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HIGHLIGHTS

e This review provides a comprehensive overview of the physical mechanisms, device behaviors, and integration strategies that underpin mul-

timodal signal processing in neuromorphic hardware.

e This review examines implementation strategies for multimodal integration, including signal fusion methods and processing techniques for

handling cross-modal stimuli.

e This review categorizes multimodal neuromorphic devices into three distinct frameworks and comprehensively discusses their respective

advantages and limitations.

ABSTRACT The increasing complexity of intelligent sensing environments,
driven by the growth of Internet of Things technologies, has created a strong
demand for neuromorphic systems capable of real-time, low-power multisensory
perception. Traditional sensory architectures, constrained by single-modal pro-
cessing and centralized computing, struggle to meet the requirements of diverse
and dynamic input conditions. Multisensory neuromorphic devices offer a prom-
ising solution by mimicking the distributed, event-driven processing of biological
systems. Recent efforts have explored synaptic devices and material systems
that respond to various input modalities, including visual, tactile, thermal, and
chemical stimuli. However, challenges remain in signal conversion, encoding
compatibility, and the fusion of heterogeneous inputs without loss of unisensory
information. This review provides a comprehensive overview of the physical

mechanisms, device behaviors, and integration strategies that underpin signal

processing in neuromorphic hardware. We highlight synaptic mechanisms condu-
cive to cross-modal interaction, analyze representative signal fusion approaches
at the device level, and discuss future directions for constructing efficient, scalable, and biologically inspired multisensory neuromorphic

systems.
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1 Introduction

With the rapid development of 10T technologies, modern
sensing systems are increasingly required to collect multi-
modal signals—such as visual, temperature, humidity, gas
and pressure in real time and under dynamic, noisy environ-
ments [1, 2]. Traditional sensors, with their single-modal
architectures and centralized data processing pipelines,
often struggle to meet these demands due to limited signal
compatibility, inherent stochasticity, and inadequate envi-
ronmental adaptability [3—-5]. To address these limitations,
multisensory neuromorphic devices have attracted growing
interest for their ability to emulate the brain’s parallel, dis-
tributed, and adaptive information processing capabilities
[6-9]. By incorporating mechanisms such as synaptic plas-
ticity and distributed computation, these devices perform
direct, in-memory fusion of heterogeneous sensory inputs
at the hardware level [10—12]. This biologically inspired
approach enhances perception accuracy, reduces latency, and
improves energy efficiency, which holds significant prom-
ise for real-time, energy-constrained applications such as
autonomous vehicles, wearable electronics, and intelligent
robotics [13-16].

Biological systems perform multisensory integration
through highly interconnected and adaptive neural networks
[17-21]. In these systems, synapses act as dynamic sensing
and processing units, regulating signal transmission between
neurons in response to various external stimuli [22, 23].
Changes in chemical flux within synapses modulate synap-
tic weights, enabling plasticity and adaptive learning based
on multisensory input patterns [24, 25]. Sensory neurons
and synapses integrate signals from different modalities into
coherent spike trains, which propagate through the brain to
support perception and decision-making [26]. This decen-
tralized, parallel processing mechanism has inspired the
development of artificial neuromorphic devices designed
to emulate the functionalities of biological neurons and
synapses [27, 28]. For example, neuromorphic systems
incorporating heterogeneous sensory components, such as
ferroelectric memristors and piezoresistive thin films, have
been proposed. These systems achieve synchronous acquisi-
tion and spike-based encoding of multimodal inputs, thereby
overcoming the serial bottlenecks of traditional architectures
[29, 30]. These biologically inspired implementations lay the
groundwork for more efficient and adaptive multisensory
computing in artificial systems.

© The authors

Recent studies have demonstrated neuromorphic devices
capable of processing multimodal information by inte-
grating visual, tactile, thermal, and chemical inputs into a
unified hardware platform [31-33]. These systems mark a
significant departure from traditional architectures by ena-
bling in-memory and event-driven computation [28, 34,
35]. However, challenges remain in signal conversion and
fusion. Diverse modalities differ in physical properties and
encoding requirements, often requiring additional conver-
sion modules that increase latency and energy consump-
tion [36]. Moreover, naive fusion strategies can result in
the loss of key unisensory information, particularly under
unbalanced input conditions [37]. Material incompatibility
and limited integration scalability also hinder device perfor-
mance and system robustness [38]. These limitations under-
score the need to deepen our understanding of the physical
mechanisms and fusion principles governing multisensory
neuromorphic systems.

In this review, we provide an overview of multisensory
neuromorphic devices. We analyze the operating principles
by which different physical mechanisms respond to diverse
input signals across visual, tactile, thermal, and chemical
modalities. We then have discussed the requirements of
mechanisms for achieving multimodal integration and which
types of physical mechanisms are more conducive to mul-
timodal fusion. Additionally, we examine implementation
strategies for multimodal integration, including signal fusion
methods and processing techniques for handling cross-modal
stimuli. Finally, we highlight challenges in data conversion
and fusion, and discuss future directions for constructing
versatile neuromorphic systems with parallel processing
capabilities.

2 Mechanisms and Characteristics
of Neuromorphic Devices

2.1 Characteristics of Neuromorphic Devices

In this study, multimodal specifically denotes the intrinsic
fusion of heterogeneous physical stimuli into unified electri-
cal representations at the device level, where a single device
or array concurrently responds to multiple stimulus modali-
ties (e.g., optical/electrical/thermal/pressure) [39]. This
term describes hardware-centric capabilities, exemplified
by phase-change materials simultaneously encoding diverse
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inputs. Multisensory describes bio-inspired system architec-
tures that mimic neural integration of segregated sensory
pathways [20]. This concept operates at the algorithmic/
system level, utilizing neuromorphic computing principles
(e.g., synaptic weight updates, spatiotemporal integration) to
fuse signals into unified perceptual outputs, thereby emulat-
ing biological multisensory processing in the brain. Human
multimodal perception integrates sensory information from

various sources such as tactile, olfaction, hearing, and vision
to make accurate judgments about object properties. Inspired
by biological perception, neuromorphic systems based on
multisensory memristors support efficient information inte-
gration and exhibit high fault tolerance. They are capable
of perceiving multiple signals, including electrical, optical,

pressure, voice, gas, humidity, temperature, and chemical
signals (Fig. 1) [40-42].

Fig. 1 Schematic illustrating multisensory neuromorphic device with cross-modal stimuli integration and three multisensory fusion frameworks
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The development of neuromorphic devices has the
potential to overcome the limitations of the von Neumann
architecture by mimicking the operation of biological brain
function. The transmission, processing, and memorization
of information in the human brain primarily depend on the
intricate neuron network, comprising a vast number of neu-
rons (approximately 10'!") and their gapped junctions known
as synapses (approximately 10'°) [43]. Neurons serve as
the fundamental units of brain function in humans, while
synapses play a crucial role in enabling neurons to carry
out signal transmission and information exchange [44, 45].
External information can be perceived and converted into
chemical signals by neurons, and synapses facilitate the
transmission of these signals from presynaptic neurons to
postsynaptic neurons via neurotransmitters [46, 47]. Diverse
external stimuli can influence the chemical fluxes within
these synapses, thereby modulating the synaptic strength or
weight.

In neuromorphic devices, synaptic plasticity induced
by various input stimuli can have an impact on the con-
struction of neuromorphic systems [48]. The simulation of
biological synapses plasticity in neuromorphic devices is
achieved by operating various resistance switching mecha-
nisms [39, 49]. The switching mechanisms of neuromorphic
include conductive filament, ion migration, charge trapping,
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electrochemical doping, phase transition, ferroelectricity,
and other mechanisms [50-52]. The specific implementation
methods of these resistance switching mechanisms depend
on the materials and device structures used [53-55]. Under-
standing which synaptic mechanisms are more conducive
to multisensory integration and what mechanisms and prin-
ciples are involved in the fusion of multisensory signals is
crucial for constructing efficient neuromorphic devices.
There are six different neuromorphic resistive switching
physical mechanisms and their corresponding detectable
input signals (Fig. 2). Among these six mechanisms, the
conductive filament, ion migration, electrochemical doping,
and charge trapping mechanisms can detect a wider variety
of input signals. In contrast, the phase change and ferro-
electric polarization mechanisms can detect fewer types of
input signals on the right side of Fig. 2. Notably, the charge
trapping mechanism can detect the largest variety of input
signals, potentially making it more favorable for application
in multimode neuromorphic devices. Charge trapping mech-
anism demonstrates the most extensive multimodal detection
capability among the six mechanisms, primarily due to trap
states’ inherent sensitivity to diverse external stimuli [56].
Unlike mechanisms constrained by specific material phases,
ion species, or lattice symmetries, this sensitivity univer-
sally arises at defective semiconductor/insulator interfaces or
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Fig. 2 Physical mechanism mapping of neuromorphic devices to multimodal input stimuli
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within bulk regions. The tunable nature of trap energy levels
enables dynamic modulation by external inputs: light excita-
tion generates electron—hole pairs that populate/deplete traps
[57]; electric fields directly reconfigure trap occupancy [58];
chemical adsorption/reactions alter trap barriers via surface
dipoles or charge transfer [59]; thermal energy governs
shallow-trap carrier release for high-precision temperature
response [60]; and mechanical strain expands trap capture
cross-sections [61]. Crucially, all stimuli converge into a uni-
fied response paradigm that translates trap charge variations
linearly or nonlinearly into measurable electrical signals
through Schottky barrier height, capacitance, or resistance
changes [62]. This intrinsic conversion of heterogeneous
inputs into a single physical quantity allows charge trap-
ping to function as a multimodal sensing front-end without
requiring specialized crystal structures (e.g., phase-change
materials) or ion migration pathways (e.g., electrochemical
doping) [63]. Furthermore, traps originating from intrinsic
defects, surface dangling bonds, interface states, or extrin-
sic dopants ensure compatibility with virtually any material
system, including oxides, 2D materials, organic semicon-
ductors, and perovskites [64]. This universality remains
unattainable by other mechanisms constrained to specific
material classes.

Phase change and ferroelectricity mechanisms detect
the fewest signal types. Phase-change and ferroelectricity
mechanisms exhibit the most limited signal perception capa-
bilities due to unidimensional order parameter coupling and
high activation thresholds [65, 66]. The order parameter of
phase change is crystallinity, and phase change occurs only
when the supplied energy exceeds the crystallization barrier
[67]. It thus responds solely to heat accumulation and cannot
directly couple to chemical or pressure stimuli. The order
parameter of ferroelectricity is polarization, and polariza-
tion reversal demands overcoming the coercive field [68].
The ferroelectric mechanism exhibits exclusive sensitivity
to electric field stimuli, while non-electric stimuli such as
optical or pressure necessitate conversion into electric fields
for effective perception [69, 70]. Conversely, charge trap-
ping, ionic migration, and electrochemical doping mecha-
nisms demonstrate direct, low-threshold responses to diverse
stimuli (optical/chemical/electrical/pressure/temperature)
through their order parameters (trapped charge, ion concen-
tration, and redox states) [71-73]. Crucially, phase-change
requires overcoming enthalpy of melting or lattice distortion
energy, while ferroelectric switching demands high coercive

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

fields. These energy barriers significantly exceed those for
defect-level shifting, ion drift, or redox transitions. Conse-
quently, stimuli beyond temperature and electricity rarely
induce detectable changes within conventional energy
ranges, inherently limiting perceptible signal diversity.

2.2 Charge Trapping/De-trapping

One prominent mechanism of resistive switching is charge
trapping (Fig. 3a), which is mainly induced by four factors:
defects caused by local structural distortion or dangling
bonds [74, 75] defects at the interface between semicon-
ductors and dielectrics [76-78] potential wells formed by
a semiconductor bulk heterojunction [79, 80] and floating
gates [81-83]. Charge trapping/de-trapping can generally
adjusted by appropriate modulation of electrical or optical
signals. Under an electric field, trapping and de-trapping can
be controlled by applying and removing an electric field.
Initially, due to the effect of an applied electric field, ion
or vacancy defects are captured. Then, with a certain time
delay, ion or vacancy defects are de-trapped when the elec-
tric field is removed or the direction of the applied electric
field is reversed [84]. Under illumination, light energy is
used to trigger the capture of photo-induced charges [85].
The light induced field generated by the captured charge
promotes ion drift and diffusion, followed by applying a
potential to achieve de-trapping [86]. These traps contribute
to the slow decay of photocurrent in the device, and charge
trapping and de-trapping can be used to provide controllable
channel conductance modulation [87]. Due to the conduc-
tivity changes and stable and reversible physical operations
that can occur during the charge trapping and de-trapping
process, the charge trapping/de-trapping mechanism has
been widely used to construct various memristors and neu-
romorphic devices [88, 89]. Charge trapping architectures
implementations feature broad spectral response, exceptional
endurance, and technological maturity [90]. Yet they suffer
from slow write speeds and demand high-voltage operation
[91].

Neuromorphic devices based on defect trapping mecha-
nisms can perceive a variety of signals, such as optical, elec-
trical, temperature, chemical, pressure, gas and voice sig-
nals. Chen et al. fabricated an artificial multimodal system
that can sense pressure and thermal stimuli simultaneously
and provide optical feedback (Fig. 3b) [92]. A triboelectric
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Fig. 3 Charge trapping synaptic devices processing multimodal stimuli. a Resistive switching mechanism via defect trapping. b Artificial multimodal system
schematic with pressure/temperature inputs. Reproduced with permission [92]. Copyright 2024, Chemical Engineering Journal. ¢ Organic heterostructure sen-
sory synapse for NO, detection. Reproduced with permission [93]. Copyright 2022, Advanced Functional Materials. d Optoelectrical synapse experimental setup.
Reproduced with permission [94]. Copyright 2024, Advanced Functional Materials. e Bio-inspired optoelectronic nerve system with h-BN/WSe,. Reproduced with
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with permission [96]. Copyright 2024, Advanced Materials. g Biological sensory organs processing optical/pressure/voice stimuli and neural information transmis-

sion. Reproduced with permission [97].
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nanogenerator (TENG) is utilized as an artificial electronic
skin to perceive pressure stimuli. Meanwhile, a quantum dot
light-emitting diode (QLED) device serves as an artificial
neuromorphic synapse, providing optical feedback and per-
forming temperature sensing computation. The temperature
sensing of the device is realized through the artificial light-
emitting synapse, where the charge trapping layer captures
charges affected by temperature, while the synaptic light-
emitting is also influenced by temperature. As the tempera-
ture rises, the energy of the charges increases, making them
less likely to be captured by traps, which in turn enhances
the conductivity of the device. The pressure signal is gen-
erated as presynaptic spikes in an artificial light-emitting
synaptic device by electrostatic induction and electrostatic
equilibrium when the skin contacts and separates from poly-
dimethylsiloxane (PDMS). Qian et al. developed an artifi-
cial sensory synapse for nitrogen dioxide (NO,) detection,
which is composed of an organic heterostructure featuring a
charge trapping layer and a hole-conducting layer (Fig. 3c)
[93]. This artificial sensory synapse is capable of process-
ing, assessing, and responding to different gaseous environ-
ments. NO, permeates through the organic heterostructure
and traps electrons in the charge trapping layer, leading to
the accumulation of carriers in the hole-conducting layer
and the retention behavior of the device. As learned above,
neuromorphic devices can sense temperature, pressure, and
gas signals through the defect trapping mechanism. For
temperature signals, temperature changes affect the electri-
cal and chemical properties of the material, altering defect
trapping and release. For pressure signals, piezoelectric neu-
romorphic devices use piezoelectric potentials to modulate
electrical transport, converting external mechanical motion
into electrical signals and regulating synaptic weights. For
gas signals, Gas signals alter surface charge distribution or
chemical properties, influencing defect capture and release.

