ion migration, charge trapping, 

electrochemical doping, phase transition, ferroelectricity, 
and other mechanisms [50–52]. The specific implementation 
methods of these resistance switching mechanisms depend 
on the materials and device structures used [53–55]. Under-
standing which synaptic mechanisms are more conducive 
to multisensory integration and what mechanisms and prin-
ciples are involved in the fusion of multisensory signals is 
crucial for constructing efficient neuromorphic devices.

There are six different neuromorphic resistive switching 
physical mechanisms and their corresponding detectable 
input signals (Fig. 2). Among these six mechanisms, the 
conductive filament, ion migration, electrochemical doping, 
and charge trapping mechanisms can detect a wider variety 
of input signals. In contrast, the phase change and ferro-
electric polarization mechanisms can detect fewer types of 
input signals on the right side of Fig. 2. Notably, the charge 
trapping mechanism can detect the largest variety of input 
signals, potentially making it more favorable for application 
in multimode neuromorphic devices. Charge trapping mech-
anism demonstrates the most extensive multimodal detection 
capability among the six mechanisms, primarily due to trap 
states’ inherent sensitivity to diverse external stimuli [56]. 
Unlike mechanisms constrained by specific material phases, 
ion species, or lattice symmetries, this sensitivity univer-
sally arises at defective semiconductor/insulator interfaces or 

Fig. 2   Physical mechanism mapping of neuromorphic devices to multimodal input stimuli
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within bulk regions. The tunable nature of trap energy levels 
enables dynamic modulation by external inputs: light excita-
tion generates electron–hole pairs that populate/deplete traps 
[57]; electric fields directly reconfigure trap occupancy [58]; 
chemical adsorption/reactions alter trap barriers via surface 
dipoles or charge transfer [59]; thermal energy governs 
shallow-trap carrier release for high-precision temperature 
response [60]; and mechanical strain expands trap capture 
cross-sections [61]. Crucially, all stimuli converge into a uni-
fied response paradigm that translates trap charge variations 
linearly or nonlinearly into measurable electrical signals 
through Schottky barrier height, capacitance, or resistance 
changes [62]. This intrinsic conversion of heterogeneous 
inputs into a single physical quantity allows charge trap-
ping to function as a multimodal sensing front-end without 
requiring specialized crystal structures (e.g., phase-change 
materials) or ion migration pathways (e.g., electrochemical 
doping) [63]. Furthermore, traps originating from intrinsic 
defects, surface dangling bonds, interface states, or extrin-
sic dopants ensure compatibility with virtually any material 
system, including oxides, 2D materials, organic semicon-
ductors, and perovskites [64]. This universality remains 
unattainable by other mechanisms constrained to specific 
material classes.

Phase change and ferroelectricity mechanisms detect 
the fewest signal types. Phase-change and ferroelectricity 
mechanisms exhibit the most limited signal perception capa-
bilities due to unidimensional order parameter coupling and 
high activation thresholds [65, 66]. The order parameter of 
phase change is crystallinity, and phase change occurs only 
when the supplied energy exceeds the crystallization barrier 
[67]. It thus responds solely to heat accumulation and cannot 
directly couple to chemical or pressure stimuli. The order 
parameter of ferroelectricity is polarization, and polariza-
tion reversal demands overcoming the coercive field [68]. 
The ferroelectric mechanism exhibits exclusive sensitivity 
to electric field stimuli, while non-electric stimuli such as 
optical or pressure necessitate conversion into electric fields 
for effective perception [69, 70]. Conversely, charge trap-
ping, ionic migration, and electrochemical doping mecha-
nisms demonstrate direct, low-threshold responses to diverse 
stimuli (optical/chemical/electrical/pressure/temperature) 
through their order parameters (trapped charge, ion concen-
tration, and redox states) [71–73]. Crucially, phase-change 
requires overcoming enthalpy of melting or lattice distortion 
energy, while ferroelectric switching demands high coercive 

fields. These energy barriers significantly exceed those for 
defect-level shifting, ion drift, or redox transitions. Conse-
quently, stimuli beyond temperature and electricity rarely 
induce detectable changes within conventional energy 
ranges, inherently limiting perceptible signal diversity.

2.2 � Charge Trapping/De‑trapping

One prominent mechanism of resistive switching is charge 
trapping (Fig. 3a), which is mainly induced by four factors: 
defects caused by local structural distortion or dangling 
bonds [74, 75] defects at the interface between semicon-
ductors and dielectrics [76–78] potential wells formed by 
a semiconductor bulk heterojunction [79, 80] and floating 
gates [81–83]. Charge trapping/de-trapping can generally 
adjusted by appropriate modulation of electrical or optical 
signals. Under an electric field, trapping and de-trapping can 
be controlled by applying and removing an electric field. 
Initially, due to the effect of an applied electric field, ion 
or vacancy defects are captured. Then, with a certain time 
delay, ion or vacancy defects are de-trapped when the elec-
tric field is removed or the direction of the applied electric 
field is reversed [84]. Under illumination, light energy is 
used to trigger the capture of photo-induced charges [85]. 
The light induced field generated by the captured charge 
promotes ion drift and diffusion, followed by applying a 
potential to achieve de-trapping [86]. These traps contribute 
to the slow decay of photocurrent in the device, and charge 
trapping and de-trapping can be used to provide controllable 
channel conductance modulation [87]. Due to the conduc-
tivity changes and stable and reversible physical operations 
that can occur during the charge trapping and de-trapping 
process, the charge trapping/de-trapping mechanism has 
been widely used to construct various memristors and neu-
romorphic devices [88, 89]. Charge trapping architectures 
implementations feature broad spectral response, exceptional 
endurance, and technological maturity [90]. Yet they suffer 
from slow write speeds and demand high-voltage operation 
[91].

Neuromorphic devices based on defect trapping mecha-
nisms can perceive a variety of signals, such as optical, elec-
trical, temperature, chemical, pressure, gas and voice sig-
nals. Chen et al. fabricated an artificial multimodal system 
that can sense pressure and thermal stimuli simultaneously 
and provide optical feedback (Fig. 3b) [92]. A triboelectric 
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Fig. 3   Charge trapping synaptic devices processing multimodal stimuli. a Resistive switching mechanism via defect trapping. b Artificial multimodal system 
schematic with pressure/temperature inputs. Reproduced with permission [92]. Copyright 2024, Chemical Engineering Journal. c Organic heterostructure sen-
sory synapse for NO2 detection. Reproduced with permission [93]. Copyright 2022, Advanced Functional Materials. d Optoelectrical synapse experimental setup. 
Reproduced with permission [94]. Copyright 2024, Advanced Functional Materials. e Bio-inspired optoelectronic nerve system with h-BN/WSe2. Reproduced with 
permission [95]. Copyright 2018, Nature Communications. f Butterfly-inspired visuo-chemical neuromorphic platform using memtransistor circuits. Reproduced 
with permission [96]. Copyright 2024, Advanced Materials. g Biological sensory organs processing optical/pressure/voice stimuli and neural information transmis-
sion. Reproduced with permission [97]. Copyright 2021, ACS Nano
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nanogenerator (TENG) is utilized as an artificial electronic 
skin to perceive pressure stimuli. Meanwhile, a quantum dot 
light-emitting diode (QLED) device serves as an artificial 
neuromorphic synapse, providing optical feedback and per-
forming temperature sensing computation. The temperature 
sensing of the device is realized through the artificial light-
emitting synapse, where the charge trapping layer captures 
charges affected by temperature, while the synaptic light-
emitting is also influenced by temperature. As the tempera-
ture rises, the energy of the charges increases, making them 
less likely to be captured by traps, which in turn enhances 
the conductivity of the device. The pressure signal is gen-
erated as presynaptic spikes in an artificial light-emitting 
synaptic device by electrostatic induction and electrostatic 
equilibrium when the skin contacts and separates from poly-
dimethylsiloxane (PDMS). Qian et al. developed an artifi-
cial sensory synapse for nitrogen dioxide (NO2) detection, 
which is composed of an organic heterostructure featuring a 
charge trapping layer and a hole-conducting layer (Fig. 3c) 
[93]. This artificial sensory synapse is capable of process-
ing, assessing, and responding to different gaseous environ-
ments. NO2 permeates through the organic heterostructure 
and traps electrons in the charge trapping layer, leading to 
the accumulation of carriers in the hole-conducting layer 
and the retention behavior of the device. As learned above, 
neuromorphic devices can sense temperature, pressure, and 
gas signals through the defect trapping mechanism. For 
temperature signals, temperature changes affect the electri-
cal and chemical properties of the material, altering defect 
trapping and release. For pressure signals, piezoelectric neu-
romorphic devices use piezoelectric potentials to modulate 
electrical transport, converting external mechanical motion 
into electrical signals and regulating synaptic weights. For 
gas signals, Gas signals alter surface charge distribution or 
chemical properties, influencing defect capture and release.

Instead of pressure, temperature and gas signals, some 
other external stimulation can also be sensed by charge trap-
ping mechanism. Fang et al. fabricated an optoelectronic 
synaptic device of indium oxide (In2O3)·stannic anhydride 
(SnO2)/niobium-doped strontium titanate (Nb:SrTiO3) het-
erostructure, which vividly demonstrates the in-sensor 
computing capability and multimodal perception ability to 
sense both optical and electrical signals (Fig. 3d) [94]. The 
surface of Nb:SrTiO3 is abundant with interfacial defects 
dominated by oxygen vacancies, which facilitates the trap-
ping/de-trapping of electrons. Under positive gate voltage 

or illumination, electrons trapped in the oxygen vacancies at 
the indium tin oxide (ITO)/Nb:SrTiO3 interface are released, 
leading to a decrease in the height and width of the Schottky 
barrier, and the device exhibits a low-resistance state (LRS). 
When the illumination is turned off or a negative gate volt-
age is applied, the electrons are recaptured by the oxygen 
vacancies, and the device exhibits a high-resistance state 
(HRS). Seo et al. reported a neuromorphic synaptic device 
with electrical and optical sensing functionalities, which fab-
ricated on a hexagonal boron nitride (h-BN)/tungsten disele-
nide (WSe2) van der Waals (vdW) heterostructure (Fig. 3e) 
[95]. The working principle of the vdW synaptic device 
is based on the trapping/de-trapping of electrons within a 
weight control layer (WCL) on h-BN, which in turn modu-
lates the conductivity of the WSe2 channel. Optical signals 
primarily regulate synaptic properties through wavelength 
modulation. Shorter optical wavelengths result in greater 
light absorption, which decreases the resistance of the syn-
aptic device. Consequently, the density of carriers trapped 
within the WCL increases, thereby modulating synaptic 
properties. In contrast, electrical signals directly impact the 
carriers in the WCL, influencing their trapping/de-trapping 
processes. As learned above, photoelectric neuromorphic 
devices can sense optical and electrical signals through the 
defect trapping mechanism. For optical signals, the device 
converts optical signals to electrical signals. Photogenerated 
carriers are trapped or released at defect sites, altering the 
conductivity of device, thereby enabling the perception of 
optical signals. For electrical signals, neuromorphic devices 
use electrical stimuli to modulate defect trapping states, 
thereby adjusting the resistance or conductivity of device.

In addition to the aforementioned input signals, chemical 
and voice signals can also be sensed by the charge trapping 
mechanism. Zheng utilized the chemical sensing properties 
of graphene and the photo sensing capability of monolayer 
molybdenum disulfide (MoS2) to create a multimodal plat-
form for visual–chemical integration (Fig. 3f) [96]. This 
device perceives chemical signals by deploying an artifi-
cial chemical receptor neuron consisting of two graphene 
chemical transistors connected in series. Aqueous solutions 
of chemicals are dripped onto the graphene channel area 
for chemical sensing. At the interface between the graphene 
channel and the chemical solution, an electrical double 
layer (EDL) is formed, which serves as an ultrafine dielec-
tric layer. This EDL allows for the control of channel con-
ductance when an electrical bias is applied to the solution, 
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thereby controlling the carrier trapping/de-trapping process. 
Wan et al. proposed a multimodal artificial sensory memory 
system that possesses biomimetic sensory transduction, neu-
rological capabilities, synaptic-like information processing, 
and memory functions (Fig. 3g) [97]. This system can per-
ceive multiple signals, including optical, pressure, and voice 
signals. The multimodal perception of the system is achieved 
by utilizing polypropylene-based ferroelectret nanogenera-
tor (FENG) as both tactile and acoustic sensors, along with 
phototransistors serving as optical sensors. Physical stimuli 
are converted into informational electric pulses, which are 
then transmitted through conditioning circuits to an artificial 
neural system for processing and storage. As learned above, 
neuromorphic devices can detect chemical and voice sig-
nals via defect trapping mechanisms. Chemical signals alter 
surface charge distribution or chemical properties, influenc-
ing defect trapping and release, and enabling the detection 
of chemical signals. Voice signals modulate the electrical 
polarization state of a material through the propagation of 
mechanical waves, thereby altering the electrical character-
istics of the device.

Neuromorphic devices achieve multimodal perception 
through defect trapping mechanisms, where the diversity 
of defect types and their modality-specific interactions are 
critical [98, 99]. For instance, vacancy defects (e.g., sul-
fur vacancies in MoS2) dominate optical and electronical 
signals detection by modulating photogenerated carrier 
dynamics [100–102]. While surface defects enable chemical 
sensing via molecular adsorption at active sites [103, 104]. 
Grain boundary defects respond to mechanical stimuli such 
as pressure and voice through strain-induced polarization 
changes [105–107] and interface oxygen vacancies regulate 
temperature signals by altering phonon scattering pathways 
[108, 109]. Crucially, the spatial distribution and dynamic 
response characteristics of defects further enhance function-
ality [110]. Defects often form interconnected conductive 
networks (e.g., conductive filaments in memristors), where 
external signals differentially modulate localized pathway 
connectivity, enabling differentiated responses [42, 111]. 
The charge dynamics of defects depends on their energy 
levels [102, 112]. Shallow defects quickly trap and release 
charges (nanosecond timescales), making them suitable for 
detecting fast signals like sound or light pulses. Deep defects 
retain charges much longer (seconds to permanent states), 
enabling sustained responses to slow-changing signals such 
as temperature or steady pressure.

The transition from unimodal to multimodal percep-
tion stems from defect coupling and dynamic evolution. 
For example, sulfur vacancies in MoS2 can simultaneously 
respond to light and NO2 adsorption, enabling opto-chemical 
dual sensing [113, 114]. Moreover, defect distributions can 
dynamically evolve under external fields (e.g., voltage pulses 
inducing oxygen vacancy migration), allowing reconfigur-
able device functionality to adapt to multimodal switching 
[115]. This synergy of heterogeneous defect interactions 
and field-driven adaptability emulates biological sensory 
integration, offering a versatile platform for advanced neu-
romorphic systems.

2.3 � Ion Migration

The ion migration mechanism in the resistive switching of 
neuromorphic devices is a crucial operational principle that 
emulates synaptic functionalities in biological neural net-
works, forming the foundation for neuromorphic comput-
ing. This mechanism refers to the directional migration of 
ions within the device under external stimuli, particularly 
electric fields, leading to changes in resistive states (Fig. 4a) 
[116, 117]. It typically involves ion diffusion and migra-
tion through solid materials, as well as interactions between 
ions and material defects, interfaces, and other structural 
features [118, 119]. This mechanism operates through ionic 
conduction without redox reactions, altering local charge 
distribution or forming conductive pathways solely via ion 
repositioning [120]. Architectures based on the ionic migra-
tion mechanism offer high-precision analog weighting with 
continuous conductance tuning at minimal power [121]. 
However, slow ion diffusion creates response latency, while 
environmental sensitivity compromises stability [122].

To implement the ion migration mechanism, materials 
with ionic conductivity must be selected. These materials 
commonly include ionic liquids, hydrogels, two-dimensional 
layered transition metal oxides (e.g., alpha-phase molybde-
num trioxide (α-MoO3)), perovskites, and low-dimensional 
vdW crystals (e.g., niobium triselenide (NbSe3)) [123–125]. 
In these materials, ions migrate under applied electric fields 
[126]. Additionally, ion migration is closely linked to other 
resistive switching mechanisms, such as conductive fila-
ment formation, defect trapping, and electrochemical doping 
[127–129]. Neuromorphic devices often employ complex 
architectures to enable ion migration and resistive switching. 
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These may incorporate multilayer structures, nanochan-
nels, or discrete channels to provide pathways and spatial 
confinement for ion migration [130, 131]. By precisely 
regulating ion migration, fine-grained resistance control 
can be achieved, mimicking the complex synaptic weight 
modulation in biological neural networks. However, the ion 
migration mechanism may be influenced by factors such as 
material stability, ion diffusion rates, and device architecture 
[132, 133].