Instead of pressure, temperature and gas signals, some
other external stimulation can also be sensed by charge trap-
ping mechanism. Fang et al. fabricated an optoelectronic
synaptic device of indium oxide (In,O5)-stannic anhydride
(SnO,)/niobium-doped strontium titanate (Nb:SrTiO;) het-
erostructure, which vividly demonstrates the in-sensor
computing capability and multimodal perception ability to
sense both optical and electrical signals (Fig. 3d) [94]. The
surface of Nb:SrTiO; is abundant with interfacial defects
dominated by oxygen vacancies, which facilitates the trap-
ping/de-trapping of electrons. Under positive gate voltage

| SHANGHAI JIAO TONG UNIVERSITY PRESS

or illumination, electrons trapped in the oxygen vacancies at
the indium tin oxide (ITO)/Nb:SrTiOj; interface are released,
leading to a decrease in the height and width of the Schottky
barrier, and the device exhibits a low-resistance state (LRS).
When the illumination is turned off or a negative gate volt-
age is applied, the electrons are recaptured by the oxygen
vacancies, and the device exhibits a high-resistance state
(HRS). Seo et al. reported a neuromorphic synaptic device
with electrical and optical sensing functionalities, which fab-
ricated on a hexagonal boron nitride (h-BN)/tungsten disele-
nide (WSe,) van der Waals (vdW) heterostructure (Fig. 3e)
[95]. The working principle of the vdW synaptic device
is based on the trapping/de-trapping of electrons within a
weight control layer (WCL) on h-BN, which in turn modu-
lates the conductivity of the WSe, channel. Optical signals
primarily regulate synaptic properties through wavelength
modulation. Shorter optical wavelengths result in greater
light absorption, which decreases the resistance of the syn-
aptic device. Consequently, the density of carriers trapped
within the WCL increases, thereby modulating synaptic
properties. In contrast, electrical signals directly impact the
carriers in the WCL, influencing their trapping/de-trapping
processes. As learned above, photoelectric neuromorphic
devices can sense optical and electrical signals through the
defect trapping mechanism. For optical signals, the device
converts optical signals to electrical signals. Photogenerated
carriers are trapped or released at defect sites, altering the
conductivity of device, thereby enabling the perception of
optical signals. For electrical signals, neuromorphic devices
use electrical stimuli to modulate defect trapping states,
thereby adjusting the resistance or conductivity of device.
In addition to the aforementioned input signals, chemical
and voice signals can also be sensed by the charge trapping
mechanism. Zheng utilized the chemical sensing properties
of graphene and the photo sensing capability of monolayer
molybdenum disulfide (MoS,) to create a multimodal plat-
form for visual-chemical integration (Fig. 3f) [96]. This
device perceives chemical signals by deploying an artifi-
cial chemical receptor neuron consisting of two graphene
chemical transistors connected in series. Aqueous solutions
of chemicals are dripped onto the graphene channel area
for chemical sensing. At the interface between the graphene
channel and the chemical solution, an electrical double
layer (EDL) is formed, which serves as an ultrafine dielec-
tric layer. This EDL allows for the control of channel con-
ductance when an electrical bias is applied to the solution,

@ Springer
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thereby controlling the carrier trapping/de-trapping process.
Wan et al. proposed a multimodal artificial sensory memory
system that possesses biomimetic sensory transduction, neu-
rological capabilities, synaptic-like information processing,
and memory functions (Fig. 3g) [97]. This system can per-
ceive multiple signals, including optical, pressure, and voice
signals. The multimodal perception of the system is achieved
by utilizing polypropylene-based ferroelectret nanogenera-
tor (FENG) as both tactile and acoustic sensors, along with
phototransistors serving as optical sensors. Physical stimuli
are converted into informational electric pulses, which are
then transmitted through conditioning circuits to an artificial
neural system for processing and storage. As learned above,
neuromorphic devices can detect chemical and voice sig-
nals via defect trapping mechanisms. Chemical signals alter
surface charge distribution or chemical properties, influenc-
ing defect trapping and release, and enabling the detection
of chemical signals. Voice signals modulate the electrical
polarization state of a material through the propagation of
mechanical waves, thereby altering the electrical character-
istics of the device.

Neuromorphic devices achieve multimodal perception
through defect trapping mechanisms, where the diversity
of defect types and their modality-specific interactions are
critical [98, 99]. For instance, vacancy defects (e.g., sul-
fur vacancies in MoS,) dominate optical and electronical
signals detection by modulating photogenerated carrier
dynamics [100-102]. While surface defects enable chemical
sensing via molecular adsorption at active sites [103, 104].
Grain boundary defects respond to mechanical stimuli such
as pressure and voice through strain-induced polarization
changes [105-107] and interface oxygen vacancies regulate
temperature signals by altering phonon scattering pathways
[108, 109]. Crucially, the spatial distribution and dynamic
response characteristics of defects further enhance function-
ality [110]. Defects often form interconnected conductive
networks (e.g., conductive filaments in memristors), where
external signals differentially modulate localized pathway
connectivity, enabling differentiated responses [42, 111].
The charge dynamics of defects depends on their energy
levels [102, 112]. Shallow defects quickly trap and release
charges (nanosecond timescales), making them suitable for
detecting fast signals like sound or light pulses. Deep defects
retain charges much longer (seconds to permanent states),
enabling sustained responses to slow-changing signals such
as temperature or steady pressure.

© The authors

The transition from unimodal to multimodal percep-
tion stems from defect coupling and dynamic evolution.
For example, sulfur vacancies in MoS, can simultaneously
respond to light and NO, adsorption, enabling opto-chemical
dual sensing [113, 114]. Moreover, defect distributions can
dynamically evolve under external fields (e.g., voltage pulses
inducing oxygen vacancy migration), allowing reconfigur-
able device functionality to adapt to multimodal switching
[115]. This synergy of heterogeneous defect interactions
and field-driven adaptability emulates biological sensory
integration, offering a versatile platform for advanced neu-
romorphic systems.

2.3 Ion Migration

The ion migration mechanism in the resistive switching of
neuromorphic devices is a crucial operational principle that
emulates synaptic functionalities in biological neural net-
works, forming the foundation for neuromorphic comput-
ing. This mechanism refers to the directional migration of
ions within the device under external stimuli, particularly
electric fields, leading to changes in resistive states (Fig. 4a)
[116, 117]. It typically involves ion diffusion and migra-
tion through solid materials, as well as interactions between
ions and material defects, interfaces, and other structural
features [118, 119]. This mechanism operates through ionic
conduction without redox reactions, altering local charge
distribution or forming conductive pathways solely via ion
repositioning [120]. Architectures based on the ionic migra-
tion mechanism offer high-precision analog weighting with
continuous conductance tuning at minimal power [121].
However, slow ion diffusion creates response latency, while
environmental sensitivity compromises stability [122].

To implement the ion migration mechanism, materials
with ionic conductivity must be selected. These materials
commonly include ionic liquids, hydrogels, two-dimensional
layered transition metal oxides (e.g., alpha-phase molybde-
num trioxide (x-Mo0O;)), perovskites, and low-dimensional
vdW crystals (e.g., niobium triselenide (NbSe;)) [123-125].
In these materials, ions migrate under applied electric fields
[126]. Additionally, ion migration is closely linked to other
resistive switching mechanisms, such as conductive fila-
ment formation, defect trapping, and electrochemical doping
[127-129]. Neuromorphic devices often employ complex
architectures to enable ion migration and resistive switching.

https://doi.org/10.1007/s40820-025-01940-9
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These may incorporate multilayer structures, nanochan-
nels, or discrete channels to provide pathways and spatial
confinement for ion migration [130, 131]. By precisely
regulating ion migration, fine-grained resistance control
can be achieved, mimicking the complex synaptic weight
modulation in biological neural networks. However, the ion
migration mechanism may be influenced by factors such as
material stability, ion diffusion rates, and device architecture
[132, 133].

Neuromorphic devices based on ion migration mecha-
nisms can perceive a variety of signals, such as optical,
electrical, temperature, pressure, gas and voice signals. Li
et al. fabricated a perovskite photodetector and proposed
a novel strategy leveraging intrinsic ion migration in per-
ovskites to construct narrow-band photodetection (Fig. 4b)
[134]. By employing optical, temperature and electrical
signals to manipulate ion migration, the band structure
of the perovskite photodetector can be modulated in situ,
thereby enabling precise regulation of its spectral response
characteristics [135, 136]. The influence of temperature on
ion migration mechanisms primarily manifests as enhanced
conductivity and reduced band bending with increasing tem-
perature. Elevated temperatures promote more uniform ion
distribution, which diminishes interfacial ion accumulation
and suppresses photogenerated carrier loss. Furthermore,
at higher temperatures, thermally excited electrons transi-
tion from the valence band to the conduction band, thereby
weakening the doping effects induced by ionic accumula-
tion. Increased diffusion coefficients also facilitate rapid ion
diffusion back into the perovskite bulk, effectively reducing
trap states and improving carrier collection efficiency. Guo
et al. proposed a two-terminal synaptic device based on lead
halide perovskite, featuring in situ tunable optoelectronic
properties (Fig. 4c) [137]. Optical signals can reduce the
ion migration activation energy. Upon light stimulation, an
appropriate amount of Br~ ions begin to migrate under the
influence of voltage, introducing corresponding donor lev-
els. This migration increases the electron concentration and
subsequently inducing stable enhancement of the postsyn-
aptic current. Zhu et al. fabricated MoS,-based memristive
devices and achieved reversible modulation of MoS, films
by controlling the migration of Li ions with sensed electrical
signal, a process consistent with local 2H-1T" phase transi-
tions (Fig. 4d) [138]. In this system, localized increases/
decreases in Li ion concentration drive phase transforma-
tions between the 2H phase and 1T’ phase. The engineered

| SHANGHAI JIAO TONG UNIVERSITY PRESS

devices exhibit exceptional memristive behavior, enabling
direct inter-device coupling via localized ionic exchange that
inherently reproduces biological synaptic competition and
cooperation effects. As learned above, neuromorphic devices
can detect optical, electrical and temperature signals via ion
migration mechanisms. Optical signals induce ion migra-
tion through photogenerated electric fields or photo-thermal
effects, such as photo-induced oxygen vacancy migration.
Electrical signals, on the other hand, modulate ion distribu-
tion via externally applied electric fields, as demonstrated
by the formation and rupture of conductive filaments in
memristors. On the other hand, thermal signals facilitate
ion migration by providing the necessary energy through
thermal activation processes.

In addition to the electrical and optical signals, pressure
and gas signals can also be sensed by the ion migration
mechanism. Liu et al. reported a novel self-powered syn-
apse transistor by coupling an electric-double-layer organic
field effect transistor and a TENG to sense pressure signal
(Fig. 4e) [139]. Adjusting the distance between two elec-
trodes of TENG generates varying voltages, which serve
as presynaptic spikes. Before combining with a memristor
synapse, TENG induces net positive charges on the bottom
Cu film and net negative charges on the PDMS film. Exter-
nal touch on TENG brings the top Cu film into contact with
the bottom PDMS film. At this point, electrons flow from the
top Cu film to the silicon (Si) gate via electrostatic induc-
tion, leaving the Cu film with net positive charges and the Si
gate with net negative charges, thereby creating a negative
gate voltage in the transistor device. Simultaneously, under
EDL effects, cations and anions accumulate at the Si/Ion-
gel and Ion-gel/poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrolo-
1,4(2H, 5H)-dione-alt-5,5-di(thiophene-2-yl)-2,2-(E)-2-(2-
(thiophen-2-yl)vinyl)thiophe4ane] (PDVT-10) interfaces,
respectively. This induces positive charges on PDVT-10 at
the PDVT-10/Ion-gel interface, enhancing channel carrier
density and channel current, ultimately leading to increased
excitatory postsynaptic current (EPSC). Yin et al. presented
a gas sensing organic electrochemical transistor (OECT)
embedded with sensory functionality, demonstrating inte-
grated capabilities including chemical information decod-
ing, tunable memory states, and gas sensing selectivity
(Fig. 4f) [140]. The ion-gel electrolyte endows the device
with tunable memory characteristics and low operational
voltage, while enabling the realization of essential synap-
tic behaviors such as short-term plasticity and paired-pulse
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facilitation (PPF). The ion-gel electrolyte mitigates gas mol-
ecule adsorption/desorption in the semiconductor layer, thus
enhancing the retention of gas sensing information. Typi-
cally, free ions in the ion-gel bind with ammonia (NH;) mol-
ecules. In the absence of a gate voltage, NH; remains bound
to the semiconductor surface. When a negative gate voltage
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is applied, both the ions and their bound NH; migrate into
the bulk semiconductor, enabling dynamic erasure of stored
gas signals through voltage-driven ionic redistribution. As
discussed above, neuromorphic devices can detect pressure
and gas signals through ion migration mechanisms. For gas
signals, molecular adsorption modulates the ion migration

https://doi.org/10.1007/s40820-025-01940-9
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barrier by altering surface charge states or chemical poten-
tials. For pressure signals, mechanical stress generates local-
ized electric fields via the piezoelectric effect, converting
mechanical vibrations into electrical signals that drive direc-
tional ion migration.

Simultaneously, multimodal recognition can be achieved
through ion migration mechanisms. Liu et al. developed a
Ti;C,T, MXene-based vertical tribo-transistor device inte-
grating a TENG and a vertical organic field-effect transistor,
capable of multimodal memory-computing functions and
multimodal affective recognition for optical, pressure, and
voice signals (Fig. 4g) [141]. The sensing capabilities of
vertical tribo-transistor are emulated through the actuation
of the gate electrode and device vibrations, enabling multi-
modal perception of pressure and voice signals, while opti-
cal signal detection is achieved via a photosensitive MXene
electrode. Charges accumulate in the TENG through elec-
trostatic induction and triboelectric charging. The resulting
triboelectric potential dynamically modulates ion migration
within the dielectric layer and adjusts the Schottky barrier
height at the MXene/semiconductor interface, thereby regu-
lating the conductive channel between the MXene and drain
electrode. The device extracts discriminative features from
optical and voice signal modalities and relays this informa-
tion to the input layer for advanced processing, employing
data-level fusion to integrate feature sets derived from multi-
ple sensory channels. This synergistic combination of cross-
modal features enhances both the accuracy and robustness
of perceptual recognition, emulating biological multisensory
integration mechanisms observed in neural systems.

The core mechanism enabling neuromorphic devices
to achieve multimodal perception through ion migration
lies in the high sensitivity of ion migration to multiphysi-
cal field stimuli and its dynamic re-configurability [36, 39,
127]. This capability lies in a unified physical mechanism
of ion motion, which transduces input signals from various
energy modalities (optical, electrical, temperature, chemi-
cal, pressure, etc.) into nonlinear conductance or resistance
variations, thereby mimicking the plasticity of biologi-
cal synapses [142, 143]. Crucially, ion migration exhibits
intrinsic multiphysical coupling: ionic motion responds
sensitively to multiple energy modalities, functioning as a
natural multimodal signal transducer [144]. All external sig-
nals ultimately modulate material conductivity by altering
ion migration rates or pathways, enabling cross-modal signal
conversion [145, 146]. The dynamic re-configurability of ion
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migration further enhances functionality, as external fields
(e.g., electric and optical) can realign ion migration paths
and spatial distributions in real time, endowing devices with
adaptive perception and learning capabilities [147, 148]. For
instance, the synergistic control of light intensity and electric
fields can regulate oxygen vacancy migration in oxide mate-
rials, enabling on-demand switching between optical and
electrical sensing modes [149, 150]. This re-configurability
mirrors ability of biological systems to prioritize sensory
inputs based on environmental context, laying the foundation
for context-aware neuromorphic computing.

2.4 Conductive Filament

The conductive filament mechanism is one of the core physi-
cal mechanisms for achieving resistance regulation in neu-
romorphic devices (Fig. 5a). It simulates synaptic weight
changes in biological systems through the dynamic forma-
tion and rupture of microscopic conductive paths, provid-
ing hardware foundations for brain-inspired computing and
memory-computing integrated systems [151, 152]. The for-
mation and rupture of conductive filaments are considered
to be caused by electric field-driven ion migration and redox
reactions [50]. Depending on the types of mobile ions, the
mechanisms can be classified into two categories: electro-
chemical metallization (ECM) and valence change mecha-
nism (VCM) [33].

In ECM memristors, the formation and rupture of con-
ductive filaments primarily rely on redox reactions of active
metals [36]. These memristors typically consist of active
metal electrodes (e.g., Ag, Cu), inert metal electrodes (e.g.,
Pt, Au), and dielectric layers (e.g., silicon dioxide (Si0O,),
tantalum oxide (TaO,)) [153]. When voltage is applied
across the electrodes, redox reactions occur in the active
metal, generating metal ions that migrate through the insulat-
ing layer under the electric field, ultimately forming conduc-
tive filaments and resulting in a low-resistance state [154].
Upon applying reverse voltage, metal atoms in the filaments
are oxidized into ions that return to the original electrode,
or the filaments are melted through Joule heating effects,
causing path interruption and restoring the device to a high-
resistance state [155]. In VCM memristors, the formation
and rupture of conductive filaments are mainly influenced
by electric fields and anion migration [156]. When voltage
is applied, the electric field drives anion migration (e.g.,
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oxygen ions) within the material. This migration induces
valence changes in cations, thereby forming or breaking
conductive filaments. The conductive filament mechanism
enables multi-level resistance state switching and achieves
lower power consumption in devices [157]. Architectures
based on the conductive filament mechanism achieve
ultralow-voltage operation through simple two-terminal
structures, with dynamically adjustable filaments naturally
suited for neuromorphic computing [158]. But stochastic
filament growth causes dispersed conductance distributions
and poor endurance [159].

The filament formation and rupture processes are affected
by multiple factors including material properties and various
external stimulus such as electrical, optical, pressure, tem-
perature and humidity signals [128, 160]. Portner et al. inte-
grated dual-terminal valence change memory devices into
photonic/plasmonic circuitry and demonstrated that switch-
ing characteristics of the memristor can be optically modu-
lated (Fig. 5b) [161]. The added fiber-optic input serves as
a third independent modulation channel for the device. The
operational mechanism of device relies on localized photo-
induced heating within the VCM mechanism. This local-
ized thermal excitation enhances oxygen vacancy generation
in the active region. Heating governs the lateral expansion
of conductive filaments composed of oxygen vacancies by
modulating the generation/recombination rate and diffusion
dynamics of conductive filaments. This optothermal syn-
ergy thereby achieves more linear and symmetric switching
characteristics under optical illumination. Han et al. dem-
onstrated a multimodal neuromorphic sensory system based
on Ag loaded porous silicon oxide (SiO,) based memristor,
which exhibits highly controllable potentiation/depression
characteristics modulated by relative humidity conditions
(Fig. 5¢) [162]. Physical mechanism analysis reveals that
high relative humidity environments induce accelerated ion
diffusion, thereby promoting conductive filament formation.
The engineered synaptic memristor successfully emulates
biological behaviors such as EPSC and PPF. As discussed
above, neuromorphic devices can detect electrical, optical
and humidity signals through conductive filament mecha-
nisms. Electrical signals directly induce ion migration or
metallic electrodeposition through applied electric fields to
form conductive filaments. Optical signals accelerate fila-
ment growth by generating photogenerated electron—hole
pairs or via photo-thermal effects that reduce ion migration
energy barriers. Meanwhile, humidity signals modulate ion
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mobility through water molecule permeation, thereby alter-
ing the formation threshold of conductive filaments.

In addition to the electrical, optical and humidity sig-
nals, pressure and temperature signals can also be sensed
by the conductive filament mechanism. Zhu et al. pre-
sented an artificial multimodal sensory system comprising
a multimodal fusion spiking neuron (MFSN) array operat-
ing in the spiking domain and a spiking neural network
(SNN) classifier (Fig. 5d) [163]. This system processes
temperature and pressure multimodal inputs while preserv-
ing unimodal information fidelity. Each MFSN unit inte-
grates a piezoresistive pressure sensor and a niobium oxide
(NbO,)-based threshold switching memristor exhibiting
temperature-dependent switching characteristics. When
subjected to varying pressure intensities, the MFSN unit
transduces mechanical stimuli into spikes with frequency-
encoded pressure information. Concurrently, temperature
fluctuations modulate threshold voltage of the memristor,
inducing amplitude- and frequency-variant spike outputs.
This enables decoupled extraction of pressure/temperature
information through distinct spike frequency and amplitude
signatures for multimodal tactile perception. Furthermore,
under concurrent pressure—temperature stimuli, the MFSN
unit encodes both modalities into unified spike trains, dem-
onstrating efficient data compression capabilities through
temporal multiplexing. Wang et al. designed and engineered
a multimodal MXene-zinc oxide (ZnO) memristor that syn-
ergistically merges optical signal sensing, relative humidity
signal sensing, and in-sensor preprocessing functionalities
to emulate the environment adaptive behaviors unique to
the human eye (Fig. 5e) [164]. The multifield-controlled
resistive switching in this MXene-ZnO memristor origi-
nates from the photon/proton-regulated formation of oxygen
vacancy filaments. Under high-humidity conditions, water
molecules adsorb onto the MXene-ZnO heterojunction
through dual hydrogen bonding. Hydrolysis of surface func-
tional groups elevates ionic conductivity, thereby enhancing
the humidity sensitivity of the MXene-ZnO system. When
a negative voltage is applied to the device, oxygen vacan-
cies form conductive filaments by migration. The impact
of humidity signals on the device mainly lies in the sup-
pression of resistive switching in memristors under high
humidity conditions. The absorption of UV photons with
energies exceeding the ZnO bandgap generates excitons at
the MXene-ZnO heterostructure interface, followed by their
dissociation. The liberated photoelectrons are captured by
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MXene, establishing an internal electric field. The influence
of optical signal on the device primarily arises from the
photogating effect, which induces the formation of oxygen
vacancy filaments and subsequently governs light-mediated
resistive switching. As discussed above, neuromorphic
devices can detect temperature and pressure signals through
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conductive filament mechanisms. Temperature signals
modulate the activation energy required for ion migration
through thermal excitation, thereby altering the formation
threshold of conductive filaments. Pressure signals regulate
filament connectivity via piezoelectric effects or geometric
deformation-induced lattice strain.
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Simultaneously, multimodal recognition can be achieved
through conductive filament mechanisms. Shi et al. emu-
lated sensory adaptation functionalities through comple-
mentary switching in sodium alginate-based memristors
embedded with silver nanowires, enabling multimodal
perception capabilities that process optical, temperature,
and pressure signals (Fig. 5f) [41]. Three types of adaptive
neuromorphic sensory systems are constructed to achieve
diverse perceptual modalities by integrating sensors with
complementary memristors (Fig. 5g). Once the sensor
detects environmental stimuli, the resistance of the sen-
sor decreases, causing the voltage drop across the sensor
to decrease, thereby increasing the voltage applied to the
memristor since the sensor and memristor are connected
in series. Then, the high-voltage excitation can switch the
memristor. Functioning as an adaptive signal processor,
the memristor dynamically modulates the electrical sig-
nals transduced by the sensor from environmental stimuli,
emulating biological synaptic plasticity through its tunable
conductance states.

There exist fundamental differences between ECM and
VCM conductive filament memristors in their sensing
mechanisms and multimodal signal processing capabilities.
These distinctions originate from their disparate physical
mechanisms and material properties. ECM relies on the elec-
trochemical deposition of metal ions, while VCM is based
on valence transitions of oxygen vacancies. For pressure
response, mechanical stress directly distorts the metallic
conductive filament path in ECM, causing abrupt resist-
ance changes, whereas oxygen vacancy channels in VCM
mechanisms are minimally affected by stress [165]. ECM’s
perception of optical signals is indirect. For optical signal
detection, the ECM mechanism requires an additional pho-
tosensitive layer to generate photogenerated carriers that
alter the interfacial electric field, thereby driving metal ion
migration and inducing resistance state changes [157]. The
VCM mechanism responds directly to optical signals. Light
signals excite oxygen vacancy ionization, increasing vacancy
concentration to directly modulate filament resistance [166].
For electrical signal perception, the ECM mechanism exhib-
its higher sensitivity to electrical signals, as filament forma-
tion/rupture is directly voltage-controlled [167]. Regarding
temperature sensing, temperature influences filament rup-
ture in ECM and migration speed of oxygen vacancies in
VCM [168, 169]. ECM demonstrates greater temperature
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sensitivity with significant changes near room temperature,
while VCM requires elevated temperature ranges for observ-
able effects.

The sensing variable of ECM conductive filaments is the
alteration of metal ion migration barriers, requiring exter-
nal algorithms to distinguish different stimuli [170]. Device
implementation of multimodal signal perception generally
requires auxiliary external circuits, such as photodetectors
and temperature sensors. In contrast, the sensing variable of
VCM conductive filaments is the change in oxygen vacancy
concentration/diffusion coefficient, leveraging sensitiv-
ity differences to various stimuli and multi-level weights
to directly decouple signals at the device level [171]. The
device is natively compatible with electrical, optical, and
thermal stimuli, enabling multimodal fusion within a single
device.

The core principle enabling neuromorphic devices to
achieve multimodal perception (optical, electrical, tem-
perature, humidity, pressure, etc.) through conductive fila-
ment mechanisms lies in their unified physical process (the
dynamic formation/rupture of conductive filaments). This
process provides highly sensitive responses to diverse physi-
cal signals while integrating nonlinearity, dynamic re-con-
figurability, and brain-like characteristics [39, 172]. Con-
ductive filament formation and rupture can be regulated by
distinct physical fields, allowing all signals to be transduced
into resistance changes via the same dynamic filamentary
process [160, 164]. This unification simplifies hardware
design for multimodal signal fusion and enables perception-
computation integration. Furthermore, filament formation
requires overcoming critical energy thresholds (e.g., volt-
age, light intensity, or temperature), exhibiting nonlinear
switching behavior that closely mimics the action potential
triggering in biological neurons [173]. The morphology of
conductive filaments (length, branching, and density) can be
dynamically reprogrammed in real time via external fields
(e.g., electric pulses and light patterns), enabling functional
switching and adaptive perception [174]. Through mate-
rial design and external field modulation, selective signal
response and synergistic enhancement can be achieved
[175]. This unique combination of universal signal trans-
duction, bio-inspired nonlinearity, and field-programmable
adaptability positions conductive filament mechanisms as an
ideal carrier for neuromorphic systems that emulate biologi-
cal multisensory integration.
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2.5 Ferroelectricity

The ferroelectricity mechanism is a resistive switching
mechanism based on the reversible control of spontaneous
polarization orientation in ferroelectric materials (Fig. 6a)
[176, 177]. Electrically regulating the polarization states of
ferroelectric domains mimics the synaptic weight modula-
tion in biological synapses. This approach offers several

Mechanism Electrical and optical input

advantages such as non-volatility, low power consumption,
and high endurance, making it one of the core solutions for
constructing high-performance neuromorphic devices [178,
179]. Ferroelectric materials (e.g., hafnium dioxide (HfO,),
lead zirconate titanate (PZT), bismuth ferrite (BiFeO5;))
exhibit spontaneous polarization whose direction can be
reversed by external electric fields [180, 181]. Changes
in polarization states directly influence the internal band

(@)  Ferroelectricity

LR
+ 1+

a-In,Se, graphene

HRS

= Light input

L/J\ /\
post
BE%.VI TEI BEI[ TE l

a-In,Se, a-In,Se,

Optical input

Electrical and optical input

(e)
Light

(d)

Optical stimulus

@: Electron
generation
@:Re-
combination

Voltage . 2 2 0 2 0 9 9 9
- " OFFQ Q0000000 N
-~ I S e

Pressure input

Multimodal input

(f)

(9)
-

Au Mo Transistor

Si0® S :

Si eP_m e -
mCueCu

PTFE® In w‘rENG.

Fig. 6 Ferroelectric synaptic devices processing multimodal stimuli. a Resistive switching mechanism via ferroelectric polarization. b In,Se;
ferroelectric synaptic device with electrical/optical inputs. Reproduced with permission [191]. Copyright 2024, Advanced Functional Materials.
¢ Polarization-dependent band diagram of device in b. d Photonic synapse structure with IGZO transistors. Reproduced with permission [192].
Copyright 2020, Advanced Materials. e Optically/electrically tunable channel conductance mechanism. Reproduced with permission [202]. Cop-
yright 2020, ACS Nano. f Neuromorphic pressure perception system. Reproduced with permission [197]. Copyright 2023, ACS Nano. g 3D
asymmetric MoS,/CulnP,S, synaptic heterostructure with multimodal stimuli. Reproduced with permission [198]. Copyright 2024, Advanced

Functional Materials

) SHANGHAI JIAO TONG UNIVERSITY PRESS

@ Springer



113 Page 16 of 54

Nano-Micro Lett. (2026) 18:113

structure, carrier distribution, and interface barriers of the
material, thereby modulating device resistance [182, 183].
Ferroelectric architectures enable wear-free polarization
switching for nanosecond operations and ultralow power
consumption [184]. Yet they suffer from retention decay due
to fatigue and interfacial defects, alongside unstable ferro-
electricity at nanoscale [185].

When polarization aligns with the electric field, the
induced interface barrier lowers with enhanced carrier injec-
tion, reducing resistance [186]. Conversely, when the elec-
tric field direction reverses, polarization inversion elevates
interface barriers, impedes carrier transport, and increases
resistance [187]. Ferroelectric memristors can also achieve
continuously tunable intermediate resistance states through
partial polarization reversal (metastable domain configura-
tions), emulating the gradual modulation of synaptic weights
[188, 189]. However, depolarization phenomena remain a
common issue in ferroelectric memory and may cause drift
and instability in resistance states within neuromorphic
devices [32, 190].