Neuromorphic devices based on ion migration mecha-
nisms can perceive a variety of signals, such as optical, 
electrical, temperature, pressure, gas and voice signals. Li 
et al. fabricated a perovskite photodetector and proposed 
a novel strategy leveraging intrinsic ion migration in per-
ovskites to construct narrow-band photodetection (Fig. 4b) 
[134]. By employing optical, temperature and electrical 
signals to manipulate ion migration, the band structure 
of the perovskite photodetector can be modulated in situ, 
thereby enabling precise regulation of its spectral response 
characteristics [135, 136]. The influence of temperature on 
ion migration mechanisms primarily manifests as enhanced 
conductivity and reduced band bending with increasing tem-
perature. Elevated temperatures promote more uniform ion 
distribution, which diminishes interfacial ion accumulation 
and suppresses photogenerated carrier loss. Furthermore, 
at higher temperatures, thermally excited electrons transi-
tion from the valence band to the conduction band, thereby 
weakening the doping effects induced by ionic accumula-
tion. Increased diffusion coefficients also facilitate rapid ion 
diffusion back into the perovskite bulk, effectively reducing 
trap states and improving carrier collection efficiency. Guo 
et al. proposed a two-terminal synaptic device based on lead 
halide perovskite, featuring in situ tunable optoelectronic 
properties (Fig. 4c) [137]. Optical signals can reduce the 
ion migration activation energy. Upon light stimulation, an 
appropriate amount of Br⁻ ions begin to migrate under the 
influence of voltage​, introducing corresponding donor lev-
els. This migration increases the electron concentration and 
subsequently inducing stable enhancement of the postsyn-
aptic current. Zhu et al. fabricated MoS2-based memristive 
devices and achieved reversible modulation of MoS2 films 
by controlling the migration of Li ions with sensed electrical 
signal, a process consistent with local 2H-1T’ phase transi-
tions (Fig. 4d) [138]. In this system, localized increases/
decreases in Li ion concentration drive phase transforma-
tions between the 2H phase and 1T’ phase. The engineered 

devices exhibit exceptional memristive behavior, enabling 
direct inter-device coupling via localized ionic exchange that 
inherently reproduces biological synaptic competition and 
cooperation effects. As learned above, neuromorphic devices 
can detect optical, electrical and temperature signals via ion 
migration mechanisms. Optical signals induce ion migra-
tion through photogenerated electric fields or photo-thermal 
effects, such as photo-induced oxygen vacancy migration. 
Electrical signals, on the other hand, modulate ion distribu-
tion via externally applied electric fields, as demonstrated 
by the formation and rupture of conductive filaments in 
memristors. On the other hand, thermal signals facilitate 
ion migration by providing the necessary energy through 
thermal activation processes.

In addition to the electrical and optical signals, pressure 
and gas signals can also be sensed by the ion migration 
mechanism. Liu et al. reported a novel self-powered syn-
apse transistor by coupling an electric-double-layer organic 
field effect transistor and a TENG to sense pressure signal 
(Fig. 4e) [139]. Adjusting the distance between two elec-
trodes of TENG generates varying voltages, which serve 
as presynaptic spikes. Before combining with a memristor 
synapse, TENG induces net positive charges on the bottom 
Cu film and net negative charges on the PDMS film. Exter-
nal touch on TENG brings the top Cu film into contact with 
the bottom PDMS film. At this point, electrons flow from the 
top Cu film to the silicon (Si) gate via electrostatic induc-
tion, leaving the Cu film with net positive charges and the Si 
gate with net negative charges, thereby creating a negative 
gate voltage in the transistor device. Simultaneously, under 
EDL effects, cations and anions accumulate at the Si/Ion-
gel and Ion-gel/poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrolo-
1,4(2H, 5H)-dione-alt-5,5-di(thiophene-2-yl)-2,2-(E)-2-(2-
(thiophen-2-yl)vinyl)thiophe4ane] (PDVT-10) interfaces, 
respectively. This induces positive charges on PDVT-10 at 
the PDVT-10/Ion-gel interface, enhancing channel carrier 
density and channel current, ultimately leading to increased 
excitatory postsynaptic current (EPSC). Yin et al. presented 
a gas sensing organic electrochemical transistor (OECT) 
embedded with sensory functionality, demonstrating inte-
grated capabilities including chemical information decod-
ing, tunable memory states, and gas sensing selectivity 
(Fig. 4f) [140]. The ion-gel electrolyte endows the device 
with tunable memory characteristics and low operational 
voltage, while enabling the realization of essential synap-
tic behaviors such as short-term plasticity and paired-pulse 
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facilitation (PPF). The ion-gel electrolyte mitigates gas mol-
ecule adsorption/desorption in the semiconductor layer, thus 
enhancing the retention of gas sensing information. Typi-
cally, free ions in the ion-gel bind with ammonia (NH3) mol-
ecules. In the absence of a gate voltage, NH3 remains bound 
to the semiconductor surface. When a negative gate voltage 

is applied, both the ions and their bound NH3 migrate into 
the bulk semiconductor, enabling dynamic erasure of stored 
gas signals through voltage-driven ionic redistribution. As 
discussed above, neuromorphic devices can detect pressure 
and gas signals through ion migration mechanisms. For gas 
signals, molecular adsorption modulates the ion migration 

Fig. 4   Ion migration synaptic devices processing multimodal stimuli. a Resistive switching mechanism via ion migration. b Perovskite pho-
todetector schematic with optical/temperature/electrical stimuli. Reproduced with permission [134]. Copyright 2023, InfoMat. c Ion migra-
tion dynamics in perovskite devices under optical stimulation. Reproduced with permission [137]. Copyright 2024, Advanced Materials. d 
MoS2-based memristive device schematic with electrical stimuli. Reproduced with permission [138]. Copyright 2019, Nature Materials. e Self-
powered synaptic transistor with pressure stimuli. Reproduced with permission [139]. Copyright 2019, Nano Energy. f Gas sensing OECT with 
embedded sensory function. Reproduced with permission [140]. Copyright 2024, ACS Sensors. g MXene tribo-transistor device integrating 
TENG and organic field-effect transistor for multimodal stimuli. Reproduced with permission [141]. Copyright 2022, Nature Communications
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barrier by altering surface charge states or chemical poten-
tials. For pressure signals, mechanical stress generates local-
ized electric fields via the piezoelectric effect, converting 
mechanical vibrations into electrical signals that drive direc-
tional ion migration.

Simultaneously, multimodal recognition can be achieved 
through ion migration mechanisms. Liu et al. developed a 
Ti3C2Tx MXene-based vertical tribo-transistor device inte-
grating a TENG and a vertical organic field-effect transistor, 
capable of multimodal memory-computing functions and 
multimodal affective recognition for optical, pressure, and 
voice signals (Fig. 4g) [141]. The sensing capabilities of 
vertical tribo-transistor are emulated through the actuation 
of the gate electrode and device vibrations, enabling multi-
modal perception of pressure and voice signals, while opti-
cal signal detection is achieved via a photosensitive MXene 
electrode. Charges accumulate in the TENG through elec-
trostatic induction and triboelectric charging. The resulting 
triboelectric potential dynamically modulates ion migration 
within the dielectric layer and adjusts the Schottky barrier 
height at the MXene/semiconductor interface, thereby regu-
lating the conductive channel between the MXene and drain 
electrode. The device extracts discriminative features from 
optical and voice signal modalities and relays this informa-
tion to the input layer for advanced processing, employing 
data-level fusion to integrate feature sets derived from multi-
ple sensory channels. This synergistic combination of cross-
modal features enhances both the accuracy and robustness 
of perceptual recognition, emulating biological multisensory 
integration mechanisms observed in neural systems.

The core mechanism enabling neuromorphic devices 
to achieve multimodal perception through ion migration 
lies in the high sensitivity of ion migration to multiphysi-
cal field stimuli and its dynamic re-configurability [36, 39, 
127]. This capability lies in a unified physical mechanism 
of ion motion, which transduces input signals from various 
energy modalities (optical, electrical, temperature, chemi-
cal, pressure, etc.) into nonlinear conductance or resistance 
variations, thereby mimicking the plasticity of biologi-
cal synapses [142, 143]. Crucially, ion migration exhibits 
intrinsic multiphysical coupling: ionic motion responds 
sensitively to multiple energy modalities, functioning as a 
natural multimodal signal transducer [144]. All external sig-
nals ultimately modulate material conductivity by altering 
ion migration rates or pathways, enabling cross-modal signal 
conversion [145, 146]. The dynamic re-configurability of ion 

migration further enhances functionality, as external fields 
(e.g., electric and optical) can realign ion migration paths 
and spatial distributions in real time, endowing devices with 
adaptive perception and learning capabilities [147, 148]. For 
instance, the synergistic control of light intensity and electric 
fields can regulate oxygen vacancy migration in oxide mate-
rials, enabling on-demand switching between optical and 
electrical sensing modes [149, 150]. This re-configurability 
mirrors ability of biological systems to prioritize sensory 
inputs based on environmental context, laying the foundation 
for context-aware neuromorphic computing.

2.4 � Conductive Filament

The conductive filament mechanism is one of the core physi-
cal mechanisms for achieving resistance regulation in neu-
romorphic devices (Fig. 5a). It simulates synaptic weight 
changes in biological systems through the dynamic forma-
tion and rupture of microscopic conductive paths, provid-
ing hardware foundations for brain-inspired computing and 
memory-computing integrated systems [151, 152]. The for-
mation and rupture of conductive filaments are considered 
to be caused by electric field-driven ion migration and redox 
reactions [50]. Depending on the types of mobile ions, the 
mechanisms can be classified into two categories: electro-
chemical metallization (ECM) and valence change mecha-
nism (VCM) [33].

In ECM memristors, the formation and rupture of con-
ductive filaments primarily rely on redox reactions of active 
metals [36]. These memristors typically consist of active 
metal electrodes (e.g., Ag, Cu), inert metal electrodes (e.g., 
Pt, Au), and dielectric layers (e.g., silicon dioxide (SiO2), 
tantalum oxide (TaOx)) [153]. When voltage is applied 
across the electrodes, redox reactions occur in the active 
metal, generating metal ions that migrate through the insulat-
ing layer under the electric field, ultimately forming conduc-
tive filaments and resulting in a low-resistance state [154]. 
Upon applying reverse voltage, metal atoms in the filaments 
are oxidized into ions that return to the original electrode, 
or the filaments are melted through Joule heating effects, 
causing path interruption and restoring the device to a high-
resistance state [155]. In VCM memristors, the formation 
and rupture of conductive filaments are mainly influenced 
by electric fields and anion migration [156]. When voltage 
is applied, the electric field drives anion migration (e.g., 
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oxygen ions) within the material. This migration induces 
valence changes in cations, thereby forming or breaking 
conductive filaments. The conductive filament mechanism 
enables multi-level resistance state switching and achieves 
lower power consumption in devices [157]. Architectures 
based on the conductive filament mechanism achieve 
ultralow-voltage operation through simple two-terminal 
structures, with dynamically adjustable filaments naturally 
suited for neuromorphic computing [158]. But stochastic 
filament growth causes dispersed conductance distributions 
and poor endurance [159].

The filament formation and rupture processes are affected 
by multiple factors including material properties and various 
external stimulus such as electrical, optical, pressure, tem-
perature and humidity signals [128, 160]. Portner et al. inte-
grated dual-terminal valence change memory devices into 
photonic/plasmonic circuitry and demonstrated that switch-
ing characteristics of the memristor can be optically modu-
lated (Fig. 5b) [161]. The added fiber-optic input serves as 
a third independent modulation channel for the device. The 
operational mechanism of device relies on localized photo-
induced heating within the VCM mechanism. This local-
ized thermal excitation enhances oxygen vacancy generation 
in the active region. Heating governs the lateral expansion 
of conductive filaments composed of oxygen vacancies by 
modulating the generation/recombination rate and diffusion 
dynamics of conductive filaments. This optothermal syn-
ergy thereby achieves more linear and symmetric switching 
characteristics under optical illumination. Han et al. dem-
onstrated a multimodal neuromorphic sensory system based 
on Ag loaded porous silicon oxide (SiOx) based memristor, 
which exhibits highly controllable potentiation/depression 
characteristics modulated by relative humidity conditions 
(Fig. 5c) [162]. Physical mechanism analysis reveals that 
high relative humidity environments induce accelerated ion 
diffusion, thereby promoting conductive filament formation. 
The engineered synaptic memristor successfully emulates 
biological behaviors such as EPSC and PPF. As discussed 
above, neuromorphic devices can detect electrical, optical 
and humidity signals through conductive filament mecha-
nisms. Electrical signals directly induce ion migration or 
metallic electrodeposition through applied electric fields to 
form conductive filaments. Optical signals accelerate fila-
ment growth by generating photogenerated electron–hole 
pairs or via photo-thermal effects that reduce ion migration 
energy barriers. Meanwhile, humidity signals modulate ion 

mobility through water molecule permeation, thereby alter-
ing the formation threshold of conductive filaments.

In addition to the electrical, optical and humidity sig-
nals, pressure and temperature signals can also be sensed 
by the conductive filament mechanism. Zhu et  al. pre-
sented an artificial multimodal sensory system comprising 
a multimodal fusion spiking neuron (MFSN) array operat-
ing in the spiking domain and a spiking neural network 
(SNN) classifier (Fig. 5d)  [163]. This system processes 
temperature and pressure multimodal inputs while preserv-
ing unimodal information fidelity. Each MFSN unit inte-
grates a piezoresistive pressure sensor and a niobium oxide 
(NbOx)-based threshold switching memristor exhibiting 
temperature-dependent switching characteristics. When 
subjected to varying pressure intensities, the MFSN unit 
transduces mechanical stimuli into spikes with frequency-
encoded pressure information. Concurrently, temperature 
fluctuations modulate threshold voltage of the memristor, 
inducing amplitude- and frequency-variant spike outputs. 
This enables decoupled extraction of pressure/temperature 
information through distinct spike frequency and amplitude 
signatures for multimodal tactile perception. Furthermore, 
under concurrent pressure–temperature stimuli, the MFSN 
unit encodes both modalities into unified spike trains, dem-
onstrating efficient data compression capabilities through 
temporal multiplexing. Wang et al. designed and engineered 
a multimodal MXene-zinc oxide (ZnO) memristor that syn-
ergistically merges optical signal sensing, relative humidity 
signal sensing, and in-sensor preprocessing functionalities 
to emulate the environment adaptive behaviors unique to 
the human eye (Fig. 5e) [164]. The multifield-controlled 
resistive switching in this MXene-ZnO memristor origi-
nates from the photon/proton-regulated formation of oxygen 
vacancy filaments. Under high-humidity conditions, water 
molecules adsorb onto the MXene-ZnO heterojunction 
through dual hydrogen bonding. Hydrolysis of surface func-
tional groups elevates ionic conductivity, thereby enhancing 
the humidity sensitivity of the MXene-ZnO system. When 
a negative voltage is applied to the device, oxygen vacan-
cies form conductive filaments by migration. The impact 
of humidity signals on the device mainly lies in the sup-
pression of resistive switching in memristors under high 
humidity conditions. The absorption of UV photons with 
energies exceeding the ZnO bandgap generates excitons at 
the MXene-ZnO heterostructure interface, followed by their 
dissociation. The liberated photoelectrons are captured by 
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MXene, establishing an internal electric field. The influence 
of optical signal on the device primarily arises from the 
photogating effect, which induces the formation of oxygen 
vacancy filaments and subsequently governs light-mediated 
resistive switching. As discussed above, neuromorphic 
devices can detect temperature and pressure signals through 

conductive filament mechanisms. Temperature signals 
modulate the activation energy required for ion migration 
through thermal excitation, thereby altering the formation 
threshold of conductive filaments. Pressure signals regulate 
filament connectivity via piezoelectric effects or geometric 
deformation-induced lattice strain.

Fig. 5   Conductive filament synaptic devices processing multimodal stimuli. a Resistive switching mechanism via conductive filament forma-
tion. b Plasmonic Au-HfO2-Ti waveguide schematic with optical input. Reproduced with permission [161]. Copyright 2021, ACS Nano. c Neu-
romorphic vision units for humidity perception. Reproduced with permission [162]. Copyright 2024, Materials Today Nano. d Artificial soma-
tosensory system with MFSN array processing pressure/temperature stimuli. Reproduced with permission [163]. Copyright 2022, Advanced 
Materials. e Flexible MXene-ZnO memristor with optical/humidity stimuli. Reproduced with permission [164]. Copyright 2021, Advanced 
Functional Materials. f Ag NW-embedded SA memristive device structure. Reproduced with permission [41]. Copyright 2024, Advanced Mate-
rials. g Adaptive neuromorphic sensory units for multimodal perception
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Simultaneously, multimodal recognition can be achieved 
through conductive filament mechanisms. Shi et al. emu-
lated sensory adaptation functionalities through comple-
mentary switching in sodium alginate-based memristors 
embedded with silver nanowires, enabling multimodal 
perception capabilities that process optical, temperature, 
and pressure signals (Fig. 5f) [41]. Three types of adaptive 
neuromorphic sensory systems are constructed to achieve 
diverse perceptual modalities by integrating sensors with 
complementary memristors (Fig.  5g). Once the sensor 
detects environmental stimuli, the resistance of the sen-
sor decreases, causing the voltage drop across the sensor 
to decrease, thereby increasing the voltage applied to the 
memristor since the sensor and memristor are connected 
in series. Then, the high-voltage excitation can switch the 
memristor. Functioning as an adaptive signal processor, 
the memristor dynamically modulates the electrical sig-
nals transduced by the sensor from environmental stimuli, 
emulating biological synaptic plasticity through its tunable 
conductance states.

There exist fundamental differences between ECM and 
VCM conductive filament memristors in their sensing 
mechanisms and multimodal signal processing capabilities. 
These distinctions originate from their disparate physical 
mechanisms and material properties. ECM relies on the elec-
trochemical deposition of metal ions, while VCM is based 
on valence transitions of oxygen vacancies. For pressure 
response, mechanical stress directly distorts the metallic 
conductive filament path in ECM, causing abrupt resist-
ance changes, whereas oxygen vacancy channels in VCM 
mechanisms are minimally affected by stress [165]. ECM’s 
perception of optical signals is indirect. For optical signal 
detection, the ECM mechanism requires an additional pho-
tosensitive layer to generate photogenerated carriers that 
alter the interfacial electric field, thereby driving metal ion 
migration and inducing resistance state changes [157]. The 
VCM mechanism responds directly to optical signals. Light 
signals excite oxygen vacancy ionization, increasing vacancy 
concentration to directly modulate filament resistance [166]. 
For electrical signal perception, the ECM mechanism exhib-
its higher sensitivity to electrical signals, as filament forma-
tion/rupture is directly voltage-controlled [167]. Regarding 
temperature sensing, temperature influences filament rup-
ture in ECM and migration speed of oxygen vacancies in 
VCM [168, 169]. ECM demonstrates greater temperature 

sensitivity with significant changes near room temperature, 
while VCM requires elevated temperature ranges for observ-
able effects.

The sensing variable of ECM conductive filaments is the 
alteration of metal ion migration barriers, requiring exter-
nal algorithms to distinguish different stimuli [170]. Device 
implementation of multimodal signal perception generally 
requires auxiliary external circuits, such as photodetectors 
and temperature sensors. In contrast, the sensing variable of 
VCM conductive filaments is the change in oxygen vacancy 
concentration/diffusion coefficient, leveraging sensitiv-
ity differences to various stimuli and multi-level weights 
to directly decouple signals at the device level [171]. The 
device is natively compatible with electrical, optical, and 
thermal stimuli, enabling multimodal fusion within a single 
device.

The core principle enabling neuromorphic devices to 
achieve multimodal perception (optical, electrical, tem-
perature, humidity, pressure, etc.) through conductive fila-
ment mechanisms lies in their unified physical process (the 
dynamic formation/rupture of conductive filaments). This 
process provides highly sensitive responses to diverse physi-
cal signals while integrating nonlinearity, dynamic re-con-
figurability, and brain-like characteristics [39, 172]. Con-
ductive filament formation and rupture can be regulated by 
distinct physical fields, allowing all signals to be transduced 
into resistance changes via the same dynamic filamentary 
process [160, 164]. This unification simplifies hardware 
design for multimodal signal fusion and enables perception-
computation integration. Furthermore, filament formation 
requires overcoming critical energy thresholds (e.g., volt-
age, light intensity, or temperature), exhibiting nonlinear 
switching behavior that closely mimics the action potential 
triggering in biological neurons [173]. The morphology of 
conductive filaments (length, branching, and density) can be 
dynamically reprogrammed in real time via external fields 
(e.g., electric pulses and light patterns), enabling functional 
switching and adaptive perception [174]. Through mate-
rial design and external field modulation, selective signal 
response and synergistic enhancement can be achieved 
[175]. This unique combination of universal signal trans-
duction, bio-inspired nonlinearity, and field-programmable 
adaptability positions conductive filament mechanisms as an 
ideal carrier for neuromorphic systems that emulate biologi-
cal multisensory integration.
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2.5 � Ferroelectricity

The ferroelectricity mechanism is a resistive switching 
mechanism based on the reversible control of spontaneous 
polarization orientation in ferroelectric materials (Fig. 6a) 
[176, 177]. Electrically regulating the polarization states of 
ferroelectric domains mimics the synaptic weight modula-
tion in biological synapses. This approach offers several 

advantages such as non-volatility, low power consumption, 
and high endurance, making it one of the core solutions for 
constructing high-performance neuromorphic devices [178, 
179]. Ferroelectric materials (e.g., hafnium dioxide (HfO2), 
lead zirconate titanate (PZT), bismuth ferrite (BiFeO3)) 
exhibit spontaneous polarization whose direction can be 
reversed by external electric fields [180, 181]. Changes 
in polarization states directly influence the internal band 

Fig. 6   Ferroelectric synaptic devices processing multimodal stimuli. a Resistive switching mechanism via ferroelectric polarization. b In2Se3 
ferroelectric synaptic device with electrical/optical inputs. Reproduced with permission [191]. Copyright 2024, Advanced Functional Materials. 
c Polarization-dependent band diagram of device in b. d Photonic synapse structure with IGZO transistors. Reproduced with permission [192]. 
Copyright 2020, Advanced Materials. e Optically/electrically tunable channel conductance mechanism. Reproduced with permission [202]. Cop-
yright 2020, ACS Nano. f Neuromorphic pressure perception system. Reproduced with permission [197]. Copyright 2023, ACS Nano. g 3D 
asymmetric MoS2/CuInP2S6 synaptic heterostructure with multimodal stimuli. Reproduced with permission [198]. Copyright 2024, Advanced 
Functional Materials
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structure, carrier distribution, and interface barriers of the 
material, thereby modulating device resistance [182, 183]. 
Ferroelectric architectures enable wear-free polarization 
switching for nanosecond operations and ultralow power 
consumption [184]. Yet they suffer from retention decay due 
to fatigue and interfacial defects, alongside unstable ferro-
electricity at nanoscale [185].

When polarization aligns with the electric field, the 
induced interface barrier lowers with enhanced carrier injec-
tion, reducing resistance [186]. Conversely, when the elec-
tric field direction reverses, polarization inversion elevates 
interface barriers, impedes carrier transport, and increases 
resistance [187]. Ferroelectric memristors can also achieve 
continuously tunable intermediate resistance states through 
partial polarization reversal (metastable domain configura-
tions), emulating the gradual modulation of synaptic weights 
[188, 189]. However, depolarization phenomena remain a 
common issue in ferroelectric memory and may cause drift 
and instability in resistance states within neuromorphic 
devices [32, 190].

The ferroelectric polarization of neuromorphic devices is 
influenced by various factors, including material properties 
and external stimuli such as electrical, optical, and pressure 
signals. Zeng et al. proposed a multimodal artificial synapse 
featuring a crossbar structure composed of graphene/alpha-
indium selenide (α-In2Se3)/graphene layers, which can sense 
optical and electrical signals (Fig. 6b) [191]. The device 
integrates sensing, memory, and computing while mimick-
ing various synaptic characteristics. Ferroelectric polariza-
tion modulates the Fermi level of graphene, thereby manipu-
lating the asymmetric energy band alignment and inducing 
asymmetric contact barrier modulation (Fig. 6c). When the 
polarization is oriented downward, charge accumulation at 
the interface causes the Fermi level of the top graphene layer 
to shift downward, slightly increasing the contact barrier 
height and establishing a HRS. Conversely, upward polari-
zation shifts Fermi level of the graphene upward, reducing 
the contact barrier height and resulting in a LRS. Kim et al. 
fabricated a photonic synaptic device with optically tunable 
synaptic plasticity by integrating oxide semiconductors and 
ferroelectric materials (Fig. 6d) [192]. The photoresponse 
characteristics of indium gallium zinc oxide (IGZO) were 
investigated under optical stimulation. Optical excitation 
enhances the conductivity of IGZO, while the channel con-
ductance gradually decays over time upon stimulus removal. 
Under downward polarization, spatial separation between 

photogenerated electrons and ionized oxygen vacancies sup-
presses recombination processes, thereby prolonging the 
relaxation time. Conversely, upward polarization induces 
electron accumulation at the IGZO/ferroelectric layer inter-
face, accelerating conductance decay. This demonstrates that 
ferroelectric polarization in the interfacial layer can be stra-
tegically employed to tailor the relaxation dynamics of oxide 
semiconductor-based photonic synapses. Luo et al. report 
a ferroelectric field-effect memtransistor for optoelectronic 
synaptic devices, fabricated using a two-dimensional tung-
sten disulfide (WS2) semiconductor on a ferroelectric PZT 
thin film (Fig. 6e) [153]. The WS2 channel exhibits electri-
cally and optically controlled memristive switching, gov-
erned by the optically and electrically tunable ferroelectric 
domain configurations in the underlying PZT layer. When 
the PZT is in an upward polarization state, photoexcitation 
in WS2 generates intralayer excitons that decay into inter-
layer excitons, leading to positive charge accumulation at the 
WS2/PZT interface. These photo-induced charges screen the 
upward polarization and trigger polarization reversal.

As learned above, photoelectric neuromorphic devices 
can sense optical and electrical signals through the ferro-
electricity mechanism. The principle of electrical signal 
detection in ferroelectric devices primarily relies on the non-
volatile electric field control of ferroelectric polarization, 
wherein domain switching (reversal of polarization vector P) 
occurs when an external electric field exceeds the coercive 
field strength [193]. The principle of optical signal detection 
in ferroelectric devices is primarily the pyroelectric effect 
and photo-induced depolarization. The pyroelectric effect 
refers to light irradiation causing temperature changes in 
the material, leading to alterations in spontaneous polariza-
tion strength [194]. Photo-induced depolarization constitutes 
the main principle for optical signal detection in ferroelec-
tric devices. Photo-induced depolarization in ferroelectric 
materials denotes the physical process where spontaneous 
polarization strength decreases or even vanishes under illu-
mination, with its essence being that photon energy disrupts 
the ordering of spontaneous polarization in ferroelectrics 
[195]. Light excitation promotes valence band electrons to 
the conduction band, generating electron–hole pairs. These 
free carriers migrate under electric fields, screening ferro-
electric polarization charges (e.g., compensating surface-
bound charges), thereby weakening macroscopic polariza-
tion intensity [196]. Photon energy may also induce local 
lattice expansion, triggering a transition from ferroelectric 



Nano-Micro Lett.          (2026) 18:113 	 Page 17 of 54    113 

to paraelectric phase, causing polarization direction rotation 
or disappearance [69]. Simultaneously, at the ferroelectric/
electrode interface, redistribution of photogenerated charges 
at Schottky barriers alters the interfacial electric field, thus 
further weakening or reversing macroscopic polarization 
[195].

Simultaneously, pressure signal sensing and multimodal 
recognition can be achieved through ferroelectricity mecha-
nism. Kim et al. proposed a tactile neuromorphic system for 
sensing pressure signals, which utilizes a triboelectric sen-
sor based on PDMS and an ferroelectric synapse based on a 
MoS2/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-
TrFE)) heterostructure (Fig. 6f) [197]. The triboelectric 
sensor simulates the human tactile organs by converting 
pressure signal into electrical signals in real-time. Gong 
et al. presented a multimodal mechano-photonic synaptic 
memory device based on an asymmetric ferroelectric het-
erostructure, capable of cooperative modulation through 
external optical signals and pressure stimuli (Fig. 6g) [198]. 
The artificial synaptic architecture integrates an asymmetric 
MoS2/copper indium thiophosphate (CuInP2S6) ferroelectric 
hetero-field-effect transistor with a TENG unit that supplies 
triboelectric potentials for gating, programming, and plas-
ticity control. Under triboelectric potential modulation, the 
device demonstrates exceptional mechanical displacement-
derived electrical properties. Simultaneously, optical inputs 
trigger postsynaptic currents and update synaptic weights, 
successfully achieving cooperative modulation of tribo-
electric potentials and mechanical plasticity. This synergy 
enables the implementation of multimodal spatiotemporally 
correlated dynamic logic operations. The principle of pres-
sure signal detection in ferroelectric devices is mainly the 
piezoelectric effect. The piezoelectric effect of ferroelec-
tric materials serves as the physical foundation for pressure 
sensing: when mechanical stress acts on the device, lattice 
deformation causes rearrangement of electric dipoles, induc-
ing changes in surface-bound charges (positive piezoelectric 
effect) [199].

The primary reason why neuromorphic devices achieve 
multimodal perception (optical, electrical, pressure, etc.) 
through ferroelectricity mechanisms lies in the multiphysi-
cal field coupling capability of ferroelectric materials and 
the homogeneous modulation characteristics of polarization 
dynamics [39, 127]. The spontaneous polarization orienta-
tion in ferroelectric materials can be directly or indirectly 
regulated by multiple physical fields (e.g., light, electric 

fields, and pressure), forming a unified signal transduction 
mechanism [200]. All external stimuli are converted into 
electrical responses (resistance and capacitance) through 
dynamic adjustments of polarization orientation or intensity, 
eliminating the need for discrete sensors and enabling hard-
ware-level signal fusion [177, 201]. Furthermore, the ferroe-
lectric polarization mechanism exhibits brain-like character-
istics, such as non-volatile memory and nonlinear threshold 
responses, along with high energy efficiency and environ-
mental robustness [183]. This intrinsic synergy between 
multiphysical adaptability and bio-inspired functionality 
positions ferroelectric materials as a transformative platform 
for neuromorphic systems requiring multimodal sensing-
computing integration.