The ferroelectric polarization of neuromorphic devices is
influenced by various factors, including material properties
and external stimuli such as electrical, optical, and pressure
signals. Zeng et al. proposed a multimodal artificial synapse
featuring a crossbar structure composed of graphene/alpha-
indium selenide (a-In,Se;)/graphene layers, which can sense
optical and electrical signals (Fig. 6b) [191]. The device
integrates sensing, memory, and computing while mimick-
ing various synaptic characteristics. Ferroelectric polariza-
tion modulates the Fermi level of graphene, thereby manipu-
lating the asymmetric energy band alignment and inducing
asymmetric contact barrier modulation (Fig. 6¢). When the
polarization is oriented downward, charge accumulation at
the interface causes the Fermi level of the top graphene layer
to shift downward, slightly increasing the contact barrier
height and establishing a HRS. Conversely, upward polari-
zation shifts Fermi level of the graphene upward, reducing
the contact barrier height and resulting in a LRS. Kim et al.
fabricated a photonic synaptic device with optically tunable
synaptic plasticity by integrating oxide semiconductors and
ferroelectric materials (Fig. 6d) [192]. The photoresponse
characteristics of indium gallium zinc oxide (IGZO) were
investigated under optical stimulation. Optical excitation
enhances the conductivity of IGZO, while the channel con-
ductance gradually decays over time upon stimulus removal.
Under downward polarization, spatial separation between
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photogenerated electrons and ionized oxygen vacancies sup-
presses recombination processes, thereby prolonging the
relaxation time. Conversely, upward polarization induces
electron accumulation at the IGZO/ferroelectric layer inter-
face, accelerating conductance decay. This demonstrates that
ferroelectric polarization in the interfacial layer can be stra-
tegically employed to tailor the relaxation dynamics of oxide
semiconductor-based photonic synapses. Luo et al. report
a ferroelectric field-effect memtransistor for optoelectronic
synaptic devices, fabricated using a two-dimensional tung-
sten disulfide (WS,) semiconductor on a ferroelectric PZT
thin film (Fig. 6e) [153]. The WS, channel exhibits electri-
cally and optically controlled memristive switching, gov-
erned by the optically and electrically tunable ferroelectric
domain configurations in the underlying PZT layer. When
the PZT is in an upward polarization state, photoexcitation
in WS, generates intralayer excitons that decay into inter-
layer excitons, leading to positive charge accumulation at the
WS,/PZT interface. These photo-induced charges screen the
upward polarization and trigger polarization reversal.

As learned above, photoelectric neuromorphic devices
can sense optical and electrical signals through the ferro-
electricity mechanism. The principle of electrical signal
detection in ferroelectric devices primarily relies on the non-
volatile electric field control of ferroelectric polarization,
wherein domain switching (reversal of polarization vector P)
occurs when an external electric field exceeds the coercive
field strength [193]. The principle of optical signal detection
in ferroelectric devices is primarily the pyroelectric effect
and photo-induced depolarization. The pyroelectric effect
refers to light irradiation causing temperature changes in
the material, leading to alterations in spontaneous polariza-
tion strength [194]. Photo-induced depolarization constitutes
the main principle for optical signal detection in ferroelec-
tric devices. Photo-induced depolarization in ferroelectric
materials denotes the physical process where spontaneous
polarization strength decreases or even vanishes under illu-
mination, with its essence being that photon energy disrupts
the ordering of spontaneous polarization in ferroelectrics
[195]. Light excitation promotes valence band electrons to
the conduction band, generating electron—hole pairs. These
free carriers migrate under electric fields, screening ferro-
electric polarization charges (e.g., compensating surface-
bound charges), thereby weakening macroscopic polariza-
tion intensity [196]. Photon energy may also induce local
lattice expansion, triggering a transition from ferroelectric

https://doi.org/10.1007/s40820-025-01940-9



Nano-Micro Lett. (2026) 18:113

Page 17 0f 54 113

to paraelectric phase, causing polarization direction rotation
or disappearance [69]. Simultaneously, at the ferroelectric/
electrode interface, redistribution of photogenerated charges
at Schottky barriers alters the interfacial electric field, thus
further weakening or reversing macroscopic polarization
[195].

Simultaneously, pressure signal sensing and multimodal
recognition can be achieved through ferroelectricity mecha-
nism. Kim et al. proposed a tactile neuromorphic system for
sensing pressure signals, which utilizes a triboelectric sen-
sor based on PDMS and an ferroelectric synapse based on a
MoS,/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-
TrFE)) heterostructure (Fig. 6f) [197]. The triboelectric
sensor simulates the human tactile organs by converting
pressure signal into electrical signals in real-time. Gong
et al. presented a multimodal mechano-photonic synaptic
memory device based on an asymmetric ferroelectric het-
erostructure, capable of cooperative modulation through
external optical signals and pressure stimuli (Fig. 6g) [198].
The artificial synaptic architecture integrates an asymmetric
MoS,/copper indium thiophosphate (CulnP,Sy) ferroelectric
hetero-field-effect transistor with a TENG unit that supplies
triboelectric potentials for gating, programming, and plas-
ticity control. Under triboelectric potential modulation, the
device demonstrates exceptional mechanical displacement-
derived electrical properties. Simultaneously, optical inputs
trigger postsynaptic currents and update synaptic weights,
successfully achieving cooperative modulation of tribo-
electric potentials and mechanical plasticity. This synergy
enables the implementation of multimodal spatiotemporally
correlated dynamic logic operations. The principle of pres-
sure signal detection in ferroelectric devices is mainly the
piezoelectric effect. The piezoelectric effect of ferroelec-
tric materials serves as the physical foundation for pressure
sensing: when mechanical stress acts on the device, lattice
deformation causes rearrangement of electric dipoles, induc-
ing changes in surface-bound charges (positive piezoelectric
effect) [199].

The primary reason why neuromorphic devices achieve
multimodal perception (optical, electrical, pressure, etc.)
through ferroelectricity mechanisms lies in the multiphysi-
cal field coupling capability of ferroelectric materials and
the homogeneous modulation characteristics of polarization
dynamics [39, 127]. The spontaneous polarization orienta-
tion in ferroelectric materials can be directly or indirectly
regulated by multiple physical fields (e.g., light, electric
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fields, and pressure), forming a unified signal transduction
mechanism [200]. All external stimuli are converted into
electrical responses (resistance and capacitance) through
dynamic adjustments of polarization orientation or intensity,
eliminating the need for discrete sensors and enabling hard-
ware-level signal fusion [177, 201]. Furthermore, the ferroe-
lectric polarization mechanism exhibits brain-like character-
istics, such as non-volatile memory and nonlinear threshold
responses, along with high energy efficiency and environ-
mental robustness [183]. This intrinsic synergy between
multiphysical adaptability and bio-inspired functionality
positions ferroelectric materials as a transformative platform
for neuromorphic systems requiring multimodal sensing-
computing integration.

2.6 Phase Change and Phase Transition Mechanism

Phase-change mechanism (PCM) is the reversible change
of a system from amorphous state to crystalline state by
Joule heating (Fig. 7a) [203—205]. When a sufficiently large
electrical pulse is applied to generate the local heat exceeds
the crystallization temperature, a crystallization can occur at
the amorphous region. This is called as the “set” operation
[206, 207]. In contrast, when the temperature exceeds the
melting point of the substance, the crystalline region melts
into an amorphous state. This is called as the “reset” opera-
tion [206, 207]. Due to the different bonding modes, the
crystalline and amorphous phases exhibit distinct structures
in terms of structural long-range ordering and periodicity,
which results in unusual electrical and optical properties
[208]. The amorphous state is a HRS, and the crystalline
state is a LRS. The conventional phase change materials are
the higher chalcogenides, such as tellurides and selenides
[209, 210]. Tellurides and selenides are prone to transition
between the amorphous and crystalline phases because of
their low melting and crystallization temperature [211, 212].
The most widely studied of the tellurides and selenides are
germanium-antimony-tellurium alloys, such as germanium-
antimony-tellurium (Ge,Sb,Tes, commonly abbreviated
as GST) [210, 213]. Phase-change architectures provide
non-volatile memory with high cycling endurance and
large resistive windows [214]. However, they require high
operational energy and face speed limitations from thermal
diffusion, while repeated phase changes accumulate grain
boundary defects [215].
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The phase-change mechanism primarily involves
applying a sufficiently large electrical pulse to generate
localized heat exceeding the crystallization temperature,
inducing crystallization in the amorphous region, hence
commonly used for sensing electrical signals (Fig. 7b, c).
Using the difference in the resistance between amorphous
and crystalline state, a series of synaptic functions can

be mimicked with PCM. The Joule heating that induces
the phase transition generally comes from two different
sources. One is that heating is performed directly inside
the phase change material [216-220]. Boybat et al. real-
ized a synaptic device based on GST phase-change mate-
rial, which consists of a layer of phase change material and
two metal electrodes (Fig. 7b) [218]. When a current pulse
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of sufficient intensity is applied to phase change mate-
rial, the phase change material partially melts owing to
Joule heating, causing the crystallization of part of the
amorphous area. Continuous conductivity levels can be
achieved by controlling the amplitude, duration, and quan-
tity of enhancement pulses to control the degree of crystal-
lization. Based on this, this synaptic device can perform
various synaptic functions, such as spike-timing-depend-
ent plasticity (STDP) and long-term potentiation (LTP).
Another source of Joule is that the phase change material
is connected to the heating element, allowing heating to
occur in the area near the heater. Sung et al. fabricated a
threshold switch-phase-change memory consists of an Ag-
doped SiO, threshold switch and GST-based phase-change
memory (Fig. 7¢) [221]. Under the action of electric field,
a volatile conductive filament grows in the Ag-doped SiO,
threshold switch layer and forms contact with the GST/
Si0, interface. The phase change of the top GST film is
induced by Joule heating of conductive filament because
of the small contact area of the conductive wire. Compare
to heating inside the phase change material, the devices
used a conductive filament as a heater, which can obtain
low-power phase transition, excellent endurance and
attained large resistance ratio. GST-based devices exploit
the phase-change mechanism to achieve multimodal sens-
ing by modulating phase transition temperatures or gen-
erating heat for indirect detection of optical and chemical
signals [222, 223]. When GST thin films absorb photons
of sufficient energy, photo-thermal heating elevates local
temperatures above the melting point and subsequent rapid
quenching transforms the crystalline phase into a high-
resistance amorphous state [206]. Furthermore, UV irra-
diation reduces phase transition temperatures and alters
phase-change kinetics, enabling distinct optical signal
detection pathways [224]. For chemical sensing, adsorp-
tion of specific gases (e.g., NH;, hydrogen sulfide (H,S))
on GST surfaces modifies crystallization kinetics through
surface dipole formation or charge transfer, thereby low-
ering or raising crystallization threshold temperatures to
induce or inhibit phase transitions [225].

Apart from the conventional phase change transforming
between amorphous and crystalline phases, there exists a
unique structural phase transition mechanism. This mecha-
nism enables a system to transition from one steady phase
to another under various external stimulations, such as
electric field, ion migration, pressure, and temperature,
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ultimately leading to a change in conductance [206, 226,
227]. The conventional phase transition materials are
the transition metal dichalcogenides (TMDs) [228, 229].
TMDs generally possess several different stable phases,
including 2H, 1T, 1T’, Td and 3R phases [230]. Usually,
TMD materials exhibit structural phase transitions between
the distorted octahedral structure (1T or 1T’ phase) and the
trigonal prismatic structure (2H phase) [227, 231, 232].
Memristors based on phase transition mechanism have
been widely used as artificial synaptic devices, which have
advantages in scalability, durability, reliability and multi-
level programming resistance [233, 234]. Compared with
the amorphous to crystalline transitions in PCM, memris-
tors based on phase transition mechanisms have high capa-
bilities for realizing reliable and fast switching multi-level
states [227, 231].

The phase transition mechanism can be realized under
various external stimulations, such as electrical, optical,
pressure and temperature signals [138, 231, 235, 236]. Li
et al. fabricated a based-vanadium dioxide (VO,) integrated
neuromorphic sensor array (Fig. 7d) to sense optical sig-
nals [224]. Optically induced oxygen vacancies can cause
electronic phase transitions. The tuning of phase transition
can be achieved by controlling the intensity and persistence
of ultraviolet illumination. Based on the reversible regu-
lation of VO, films by ultraviolet illumination, the neuro-
morphic ultraviolet sensor can simultaneously achieve
sensing, memory, and processing functions. In addition to
the above stimulation, there are also some factors that can
cause structural phase transitions, such as material thick-
ness, temperature, etc. Yu et al. designed a graphene-assisted
non-volatile phase transition strategy for artificial optoelec-
tronic synapses based on VO, nanoparticle/graphene het-
erojunction (Fig. 7e) [237]. VO, with photo-induced phase
transition properties forms a heterojunction with graphene.
Graphene helps to achieve non-volatile phase transitions
of VO, and amplifies the signals generated by the phase
transition. By applying external optical or electrical stim-
uli to modulate the gate voltage on graphene Fermi level
and regulate electron flow between VO, and graphene, the
electronic concentration in VO, is altered, thereby inducing
phase transitions. This enables reversible and stable synaptic
conductance modulation. Yuan et al. realized a memristor
based on epitaxial VO, and a neuromorphic sensing system
composed of calibratable artificial sensory neurons based
on epitaxial VO, (Fig. 7f) [238]. Artificial sensory neurons
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can be utilized to construct various spiking sensory neurons
capable of sensing physical signals and converting them into
spikes. By adjusting the resistance range of diverse sensors
to desired states through scaling resistors, these neurons can
adapt to multiple sensor types. Based on this, a multimodal
perceptual system capable of encoding pressure, curva-
ture, temperature, and optical signals into electrical spikes
is demonstrated by integrating artificial sensory neurons
with pressure, curvature, optical, and temperature sensors
(Fig. 7g). The core of achieving simultaneous multi-stimulus
perception and fusion in phase transition-based multimodal
sensing devices lies in mapping diverse physical quantities
(electrical, optical, pressure, temperature) onto a unified
phase transition order parameter (e.g., V-V dimer distance
in VO,) [239]. Through cooperative regulation of the phase
transition free-energy barrier by external fields, the device’s
conductance becomes a continuous multivariable function.
This response intrinsically originates from material-specific
nonlinear coupling, enabling physical information fusion
without external conversion [240]. Concurrently, significant
temporal separation exists in response dynamics across stim-
uli (optical: fs-scale, electrical: ns-scale, pressure/tempera-
ture: ps-ms scale). This allows signal decoupling and feature
extraction at the device/circuit level, ultimately achieving
integrated perception-fusion-decision functionality.

The phase-change mechanism primarily exploits reversi-
ble crystalline—amorphous transitions, predominantly driven
by Joule heating. Here, resistance switching originates from
bandgap changes induced by atomic rearrangement, thereby
enabling non-volatile electrical signal storage [214]. How-
ever, its stimulus detection capabilities are generally con-
fined to thermal, optical, and electrical inputs. Memristors
based on phase change require external algorithms to distin-
guish different stimuli and depend on auxiliary circuitry to
convert multimodal signals into electrical signals [164]. In
contrast, the phase transition mechanism involves electronic/
structural phase transformations activated by multiple phys-
ical fields: electric fields modify orbital occupancy while
photons excite lattice vibrations [241, 242]. This enables sin-
gle devices to natively respond to optical, thermal, pressure,
and electrical signals, facilitating volatile conductivity mod-
ulation that intrinsically achieves multimodal fusion without
supporting circuits. Crucially, identical lattice parameters
in phase transition memristors exhibit distinct sensitivities
to different stimuli, enabling direct signal decoupling at the
device level [243].