2.6 � Phase Change and Phase Transition Mechanism

Phase-change mechanism (PCM) is the reversible change 
of a system from amorphous state to crystalline state by 
Joule heating (Fig. 7a) [203–205]. When a sufficiently large 
electrical pulse is applied to generate the local heat exceeds 
the crystallization temperature, a crystallization can occur at 
the amorphous region. This is called as the “set” operation 
[206, 207]. In contrast, when the temperature exceeds the 
melting point of the substance, the crystalline region melts 
into an amorphous state. This is called as the “reset” opera-
tion [206, 207]. Due to the different bonding modes, the 
crystalline and amorphous phases exhibit distinct structures 
in terms of structural long-range ordering and periodicity, 
which results in unusual electrical and optical properties 
[208]. The amorphous state is a HRS, and the crystalline 
state is a LRS. The conventional phase change materials are 
the higher chalcogenides, such as tellurides and selenides 
[209, 210]. Tellurides and selenides are prone to transition 
between the amorphous and crystalline phases because of 
their low melting and crystallization temperature [211, 212]. 
The most widely studied of the tellurides and selenides are 
germanium-antimony-tellurium alloys, such as germanium-
antimony-tellurium (Ge2Sb2Te5, commonly abbreviated 
as GST) [210, 213]. Phase-change architectures provide 
non-volatile memory with high cycling endurance and 
large resistive windows [214]. However, they require high 
operational energy and face speed limitations from thermal 
diffusion, while repeated phase changes accumulate grain 
boundary defects [215].
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The phase-change mechanism primarily involves 
applying a sufficiently large electrical pulse to generate 
localized heat exceeding the crystallization temperature, 
inducing crystallization in the amorphous region, hence 
commonly used for sensing electrical signals (Fig. 7b, c). 
Using the difference in the resistance between amorphous 
and crystalline state, a series of synaptic functions can 

be mimicked with PCM. The Joule heating that induces 
the phase transition generally comes from two different 
sources. One is that heating is performed directly inside 
the phase change material [216–220]. Boybat et al. real-
ized a synaptic device based on GST phase-change mate-
rial, which consists of a layer of phase change material and 
two metal electrodes (Fig. 7b) [218]. When a current pulse 

Fig. 7   Phase-change synaptic devices processing multimodal stimuli. a Resistive switching mechanism via phase change. b PCM device struc-
ture with phase-change material between electrodes. Reproduced with permission [218]. Copyright 2018, Nature Communications. c PCM with 
volatile threshold switching and non-volatile PCM layer. Reproduced with permission [221]. Copyright 2022, Nature Communications. d Neu-
romorphic transistor under 375 nm UV stimulation. Reproduced with permission [224]. Copyright 2022, Nature Communications. e Au/VO2-
graphene/Au photoelectric synapse with electrical/optical inputs. Reproduced with permission [237]. Copyright 2024, Advanced Functional 
Materials. f VO2 memristive device structure. Reproduced with permission [238]. Copyright 2022, Nature Communications. g Spike-based neu-
romorphic perception system for multimodal stimuli
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of sufficient intensity is applied to phase change mate-
rial, the phase change material partially melts owing to 
Joule heating, causing the crystallization of part of the 
amorphous area. Continuous conductivity levels can be 
achieved by controlling the amplitude, duration, and quan-
tity of enhancement pulses to control the degree of crystal-
lization. Based on this, this synaptic device can perform 
various synaptic functions, such as spike-timing-depend-
ent plasticity (STDP) and long-term potentiation (LTP). 
Another source of Joule is that the phase change material 
is connected to the heating element, allowing heating to 
occur in the area near the heater. Sung et al. fabricated a 
threshold switch-phase-change memory consists of an Ag-
doped SiO2 threshold switch and GST-based phase-change 
memory (Fig. 7c) [221]. Under the action of electric field, 
a volatile conductive filament grows in the Ag-doped SiO2 
threshold switch layer and forms contact with the GST/
SiO2 interface. The phase change of the top GST film is 
induced by Joule heating of conductive filament because 
of the small contact area of the conductive wire. Compare 
to heating inside the phase change material, the devices 
used a conductive filament as a heater, which can obtain 
low-power phase transition, excellent endurance and 
attained large resistance ratio. GST-based devices exploit 
the phase-change mechanism to achieve multimodal sens-
ing by modulating phase transition temperatures or gen-
erating heat for indirect detection of optical and chemical 
signals [222, 223]. When GST thin films absorb photons 
of sufficient energy, photo-thermal heating elevates local 
temperatures above the melting point and subsequent rapid 
quenching transforms the crystalline phase into a high-
resistance amorphous state [206]. Furthermore, UV irra-
diation reduces phase transition temperatures and alters 
phase-change kinetics, enabling distinct optical signal 
detection pathways [224]. For chemical sensing, adsorp-
tion of specific gases (e.g., NH3, hydrogen sulfide (H2S)) 
on GST surfaces modifies crystallization kinetics through 
surface dipole formation or charge transfer, thereby low-
ering or raising crystallization threshold temperatures to 
induce or inhibit phase transitions [225].

Apart from the conventional phase change transforming 
between amorphous and crystalline phases, there exists a 
unique structural phase transition mechanism. This mecha-
nism enables a system to transition from one steady phase 
to another under various external stimulations, such as 
electric field, ion migration, pressure, and temperature, 

ultimately leading to a change in conductance [206, 226, 
227]. The conventional phase transition materials are 
the transition metal dichalcogenides (TMDs) [228, 229]. 
TMDs generally possess several different stable phases, 
including 2H, 1T, 1T′, Td and 3R phases [230]. Usually, 
TMD materials exhibit structural phase transitions between 
the distorted octahedral structure (1T or 1T′ phase) and the 
trigonal prismatic structure (2H phase) [227, 231, 232]. 
Memristors based on phase transition mechanism have 
been widely used as artificial synaptic devices, which have 
advantages in scalability, durability, reliability and multi-
level programming resistance [233, 234]. Compared with 
the amorphous to crystalline transitions in PCM, memris-
tors based on phase transition mechanisms have high capa-
bilities for realizing reliable and fast switching multi-level 
states [227, 231].

The phase transition mechanism can be realized under 
various external stimulations, such as electrical, optical, 
pressure and temperature signals [138, 231, 235, 236]. Li 
et al. fabricated a based-vanadium dioxide (VO2) integrated 
neuromorphic sensor array (Fig. 7d) to sense optical sig-
nals [224]. Optically induced oxygen vacancies can cause 
electronic phase transitions. The tuning of phase transition 
can be achieved by controlling the intensity and persistence 
of ultraviolet illumination. Based on the reversible regu-
lation of VO2 films by ultraviolet illumination, the neuro-
morphic ultraviolet sensor can simultaneously achieve 
sensing, memory, and processing functions. In addition to 
the above stimulation, there are also some factors that can 
cause structural phase transitions, such as material thick-
ness, temperature, etc. Yu et al. designed a graphene-assisted 
non-volatile phase transition strategy for artificial optoelec-
tronic synapses based on VO2 nanoparticle/graphene het-
erojunction (Fig. 7e) [237]. VO2 with photo-induced phase 
transition properties forms a heterojunction with graphene. 
Graphene helps to achieve non-volatile phase transitions 
of VO2 and amplifies the signals generated by the phase 
transition. By applying external optical or electrical stim-
uli to modulate the gate voltage on graphene Fermi level 
and regulate electron flow between VO2 and graphene, the 
electronic concentration in VO2 is altered, thereby inducing 
phase transitions. This enables reversible and stable synaptic 
conductance modulation. Yuan et al. realized a memristor 
based on epitaxial VO2 and a neuromorphic sensing system 
composed of calibratable artificial sensory neurons based 
on epitaxial VO2 (Fig. 7f) [238]. Artificial sensory neurons 
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can be utilized to construct various spiking sensory neurons 
capable of sensing physical signals and converting them into 
spikes. By adjusting the resistance range of diverse sensors 
to desired states through scaling resistors, these neurons can 
adapt to multiple sensor types. Based on this, a multimodal 
perceptual system capable of encoding pressure, curva-
ture, temperature, and optical signals into electrical spikes 
is demonstrated by integrating artificial sensory neurons 
with pressure, curvature, optical, and temperature sensors 
(Fig. 7g). The core of achieving simultaneous multi-stimulus 
perception and fusion in phase transition-based multimodal 
sensing devices lies in mapping diverse physical quantities 
(electrical, optical, pressure, temperature) onto a unified 
phase transition order parameter (e.g., V–V dimer distance 
in VO2) [239]. Through cooperative regulation of the phase 
transition free-energy barrier by external fields, the device’s 
conductance becomes a continuous multivariable function. 
This response intrinsically originates from material-specific 
nonlinear coupling, enabling physical information fusion 
without external conversion [240]. Concurrently, significant 
temporal separation exists in response dynamics across stim-
uli (optical: fs-scale, electrical: ns-scale, pressure/tempera-
ture: μs-ms scale). This allows signal decoupling and feature 
extraction at the device/circuit level, ultimately achieving 
integrated perception-fusion-decision functionality.

The phase-change mechanism primarily exploits reversi-
ble crystalline–amorphous transitions, predominantly driven 
by Joule heating. Here, resistance switching originates from 
bandgap changes induced by atomic rearrangement, thereby 
enabling non-volatile electrical signal storage [214]. How-
ever, its stimulus detection capabilities are generally con-
fined to thermal, optical, and electrical inputs. Memristors 
based on phase change require external algorithms to distin-
guish different stimuli and depend on auxiliary circuitry to 
convert multimodal signals into electrical signals [164]. In 
contrast, the phase transition mechanism involves electronic/
structural phase transformations activated by multiple phys-
ical fields: electric fields modify orbital occupancy while 
photons excite lattice vibrations [241, 242]. This enables sin-
gle devices to natively respond to optical, thermal, pressure, 
and electrical signals, facilitating volatile conductivity mod-
ulation that intrinsically achieves multimodal fusion without 
supporting circuits. Crucially, identical lattice parameters 
in phase transition memristors exhibit distinct sensitivities 
to different stimuli, enabling direct signal decoupling at the 
device level [243].

Phase-change materials possess multi-stimuli responsive-
ness and state uniformity [244–246]. The phase transition 
thresholds of these materials (e.g., temperature, electric 
field intensity, and light intensity) can be modulated through 
material design, enabling diverse input signals (optical, 
electrical, and temperature) to trigger phase transitions by 
supplying energy [207, 246]. Additionally, the threshold 
characteristics of phase transitions and dynamic cumulative 
effects (e.g., repeated weak signals inducing phase transi-
tions) closely align with the information processing mech-
anisms of biological neurons [246, 247]. By engineering 
materials (e.g., heterostructures and doping), phase transi-
tion thresholds can be tailored to adapt to multiple signals, 
achieving multi-parameter collaborative regulation [248].

The primary reason why neuromorphic devices enable 
multimodal perception via phase transition mechanisms 
lies in the inherent capability of phase-change materials. 
This capability can unify the energy from diverse physical 
signals (light, electricity, and temperature) into nonlinear 
transitions of internal phase states, which are directly output 
through phase-dependent electrical properties (e.g., resist-
ance) [40, 249]. Multimodal perception via phase transition 
mechanisms is achieved through the pronounced resistance 
and optical property changes induced by reversible crys-
talline–amorphous phase transitions, enabling the detec-
tion and discrimination of distinct signal types [250, 251]. 
Moreover, these devices leverage inherent differences in the 
energy thresholds, temporal scales, or pulse shapes required 
to trigger phase transitions across different modalities for 
signal differentiation [252, 253]. This “multi-input, single-
state, single-output” mechanism not only overcomes the 
limitations of traditional sensors’ discrete designs but also 
physically emulates the multisensory information integra-
tion ability of biological neurons [254, 255]. It thereby pro-
vides a core material foundation for constructing efficient, 
compact, brain-inspired sensing systems.

2.7 � Electrochemical Doping

The electrochemical doping mechanism is a core technol-
ogy that enables reversible switching of resistance states by 
dynamically modulating carrier concentration through ion 
insertion/extraction or redox reactions in materials (Fig. 8a) 
[256, 257]. This mechanism can mimic the long-term plas-
ticity of biological synapses, providing a physical foundation 



Nano-Micro Lett.          (2026) 18:113 	 Page 21 of 54    113 

for constructing low-power, high-density neuromorphic 
computing systems. In neuromorphic devices, the electro-
chemical doping mechanism is widely employed to achieve 
resistance switching [258]. Its core lies in charge transfer and 
chemical potential shifts, inherently dependent on interfacial 

reactions between electrodes and electrolytes. Under applied 
voltage or current, these reactions trigger doping/de-dop-
ing processes to modulate the resistive states of the device 
[259, 260]. Active materials for this mechanism primarily 
include conductive polymers (poly(3,4-ethylenedioxythio

Fig. 8   Electrochemical doping synaptic devices processing multimodal stimuli. a Resistive switching mechanism via electrochemical doping. b 
OECT biomimetic synapse with electrical input. Reproduced with permission [266]. Copyright 2024, Advanced Functional Materials. c Random 
copolymer transistor schematic with electrical input. Reproduced with permission [267]. Copyright 2025, Small Structures. d Organic optoelec-
tronic synapse with optical input. Reproduced with permission [268]. Copyright 2023, Nature Photonics. e Optoelectrochemical n-type OECT 
with optical/electrical inputs. Reproduced with permission [269]. Copyright 2025, Nature Communications. f ZnO/SiO2 transistor with humidity 
input. Reproduced with permission [270]. Copyright 2022, Journal of Materials Science & Technology. g Ionic gate synaptic transistor. Repro-
duced with permission [271]. Copyright 2022, Advanced Functional Materials. h Biological sensory signal processing with multimodal stimuli 
of g 
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phene):poly(styrene sulfonate) (PEDOT: PSS)), transition 
metal oxides (tungsten trioxide (WO3), MoO3), and two-
dimensional materials (MXene) [128, 261, 262]. Both ion 
migration and electrochemical doping mechanisms utilize 
ionic kinetics. Table 1 compares their distinctions across 
five key aspects, thus enabling direct comparison of their 
operating principles.

The electrochemical doping mechanism relies on electric 
field-driven ion migration within active materials and the 
resulting charge compensation effects [263]. When voltage is 
applied, ions in the electrolyte (e.g., H⁺, Li⁺, and Cl⁻) migrate 
to the active layer (e.g., conductive polymers and transition 
metal oxides) under the electric field, inducing oxidation or 
reduction reactions that modify doping level of the material 
[264]. Under forward bias, ion injection increases carrier 
concentration, lowering resistance; under reverse bias, ion 
extraction reduces carrier concentration, increasing resist-
ance [262]. Architectures based on the electrochemical 
doping mechanism offer a large conductance modulation 
window and are fully compatible with flexible substrates 
[265]. Nevertheless, ion relaxation delays responses, and 
electrolyte leakage risks impair long-term reliability [71].

The electrochemical doping mechanism of neuromorphic 
devices can be driven by electrical signals. Electrical signals 
directly drive the migration of ions at the electrolyte/mate-
rial interface, thereby regulating ion intercalation/deinter-
calation. Lee et al. fabricated a polymer-based memristor, 
which is modulated by the electrochemical doping mecha-
nism driven by an electric field (Fig. 8b) [266]. A strategy 
was proposed to enhance electrochemical doping and de-
doping by utilizing different coulombic ions. The research 
results indicate that doping ions in the channel layer affect 
inter-ion interactions, and influencing the non-volatile effect 
by improving the doping performance of the synaptic device. 
When a pulse is applied to an electrolyte, anions form an 
EDL at the electrolyte/channel interface. However, follow-
ing the pulse application, the accumulated anions rapidly 

dissipate from polymer, leading to a swift back-diffusion into 
the electrolyte. This indicates that EDL depolarization has 
occurred, resulting in the restoration of the electrochemical 
potential at the solid–liquid interface to its initial state. Sung 
et al. fabricated electrolyte-gated organic synaptic transistor 
structures through copolymerization between two different 
polymers, which induced superior non-volatility through 
more effective electrochemical doping via ions (Fig. 8c) 
[267]. By utilizing anion movement generated by electri-
cal pulses to drive EPSC that mimic neural transmission, 
artificial synapses have achieved.

In addition to electrical signals, optical and humid-
ity signals can also regulate the electrochemical doping 
mechanism of neuromorphic devices. Chen et al. reported 
an organic optoelectronic synapse realized through photon-
modulated electrochemical doping in an electrochemical 
transistor (Fig. 8d) [268]. In the synaptic device, optical 
signal can facilitate the insertion of ions into a photoactive 
layer composed of a donor–acceptor heterojunction inter-
face. This approach enables high-density multi-level con-
ductance modulation and emulation of synaptic activities 
inherent to biological systems through ion flux manipula-
tion. The light absorption in donor–acceptor heterojunctions 
enables photogeneration of charge carriers, which perturbs 
electrochemical doping while facilitating anion migration 
from the electrolyte for charge compensation in the channel. 
Consequently, the elevated carrier concentration generated 
via photon-modulated doping manifests as increased drain 
current. Upon light cessation, residual anions surround-
ing the doped polymer matrix prevent immediate charge 
recombination, inducing gradual current decay that con-
tributes to non-volatile memory retention. By employing a 
single-component organic mixed ionic-electronic conductor 
as the channel in OECTs, wang et al. developed an ioni-
cally gated optoelectrochemical synapse (Fig. 8e) [269]. The 
device demonstrates dual responsiveness to optical and elec-
trical stimuli delivered via aqueous electrolytes, enabling 

Table 1   Ionic migration versus electrochemical doping

Parameter Ionic migration Electrochemical doping

Primary Mechanism Field-driven ion drift Redox-driven ion intercalation
Reversibility Partially reversible Highly reversible
Carrier Change Conductive filament morphology Bulk carrier density
Material Requirement Ionic conductivity Redox activity
Representative System Ag/GeS2/Pt (Ag+ migration) Li/LiPON/WO3 (Li+ doping)
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neuromorphic modulation through synergistic ionic-elec-
tronic interactions. Under illumination, the channel becomes 
more negatively polarized, which electrostatically attracts 
additional cations. Under combined optical-electrical bias-
ing, a film mass increases attributable to cation intercala-
tion—a photonic control mechanism analogous to the effect 
of elevated voltage application, consequently inducing an 
enhanced doping state. Subsequent to optical signal removal, 
electronic recombination processes may occur while excess 
cations gradually egress from the polymer matrix, result-
ing in a gradual nonlinear decay of channel current that 
manifests in charge retention characteristics. Song et al. 
presented ZnO-based artificial synapses with peptide insu-
lators for the electrical emulation of biological synapses, 
which can be affected by humidity signal (Fig. 8f) [270]. 
The dielectric constant of peptide membranes exhibits 
humidity-dependent enhancement due to the formation of 
protonic EDL. Under low-humidity conditions, proton trans-
port remains inhibited at small gate voltages, resulting in 
ineffective electrostatic gating. Conversely, elevated humid-
ity triggers significant proton mobility within the hydrated 
film, where proton-dominated gating mechanisms prevail. 
This ionic dynamic leads to excitatory EPSC with retarded 
decay kinetics, demonstrating non-volatile memory behav-
ior through proton redistribution hysteresis. As discussed 
above, neuromorphic devices can detect optical and humid-
ity signals through electrochemical doping mechanisms. For 
optical signals, photogenerated carriers directly drive ion 
migration, facilitating electrochemical doping. For humidity 
signals, humidity adsorption alters the ion concentration on 
the material surface.

Simultaneously, multimodal recognition can be achieved 
through electrochemical doping mechanism. Liu et al. engi-
neered a polymer-based electrolyte-gated vertical organic 
field-effect transistor architecture, demonstrating neuro-
morphic artificial synapses with multisensory integration 
capabilities (Fig. 8g) [271]. This device platform enables 
biomimetic emulation of human cross-modal perception, 
particularly gustatory-auditory sensory fusion, through 
ion-modulated adaptive signal transduction and stimuli-
responsive synaptic plasticity (Fig. 8h). Inspired by human 
taste perception, an artificial tongue was designed to detect 
acidity. An ionic liquid serves as a thin saliva-like layer on 
the tongue. Various acidity levels were achieved by inject-
ing acetic acid into the ionic liquid. Dropping different ace-
tic acid concentrations onto the taste sensor array caused 

distinct current changes at specific points, generating taste 
mapping. This demonstrates simultaneous detection capabil-
ity of the fabricated tongue for varying acidity levels.

Electrochemical doping offers several unique advantages, 
as it enables direct coupling with multiple energy forms 
through ion migration [111]. Moreover, electrochemical 
doping exhibits self-adaptive reversibility, where the doping 
process can be restored to its initial state via reverse elec-
tric fields or ion diffusion [1]. Additionally, it demonstrates 
intrinsic sensitivity to chemical environmental changes (e.g., 
gases, humidity, pH) through direct signal conversion via 
ion–molecule interactions [272]. The primary reason why 
neuromorphic devices achieve multimodal sensing through 
electrochemical doping mechanisms lies in the deep integra-
tion of two key functionalities. This integration combines 
the intrinsic unified conversion of diverse physical/chemical 
signals with the biologically level dynamic response enabled 
by ion migration-based dynamic regulation [94, 273]. This 
mechanism not only demonstrates universality in energy 
conversion forms but also exhibits high compatibility with 
the ion channel behaviors of biological neurons in terms of 
bionic characteristics.

2.8 � Synaptic Mechanisms for Multimodal Integration

In neuromorphic systems designed for multimodal integra-
tion, the efficacy of synaptic mechanisms hinges on their 
ability to reconcile diverse signal characteristics while main-
taining biological plausibility [274, 275]. Multimodal inte-
gration necessitates synaptic platforms with broad dynamic 
ranges to accommodate amplitude disparities across sensory 
modalities, linear tunability for precise cross-modal weight 
allocation, temporal consistency to synchronize heteroge-
neous response timescales (milliseconds to minutes), and 
ultralow power consumption compatible with edge comput-
ing constraints [276–280]. Environmental robustness against 
temperature and humidity fluctuations that disrupt multi-
modal signals is a critical requirement for practical deploy-
ment [281].

The suitability of various synaptic mechanisms differs 
significantly across input signals and multimodal integra-
tion scenarios [177, 282, 283]. Ferroelectricity mechanism, 
based on polarization reversal in ferroelectric materials, 
offer advantages such as offer non-volatile memory and 
low power consumption, yet their slower switching speeds 
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and nonlinear weight updates may compromise precise 
multimodal signal modulation [284, 285]. Charge trap-
ping mechanism modulates conductivity through reversible 
charge trapping/de-trapping, but their limited charge reten-
tion and narrow dynamic range render them suboptimal for 
multimodal applications requiring long-term stability [286]. 
Phase change materials exhibit high on/off ratios and stabil-
ity through crystalline–amorphous transitions, but their high 
energy consumption and sluggish phase transition kinetics 
hinder flexibility in processing rapidly varying signals [287]. 
The ion migration mechanism alters material conductivity 
through ionic movement, featuring rapid response and a 
wide dynamic range [137]. However, its long-term reliability 
requires verification due to potential instability issues asso-
ciated with ion migration processes [142]. Electrochemical 
doping mechanisms employ electrochemical reactions to 
adjust material doping levels, demonstrating superior revers-
ibility and dynamic modulation capabilities that render them 
suitable for emulating the continuous plasticity of biological 
synapses [268]. However, their implementation may neces-
sitate complex electrolyte environments and pose integration 
challenges due to system complexity [262]. Conductive fila-
ment mechanism achieves a high on/off ratio and fast switch-
ing through filament formation/rupture, but their discrete 
switching behavior and poor linearity limit precise analog-
like synaptic weight tuning [127]. Each mechanism presents 
distinct trade-offs in balancing speed, linearity, stability, and 
integration feasibility for multimodal neuromorphic systems.

In summary, electrochemical doping and ion migration 
mechanisms demonstrate superior suitability for multimodal 
signal fusion. Ion migration exhibits high linearity and continu-
ous tunability, enabling smooth weight updates through electric 
field-regulated ion redistribution, which proves ideal for fine-
grained multimodal integration. Its rapid response and ultralow 
power consumption meet the real-time demands of multimodal 
systems. Crucially, ion migration achieves direct cross-modal 
coupling by translating physical signals (e.g., pressure and 
temperature) into ionic mobility variations without requiring 
external conversion modules. For instance, flexible ionogel 
sensors transduce mechanical strain into ion transport path 
modulation, enabling concurrent pressure–temperature percep-
tion. Electrochemical doping offers an ultrahigh dynamic range, 
accommodating multimodal amplitude disparities through 
ion intercalation/deintercalation-driven doping adjustments. 
WO3-based electrochemical transistors, for example, achieve 
linear responses across optical and mechanical stimuli. This 

mechanism inherently couples chemical, optical, electrical, and 
pressure signals, with heightened sensitivity to environmental 
variations (e.g., gas concentration and humidity), making it par-
ticularly suitable for complex multimodal integration. The syner-
gistic combination of ion migration and electrochemical doping 
in heterostructures allows rapid fine-tuning via ion migration 
while leveraging electrochemical doping for large-span sig-
nal processing. Owing to their exceptional linearity, dynamic 
range, and direct signal transduction capabilities, these mecha-
nisms emerge as optimal choices for multimodal integration. 
Ion migration excels in scenarios requiring rapid, continuous 
modulation (e.g., tactile-visual synchronization), whereas elec-
trochemical doping dominates in cross-physical-field coupling 
(e.g., chemical–thermal–optical fusion). Ferroelectricity and 
charge trapping mechanisms may serve supplementary roles to 
enhance system robustness. Future advancements in heterostruc-
ture design and interfacial engineering are expected to solidify 
their dominance in multimodal neuromorphic systems.

3 � Multimodal Signal Data Fusion

3.1 � Single‑Modality and Memristor‑Based Multimodal 
Systems

Neuromorphic systems relying on single-modality signal 
processing for decision-making often face inherent uncer-
tainties due to signal stochasticity, incompleteness, and noise 
amplification during information extraction [288, 289]. The 
absence of cross-modal validation mechanisms further limits 
their perceptual robustness. A direct solution to the prob-
lems of insufficient environmental adaptability and missing 
information redundancy caused by single-signal processing 
capabilities is the implementation of multimodal sensory 
fusion [290]. Multimodal neuromorphic systems enable 
multidimensional data integration, simultaneously pro-
cessing visual, tactile, auditory, and other signals through 
complementary information to mitigate the limitations of 
individual modalities [274]. These systems exhibit enhanced 
environmental adaptability, maintaining stable perception 
in complex scenarios (e.g., low-light or high-noise environ-
ments) by leveraging redundant data [291]. Moreover, their 
superior robustness and fault tolerance ensure operational 
continuity through alternative sensory inputs when specific 
modalities become compromised [292].

Multimodal sensory fusion directly addresses the limi-
tations of single-signal processing systems by enabling 
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multidimensional data integration. Traditional single-
modality architectures, limited to processing isolated signal 
types (e.g., pure visual or thermal data), rely on post-hoc 
software fusion of multisource inputs, leading to information 
loss and computational latency [293]. In contrast, multisen-
sory neuromorphic systems achieve hardware-level integra-
tion of visual, tactile, auditory, and other sensory streams 
through complementary information processing, mitigating 
individual modal constraints [274, 294]. Single-modality 
systems require repeated activation of redundant neurons 
to process complex scenarios and suffer from high interface 
latency in central processing units [295]. In contrast, multi-
modal neuromorphic systems employ event-driven computa-
tion and distributed processing, activating memristors only 
when multi-sensors are synergistically triggered, thereby 
significantly reducing static power consumption [296]. In 
dynamic environments (e.g., abrupt illumination changes), 
single-modality systems exhibit severe performance degra-
dation (e.g., huge recognition accuracy drop in pure vision 
systems), while multimodal neuromorphic frameworks 
enhance robustness through cross-modal suppression mecha-
nisms [297, 298]. Additionally, the non-volatile characteris-
tics of memristors enable real-time synaptic weight updates, 
facilitating adaptive calibration to environmental variations 
(e.g., temperature drift) and improving overall adaptabil-
ity [299]. This architecture thus provides a neuromorphic-
specific solution for real-time, energy-constrained applica-
tions by merging sensory diversity with hardware-efficient 
computation.

Compared to traditional single-modality sensing, directly 
integrating unimodal sensors with memristors to form sens-
ing-memory-computing integrated units offers significant 
advantages, which stem from the unique physical properties 
and in-memory computing capabilities of memristor. Tradi-
tional single-modality sensing systems, such as vision only 
or tactile only configurations, exhibit limitations in complex 
dynamic environments. In contrast, memristor-integrated 
systems leverage non-volatile properties to achieve envi-
ronmental self-adaptation. For instance, photomemristors 
in visual systems implement dynamic threshold modulation 
to maintain stable performance across varying illumination 
conditions [300]. Traditional unimodal sensing systems 
typically require analog-to-digital conversion during signal 
processing, a procedure that increases system complexity 
and risks information loss [20]. In contrast, memristors 
inherently process continuous signals, as demonstrated by 

the continuous pressure-to-resistance mapping in tactile sen-
sors [40]. This eliminates signal conversion requirements 
while enhancing system processing efficiency and accuracy. 
Whereas traditional systems rely on backend algorithms for 
data processing and learning, incurring high power con-
sumption and latency [295]. Memristor crossbars enable 
edge online learning, as demonstrated by Tsinghua Univer-
sity’s monolithic integrated memristor chip that supports 
on-chip learning with merely 3% energy consumption of 
conventional application-specific integrated circuits (ASICs) 
[301]. This hardware-level learning capability concurrently 
facilitates dynamic parameter tuning and optimization dur-
ing real-time data processing. Furthermore, traditional 
single-modality sensing systems require discrete sensor, 
analog-to-digital converter (ADC), and processor chips with 
interconnects, resulting in large footprints and system com-
plexity. In contrast, memristors adopt crossbar architectures 
that enable ultrahigh-density integration [302].

The fundamental rationale for integrating single-modality 
sensing with memristors rather than other two-terminal devices 
lies in the memristor’s unique capacity for sensing-memory-
processing convergence. This eliminates data shuttling, side-
steps analog-to-digital conversion and delivers edge intelligence 
[303]. Whereas alternative two-terminal components deliver 
only singular functionalities. Memristors provide intrinsic non-
volatility that preserves resistive states without external power, 
enabling environmental self-adaptation in unimodal systems 
[304]. In contrast, traditional two-terminal devices such as resis-
tors and diodes lack this persistent state retention capability, 
making them inadequate for complex environmental variations. 
Memristors support continuous resistance modulation through 
multi-state switching under electrical stimuli, enabling direct 
processing of analog signals to enhance efficiency and accuracy 
[305]. In comparison, traditional resistors exhibit fixed resist-
ance values, diodes enable only unidirectional current flow, 
and while transistors provide switching capabilities, they lack 
continuous modulation capacities. These inherent limitations 
collectively prevent conventional two-terminal devices from 
meeting the analog signal processing requirements of single-
modality systems. In terms of energy efficiency, memristors 
exhibit exceptional energy efficiency performance, with power 
consumption significantly lower than conventional transistors 
[152]. This advantage becomes particularly pronounced in neu-
ral network processing tasks, where energy efficiency improve-
ments can span multiple orders of magnitude. Meanwhile, 
traditional two-terminal devices like transistors face scaling 
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mismatch challenges due to their charge-based mechanisms and 
require substantial programming currents, leading to increased 
overall power consumption [306]. Furthermore, memristors 
possess hardware-level learning capabilities by emulating syn-
aptic weights through conductance values, enabling real-time 
updates of electrical properties [307]. This allows single-modal-
ity systems to achieve online learning and dynamic parameter 
adjustment via memristor arrays. In contrast, traditional two-
terminal devices lack inherent learning mechanisms and must 
rely on backend algorithms for such functionalities, which not 
only increases system complexity but also constrains real-time 
performance [308]. Compared to memristors, other two-ter-
minal devices exhibit critical limitations. Resistors have fixed 
resistance values incapable of environmental adaptive calibra-
tion. Capacitors suffer from charge leakage requiring refresh 
circuits that increase power consumption and system complex-
ity. Diodes only possess binary switching characteristics unable 
to represent continuous sensor signals. Traditional resistive ran-
dom access memories (RRAMs) are limited to binary storage, 
thereby losing analog computing capabilities.

3.2 � Single‑Memristor Multimodal Sensing System

Conventional systems, which rely on multiple discrete sen-
sors and dedicated processing units, suffer from high hard-
ware complexity, bulky form factors, and significant power 
consumption [295, 309]. The signal conversion between 
sensors necessitates additional ADCs and interface circuits, 
leading to substantial energy loss [295]. Multimodal sig-
nals require post-processing fusion via central processing 
units (CPUs)/graphics processing units (GPUs)), introducing 
millisecond-level latency that struggles to meet real-time 
requirements [295]. Furthermore, the serialized processing 
paradigm of discrete architectures results in computational 
inefficiency and limited parallelism. Physical separation 
of multiple sensors also risks signal interference, while 
environmental fluctuations (e.g., temperature and humid-
ity) induce sensor drift discrepancies, demanding complex 
calibration algorithms [310]. To address these challenges, 
a single-memristor multimodal sensing system offers an 
effective solution. Single-memristor multimodal systems 
eliminate the need for independent sensors by directly lev-
eraging the multi-physical response characteristics of mem-
ristive materials. The primary advantage lies in their ultra-
simplified hardware architecture and exceptional integration 

density [311]. Through heterogeneous structural design, 
these systems demonstrate ultra-wide dynamic range capa-
bilities, enabling simultaneous detection of diverse signals 
with varying amplitude ranges [312]. Reconfigurable modal 
weights can be implemented via mechanism design, such as 
electric field or optical modulation of ionic migration path-
ways, dynamically prioritizing dominant sensing modali-
ties [313]. By directly modulating memristive conductance 
states through input signals, the system achieves low-latency 
operation and ultralow power consumption [314].