© The authors

Phase-change materials possess multi-stimuli responsive-
ness and state uniformity [244-246]. The phase transition
thresholds of these materials (e.g., temperature, electric
field intensity, and light intensity) can be modulated through
material design, enabling diverse input signals (optical,
electrical, and temperature) to trigger phase transitions by
supplying energy [207, 246]. Additionally, the threshold
characteristics of phase transitions and dynamic cumulative
effects (e.g., repeated weak signals inducing phase transi-
tions) closely align with the information processing mech-
anisms of biological neurons [246, 247]. By engineering
materials (e.g., heterostructures and doping), phase transi-
tion thresholds can be tailored to adapt to multiple signals,
achieving multi-parameter collaborative regulation [248].

The primary reason why neuromorphic devices enable
multimodal perception via phase transition mechanisms
lies in the inherent capability of phase-change materials.
This capability can unify the energy from diverse physical
signals (light, electricity, and temperature) into nonlinear
transitions of internal phase states, which are directly output
through phase-dependent electrical properties (e.g., resist-
ance) [40, 249]. Multimodal perception via phase transition
mechanisms is achieved through the pronounced resistance
and optical property changes induced by reversible crys-
talline—amorphous phase transitions, enabling the detec-
tion and discrimination of distinct signal types [250, 251].
Moreover, these devices leverage inherent differences in the
energy thresholds, temporal scales, or pulse shapes required
to trigger phase transitions across different modalities for
signal differentiation [252, 253]. This “multi-input, single-
state, single-output” mechanism not only overcomes the
limitations of traditional sensors’ discrete designs but also
physically emulates the multisensory information integra-
tion ability of biological neurons [254, 255]. It thereby pro-
vides a core material foundation for constructing efficient,
compact, brain-inspired sensing systems.

2.7 Electrochemical Doping

The electrochemical doping mechanism is a core technol-
ogy that enables reversible switching of resistance states by
dynamically modulating carrier concentration through ion
insertion/extraction or redox reactions in materials (Fig. 8a)
[256, 257]. This mechanism can mimic the long-term plas-
ticity of biological synapses, providing a physical foundation
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for constructing low-power, high-density neuromorphic
computing systems. In neuromorphic devices, the electro-
chemical doping mechanism is widely employed to achieve
resistance switching [258]. Its core lies in charge transfer and
chemical potential shifts, inherently dependent on interfacial
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reactions between electrodes and electrolytes. Under applied
voltage or current, these reactions trigger doping/de-dop-
ing processes to modulate the resistive states of the device
[259, 260]. Active materials for this mechanism primarily
include conductive polymers (poly(3,4-ethylenedioxythio
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Table 1 Ionic migration versus electrochemical doping

Parameter Ionic migration

Electrochemical doping

Primary Mechanism
Reversibility

Carrier Change
Material Requirement Ionic conductivity

Representative System

Field-driven ion drift
Partially reversible

Conductive filament morphology

Ag/GeS,/Pt (Ag* migration)

Redox-driven ion intercalation
Highly reversible

Bulk carrier density

Redox activity
Li/LiPON/WOj; (Li* doping)

phene):poly(styrene sulfonate) (PEDOT: PSS)), transition
metal oxides (tungsten trioxide (WO;), M0O;), and two-
dimensional materials (MXene) [128, 261, 262]. Both ion
migration and electrochemical doping mechanisms utilize
ionic kinetics. Table 1 compares their distinctions across
five key aspects, thus enabling direct comparison of their
operating principles.

The electrochemical doping mechanism relies on electric
field-driven ion migration within active materials and the
resulting charge compensation effects [263]. When voltage is
applied, ions in the electrolyte (e.g., H*, Li*, and C1") migrate
to the active layer (e.g., conductive polymers and transition
metal oxides) under the electric field, inducing oxidation or
reduction reactions that modify doping level of the material
[264]. Under forward bias, ion injection increases carrier
concentration, lowering resistance; under reverse bias, ion
extraction reduces carrier concentration, increasing resist-
ance [262]. Architectures based on the electrochemical
doping mechanism offer a large conductance modulation
window and are fully compatible with flexible substrates
[265]. Nevertheless, ion relaxation delays responses, and
electrolyte leakage risks impair long-term reliability [71].

The electrochemical doping mechanism of neuromorphic
devices can be driven by electrical signals. Electrical signals
directly drive the migration of ions at the electrolyte/mate-
rial interface, thereby regulating ion intercalation/deinter-
calation. Lee et al. fabricated a polymer-based memristor,
which is modulated by the electrochemical doping mecha-
nism driven by an electric field (Fig. 8b) [266]. A strategy
was proposed to enhance electrochemical doping and de-
doping by utilizing different coulombic ions. The research
results indicate that doping ions in the channel layer affect
inter-ion interactions, and influencing the non-volatile effect
by improving the doping performance of the synaptic device.
When a pulse is applied to an electrolyte, anions form an
EDL at the electrolyte/channel interface. However, follow-
ing the pulse application, the accumulated anions rapidly
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dissipate from polymer, leading to a swift back-diffusion into
the electrolyte. This indicates that EDL depolarization has
occurred, resulting in the restoration of the electrochemical
potential at the solid-liquid interface to its initial state. Sung
et al. fabricated electrolyte-gated organic synaptic transistor
structures through copolymerization between two different
polymers, which induced superior non-volatility through
more effective electrochemical doping via ions (Fig. 8c)
[267]. By utilizing anion movement generated by electri-
cal pulses to drive EPSC that mimic neural transmission,
artificial synapses have achieved.

In addition to electrical signals, optical and humid-
ity signals can also regulate the electrochemical doping
mechanism of neuromorphic devices. Chen et al. reported
an organic optoelectronic synapse realized through photon-
modulated electrochemical doping in an electrochemical
transistor (Fig. 8d) [268]. In the synaptic device, optical
signal can facilitate the insertion of ions into a photoactive
layer composed of a donor—acceptor heterojunction inter-
face. This approach enables high-density multi-level con-
ductance modulation and emulation of synaptic activities
inherent to biological systems through ion flux manipula-
tion. The light absorption in donor—acceptor heterojunctions
enables photogeneration of charge carriers, which perturbs
electrochemical doping while facilitating anion migration
from the electrolyte for charge compensation in the channel.
Consequently, the elevated carrier concentration generated
via photon-modulated doping manifests as increased drain
current. Upon light cessation, residual anions surround-
ing the doped polymer matrix prevent immediate charge
recombination, inducing gradual current decay that con-
tributes to non-volatile memory retention. By employing a
single-component organic mixed ionic-electronic conductor
as the channel in OECTs, wang et al. developed an ioni-
cally gated optoelectrochemical synapse (Fig. 8e) [269]. The
device demonstrates dual responsiveness to optical and elec-
trical stimuli delivered via aqueous electrolytes, enabling
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neuromorphic modulation through synergistic ionic-elec-
tronic interactions. Under illumination, the channel becomes
more negatively polarized, which electrostatically attracts
additional cations. Under combined optical-electrical bias-
ing, a film mass increases attributable to cation intercala-
tion—a photonic control mechanism analogous to the effect
of elevated voltage application, consequently inducing an
enhanced doping state. Subsequent to optical signal removal,
electronic recombination processes may occur while excess
cations gradually egress from the polymer matrix, result-
ing in a gradual nonlinear decay of channel current that
manifests in charge retention characteristics. Song et al.
presented ZnO-based artificial synapses with peptide insu-
lators for the electrical emulation of biological synapses,
which can be affected by humidity signal (Fig. 8f) [270].
The dielectric constant of peptide membranes exhibits
humidity-dependent enhancement due to the formation of
protonic EDL. Under low-humidity conditions, proton trans-
port remains inhibited at small gate voltages, resulting in
ineffective electrostatic gating. Conversely, elevated humid-
ity triggers significant proton mobility within the hydrated
film, where proton-dominated gating mechanisms prevail.
This ionic dynamic leads to excitatory EPSC with retarded
decay kinetics, demonstrating non-volatile memory behav-
ior through proton redistribution hysteresis. As discussed
above, neuromorphic devices can detect optical and humid-
ity signals through electrochemical doping mechanisms. For
optical signals, photogenerated carriers directly drive ion
migration, facilitating electrochemical doping. For humidity
signals, humidity adsorption alters the ion concentration on
the material surface.

Simultaneously, multimodal recognition can be achieved
through electrochemical doping mechanism. Liu et al. engi-
neered a polymer-based electrolyte-gated vertical organic
field-effect transistor architecture, demonstrating neuro-
morphic artificial synapses with multisensory integration
capabilities (Fig. 8g) [271]. This device platform enables
biomimetic emulation of human cross-modal perception,
particularly gustatory-auditory sensory fusion, through
ion-modulated adaptive signal transduction and stimuli-
responsive synaptic plasticity (Fig. 8h). Inspired by human
taste perception, an artificial tongue was designed to detect
acidity. An ionic liquid serves as a thin saliva-like layer on
the tongue. Various acidity levels were achieved by inject-
ing acetic acid into the ionic liquid. Dropping different ace-
tic acid concentrations onto the taste sensor array caused
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distinct current changes at specific points, generating taste
mapping. This demonstrates simultaneous detection capabil-
ity of the fabricated tongue for varying acidity levels.

Electrochemical doping offers several unique advantages,
as it enables direct coupling with multiple energy forms
through ion migration [111]. Moreover, electrochemical
doping exhibits self-adaptive reversibility, where the doping
process can be restored to its initial state via reverse elec-
tric fields or ion diffusion [1]. Additionally, it demonstrates
intrinsic sensitivity to chemical environmental changes (e.g.,
gases, humidity, pH) through direct signal conversion via
ion—molecule interactions [272]. The primary reason why
neuromorphic devices achieve multimodal sensing through
electrochemical doping mechanisms lies in the deep integra-
tion of two key functionalities. This integration combines
the intrinsic unified conversion of diverse physical/chemical
signals with the biologically level dynamic response enabled
by ion migration-based dynamic regulation [94, 273]. This
mechanism not only demonstrates universality in energy
conversion forms but also exhibits high compatibility with
the ion channel behaviors of biological neurons in terms of
bionic characteristics.

2.8 Synaptic Mechanisms for Multimodal Integration

In neuromorphic systems designed for multimodal integra-
tion, the efficacy of synaptic mechanisms hinges on their
ability to reconcile diverse signal characteristics while main-
taining biological plausibility [274, 275]. Multimodal inte-
gration necessitates synaptic platforms with broad dynamic
ranges to accommodate amplitude disparities across sensory
modalities, linear tunability for precise cross-modal weight
allocation, temporal consistency to synchronize heteroge-
neous response timescales (milliseconds to minutes), and
ultralow power consumption compatible with edge comput-
ing constraints [276-280]. Environmental robustness against
temperature and humidity fluctuations that disrupt multi-
modal signals is a critical requirement for practical deploy-
ment [281].

The suitability of various synaptic mechanisms differs
significantly across input signals and multimodal integra-
tion scenarios [177, 282, 283]. Ferroelectricity mechanism,
based on polarization reversal in ferroelectric materials,
offer advantages such as offer non-volatile memory and
low power consumption, yet their slower switching speeds
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and nonlinear weight updates may compromise precise
multimodal signal modulation [284, 285]. Charge trap-
ping mechanism modulates conductivity through reversible
charge trapping/de-trapping, but their limited charge reten-
tion and narrow dynamic range render them suboptimal for
multimodal applications requiring long-term stability [286].
Phase change materials exhibit high on/off ratios and stabil-
ity through crystalline—amorphous transitions, but their high
energy consumption and sluggish phase transition kinetics
hinder flexibility in processing rapidly varying signals [287].
The ion migration mechanism alters material conductivity
through ionic movement, featuring rapid response and a
wide dynamic range [137]. However, its long-term reliability
requires verification due to potential instability issues asso-
ciated with ion migration processes [142]. Electrochemical
doping mechanisms employ electrochemical reactions to
adjust material doping levels, demonstrating superior revers-
ibility and dynamic modulation capabilities that render them
suitable for emulating the continuous plasticity of biological
synapses [268]. However, their implementation may neces-
sitate complex electrolyte environments and pose integration
challenges due to system complexity [262]. Conductive fila-
ment mechanism achieves a high on/off ratio and fast switch-
ing through filament formation/rupture, but their discrete
switching behavior and poor linearity limit precise analog-
like synaptic weight tuning [127]. Each mechanism presents
distinct trade-offs in balancing speed, linearity, stability, and
integration feasibility for multimodal neuromorphic systems.

In summary, electrochemical doping and ion migration
mechanisms demonstrate superior suitability for multimodal
signal fusion. Ion migration exhibits high linearity and continu-
ous tunability, enabling smooth weight updates through electric
field-regulated ion redistribution, which proves ideal for fine-
grained multimodal integration. Its rapid response and ultralow
power consumption meet the real-time demands of multimodal
systems. Crucially, ion migration achieves direct cross-modal
coupling by translating physical signals (e.g., pressure and
temperature) into ionic mobility variations without requiring
external conversion modules. For instance, flexible ionogel
sensors transduce mechanical strain into ion transport path
modulation, enabling concurrent pressure—temperature percep-
tion. Electrochemical doping offers an ultrahigh dynamic range,
accommodating multimodal amplitude disparities through
ion intercalation/deintercalation-driven doping adjustments.
WO;-based electrochemical transistors, for example, achieve
linear responses across optical and mechanical stimuli. This
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mechanism inherently couples chemical, optical, electrical, and
pressure signals, with heightened sensitivity to environmental
variations (e.g., gas concentration and humidity), making it par-
ticularly suitable for complex multimodal integration. The syner-
gistic combination of ion migration and electrochemical doping
in heterostructures allows rapid fine-tuning via ion migration
while leveraging electrochemical doping for large-span sig-
nal processing. Owing to their exceptional linearity, dynamic
range, and direct signal transduction capabilities, these mecha-
nisms emerge as optimal choices for multimodal integration.
Ton migration excels in scenarios requiring rapid, continuous
modulation (e.g., tactile-visual synchronization), whereas elec-
trochemical doping dominates in cross-physical-field coupling
(e.g., chemical-thermal—optical fusion). Ferroelectricity and
charge trapping mechanisms may serve supplementary roles to
enhance system robustness. Future advancements in heterostruc-
ture design and interfacial engineering are expected to solidify
their dominance in multimodal neuromorphic systems.

3 Multimodal Signal Data Fusion

3.1 Single-Modality and Memristor-Based Multimodal
Systems

Neuromorphic systems relying on single-modality signal
processing for decision-making often face inherent uncer-
tainties due to signal stochasticity, incompleteness, and noise
amplification during information extraction [288, 289]. The
absence of cross-modal validation mechanisms further limits
their perceptual robustness. A direct solution to the prob-
lems of insufficient environmental adaptability and missing
information redundancy caused by single-signal processing
capabilities is the implementation of multimodal sensory
fusion [290]. Multimodal neuromorphic systems enable
multidimensional data integration, simultaneously pro-
cessing visual, tactile, auditory, and other signals through
complementary information to mitigate the limitations of
individual modalities [274]. These systems exhibit enhanced
environmental adaptability, maintaining stable perception
in complex scenarios (e.g., low-light or high-noise environ-
ments) by leveraging redundant data [291]. Moreover, their
superior robustness and fault tolerance ensure operational
continuity through alternative sensory inputs when specific
modalities become compromised [292].

Multimodal sensory fusion directly addresses the limi-
tations of single-signal processing systems by enabling
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multidimensional data integration. Traditional single-
modality architectures, limited to processing isolated signal
types (e.g., pure visual or thermal data), rely on post-hoc
software fusion of multisource inputs, leading to information
loss and computational latency [293]. In contrast, multisen-
sory neuromorphic systems achieve hardware-level integra-
tion of visual, tactile, auditory, and other sensory streams
through complementary information processing, mitigating
individual modal constraints [274, 294]. Single-modality
systems require repeated activation of redundant neurons
to process complex scenarios and suffer from high interface
latency in central processing units [295]. In contrast, multi-
modal neuromorphic systems employ event-driven computa-
tion and distributed processing, activating memristors only
when multi-sensors are synergistically triggered, thereby
significantly reducing static power consumption [296]. In
dynamic environments (e.g., abrupt illumination changes),
single-modality systems exhibit severe performance degra-
dation (e.g., huge recognition accuracy drop in pure vision
systems), while multimodal neuromorphic frameworks
enhance robustness through cross-modal suppression mecha-
nisms [297, 298]. Additionally, the non-volatile characteris-
tics of memristors enable real-time synaptic weight updates,
facilitating adaptive calibration to environmental variations
(e.g., temperature drift) and improving overall adaptabil-
ity [299]. This architecture thus provides a neuromorphic-
specific solution for real-time, energy-constrained applica-
tions by merging sensory diversity with hardware-efficient
computation.

Compared to traditional single-modality sensing, directly
integrating unimodal sensors with memristors to form sens-
ing-memory-computing integrated units offers significant
advantages, which stem from the unique physical properties
and in-memory computing capabilities of memristor. Tradi-
tional single-modality sensing systems, such as vision only
or tactile only configurations, exhibit limitations in complex
dynamic environments. In contrast, memristor-integrated
systems leverage non-volatile properties to achieve envi-
ronmental self-adaptation. For instance, photomemristors
in visual systems implement dynamic threshold modulation
to maintain stable performance across varying illumination
conditions [300]. Traditional unimodal sensing systems
typically require analog-to-digital conversion during signal
processing, a procedure that increases system complexity
and risks information loss [20]. In contrast, memristors
inherently process continuous signals, as demonstrated by
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the continuous pressure-to-resistance mapping in tactile sen-
sors [40]. This eliminates signal conversion requirements
while enhancing system processing efficiency and accuracy.
Whereas traditional systems rely on backend algorithms for
data processing and learning, incurring high power con-
sumption and latency [295]. Memristor crossbars enable
edge online learning, as demonstrated by Tsinghua Univer-
sity’s monolithic integrated memristor chip that supports
on-chip learning with merely 3% energy consumption of
conventional application-specific integrated circuits (ASICs)
[301]. This hardware-level learning capability concurrently
facilitates dynamic parameter tuning and optimization dur-
ing real-time data processing. Furthermore, traditional
single-modality sensing systems require discrete sensor,
analog-to-digital converter (ADC), and processor chips with
interconnects, resulting in large footprints and system com-
plexity. In contrast, memristors adopt crossbar architectures
that enable ultrahigh-density integration [302].

The fundamental rationale for integrating single-modality
sensing with memristors rather than other two-terminal devices
lies in the memristor’s unique capacity for sensing-memory-
processing convergence. This eliminates data shuttling, side-
steps analog-to-digital conversion and delivers edge intelligence
[303]. Whereas alternative two-terminal components deliver
only singular functionalities. Memristors provide intrinsic non-
volatility that preserves resistive states without external power,
enabling environmental self-adaptation in unimodal systems
[304]. In contrast, traditional two-terminal devices such as resis-
tors and diodes lack this persistent state retention capability,
making them inadequate for complex environmental variations.
Menmristors support continuous resistance modulation through
multi-state switching under electrical stimuli, enabling direct
processing of analog signals to enhance efficiency and accuracy
[305]. In comparison, traditional resistors exhibit fixed resist-
ance values, diodes enable only unidirectional current flow,
and while transistors provide switching capabilities, they lack
continuous modulation capacities. These inherent limitations
collectively prevent conventional two-terminal devices from
meeting the analog signal processing requirements of single-
modality systems. In terms of energy efficiency, memristors
exhibit exceptional energy efficiency performance, with power
consumption significantly lower than conventional transistors
[152]. This advantage becomes particularly pronounced in neu-
ral network processing tasks, where energy efficiency improve-
ments can span multiple orders of magnitude. Meanwhile,
traditional two-terminal devices like transistors face scaling
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mismatch challenges due to their charge-based mechanisms and
require substantial programming currents, leading to increased
overall power consumption [306]. Furthermore, memristors
possess hardware-level learning capabilities by emulating syn-
aptic weights through conductance values, enabling real-time
updates of electrical properties [307]. This allows single-modal-
ity systems to achieve online learning and dynamic parameter
adjustment via memristor arrays. In contrast, traditional two-
terminal devices lack inherent learning mechanisms and must
rely on backend algorithms for such functionalities, which not
only increases system complexity but also constrains real-time
performance [308]. Compared to memristors, other two-ter-
minal devices exhibit critical limitations. Resistors have fixed
resistance values incapable of environmental adaptive calibra-
tion. Capacitors suffer from charge leakage requiring refresh
circuits that increase power consumption and system complex-
ity. Diodes only possess binary switching characteristics unable
to represent continuous sensor signals. Traditional resistive ran-
dom access memories (RRAMs) are limited to binary storage,
thereby losing analog computing capabilities.

3.2 Single-Memristor Multimodal Sensing System

Conventional systems, which rely on multiple discrete sen-
sors and dedicated processing units, suffer from high hard-
ware complexity, bulky form factors, and significant power
consumption [295, 309]. The signal conversion between
sensors necessitates additional ADCs and interface circuits,
leading to substantial energy loss [295]. Multimodal sig-
nals require post-processing fusion via central processing
units (CPUs)/graphics processing units (GPUs)), introducing
millisecond-level latency that struggles to meet real-time
requirements [295]. Furthermore, the serialized processing
paradigm of discrete architectures results in computational
inefficiency and limited parallelism. Physical separation
of multiple sensors also risks signal interference, while
environmental fluctuations (e.g., temperature and humid-
ity) induce sensor drift discrepancies, demanding complex
calibration algorithms [310]. To address these challenges,
a single-memristor multimodal sensing system offers an
effective solution. Single-memristor multimodal systems
eliminate the need for independent sensors by directly lev-
eraging the multi-physical response characteristics of mem-
ristive materials. The primary advantage lies in their ultra-
simplified hardware architecture and exceptional integration
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density [311]. Through heterogeneous structural design,
these systems demonstrate ultra-wide dynamic range capa-
bilities, enabling simultaneous detection of diverse signals
with varying amplitude ranges [312]. Reconfigurable modal
weights can be implemented via mechanism design, such as
electric field or optical modulation of ionic migration path-
ways, dynamically prioritizing dominant sensing modali-
ties [313]. By directly modulating memristive conductance
states through input signals, the system achieves low-latency
operation and ultralow power consumption [314].

A common method for implementing multimodal sens-
ing in single-memristor sensing systems involves design-
ing functional layer architectures. Mechanoluminescence
(ML) allows for the quantitative conversion of mechanical
stimuli into light emission in a real-time and in situ man-
ner. This force-to-light conversion enables the construction
of visual-tactile sensors without the need for electrical or
optical power sources. Guo et al. developed an artificial
visual-tactile synapse for in-sensor computing enabled by
the consisting of photo-stimulated luminescence (PSL)
material and mechanoluminescent layer (Fig. 9a) [315]. The
artificial synapse consists of three layers. The first layer is
composed of PSL phosphor with photon-capturing capa-
bility, followed by a layer of ML material that emits light
driven by mechanical force. The bottom layer, known as the
mechanical microstructure layer, enhances the mechanical
sensitivity of the device. The ML layer and microstructure
collaboratively convert mechanical signals into optical out-
puts to modulate synaptic plasticity. Mechanical signals are
directly transduced into light emission via ML materials,
which optically stimulate the adjacent PSL layer without
requiring pre/post-illumination. The PSL layer operates as
both photon reservoir and in-memory computing unit, lever-
aging its photon-trapping capacity and electron de-trapping
processes under near-infrared (NIR) irradiation. Mechanical
forces (presynaptic input 1) and visible light (presynaptic
input 2) serve as analog stimuli, while PSL optical signals
function as postsynaptic responses. He et al. proposed an
artificial visual-tactile perception array consisting of an inte-
grated mechanoluminescent layer and a photoelectronic syn-
apse network (Fig. 9b) [316]. The compact device integrates
an IGZO/methylammonium lead iodide (MAPbI;) hetero-
structure and a ML layer. The IGZO/MAPDbI, heterostructure
serves as the underlying layer for visual sensing and artifi-
cial synapses, while the ML layer transduces mechanical
stimuli into light for tactile sensing and synaptic plasticity
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modulation. This bimodal modulation of visual-tactile stim-
uli enables enhanced processing, learning, recognition, and
memorization of stimulus information. Dong et al. fabricated
a bionic photo-olfactory multisensory artificial synapse
device using a two-dimensional/one-dimensional (2D/1D)
black phosphorus—carbon—carbon nanotube (BP-C/CNT)
heterostructured filter membrane as the functional active
layer (Fig. 9¢) [317]. By simultaneously integrating optical
modulation, gas sensing, and synaptic functionalities within
a single device, this system emulates the characteristics and
operational capabilities of biological multisensory neurons.
The polyethylene terephthalate (PET)/ITO top electrode cor-
responds to the presynaptic membrane, while the bottom
ITO/PET layer functions as the postsynaptic membrane,
with the BP-C/CNT functional layer serving as the synaptic
transmission medium. The PET/ITO electrode acts as the
presynaptic membrane to receive stimulus signals, where
electrons are injected from the PET/ITO side, simulating
neurotransmitter release. These electrons traverse the BP-C/
CNT layer before reaching the graphite bottom electrode,
generating a synapse-mimetic current interpreted as postsyn-
aptic current. Gas molecules readily adsorb onto the BP-C/
CNT surface, undergoing dehydrogenation reactions with
oxygen anions at the material interface. This process releases
electrons, altering surface potential barriers and modulating
internal electron concentration. Under optical excitation in
gaseous environments, the photoelectric effect in BP-C/CNT
generates abundant photogenerated carriers. These carriers
are partially captured by surface traps, replenishing internal
charges and further modifying electron concentration. Gas
adsorption and photogenerated carriers synergistically mod-
ulate electronic states, emulating bio-neural co-regulatory
mechanisms.

Unlike the elaborately designed architectures of multi-
sensory neuromorphic devices mentioned above, certain
implementations achieve multimodal synergy through a sin-
gle material. Tan et al. introduce a bio-inspired multisensory
integrated cognitive nerve consisting of the an artificial vis-
ual-respiratory synapse and corresponding arrayed reading
circuits (Fig. 9d) [318]. In the designed visual-respiratory
synapse system, monolayer oxidized MXene nanosheets
enable bimodal sensing of optical and airflow signals. Visual
signals are emulated via photocurrent generation through
titanium dioxide (TiO,) crystals, while airflow stimuli
induce hydroxyl-oxygen vacancy interactions to mimic res-
piratory-arousal-modulated relaxation behaviors, analogous
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to biological ocular-nasal systems. Visual and respiratory
modalities are synergistically activated by externally con-
trolling light source intensity/duration to reconstruct natu-
ralistic visual scenes. This multisensory integration achieves
event-based synaptic signal readout in real-time through
output load circuitry. Wang et al. developed a stretchable
temperature-responsive multimodal neuromorphic electrical
skin that integrates temperature sensing, mechanical percep-
tion, and synaptic functionalities (Fig. 9¢) [319]. The device
employs a polyvinyl alcohol (PVA)/SiO, stacked structure
as the gate dielectric. The abundance of hydrogen bonds
in the PVA hydrogel constitutes the primary rationale for
its application in neuromorphic synaptic devices. Elevated
temperatures alter hydrogen-bond interactions within the
hydrogel, increasing intermolecular distances and thereby
enhancing proton hopping probability in PVA for synaptic
plasticity modulation. This architecture enables concurrent
pressure—temperature perception through PVA-mediated
mechanisms, achieving synergistic multimodal signal inte-
gration. Wen et al. proposed a indium-magnesium oxide
(InMgO) nanofibers (NFs) synaptic device with visual and
temperature perception (Fig. 9f) [320]. The InMgO material
is rich in oxygen vacancies. When light irradiates the InMgO
nanochannels of the device, the oxygen vacancies undergo
ionization to generate free electrons and VO** charge cent-
ers. The temperature sensing mechanism of InMgO origi-
nates from its thermally activated carrier characteristics and
the ionization activation energy that decreases with rising
temperature. The lower ionization activation energy facili-
tates the excitation of a higher density of photogenerated
carriers under the same light intensity. Based on this princi-
ple, the device achieves collaborative perception and integra-
tion of photo-thermal dual-modal signals through InMgO.
Lao et al. designed self-powered two-terminal optoelectronic
synapse based on a lead-free cesium silver bismuth bromide
(Cs,AgBiBr,)/P(VDF-TrFE)/pentacene heterostructure,
which shows bidirectional responses to optical signal and
humidity signal (Fig. 9g) [321]. Cs,AgBiBr, exhibits high
humidity selectivity, strong light absorption, and efficient
photoelectric conversion, rendering it sensitive to both
humidity and optical signals. This enables the modulation
synaptic performance of the device through the synergistic
integration of humidity and light pulses. Liu et al. reported
an optoelectronic synaptic device based on semiconductor
nanowires composed of p-type aluminum gallium nitride
(p-AlGaN)/n-type gallium nitride (n-GaN) heterostructures,
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Fig. 9 Internal multisensory perception integrated with memristors. a Visual-tactile synapse with mechanoluminescent/photo-stimulated lay-
ers. Reproduced with permission [315]. Copyright 2025, Advanced Materials. b Visual-tactile perception array combining mechanoluminescent
layer and photoelectronic synapse network. Reproduced with permission [316]. Copyright 2023, InfoMat. ¢ Visual-olfactory multisensory inte-
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arrayed circuits. Reproduced with permission [318]. Copyright 2024, Advanced Materials. e Stretchable temperature-responsive e-skin with
multimodal synaptic transmission. Reproduced with permission [319]. Copyright 2022, ACS Nano. f InMgO NFs synaptic device for visual/
temperature perception. Reproduced with permission [320]. Copyright 2024, International Journal of Extreme Manufacturing. g¢ Humidity-mod-
ulated neuromorphic behavior mechanism. Reproduced with permission [321]. Copyright 2023, Advanced Materials Technologies. h Biological
visual system and photoelectrochemical synapse. Reproduced with permission [322]. Copyright 2024, Nature Communications. i Multimodal

memristive array vision chip. Reproduced with permission [10]. Copyright 2023, Nature Communications
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which demonstrates dual sensing capabilities for both chemi-
cal and optical signals (Fig. 9h) [322]. GaN material exhibits
excellent optoelectronic properties and demonstrates good
chemical stability in electrolyte solutions, making it suit-
able for studies involving electrolyte-mediated chemical
reactions and ideal for constructing optoelectronic synapses
with chemically relevant functionalities. Synaptic responses
can be modulated by either chemical modifications on the
nanowire surfaces or alterations in the external electrolyte
environment. Upon illumination, charge carriers are gen-
erated within the nanowires. A portion of these carriers
accumulate within the nanowires, inducing optoelectronic
synaptic responses. Meanwhile, ions and molecules in the
electrolyte consume another fraction of the carriers, real-
izing an electrolyte-mediated chemo-electric process that
enables diverse chemical-related synaptic functionalities.
Based on this principle, the device achieves collaborative
perception and integration of optical-chemical dual-modal
signals through GaN nanowires. Zhou et al. demonstrated a
novel multimodal resistive random access memory device
array based on modified silk fibroin protein. This device
array operates in two distinct modes: an optoelectronic
RRAM mode characterized by unique negative—positive
photoconductance memory, and an electrical RRAM mode
featuring analog resistive switching capabilities (Fig. 91)
[10]. Hydroxyl bonds and carbon—oxygen double bonds in
amino acid sequences provide active reaction sites for hydro-
gen bonding or polymerization, forming a series of traps that
facilitate resistive switching behavior. These structural fea-
tures make the modified silk fibroin protein highly suitable
for constructing synapses capable of simultaneously sensing
optical and electrical signals. Leveraging this mechanism,
the device achieves collaborative perception and integration
of optical-electrical dual-modal signals through the modified
silk fibroin protein.