A common method for implementing multimodal sens-
ing in single-memristor sensing systems involves design-
ing functional layer architectures. Mechanoluminescence 
(ML) allows for the quantitative conversion of mechanical 
stimuli into light emission in a real-time and in situ man-
ner. This force-to-light conversion enables the construction 
of visual-tactile sensors without the need for electrical or 
optical power sources. Guo et al. developed an artificial 
visual-tactile synapse for in-sensor computing enabled by 
the consisting of photo-stimulated luminescence (PSL) 
material and mechanoluminescent layer (Fig. 9a) [315]. The 
artificial synapse consists of three layers. The first layer is 
composed of PSL phosphor with photon-capturing capa-
bility, followed by a layer of ML material that emits light 
driven by mechanical force. The bottom layer, known as the 
mechanical microstructure layer, enhances the mechanical 
sensitivity of the device. The ML layer and microstructure 
collaboratively convert mechanical signals into optical out-
puts to modulate synaptic plasticity. Mechanical signals are 
directly transduced into light emission via ML materials, 
which optically stimulate the adjacent PSL layer without 
requiring pre/post-illumination. The PSL layer operates as 
both photon reservoir and in-memory computing unit, lever-
aging its photon-trapping capacity and electron de-trapping 
processes under near-infrared (NIR) irradiation. Mechanical 
forces (presynaptic input 1) and visible light (presynaptic 
input 2) serve as analog stimuli, while PSL optical signals 
function as postsynaptic responses. He et al. proposed an 
artificial visual-tactile perception array consisting of an inte-
grated mechanoluminescent layer and a photoelectronic syn-
apse network (Fig. 9b) [316]. The compact device integrates 
an IGZO/methylammonium lead iodide (MAPbI3) hetero-
structure and a ML layer. The IGZO/MAPbI3 heterostructure 
serves as the underlying layer for visual sensing and artifi-
cial synapses, while the ML layer transduces mechanical 
stimuli into light for tactile sensing and synaptic plasticity 
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modulation. This bimodal modulation of visual-tactile stim-
uli enables enhanced processing, learning, recognition, and 
memorization of stimulus information. Dong et al. fabricated 
a bionic photo-olfactory multisensory artificial synapse 
device using a two-dimensional/one-dimensional (2D/1D) 
black phosphorus–carbon–carbon nanotube (BP-C/CNT) 
heterostructured filter membrane as the functional active 
layer (Fig. 9c) [317]. By simultaneously integrating optical 
modulation, gas sensing, and synaptic functionalities within 
a single device, this system emulates the characteristics and 
operational capabilities of biological multisensory neurons. 
The polyethylene terephthalate (PET)/ITO top electrode cor-
responds to the presynaptic membrane, while the bottom 
ITO/PET layer functions as the postsynaptic membrane, 
with the BP-C/CNT functional layer serving as the synaptic 
transmission medium. The PET/ITO electrode acts as the 
presynaptic membrane to receive stimulus signals, where 
electrons are injected from the PET/ITO side, simulating 
neurotransmitter release. These electrons traverse the BP-C/
CNT layer before reaching the graphite bottom electrode, 
generating a synapse-mimetic current interpreted as postsyn-
aptic current. Gas molecules readily adsorb onto the BP-C/
CNT surface, undergoing dehydrogenation reactions with 
oxygen anions at the material interface. This process releases 
electrons, altering surface potential barriers and modulating 
internal electron concentration. Under optical excitation in 
gaseous environments, the photoelectric effect in BP-C/CNT 
generates abundant photogenerated carriers. These carriers 
are partially captured by surface traps, replenishing internal 
charges and further modifying electron concentration. Gas 
adsorption and photogenerated carriers synergistically mod-
ulate electronic states, emulating bio-neural co-regulatory 
mechanisms.

Unlike the elaborately designed architectures of multi-
sensory neuromorphic devices mentioned above, certain 
implementations achieve multimodal synergy through a sin-
gle material. Tan et al. introduce a bio-inspired multisensory 
integrated cognitive nerve consisting of the an artificial vis-
ual-respiratory synapse and corresponding arrayed reading 
circuits (Fig. 9d) [318]. In the designed visual-respiratory 
synapse system, monolayer oxidized MXene nanosheets 
enable bimodal sensing of optical and airflow signals. Visual 
signals are emulated via photocurrent generation through 
titanium dioxide (TiO2)  crystals, while airflow stimuli 
induce hydroxyl-oxygen vacancy interactions to mimic res-
piratory-arousal-modulated relaxation behaviors, analogous 

to biological ocular-nasal systems. Visual and respiratory 
modalities are synergistically activated by externally con-
trolling light source intensity/duration to reconstruct natu-
ralistic visual scenes. This multisensory integration achieves 
event-based synaptic signal readout in real-time through 
output load circuitry. Wang et al. developed a stretchable 
temperature-responsive multimodal neuromorphic electrical 
skin that integrates temperature sensing, mechanical percep-
tion, and synaptic functionalities (Fig. 9e) [319]. The device 
employs a polyvinyl alcohol (PVA)/SiO2 stacked structure 
as the gate dielectric. The abundance of hydrogen bonds 
in the PVA hydrogel constitutes the primary rationale for 
its application in neuromorphic synaptic devices. Elevated 
temperatures alter hydrogen-bond interactions within the 
hydrogel, increasing intermolecular distances and thereby 
enhancing proton hopping probability in PVA for synaptic 
plasticity modulation. This architecture enables concurrent 
pressure–temperature perception through PVA-mediated 
mechanisms, achieving synergistic multimodal signal inte-
gration. Wen et al. proposed a indium-magnesium oxide 
(InMgO) nanofibers (NFs) synaptic device with visual and 
temperature perception (Fig. 9f) [320]. The InMgO material 
is rich in oxygen vacancies. When light irradiates the InMgO 
nanochannels of the device, the oxygen vacancies undergo 
ionization to generate free electrons and VO2+ charge cent-
ers. The temperature sensing mechanism of InMgO origi-
nates from its thermally activated carrier characteristics and 
the ionization activation energy that decreases with rising 
temperature. The lower ionization activation energy facili-
tates the excitation of a higher density of photogenerated 
carriers under the same light intensity. Based on this princi-
ple, the device achieves collaborative perception and integra-
tion of photo-thermal dual-modal signals through InMgO. 
Lao et al. designed self-powered two-terminal optoelectronic 
synapse based on a lead-free cesium silver bismuth bromide 
(Cs2AgBiBr6)/P(VDF-TrFE)/pentacene heterostructure, 
which shows bidirectional responses to optical signal and 
humidity signal (Fig. 9g) [321]. Cs2AgBiBr6 exhibits high 
humidity selectivity, strong light absorption, and efficient 
photoelectric conversion, rendering it sensitive to both 
humidity and optical signals. This enables the modulation 
synaptic performance of the device through the synergistic 
integration of humidity and light pulses. Liu et al. reported 
an optoelectronic synaptic device based on semiconductor 
nanowires composed of p-type aluminum gallium nitride 
(p-AlGaN)/n-type gallium nitride (n-GaN) heterostructures, 
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Fig. 9   Internal multisensory perception integrated with memristors. a Visual-tactile synapse with mechanoluminescent/photo-stimulated lay-
ers. Reproduced with permission [315]. Copyright 2025, Advanced Materials. b Visual-tactile perception array combining mechanoluminescent 
layer and photoelectronic synapse network. Reproduced with permission [316]. Copyright 2023, InfoMat. c Visual-olfactory multisensory inte-
gration device. Reproduced with permission [317]. Copyright 2024, Advanced Science. d Bio-inspired visual-respiratory cognitive nerve with 
arrayed circuits. Reproduced with permission [318]. Copyright 2024, Advanced Materials. e Stretchable temperature-responsive e-skin with 
multimodal synaptic transmission. Reproduced with permission [319]. Copyright 2022, ACS Nano. f InMgO NFs synaptic device for visual/
temperature perception. Reproduced with permission [320]. Copyright 2024, International Journal of Extreme Manufacturing. g Humidity-mod-
ulated neuromorphic behavior mechanism. Reproduced with permission [321]. Copyright 2023, Advanced Materials Technologies. h Biological 
visual system and photoelectrochemical synapse. Reproduced with permission [322]. Copyright 2024, Nature Communications. i Multimodal 
memristive array vision chip. Reproduced with permission [10]. Copyright 2023, Nature Communications
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which demonstrates dual sensing capabilities for both chemi-
cal and optical signals (Fig. 9h) [322]. GaN material exhibits 
excellent optoelectronic properties and demonstrates good 
chemical stability in electrolyte solutions, making it suit-
able for studies involving electrolyte-mediated chemical 
reactions and ideal for constructing optoelectronic synapses 
with chemically relevant functionalities. Synaptic responses 
can be modulated by either chemical modifications on the 
nanowire surfaces or alterations in the external electrolyte 
environment. Upon illumination, charge carriers are gen-
erated within the nanowires. A portion of these carriers 
accumulate within the nanowires, inducing optoelectronic 
synaptic responses. Meanwhile, ions and molecules in the 
electrolyte consume another fraction of the carriers, real-
izing an electrolyte-mediated chemo-electric process that 
enables diverse chemical-related synaptic functionalities. 
Based on this principle, the device achieves collaborative 
perception and integration of optical-chemical dual-modal 
signals through GaN nanowires. Zhou et al. demonstrated a 
novel multimodal resistive random access memory device 
array based on modified silk fibroin protein. This device 
array operates in two distinct modes: an optoelectronic 
RRAM mode characterized by unique negative–positive 
photoconductance memory, and an electrical RRAM mode 
featuring analog resistive switching capabilities (Fig. 9i) 
[10]. Hydroxyl bonds and carbon–oxygen double bonds in 
amino acid sequences provide active reaction sites for hydro-
gen bonding or polymerization, forming a series of traps that 
facilitate resistive switching behavior. These structural fea-
tures make the modified silk fibroin protein highly suitable 
for constructing synapses capable of simultaneously sensing 
optical and electrical signals. Leveraging this mechanism, 
the device achieves collaborative perception and integration 
of optical-electrical dual-modal signals through the modified 
silk fibroin protein.

The defining characteristic of memristors lies in their 
dynamic resistive memory effect, where the conductance 
value evolves with the integral or pulsed characteristics of 
input signals, analogous to the plasticity of biological syn-
apses [323]. This property enables memristors to inherently 
record the spatiotemporal correlations of multimodal inputs 
through their conductance states (or resistance values), pro-
viding a physical foundation for multimodal signal fusion 
[324]. Single-memristor multimodal sensing systems typi-
cally adopt two architectures. The first involves designing 
functional layer configurations with multilayer memristor 

stacks, each layer dedicated to specific signal modalities. 
A common functional layer is the ML layer, which quan-
titatively converts mechanical stimuli into light emissions 
in real-time and in situ. The total input voltage is propor-
tionally distributed across layers, with conductance change 
rates determined by signal intensity. The second approach 
employs multifield-sensitive memristive materials (e.g., 
oxide and organic composites) whose resistance (conduct-
ance) simultaneously responds to multiple physical quan-
tities (temperature, pressure, light, chemicals, etc.) [40, 
325]. A prevalent signal fusion method is adaptive fusion 
based on memristive dynamics, where conductance evolu-
tion equations are established to integrate synergistic effects 
of multiphysical parameters [14, 326]. By adjusting pulse 
timing and width, the contribution weights of each modal-
ity to conductance are controlled. Another common strat-
egy is dynamic encoding, categorized into time–amplitude 
hybrid modulation and frequency division multiplexing. 
Time–amplitude hybrid modulation maps low-frequency 
parameters (e.g., temperature) to steady-state conductance 
changes through direct current (DC) bias or slow-varying 
voltage applications [327, 328]. Simultaneously, high-fre-
quency parameters (e.g., vibration) are encoded by superim-
posing alternating current (AC) excitation signals, utilizing 
memristive dynamic responses such as threshold switching 
to capture transient information [329]. In frequency division 
multiplexing, distinct excitation frequencies are assigned to 
each physical quantity (e.g., 1 Hz for temperature, 10 Hz for 
pressure, 100 Hz for light), with frequency-domain analysis 
(e.g., Fourier transform) decomposing modal contributions 
to conductance. The output conductance can be fed back 
to the input terminal, enabling unsupervised learning and 
online optimization by dynamically adjusting excitation 
amplitude-frequency parameters based on target response 
comparisons.

3.3 � Single‑Sensor and Single‑Memristor Multimodal 
Sensing System

Single-memristor multimodal sensing systems possess sig-
nificant advantages of extremely simplified hardware archi-
tecture and exceptionally high integration density. This capa-
bility allows them to directly map multiple external stimuli 
onto unified resistive state changes to achieve hardware-level 
parallel information fusion, yet their core challenge lies in 
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the concurrent alteration of the memristor’s resistive state by 
multiple signals [330]. This makes it difficult for the system 
to effectively distinguish whether resistance changes origi-
nate from target signals (e.g., pressure) or environmental 
interference (e.g., temperature drift), preventing reliable 
separation of valid information [163]. Furthermore, the 
sensing capability of single memristors is constrained by 
their inherent physical properties, typically only permitting 
limited mode switching through external conditions (such as 
voltage or frequency adjustments), making it difficult to effi-
ciently and simultaneously process multiple physical quan-
tities [331]. More critically, as all signals share the same 
resistive change channel, the system is compelled to rely on 
complex algorithms (e.g., deep learning) for reverse analysis 
of mixed signals, increasing computational burden [332]. In 
contrast, the single-sensor and single-memristor multimodal 
sensing system employs dedicated sensors specifically 
designed for target physical or chemical quantities, enabling 
selective response to target signals. The sensor output exhib-
its strong correlation with target signals, significantly sup-
pressing environmental interference. In this system, the sen-
sor is responsible for detecting specific physical quantities 
(e.g., pressure), while the memristor senses another physical 
quantity and generates pulse outputs. Through collaborative 
operation, they fuse multimodal signals into a single pulse 
sequence, achieving data compression and efficient trans-
mission. Simultaneously, this system supports collaborative 
customized design of sensors and memristors. For example, 
by adjusting parameters such as piezoresistive coefficient of 
the sensor, its response performance to specific target signals 
can be optimized [333].

In a multimodal sensing system composed of a single sen-
sor and a single memristor, the sensor is typically a pressure 
sensor used to detect pressure signals, while the memristor 
serves triple roles in signal perception, fusion, and storage. 
Shan et al. reported a novel artificial tactile sensing system 
capable of sensing pressure and electrical signals simul-
taneously, and achieving parallel output of photonics and 
electronic signals (Fig. 10a) [334]. One end of the TENG 
is connected to the Ag terminal of the memristor, and the 
other end to the ITO terminal of the memristor. The TENG 
receives stimuli, converts them into action potentials, and 
transmits the generated signals to the memristor. This pro-
cess triggers the memristor to produce electroluminescence 
and synaptic memory current signals. By coupling a lead-
free perovskite-based synaptic transistor with a TENG, wu 

et al. proposed an artificial multimodal integration neuron 
capable of sensing pressure and optical signals (Fig. 10b) 
[335]. The two terminals of the TENG are connected to the 
source and gate of the floating-gate transistor, respectively. 
The flexible TENG serves as a skin receptor to convert 
external pressure signals into electrical signals, while the 
perovskite quantum dots in the floating-gate transistor act as 
retinal receptors to transform optical stimuli into electrical 
signals. Subsequently, the electrical signals converted by the 
TENG are transmitted to the gate of the floating-gate transis-
tor (functioning as presynaptic neuron 1), and the electrical 
signals converted by perovskite quantum dots are captured 
by the floating gate (functioning as presynaptic neuron 2). 
These two presynaptic signals are integrated and converted 
into channel current at the source-drain terminal (acting as a 
postsynaptic neuron), mimicking biological EPSC. Yu et al. 
presented a bionic mechano-photonic artificial synapse with 
synergistic pressure and optical signals perception capabili-
ties (Fig. 10c) [336]. The synaptic device is constructed 
from a graphene/MoS2 heterostructure-based phototransis-
tor and an integrated TENG in contact-separation mode. 
The integrated TENG component comprises Cu/polytetra-
fluoroethylene (PTFE)/Cu conFig.d in a contact-separation 
mode. One triboelectric layer (PTFE/Cu) is connected to the 
transistor gate, while the opposing Cu electrode serves as a 
movable counter triboelectric layer. Mechanical displace-
ment between dual tribolayers of the TENG induces tribo-
electric potential coupling into the transistor. This coupling 
mechanism directly governs charge transfer/exchange in the 
graphene/MoS2 heterostructure channel by Fermi level of 
modulating graphene and energy band alignment of MoS2, 
thereby enabling photonic synaptic current modulation. The 
device achieves photonic synaptic plasticity through the 
combined action of mechanical displacement (acting as a 
state parameter) and light pulses that reflect spatiotemporal 
information (e.g., intensity and illumination time).