The defining characteristic of memristors lies in their
dynamic resistive memory effect, where the conductance
value evolves with the integral or pulsed characteristics of
input signals, analogous to the plasticity of biological syn-
apses [323]. This property enables memristors to inherently
record the spatiotemporal correlations of multimodal inputs
through their conductance states (or resistance values), pro-
viding a physical foundation for multimodal signal fusion
[324]. Single-memristor multimodal sensing systems typi-
cally adopt two architectures. The first involves designing
functional layer configurations with multilayer memristor
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stacks, each layer dedicated to specific signal modalities.
A common functional layer is the ML layer, which quan-
titatively converts mechanical stimuli into light emissions
in real-time and in situ. The total input voltage is propor-
tionally distributed across layers, with conductance change
rates determined by signal intensity. The second approach
employs multifield-sensitive memristive materials (e.g.,
oxide and organic composites) whose resistance (conduct-
ance) simultaneously responds to multiple physical quan-
tities (temperature, pressure, light, chemicals, etc.) [40,
325]. A prevalent signal fusion method is adaptive fusion
based on memristive dynamics, where conductance evolu-
tion equations are established to integrate synergistic effects
of multiphysical parameters [14, 326]. By adjusting pulse
timing and width, the contribution weights of each modal-
ity to conductance are controlled. Another common strat-
egy is dynamic encoding, categorized into time—amplitude
hybrid modulation and frequency division multiplexing.
Time—amplitude hybrid modulation maps low-frequency
parameters (e.g., temperature) to steady-state conductance
changes through direct current (DC) bias or slow-varying
voltage applications [327, 328]. Simultaneously, high-fre-
quency parameters (e.g., vibration) are encoded by superim-
posing alternating current (AC) excitation signals, utilizing
memristive dynamic responses such as threshold switching
to capture transient information [329]. In frequency division
multiplexing, distinct excitation frequencies are assigned to
each physical quantity (e.g., 1 Hz for temperature, 10 Hz for
pressure, 100 Hz for light), with frequency-domain analysis
(e.g., Fourier transform) decomposing modal contributions
to conductance. The output conductance can be fed back
to the input terminal, enabling unsupervised learning and
online optimization by dynamically adjusting excitation
amplitude-frequency parameters based on target response
comparisons.

3.3 Single-Sensor and Single-Memristor Multimodal
Sensing System

Single-memristor multimodal sensing systems possess sig-
nificant advantages of extremely simplified hardware archi-
tecture and exceptionally high integration density. This capa-
bility allows them to directly map multiple external stimuli
onto unified resistive state changes to achieve hardware-level
parallel information fusion, yet their core challenge lies in
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the concurrent alteration of the memristor’s resistive state by
multiple signals [330]. This makes it difficult for the system
to effectively distinguish whether resistance changes origi-
nate from target signals (e.g., pressure) or environmental
interference (e.g., temperature drift), preventing reliable
separation of valid information [163]. Furthermore, the
sensing capability of single memristors is constrained by
their inherent physical properties, typically only permitting
limited mode switching through external conditions (such as
voltage or frequency adjustments), making it difficult to effi-
ciently and simultaneously process multiple physical quan-
tities [331]. More critically, as all signals share the same
resistive change channel, the system is compelled to rely on
complex algorithms (e.g., deep learning) for reverse analysis
of mixed signals, increasing computational burden [332]. In
contrast, the single-sensor and single-memristor multimodal
sensing system employs dedicated sensors specifically
designed for target physical or chemical quantities, enabling
selective response to target signals. The sensor output exhib-
its strong correlation with target signals, significantly sup-
pressing environmental interference. In this system, the sen-
sor is responsible for detecting specific physical quantities
(e.g., pressure), while the memristor senses another physical
quantity and generates pulse outputs. Through collaborative
operation, they fuse multimodal signals into a single pulse
sequence, achieving data compression and efficient trans-
mission. Simultaneously, this system supports collaborative
customized design of sensors and memristors. For example,
by adjusting parameters such as piezoresistive coefficient of
the sensor, its response performance to specific target signals
can be optimized [333].

In a multimodal sensing system composed of a single sen-
sor and a single memristor, the sensor is typically a pressure
sensor used to detect pressure signals, while the memristor
serves triple roles in signal perception, fusion, and storage.
Shan et al. reported a novel artificial tactile sensing system
capable of sensing pressure and electrical signals simul-
taneously, and achieving parallel output of photonics and
electronic signals (Fig. 10a) [334]. One end of the TENG
is connected to the Ag terminal of the memristor, and the
other end to the ITO terminal of the memristor. The TENG
receives stimuli, converts them into action potentials, and
transmits the generated signals to the memristor. This pro-
cess triggers the memristor to produce electroluminescence
and synaptic memory current signals. By coupling a lead-
free perovskite-based synaptic transistor with a TENG, wu
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et al. proposed an artificial multimodal integration neuron
capable of sensing pressure and optical signals (Fig. 10b)
[335]. The two terminals of the TENG are connected to the
source and gate of the floating-gate transistor, respectively.
The flexible TENG serves as a skin receptor to convert
external pressure signals into electrical signals, while the
perovskite quantum dots in the floating-gate transistor act as
retinal receptors to transform optical stimuli into electrical
signals. Subsequently, the electrical signals converted by the
TENG are transmitted to the gate of the floating-gate transis-
tor (functioning as presynaptic neuron 1), and the electrical
signals converted by perovskite quantum dots are captured
by the floating gate (functioning as presynaptic neuron 2).
These two presynaptic signals are integrated and converted
into channel current at the source-drain terminal (acting as a
postsynaptic neuron), mimicking biological EPSC. Yu et al.
presented a bionic mechano-photonic artificial synapse with
synergistic pressure and optical signals perception capabili-
ties (Fig. 10c) [336]. The synaptic device is constructed
from a graphene/MoS, heterostructure-based phototransis-
tor and an integrated TENG in contact-separation mode.
The integrated TENG component comprises Cu/polytetra-
fluoroethylene (PTFE)/Cu conFig.d in a contact-separation
mode. One triboelectric layer (PTFE/Cu) is connected to the
transistor gate, while the opposing Cu electrode serves as a
movable counter triboelectric layer. Mechanical displace-
ment between dual tribolayers of the TENG induces tribo-
electric potential coupling into the transistor. This coupling
mechanism directly governs charge transfer/exchange in the
graphene/MoS, heterostructure channel by Fermi level of
modulating graphene and energy band alignment of MoS,,
thereby enabling photonic synaptic current modulation. The
device achieves photonic synaptic plasticity through the
combined action of mechanical displacement (acting as a
state parameter) and light pulses that reflect spatiotemporal
information (e.g., intensity and illumination time).

In the aforementioned multimodal sensing systems com-
posed of a single sensor and a single memristor, the pres-
sure sensor is directly connected to the gate terminal or both
ends of the memristor, transmitting voltage signals to the
memristor for further fusion. While this approach simpli-
fies the hardware architecture, it risks constraining the sig-
nal dynamic range. The output signals from the pressure
sensor may exceed the operational range of the memristor,
leading to signal saturation or nonlinear distortion. Addi-
tionally, such systems may exhibit compromised noise

https://doi.org/10.1007/s40820-025-01940-9



Nano-Micro Lett. (2026) 18:113 Page 31 of 54 113

(@) (b)

Post-synaptic Current

Pressure Post-synaptic neuron

Pressing
N Cu ﬁgsgi?ﬂ
\ PP!“!,i.——\{\ Lz‘;:':@g 2@
nn. olkes PDMSICURET- =~~~ rorfmrezemonnd RER omreoncionrecd

Pre-synaptic neuron 2

Preéspimgptic Post-synaptic Brightness Triboelectric nanogenerator
Pre-synaptic neuron 1

—
Q.
=

Light emitting diode

(c) Visual signal
(LED)

Optoelectronic

Bio-inspired
Multisensory Nervous System

\ kY - . DMS)
TENG _— —— = Si/SiO, Aluminu, tam%
PTFE LL_Air [ | ] = L —
Cu Kapton = i Multisensory Time (s)
ical displacement neuron

e

(e) , . (@)

“ o nverse Effectiveness

S

9 'g.;; , Super-additive § Effect g Temporal Congruency Photonic Brain

<o i s E—T— N>
5 ‘g% o Visuotactild gt“ g Sensor1  —_ ¢ Wﬂ( 3 .~ Processor 1
§ ﬁ g £8» 3 Sensor 2 ~_ (). Processor2
o A 15

0 De 38 g‘ Sensor 3 ) — “——_  Processor 3

ki ; QS'Z § HH Sensing Module Processing Module

peir @

S5e 8 o -

3 .2,31 E M TR T3 T4 E 0100200300400  gensory Receptor Tunable polychromatic

53 Tactile Stimuli Strength  Post-illumination Ti BN, ohtemission A\

s il imuli g ost-illumination Time == P \/ %%Q\{Q

(f) & OH/©

Light-emitting artificial -—‘ Multi-modal

Pressures ADC & LED Light pulses PSC
————— A EV.

l ‘/M neuromorphic synapse 3 "N recognition
Eski"{ A xlen L-‘JA[LI"——J Synapse-like A P, i Eim
: b optical output -
-, "Hbwe \ ) P ute Multi-information % o ==
Exsynap parameter Learni:e sand
Voltage OE-synapse aarning s
~MXene » PET y &PNSTO decision making
-
(h)
Conventional multi-modal information pr ing syst
Sensing module Pre-processing module
) |
Spatial position | | oo oo |l e e o i o i o i |
signal generators i ] Feature !
. : Coupled auto- Electronics Memory !
1 1 en/decoder *| (amplifier, ADC) ? :
) |
Motion signal |__,}| ~Motion |1 B e -
: d i
inputs 1| ESSNSOISIN |1 Processing module
S ——— 1 i e e O o s B e i -
|
Step frequency/ Coupled auto- || Memory Post-processor |
coordinate output en/decoder — :
b o o o o o o e ] 1
Sensory Y pr ing system (SMPS) with multi-information parallel output (This work)
Integrated module
: Sensory and synapu'c- ;
: pofychiromatic devices i Multi-information parameter
Moo i) _.: TENG ;acqmsmon and data encodlig Post et ci:)ergi:\r:?eugz‘cyl/“
inputs : 1 | (Wavelength-amplitude) 2
| 1
I QLED = 1
I 1
1 1

Fig. 10 Single-sensor-memristor integration for multimodal sensing. a Photoelectric dual-output tactile sensing system. Reproduced with permission [334]. Copyright 2022,
Nano Letters. b TENG-synaptic transistor multimodal nerve device. Reproduced with permission [335]. Copyright 2021, Nano Energy. ¢ Optoelectronic-TENG artificial
synapse. Reproduced with permission [336]. Copyright 2021, Science Advances. d Bio-inspired visuo-tactile neuron integrating triboelectric tactile sensor and monolayer
MoS, photo-memristor. Reproduced with permission [294]. Copyright 2023, Nature Communications. e Multisensory integration features of d. f Artificial afferent nerve sys-
tems integrating pressure sensor, ADC-LED circuit, and memristor. Reproduced with permission [338]. Copyright 2020, Nature Communications. g Photonic neuromorphic
sensory memory system. Reproduced with permission [278]. Copyright 2023, Nature Communications. h Conventional versus parallel-output multimodal processing systems

SHANGHAI JIAO TONG UNIVERSITY PRESS @ Springer




113 Page 32 of 54

Nano-Micro Lett. (2026) 18:113

immunity and restricted cross-modal synergy capabilities.
Sadaf et al. introduced a bio-inspired visuo-tactile multi-
sensory neuron comprising a triboelectric tactile sensor, a
monolayer MoS, photo-memristor and an associated spike
encoding circuit (Fig. 10d) [294]. The bionic visuo-tactile
multisensory neuron integrates a tactile sensor connected
to the gate terminal of a monolayer MoS,-based photonic
synaptic transistor and associated spike encoding circuitry.
The tactile sensor employs triboelectric effects to trans-
duce pressure stimuli into electrical spikes, which are sub-
sequently mapped to source-drain output current spikes
through channel conductance modulation. Meanwhile,
optical stimuli are encoded as threshold voltage shifts
via the photogating effect in the monolayer MoS, synap-
tic transistor, enabling light-driven channel conductance
regulation. Through synergistic modulation of channel
current by both optical and pressure signals, bio-inspired
neuromorphic integration of light-force-electrical signaling
is achieved. The bionic visuo-tactile multisensory neuron
demonstrates three characteristic features of multisensory
integration: super-additive responses to cross-modal cues,
inverse effective effect, and temporal congruency (Fig. 10e).
Super-additive response refers to the phenomenon where
the neural response intensity elicited by cross-modal com-
bined stimuli significantly exceeds the algebraic sum of uni-
modal responses. In the multisensory neuron, the reaction
induced by pressure-optical signal integration surpasses that
obtained through single-modality integration. Inverse effec-
tive effect describes the enhanced multisensory integration
when unimodal signals are weak. The physical origin of
this effect in the multisensory neuron lies in the screening
of triboelectric gate voltage (generated by tactile stimuli)
through trapped charges at the interface induced by visual
stimulation. Temporal congruency requires temporal syn-
chronization of cross-modal signals. The physical origin of
temporal congruency can be attributed to the fact that the
persistent photocurrent in the photonic synaptic transistor
directly results from photo-induced carrier trapping at the
MoS,/dielectric interface. De-trapping dynamics gradually
restore the device to its pre-illumination conductance state
over time.