In the aforementioned multimodal sensing systems com-
posed of a single sensor and a single memristor, the pres-
sure sensor is directly connected to the gate terminal or both 
ends of the memristor, transmitting voltage signals to the 
memristor for further fusion. While this approach simpli-
fies the hardware architecture, it risks constraining the sig-
nal dynamic range. The output signals from the pressure 
sensor may exceed the operational range of the memristor, 
leading to signal saturation or nonlinear distortion. Addi-
tionally, such systems may exhibit  compromised noise 
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Fig. 10   Single-sensor-memristor integration for multimodal sensing. a Photoelectric dual-output tactile sensing system. Reproduced with permission [334]. Copyright 2022, 
Nano Letters. b TENG-synaptic transistor multimodal nerve device. Reproduced with permission [335]. Copyright 2021, Nano Energy. c Optoelectronic-TENG artificial 
synapse. Reproduced with permission [336]. Copyright 2021, Science Advances. d Bio-inspired visuo-tactile neuron integrating triboelectric tactile sensor and monolayer 
MoS2 photo-memristor. Reproduced with permission [294]. Copyright 2023, Nature Communications. e Multisensory integration features of d. f Artificial afferent nerve sys-
tems integrating pressure sensor, ADC-LED circuit, and memristor. Reproduced with permission [338]. Copyright 2020, Nature Communications. g Photonic neuromorphic 
sensory memory system. Reproduced with permission [278]. Copyright 2023, Nature Communications. h Conventional versus parallel-output multimodal processing systems
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immunity and restricted cross-modal synergy capabilities. 
Sadaf et al. introduced a bio-inspired visuo-tactile multi-
sensory neuron comprising a triboelectric tactile sensor, a 
monolayer MoS2 photo-memristor and an associated spike 
encoding circuit (Fig. 10d) [294]. The bionic visuo-tactile 
multisensory neuron integrates a tactile sensor connected 
to the gate terminal of a monolayer MoS2-based photonic 
synaptic transistor and associated spike encoding circuitry. 
The tactile sensor employs triboelectric effects to trans-
duce pressure stimuli into electrical spikes, which are sub-
sequently mapped to source-drain output current spikes 
through channel conductance modulation. Meanwhile, 
optical stimuli are encoded as threshold voltage shifts 
via the photogating effect in the monolayer MoS2 synap-
tic transistor, enabling light-driven channel conductance 
regulation. Through synergistic modulation of channel 
current by both optical and pressure signals, bio-inspired 
neuromorphic integration of light-force-electrical signaling 
is achieved. The bionic visuo-tactile multisensory neuron 
demonstrates three characteristic features of multisensory 
integration: super-additive responses to cross-modal cues, 
inverse effective effect, and temporal congruency (Fig. 10e). 
Super-additive response refers to the phenomenon where 
the neural response intensity elicited by cross-modal com-
bined stimuli significantly exceeds the algebraic sum of uni-
modal responses. In the multisensory neuron, the reaction 
induced by pressure-optical signal integration surpasses that 
obtained through single-modality integration. Inverse effec-
tive effect describes the enhanced multisensory integration 
when unimodal signals are weak. The physical origin of 
this effect in the multisensory neuron lies in the screening 
of triboelectric gate voltage (generated by tactile stimuli) 
through trapped charges at the interface induced by visual 
stimulation. Temporal congruency requires temporal syn-
chronization of cross-modal signals. The physical origin of 
temporal congruency can be attributed to the fact that the 
persistent photocurrent in the photonic synaptic transistor 
directly results from photo-induced carrier trapping at the 
MoS2/dielectric interface. De-trapping dynamics gradually 
restore the device to its pre-illumination conductance state 
over time.

Unlike conventional multimodal systems that directly 
convert pressure signals detected by the sensor into voltage 
inputs for the memristor, another prevalent strategy involves 
inserting an ADC between the pressure sensor and mem-
ristor to transform pressure information into optical pulses 

[337]. Tan et al. developed an optoelectronic spiking afferent 
nerve system composed of an ITO/ZnO/Nb:SrTiO3-based 
synaptic optoelectronic memristor and an MXene-based 
pressure sensor. This system demonstrates neuro-encod-
ing, perceptual learning, and memory capabilities to emu-
late pressure and optical signals sensing and processing 
(Fig. 10f) [338]. The system senses pressure through the 
MXene-based sensor, converts pressure information into 
optical pulses by coupling light-emitting diodes to ADC 
circuitry, and subsequently integrates these optical pulses 
using the synaptic optoelectronic memristor. Importantly, 
the synaptic weight changes of optoelectronic memristor 
at run-time by the input pressure signal because of a pho-
tomemristive effect, and the weight change depends on the 
pressure amplitude.

The aforementioned multimodal neuromorphic systems 
rely on discrete components, and their hardware integration 
remains constrained. Shan developed an efficient sensory 
memory processing system capable of processing sensory 
information while generating synaptic-like multichromatic 
light outputs, enabling diversified optical utilization in infor-
mation processing and multimodal recognition (Fig. 10g) 
[278]. This system employs a TENG as sensory receptors 
and QLED devices as luminescent neuromorphic synapses. 
The sensory memory processing system achieves synaptic-
mimetic multi-wavelength optical signaling through synap-
tic multicolor emission, facilitating multimodal information 
recognition via artificial neural networks. The TENG serves 
as sensory receptors that collect tactile signals through 
contact-separation motions with skin, converting them into 
presynaptic voltage pulses. These electrical signals drive the 
artificial synaptic devices to simultaneously generate elec-
troluminescence and modulate postsynaptic currents. The 
hybrid quantum dots in the emissive layer enable electric-
field-tunable color emission, where spectral output can be 
dynamically tuned by adjusting the applied electric field 
intensity. Through this mechanism, the sensory memory 
processing system realizes synaptic-adaptable multiband 
optical outputs by regulating contact-induced electric field 
strength. Unlike conventional multimodal systems requiring 
separate sensory modules, isolated memory processors, and 
complex encoder-decoder couplings, this integrated sensory 
memory processing system with parallel multi-information 
outputs (Fig. 10h). The design significantly reduces circuit 
complexity while maintaining efficient sensory signal pro-
cessing capabilities.
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The above discussion outlines several common device 
architectures and multimodal fusion methods for single-
sensor and single-memristor multimodal sensing systems. 
In systems composed of a single sensor and a single memris-
tor, the sensor typically employs a TENG to detect pressure 
signals, while the memristor concurrently serves three func-
tions: signal sensing, fusion, and storage [339]. A conven-
tional architecture directly connects the TENG to the mem-
ristor terminals or gate. The TENG transduces mechanical 
stimuli into action potentials and transmits the generated 
signals to the memristor. These signals directly modulate 
the conductance state of memristor, synergistically interact-
ing with potentials derived from the intrinsic sensing capa-
bilities of memristor (e.g., light or temperature responses) 
to achieve multimodal signal coupling [340]. The primary 
fusion strategy involves dynamic weight adaptive fusion, 
where algorithms adjust the weighting between pressure 
and memristor-derived signals in real time. An alternative 
architecture routes sensed pressure signals through dedicated 
processing modules (e.g., spike encoders or ADCs) to con-
vert analog pressure data into electrical spikes or optical 
pulses [341]. These transformed signals may manifest as 
voltage pulses with modulated amplitudes and frequencies, 
or optical pulses with tunable frequencies and widths [342]. 
Subsequently, the processed signals are transmitted to the 
memristor to dynamically regulate synaptic weights. In such 
architectures, pulse-coding-based spatiotemporal fusion pre-
dominates. Analog pressure signals are encoded into pulse 
sequences (e.g., pulse frequency modulation), which are 
then fused with the pulse responses of memristor (e.g., 
pulse width modulation) triggered by light or temperature 
via synaptic plasticity rules like STDP [163]. The temporal 
correlation between pressure-induced pulses and memris-
tor-generated pulses dynamically adjusts the conductance 
weights, enabling adaptive multimodal integration [316].

3.4 � Multi‑Sensor and Single‑Memristor Multimodal 
Sensing System

Although single-sensor and single-memristor multimodal 
sensing systems can selectively respond to target signals 
and effectively suppress environmental interference, their 
core challenge lies in the fact that the single-sensor design 
typically targets specific physical quantities (for exam-
ple, using piezoelectric materials for pressure detection) 

[343]. The inherent linear response characteristics con-
strain their applicability across the amplitude ranges of 
multimodal signals. When a single sensor responds to 
multiple physical quantities, signals are prone to mixing 
during the conversion process, and compromise design 
is required among the response characteristics of various 
physical quantities [344]. In contrast, within multi-sensor 
and single-memristor multimodal systems, each sensor can 
be independently customized for target signals, expanding 
the sensing dimension through the collaborative opera-
tion of chemical/biosensors and physical sensors. Different 
sensors independently detect specific physical quantities, 
fundamentally eliminating signal crosstalk [345]. When a 
single sensor fails, the remaining sensors can still continu-
ously provide partial modal data. Each sensor can indepen-
dently set its measurement range to avoid signal saturation, 
while the memristor time-sequentially processes signals 
from different sensors through a switching mechanism, 
effectively reducing instantaneous load [238].

In a multimodal sensory system based on multiple sensors 
and a single memristor, the fusion of multimodal signals 
typically requires additional circuit components to convert 
the voltage signals acquired from different sensors into other 
signal forms. Kim et al. presented an artificial multimodal 
integration system capable of simulating discomfort percep-
tion based on the integration of multiple sensory signals 
(Fig. 11a) [346]. The system consists of MXene-based artifi-
cial sensors, a ring oscillator, and an EDL synaptic transistor. 
The artificial temperature receptor and humidity receptor in 
the system detect ambient temperature and humidity, respec-
tively, converting them into electrical signals. These signals 
are then transmitted to the sensory ring oscillator. Within 
the sensory ring oscillator, each sensor converts external 
stimuli into resistive and capacitive signals, respectively. The 
integrating inverter subsequently translates changes in resis-
tive and capacitive signals into voltage pulse amplitude and 
frequency. The integrated voltage pulses are applied to the 
synaptic transistor, which converts them into postsynaptic 
currents.

Unlike ring oscillators that convert sensed signals into 
voltage pulse amplitudes and frequencies, another multi-
modal sensing system adopts a distinct signal fusion method 
by transforming induced voltages into corresponding pulse 
sequences through a signal coupling module. Pan et al. pro-
posed a novel universal signal-coupling method for applying 
stimuli from different sensors to the memristor (Fig. 11b) 
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[347]. Based on the proposed signal coupling method and 
fabricated memristors, an artificial sensory-memory system 
incorporating sensors (pressure sensors and temperature sen-
sors) and memristors has been realized. A method termed 
“indirect signal coupling” has been proposed as a universal 
signal coupling approach. This method requires setting a 
threshold voltage. When voltage signals reach the threshold 
voltage, fixed voltage pulses are applied to the memristor to 
alter its conductance. Flexible pressure sensors and tempera-
ture sensors are connected in series with resistors. Once their 
respective voltage responses exceed the threshold voltage, 
fixed voltage pulses are applied to the memristor, thereby 
modifying its conductance. After applying each fixed pulse 
sequence, the resistance of memristor gradually decreases. 
The conductance of memristor varies with the quantity of 
external stimuli received by the sensors. Consequently, the 
altered memristor resistance reflects cumulative effects of 
multiple past external stimuli received by the sensors. How-
ever, this multimodal signal integration system requires mul-
tiple redundant resistors, leading to high hardware complex-
ity. Yan et al. have proposed an improved design to address 
this issue. Yan et al. proposed an ultra-stable artificial mul-
tisensory sensory memory system with visual and tactile 
functions by combining a pressure sensor, a photosensitive 
sensor, a signal coupling module, a synaptic device, and a 
robotic arm (Fig. 11c) [348]. The sensing-memory system 
collects optical and pressure information from photosensi-
tive and pressure sensors, respectively. Signals generated by 
both sensors are input to a signal coupling module, which 
calculates and processes the signals. The generated corre-
sponding pulse sequences are then sent to the memristor, 
enabling observation of memristor current signal changes 
that effectively identify environmental parameters (pressure 
and light intensity) where the system resides. The proposed 
signal coupling method also requires setting a threshold 
voltage. When voltage signals reach this threshold, fixed-
sequence voltage pulses are applied to the memristor.

The aforementioned approaches utilizing signal cou-
pling modules or ring oscillators to process voltage signals 
sensed from sensors require complex circuitry, resulting 
in high hardware complexity, along with increased cost 
and power consumption. Wang et al. have addressed this 
issue by employing ion-conductive cables and hydrogels to 
replace traditional coupling modules. Wang et al. developed 
a bimodal artificial sensory neuron to implement the visual-
haptic sensory fusion processes (Fig. 11d) [26]. The bimodal 

artificial sensory neuron consists of four core components: 
a resistive pressure sensor, a perovskite-based photodetec-
tor, a hydrogel-based ionic cable, and a synaptic transistor 
(Fig. 11e). The bimodal artificial sensory neuron collects 
optical and pressure information from the photodetector and 
pressure sensor, respectively, transmits the bimodal infor-
mation through the ionic cable, and integrates them into 
postsynaptic currents via the synaptic transistor. The resist-
ance of photodetectors and pressure sensors decreases with 
increasing incident light intensity or applied pressure. As the 
sensor resistance drops, ionic flux is induced through ionic 
cables, with the fluxes from both sensors converging within 
the hydrogel matrix. Since the opposite side of the hydrogel 
is connected to the gate of a synaptic transistor, the accu-
mulated ions electrostatically couple to the EPSC through 
the semiconductor channel of the transistor. The fusion of 
pressure and optical signals is achieved through integration 
effect of the synaptic transistor on multiple inputs, which can 
be mathematically described as the integral of the product of 
input intensity and its distance-dependent weight.

The aforementioned signal fusion methods typically rely 
on voltage signals or converting voltages into fixed pulse 
sequences. Another common multimodal signal fusion 
approach involves voltage spike encoders that encode elec-
trical potentials into optical spikes for communication. This 
method effectively mitigates voltage attenuation and parasitic 
resistance issues during sensor data transmission. Tan et al. 
reported a bio-inspired spiking multisensory neural network 
that integrates artificial touch, hearing, vision, and simulated 
smell and taste with cross-modal learning via artificial neural 
networks (Fig. 11f) [20]. With distributed multi-sensor arrays 
and biomimetic hierarchical architectures, the spiking multisen-
sory neural network can not only perceive, process, and memo-
rize multimodal information but also fuse multisensory data at 
both hardware and software levels. The system senses multi-
modal physical stimuli through various detectors and converts 
them into voltage signals. Spike encoders encode potentials 
into optical spikes for communication. Photonic memristors 
integrate optical spikes, decode multisensory information, fil-
ter and memorize environmental data. Finally, artificial neural 
networks combine cross-modal signals with associative learn-
ing. Sensory inputs dynamically alter spike rate and postsyn-
aptic currents of the photonic memristor during operation via 
persistent photoconductive effects, enabling built-in memory 
of sensory information. The inherent memory and informa-
tion filtering properties of photonic memristor array facilitate 



Nano-Micro Lett.          (2026) 18:113 	 Page 35 of 54    113 

Fig. 11   Memristor-multisensors integration for multimodal sensing. a Sensory ring oscillator circuit and multimodal integration system. Repro-
duced with permission [346]. Copyright 2021, ACS Materials Letters. b Bio-inspired sensory memory system with pressure/temperature sen-
sors. Reproduced with permission [347]. Copyright 2022, Advanced Intelligent Systems. c Multimodal sensory memory system with photo-
sensitive/pressure sensors and robotic arm. Reproduced with permission [348]. Copyright 2023, InfoMat. d Bimodal artificial sensory neuron 
for visual-haptic fusion. Reproduced with permission [26]. Copyright 2020, Nature Communications. e Bimodal artificial sensory neuron patch 
integrating photodetector, pressure sensor, hydrogel and memristor. f Multisensory neural network operation. Reproduced with permission [20]. 
Copyright 2021, Nature Communications. g Crayfish-inspired sensor fusion architecture integrating photosensitive memtransistors, triboelectric 
tactile sensor, and graphene-based chemitransistor. Reproduced with permission [341]. Copyright 2024, Nano Letters. h Multimodal classifica-
tion optical neural network. Reproduced with permission [350]. Copyright 2024, Nature Communications
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supervised training of artificial neural networks, establishing 
associations across five sensory modalities to achieve advanced 
cognitive capabilities.

Conventional data fusion strategies typically involve col-
lecting information from individual sensors and transmitting 
it to a signal fusion module, where signal formats are further 
transformed. This approach lacks a critical aspect known 
as cross-sensor modulation, where one or more sensors directly 
modulate responses of each other. Furthermore, this strategy 
overlooks the intrinsic synergies and dependencies between 
sensor modalities. Sakib et al. proposed a neuromorphic plat-
form integrating graphene-based chemical transistors, mon-
olayer MoS2-based photosensitive memtransistors, and tribo-
electric tactile sensors to enable the cross-modal integration 
of chemical, optical, and pressure signals (Fig. 11g) [341]. In 
the neuromorphic platform, the tactile sensor is directly con-
nected to the gate terminal of the memtransistor. In contrast, 
the output of the graphene chemical transistor is first ampli-
fied using a MoS2-based thin film transistor inverter amplifier 
before being fed to the gate terminal of the memtransistor. 
Finally, by leveraging the light-controlled effect observed in 
the memtransistor, optical signal is encoded as threshold volt-
age shifts. Since the TENG is connected to the gate terminal 
of the memtransistor, electrical pulses generated by touch are 
encoded as current spikes at the output of memtransistor. As 
the channel conductance can be controlled by applying an elec-
trical bias to the chemical solution, electrical pulses generated 
by chemical signal serves as the gate bias for the memtransis-
tor, enabling tactile responses to be modulated by chemical 
signals. The light-controlled effect observed in the memtransis-
tor encodes optical signal as threshold voltage shifts, thereby 
achieving modulation of tactile responses. Stronger visual and 
chemical signals lead to enhanced responses due to the combi-
nation of a more negative threshold voltage and a more posi-
tive read voltage. Several distinct signals enable synergistic 
modulation, where the integrated effect of multiple sensory 
signals not only exceeds individual responses to each signal 
but also surpasses their linear summation.

All the aforementioned multimodal neuromorphic sys-
tems rely on discrete components, and their hardware inte-
gration remains constrained [349]. Cheng et al. reported a 
trainable diffractive optical neural network architecture to 
process and classify multimodal data by light propagation 
(Fig. 11h) [350]. By leveraging superposition and coherence 
properties of optical signal, large-scale neurons in hidden 
layers can be naturally connected through diffraction under 

multimodal configurations. The trainable diffractive optical 
neural network comprises an input layer, five hidden layers, 
and an output layer. After feature extraction and fusion, a 
feature vector derived from multimodal datasets of different 
modalities such as vision, audio and pressure, which serves 
as the neural network input. The dimension of feature vector 
matches the number of neurons in the input layer, with each 
vector element encoded into optical signals via intensity 
modulation. In hidden layers, neurons are arranged in mul-
tilayer layouts, where connection weights between neurons 
are adjusted during training to achieve target functionalities.

The aforementioned discussion outlines several common 
multimodal fusion methods for multi-sensor and single-
memristor multimodal sensing systems. Typically, multiple 
sensors first perceive distinct signals and convert them into 
voltage signals. Conventional multimodal fusion approaches 
typically involve transmitting sensed voltage signals to spe-
cialized processing modules (e.g., signal coupling mod-
ules, ring oscillators, or spike encoders) for converting the 
acquired electrical signals [346–348]. These may include 
fixed-frequency pulse trains, voltage pulses with modulated 
amplitudes and frequencies, or optical spikes with tunable 
frequencies and widths. The transformed signals are then 
delivered to memristors to dynamically adjust synaptic 
weights. In order to solve the impedance matching problem 
between memristors and different types of sensors, scaling 
resistors can be introduced to adjust the operating resist-
ance of various sensors to the resistance range compatible 
with memristors [351]. Notably, ionic cables and hydrogels 
can substitute conventional processing modules, replacing 
voltage-based signaling with ionic flux variations to enable 
signal transmission and fusion [26]. However, conventional 
multimodal fusion methods lack cross-sensor modulation, 
where multiple sensors directly modulate responses of each 
other, thereby neglecting the intrinsic synergies and interde-
pendencies between sensory modalities [352]. To achieve 
cross-sensor modulation, memristor-mediated sensor inter-
connections can be implemented. By interconnecting the 
outputs of different sensors through a memristor crossbar 
array, the signal transmission strength is dynamically regu-
lated via the conductance states of memristor [332]. Encod-
ing sensor signals into distinct pulse sequences (e.g., pulse 
frequency or phase modulation) enables cross-modal weight 
adaptation through the STDP rule at memristive synapses 
[353]. Additionally, the electrical pulses converted from one 
signal modulate the memristor channel conductivity, which 
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acts as a gate bias to influence the electrical pulses derived 
from another signal. This mechanism establishes intrinsic 
synergies and interdependencies among multimodal signals.

3.5 � Summary and Challenges

In the development of multimodal sensing and fusion tech-
nologies, diverse architectural designs exhibit distinctive 
performance characteristics and application potentials due 
to differences in core principles, hardware support, and sce-
nario adaptability. This section systematically compares 
the advantages and limitations of three representative mul-
timodal architectures, providing references for subsequent 
technical refinement and scenario-specific selection. The 
multi-sensor and single-memristor neuromorphic architec-
ture employs discrete high-performance sensors (e.g., opti-
cal, pressure, and chemical) to capture modality-specific sig-
nals. Following preprocessing, these signals are fed into a 
shared memristor array for fusion computation. This design 
maintains compatibility with existing sensing technolo-
gies while enabling high-precision, wide-bandwidth signal 
acquisition, with memristors processing only pre-encoded 
signals to reduce design complexity [308]. However, physi-
cal isolation between sensors introduces spatial mismatch 
requiring complex cross-modal calibration, inevitably cre-
ating hardware redundancy and necessitating sophisticated 
synchronization algorithms for data fusion [354]. Its fusion 
mechanism implements feature-level integration through 
memristive weighted fusion after analog-to-digital or pulse 
encoding of sensor signals, making it particularly suit-
able for applications demanding stringent single-modality 
accuracy such as biomedical multi-parameter monitoring 
[348]. In contrast, the single-sensor and single-memristor 
architecture significantly reduces hardware redundancy, 
eliminates synchronization challenges, and enhances noise 
immunity and stability [355]. Nevertheless, it requires sen-
sors with cross-modal response capabilities, posing signifi-
cant material design challenges. Concurrently, signal cou-
pling introduces crosstalk and constrains the dynamic range 
within individual sensing units. Its primary fusion strategy 
employs dynamic adaptive weighting that continuously 
adjusts weights between sensor-derived and memristor-pro-
cessed signals [356]. This configuration is ideal for space-
constrained edge intelligence devices like wearable health 
monitors. Conversely, the single-memristor architecture 

integrates sensing and computation within homogeneous 
memristive elements, achieving minimal hardware complex-
ity without signal conversion losses, thereby enabling low-
latency operations and ultralow power consumption [357]. 
Challenges include co-optimizing multimodal sensitivity 
with accuracy, limited signal dynamic range, and signifi-
cant fabrication complexities [358]. Its fusion mechanism 
leverages stimulus-specific energy thresholds or temporal 
scales to differentially drive resistance state transitions, 
accomplishing feature extraction and fusion directly at the 
device level [331]. The single-memristor approach excels in 
high-efficiency real-time processing scenarios such as neuro-
morphic vision for dynamic environmental perception [305].

Multimodal neuromorphic systems still face significant 
challenges in data conversion and fusion. A critical issue 
lies in the requirement for additional conversion modules to 
achieve spike encoding of multimodal signals. To address this 
limitation, the nonlinear threshold switching characteristics 
of memristors can be leveraged to directly map multimodal 
analog signals into spatiotemporal pulse sequences [359]. This 
can be implemented through cross-modal threshold modula-
tion by designing differentiated voltage thresholds for distinct 
physical quantities, where composite input signals exceeding 
these thresholds spontaneously trigger conductance transi-
tions and spike generation in memristors [40]. Alternatively, 
pulse frequency-intensity correlation enables signal strength 
modulation through input amplitude or duty cycle [327]. 
High-amplitude signals generate high-frequency spikes while 
low-amplitude signals produce low-frequency pulses, thereby 
eliminating the need for external frequency modulation cir-
cuits. The most efficient approach exploits multi-physical field 
coupling effects to achieve concurrent multimodal perception 
and fusion within single memristor-based multimodal sys-
tems [360]. Another fundamental challenge involves potential 
information loss during multimodal data fusion, particularly 
the suppression of weak signal features. This issue can be 
mitigated through coordinated hierarchical feature preserva-
tion strategies and adaptive fusion mechanisms [361]. During 
the preprocessing stage, dedicated independent units within 
the memristor array implement dual-channel parallel process-
ing. One channel preserves raw signals through lossless or 
low-compression encoding techniques such as pulse interval 
modulation or time–amplitude hybrid coding, enabling direct 
storage or transmission of original data streams [362]. The 
complementary channel extracts multimodal joint features 
through spatiotemporal filtering or sparse coding algorithms. 



	 Nano-Micro Lett.          (2026) 18:113   113   Page 38 of 54

https://doi.org/10.1007/s40820-025-01940-9© The authors

This architecture effectively balances the requirements for 
information fidelity and fusion efficiency while maintaining 
hardware compactness, providing a hardware–software co-
design paradigm for robust neuromorphic perception systems.

4 � Conclusion and Perspective

In summary, with the advancement of the Internet of 
Things era, the application scenarios and modality recog-
nition requirements of neuromorphic devices/systems have 
become increasingly diversified, driving growing research 
enthusiasm for multimodal/multi-task recognition. Herein, 
we investigate the complex physical mechanisms underly-
ing multimodal neuromorphic devices, focusing on six dis-
tinct resistive switching mechanisms: charge trapping, ion 
migration, electrochemical doping, conductive filament for-
mation, ferroelectric polarization, and phase transition. The 
working principles of these mechanisms in sensing various 
input signals are systematically elucidated. A comprehensive 
analysis is presented regarding their implementation strate-
gies for multimodal perception. This analysis reveals that 
electrochemical doping and ion migration mechanisms dem-
onstrate superior applicability in multimodal signal fusion 
due to their exceptional linearity, wide dynamic range, and 
direct signal transduction capabilities. Furthermore, the 
study categorizes multisensory neuromorphic devices into 
three architectural classifications. It then examines diverse 
multisensory fusion approaches and signal processing tech-
niques within each category, aiming to effectively process 
multisensory stimuli and construct high-efficiency neuro-
morphic sensory systems. Finally, the current challenges in 
multimodal perception systems are critically summarized, 
accompanied by forward-looking perspectives on their 
future development directions.

Multimodal neuromorphic perception systems still con-
front multiple challenges in multimodal fusion. The limited 
modality scalability of neuromorphic hardware, constrained 
by synaptic precision, restricts existing memristor arrays 
from effectively distinguishing subtle cross-modal differ-
ences due to insufficient conductance modulation accuracy 
[142, 363]. Simultaneously, SNNs rely on discrete spike-
based encoding, which exhibits inferior ability to capture 
continuous features of high-frequency vibration signals 
(> 1 kHz) compared to conventional ADC sampling [364]. 
Information loss and weak signal suppression persist in 

neuromorphic devices, particularly when multimodal signals 
share neural buses, where pulse collision-induced informa-
tion degradation occurs [163, 363]. High-energy modalities 
(e.g., intense illumination) tend to overwhelm low-energy 
signals (e.g., infrared thermal radiation), while analog-to-
pulse conversion inevitably sacrifices fine-grained signal 
characteristics [365]. Furthermore, dynamic environmental 
adaptability remains problematic as data quality fluctuates 
with contextual variations, necessitating real-time adjust-
ment of multimodal data weights and fusion strategies. Cur-
rent static-environment-oriented algorithms, such as atten-
tion mechanisms and weighted fusion, demonstrate limited 
effectiveness against abrupt interference. Another critical 
limitation arises from the inherent heterogeneity across 
modalities. Disparities in sampling rates and spatiotem-
poral resolution between different sensory signals create 
alignment challenges, necessitating sophisticated dynamic 
coordination mechanisms to resolve information redundancy 
and conflicts [289, 366]. The disparities in sampling rates 
across sensory signals originate from the inherent timescales 
of their physical processes: visual sensors typically operate 
at kilohertz frequencies, while temperature or gas sensors 
require millisecond-to-second response times [367, 368]. 
Spatial resolution also varies with sensor size and pixel 
density, causing divergent spatial granularity for the same 
event across the array [369]. During real-time fusion within 
a unified processing window, fast signals may recur multi-
ple times before slower signals update, inducing temporal 
misalignment. Consequently, rapidly evolving visual cues 
(e.g., object motion) fail to synchronize with slower ther-
mal responses, creating inconsistent feature representations 
[370]. Simultaneously, high-resolution channels may spa-
tially oversample low-resolution regions, triggering spatial 
mismatch [371]. These discrepancies intensify in dynamic 
environments. For example, when visual and tactile sam-
pling rates differ by an order of magnitude, fusion accuracy 
degrades sharply with increased error [372]. Addressing this 
demands programmable delay lines, interpolation-based 
alignment, and dynamic weighting mechanisms at either 
device or algorithmic levels to achieve spatiotemporal syn-
chronization [373]. These challenges collectively underscore 
the imperative for hardware-algorithm co-optimization to 
advance neuromorphic multimodal integration.

The future development of multimodal neuromorphic 
perception systems in multimodal fusion will revolve 
around hardware innovation, algorithmic optimization, and 
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revolutionary application scenarios. Advancements will 
focus on breakthroughs in bio-inspired hardware and hetero-
geneous integration technologies, enabling deeper emulation 
of biological parallel processing mechanisms through the 
intrinsic fusion of multimodal sensors and neuromorphic 
devices. This progression will extend to broader modality 
integration while achieving precision improvements in cross-
modal discrimination. Next-generation systems will imple-
ment hybrid pulse-analog encoding strategies and dynamic 
decoupling mechanisms to address high-frequency signal 
acquisition and information preservation challenges, syner-
gistically combining the efficiency of pulse-based encoding 
with the continuity of analog signal representation [374]. To 
enhance adaptability in dynamic environments, these sys-
tems will incorporate reinforcement learning-driven weight 
adjustment mechanisms that dynamically optimize modality 
confidence levels based on real-time environmental changes. 
To reduce power consumption and latency, future systems 
must promote compute-in-memory architectures and edge 
computing networks, enabling edge computing and energy 
efficiency optimization [375]. The application landscape 
will undergo transformative expansion, including real-time 
collaborative perception through edge-deployed multimodal 
devices (e.g., smart speakers with cameras and sensors) 
for intelligent IoT ecosystems, neuroprosthetics decoding 
electromyography and electroencephalography signals via 
neuromorphic processing, and immersive virtual-physical 
interaction systems integrating visual, auditory, and tactile 
feedback. With the maturation of optoelectrochemical multi-
field-coupled devices, communication-perception co-design 
frameworks, and context-aware adaptive algorithms, such 
systems are poised to achieve unprecedented environmen-
tal adaptability and energy efficiency. These gains will be 
realized across applications in robotics, autonomous vehi-
cles, and medical electronics, ultimately driving intelligent 
upgrades in the closed-loop perception-decision-action 
paradigm.
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