Unlike conventional multimodal systems that directly
convert pressure signals detected by the sensor into voltage
inputs for the memristor, another prevalent strategy involves
inserting an ADC between the pressure sensor and mem-
ristor to transform pressure information into optical pulses
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[337]. Tan et al. developed an optoelectronic spiking afferent
nerve system composed of an ITO/ZnO/Nb:SrTiO5-based
synaptic optoelectronic memristor and an MXene-based
pressure sensor. This system demonstrates neuro-encod-
ing, perceptual learning, and memory capabilities to emu-
late pressure and optical signals sensing and processing
(Fig. 10f) [338]. The system senses pressure through the
MXene-based sensor, converts pressure information into
optical pulses by coupling light-emitting diodes to ADC
circuitry, and subsequently integrates these optical pulses
using the synaptic optoelectronic memristor. Importantly,
the synaptic weight changes of optoelectronic memristor
at run-time by the input pressure signal because of a pho-
tomemristive effect, and the weight change depends on the
pressure amplitude.

The aforementioned multimodal neuromorphic systems
rely on discrete components, and their hardware integration
remains constrained. Shan developed an efficient sensory
memory processing system capable of processing sensory
information while generating synaptic-like multichromatic
light outputs, enabling diversified optical utilization in infor-
mation processing and multimodal recognition (Fig. 10g)
[278]. This system employs a TENG as sensory receptors
and QLED devices as luminescent neuromorphic synapses.
The sensory memory processing system achieves synaptic-
mimetic multi-wavelength optical signaling through synap-
tic multicolor emission, facilitating multimodal information
recognition via artificial neural networks. The TENG serves
as sensory receptors that collect tactile signals through
contact-separation motions with skin, converting them into
presynaptic voltage pulses. These electrical signals drive the
artificial synaptic devices to simultaneously generate elec-
troluminescence and modulate postsynaptic currents. The
hybrid quantum dots in the emissive layer enable electric-
field-tunable color emission, where spectral output can be
dynamically tuned by adjusting the applied electric field
intensity. Through this mechanism, the sensory memory
processing system realizes synaptic-adaptable multiband
optical outputs by regulating contact-induced electric field
strength. Unlike conventional multimodal systems requiring
separate sensory modules, isolated memory processors, and
complex encoder-decoder couplings, this integrated sensory
memory processing system with parallel multi-information
outputs (Fig. 10h). The design significantly reduces circuit
complexity while maintaining efficient sensory signal pro-
cessing capabilities.
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The above discussion outlines several common device
architectures and multimodal fusion methods for single-
sensor and single-memristor multimodal sensing systems.
In systems composed of a single sensor and a single memris-
tor, the sensor typically employs a TENG to detect pressure
signals, while the memristor concurrently serves three func-
tions: signal sensing, fusion, and storage [339]. A conven-
tional architecture directly connects the TENG to the mem-
ristor terminals or gate. The TENG transduces mechanical
stimuli into action potentials and transmits the generated
signals to the memristor. These signals directly modulate
the conductance state of memristor, synergistically interact-
ing with potentials derived from the intrinsic sensing capa-
bilities of memristor (e.g., light or temperature responses)
to achieve multimodal signal coupling [340]. The primary
fusion strategy involves dynamic weight adaptive fusion,
where algorithms adjust the weighting between pressure
and memristor-derived signals in real time. An alternative
architecture routes sensed pressure signals through dedicated
processing modules (e.g., spike encoders or ADCs) to con-
vert analog pressure data into electrical spikes or optical
pulses [341]. These transformed signals may manifest as
voltage pulses with modulated amplitudes and frequencies,
or optical pulses with tunable frequencies and widths [342].
Subsequently, the processed signals are transmitted to the
memristor to dynamically regulate synaptic weights. In such
architectures, pulse-coding-based spatiotemporal fusion pre-
dominates. Analog pressure signals are encoded into pulse
sequences (e.g., pulse frequency modulation), which are
then fused with the pulse responses of memristor (e.g.,
pulse width modulation) triggered by light or temperature
via synaptic plasticity rules like STDP [163]. The temporal
correlation between pressure-induced pulses and memris-
tor-generated pulses dynamically adjusts the conductance
weights, enabling adaptive multimodal integration [316].

3.4 Multi-Sensor and Single-Memristor Multimodal
Sensing System

Although single-sensor and single-memristor multimodal
sensing systems can selectively respond to target signals
and effectively suppress environmental interference, their
core challenge lies in the fact that the single-sensor design
typically targets specific physical quantities (for exam-
ple, using piezoelectric materials for pressure detection)
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[343]. The inherent linear response characteristics con-
strain their applicability across the amplitude ranges of
multimodal signals. When a single sensor responds to
multiple physical quantities, signals are prone to mixing
during the conversion process, and compromise design
is required among the response characteristics of various
physical quantities [344]. In contrast, within multi-sensor
and single-memristor multimodal systems, each sensor can
be independently customized for target signals, expanding
the sensing dimension through the collaborative opera-
tion of chemical/biosensors and physical sensors. Different
sensors independently detect specific physical quantities,
fundamentally eliminating signal crosstalk [345]. When a
single sensor fails, the remaining sensors can still continu-
ously provide partial modal data. Each sensor can indepen-
dently set its measurement range to avoid signal saturation,
while the memristor time-sequentially processes signals
from different sensors through a switching mechanism,
effectively reducing instantaneous load [238].

In a multimodal sensory system based on multiple sensors
and a single memristor, the fusion of multimodal signals
typically requires additional circuit components to convert
the voltage signals acquired from different sensors into other
signal forms. Kim et al. presented an artificial multimodal
integration system capable of simulating discomfort percep-
tion based on the integration of multiple sensory signals
(Fig. 11a) [346]. The system consists of MXene-based artifi-
cial sensors, a ring oscillator, and an EDL synaptic transistor.
The artificial temperature receptor and humidity receptor in
the system detect ambient temperature and humidity, respec-
tively, converting them into electrical signals. These signals
are then transmitted to the sensory ring oscillator. Within
the sensory ring oscillator, each sensor converts external
stimuli into resistive and capacitive signals, respectively. The
integrating inverter subsequently translates changes in resis-
tive and capacitive signals into voltage pulse amplitude and
frequency. The integrated voltage pulses are applied to the
synaptic transistor, which converts them into postsynaptic
currents.

Unlike ring oscillators that convert sensed signals into
voltage pulse amplitudes and frequencies, another multi-
modal sensing system adopts a distinct signal fusion method
by transforming induced voltages into corresponding pulse
sequences through a signal coupling module. Pan et al. pro-
posed a novel universal signal-coupling method for applying
stimuli from different sensors to the memristor (Fig. 11b)
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[347]. Based on the proposed signal coupling method and
fabricated memristors, an artificial sensory-memory system
incorporating sensors (pressure sensors and temperature sen-
sors) and memristors has been realized. A method termed
“indirect signal coupling” has been proposed as a universal
signal coupling approach. This method requires setting a
threshold voltage. When voltage signals reach the threshold
voltage, fixed voltage pulses are applied to the memristor to
alter its conductance. Flexible pressure sensors and tempera-
ture sensors are connected in series with resistors. Once their
respective voltage responses exceed the threshold voltage,
fixed voltage pulses are applied to the memristor, thereby
modifying its conductance. After applying each fixed pulse
sequence, the resistance of memristor gradually decreases.
The conductance of memristor varies with the quantity of
external stimuli received by the sensors. Consequently, the
altered memristor resistance reflects cumulative effects of
multiple past external stimuli received by the sensors. How-
ever, this multimodal signal integration system requires mul-
tiple redundant resistors, leading to high hardware complex-
ity. Yan et al. have proposed an improved design to address
this issue. Yan et al. proposed an ultra-stable artificial mul-
tisensory sensory memory system with visual and tactile
functions by combining a pressure sensor, a photosensitive
sensor, a signal coupling module, a synaptic device, and a
robotic arm (Fig. 11c) [348]. The sensing-memory system
collects optical and pressure information from photosensi-
tive and pressure sensors, respectively. Signals generated by
both sensors are input to a signal coupling module, which
calculates and processes the signals. The generated corre-
sponding pulse sequences are then sent to the memristor,
enabling observation of memristor current signal changes
that effectively identify environmental parameters (pressure
and light intensity) where the system resides. The proposed
signal coupling method also requires setting a threshold
voltage. When voltage signals reach this threshold, fixed-
sequence voltage pulses are applied to the memristor.

The aforementioned approaches utilizing signal cou-
pling modules or ring oscillators to process voltage signals
sensed from sensors require complex circuitry, resulting
in high hardware complexity, along with increased cost
and power consumption. Wang et al. have addressed this
issue by employing ion-conductive cables and hydrogels to
replace traditional coupling modules. Wang et al. developed
a bimodal artificial sensory neuron to implement the visual-
haptic sensory fusion processes (Fig. 11d) [26]. The bimodal
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artificial sensory neuron consists of four core components:
a resistive pressure sensor, a perovskite-based photodetec-
tor, a hydrogel-based ionic cable, and a synaptic transistor
(Fig. 11e). The bimodal artificial sensory neuron collects
optical and pressure information from the photodetector and
pressure sensor, respectively, transmits the bimodal infor-
mation through the ionic cable, and integrates them into
postsynaptic currents via the synaptic transistor. The resist-
ance of photodetectors and pressure sensors decreases with
increasing incident light intensity or applied pressure. As the
sensor resistance drops, ionic flux is induced through ionic
cables, with the fluxes from both sensors converging within
the hydrogel matrix. Since the opposite side of the hydrogel
is connected to the gate of a synaptic transistor, the accu-
mulated ions electrostatically couple to the EPSC through
the semiconductor channel of the transistor. The fusion of
pressure and optical signals is achieved through integration
effect of the synaptic transistor on multiple inputs, which can
be mathematically described as the integral of the product of
input intensity and its distance-dependent weight.

The aforementioned signal fusion methods typically rely
on voltage signals or converting voltages into fixed pulse
sequences. Another common multimodal signal fusion
approach involves voltage spike encoders that encode elec-
trical potentials into optical spikes for communication. This
method effectively mitigates voltage attenuation and parasitic
resistance issues during sensor data transmission. Tan et al.
reported a bio-inspired spiking multisensory neural network
that integrates artificial touch, hearing, vision, and simulated
smell and taste with cross-modal learning via artificial neural
networks (Fig. 11f) [20]. With distributed multi-sensor arrays
and biomimetic hierarchical architectures, the spiking multisen-
sory neural network can not only perceive, process, and memo-
rize multimodal information but also fuse multisensory data at
both hardware and software levels. The system senses multi-
modal physical stimuli through various detectors and converts
them into voltage signals. Spike encoders encode potentials
into optical spikes for communication. Photonic memristors
integrate optical spikes, decode multisensory information, fil-
ter and memorize environmental data. Finally, artificial neural
networks combine cross-modal signals with associative learn-
ing. Sensory inputs dynamically alter spike rate and postsyn-
aptic currents of the photonic memristor during operation via
persistent photoconductive effects, enabling built-in memory
of sensory information. The inherent memory and informa-
tion filtering properties of photonic memristor array facilitate
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supervised training of artificial neural networks, establishing
associations across five sensory modalities to achieve advanced
cognitive capabilities.

Conventional data fusion strategies typically involve col-
lecting information from individual sensors and transmitting
it to a signal fusion module, where signal formats are further
transformed. This approach lacks a critical aspect known
as cross-sensor modulation, where one or more sensors directly
modulate responses of each other. Furthermore, this strategy
overlooks the intrinsic synergies and dependencies between
sensor modalities. Sakib et al. proposed a neuromorphic plat-
form integrating graphene-based chemical transistors, mon-
olayer MoS,-based photosensitive memtransistors, and tribo-
electric tactile sensors to enable the cross-modal integration
of chemical, optical, and pressure signals (Fig. 11g) [341]. In
the neuromorphic platform, the tactile sensor is directly con-
nected to the gate terminal of the memtransistor. In contrast,
the output of the graphene chemical transistor is first ampli-
fied using a MoS,-based thin film transistor inverter amplifier
before being fed to the gate terminal of the memtransistor.
Finally, by leveraging the light-controlled effect observed in
the memtransistor, optical signal is encoded as threshold volt-
age shifts. Since the TENG is connected to the gate terminal
of the memtransistor, electrical pulses generated by touch are
encoded as current spikes at the output of memtransistor. As
the channel conductance can be controlled by applying an elec-
trical bias to the chemical solution, electrical pulses generated
by chemical signal serves as the gate bias for the memtransis-
tor, enabling tactile responses to be modulated by chemical
signals. The light-controlled effect observed in the memtransis-
tor encodes optical signal as threshold voltage shifts, thereby
achieving modulation of tactile responses. Stronger visual and
chemical signals lead to enhanced responses due to the combi-
nation of a more negative threshold voltage and a more posi-
tive read voltage. Several distinct signals enable synergistic
modulation, where the integrated effect of multiple sensory
signals not only exceeds individual responses to each signal
but also surpasses their linear summation.

All the aforementioned multimodal neuromorphic sys-
tems rely on discrete components, and their hardware inte-
gration remains constrained [349]. Cheng et al. reported a
trainable diffractive optical neural network architecture to
process and classify multimodal data by light propagation
(Fig. 11h) [350]. By leveraging superposition and coherence
properties of optical signal, large-scale neurons in hidden
layers can be naturally connected through diffraction under
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multimodal configurations. The trainable diffractive optical
neural network comprises an input layer, five hidden layers,
and an output layer. After feature extraction and fusion, a
feature vector derived from multimodal datasets of different
modalities such as vision, audio and pressure, which serves
as the neural network input. The dimension of feature vector
matches the number of neurons in the input layer, with each
vector element encoded into optical signals via intensity
modulation. In hidden layers, neurons are arranged in mul-
tilayer layouts, where connection weights between neurons
are adjusted during training to achieve target functionalities.

The aforementioned discussion outlines several common
multimodal fusion methods for multi-sensor and single-
memristor multimodal sensing systems. Typically, multiple
sensors first perceive distinct signals and convert them into
voltage signals. Conventional multimodal fusion approaches
typically involve transmitting sensed voltage signals to spe-
cialized processing modules (e.g., signal coupling mod-
ules, ring oscillators, or spike encoders) for converting the
acquired electrical signals [346-348]. These may include
fixed-frequency pulse trains, voltage pulses with modulated
amplitudes and frequencies, or optical spikes with tunable
frequencies and widths. The transformed signals are then
delivered to memristors to dynamically adjust synaptic
weights. In order to solve the impedance matching problem
between memristors and different types of sensors, scaling
resistors can be introduced to adjust the operating resist-
ance of various sensors to the resistance range compatible
with memristors [351]. Notably, ionic cables and hydrogels
can substitute conventional processing modules, replacing
voltage-based signaling with ionic flux variations to enable
signal transmission and fusion [26]. However, conventional
multimodal fusion methods lack cross-sensor modulation,
where multiple sensors directly modulate responses of each
other, thereby neglecting the intrinsic synergies and interde-
pendencies between sensory modalities [352]. To achieve
cross-sensor modulation, memristor-mediated sensor inter-
connections can be implemented. By interconnecting the
outputs of different sensors through a memristor crossbar
array, the signal transmission strength is dynamically regu-
lated via the conductance states of memristor [332]. Encod-
ing sensor signals into distinct pulse sequences (e.g., pulse
frequency or phase modulation) enables cross-modal weight
adaptation through the STDP rule at memristive synapses
[353]. Additionally, the electrical pulses converted from one
signal modulate the memristor channel conductivity, which
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acts as a gate bias to influence the electrical pulses derived
from another signal. This mechanism establishes intrinsic
synergies and interdependencies among multimodal signals.

3.5 Summary and Challenges

In the development of multimodal sensing and fusion tech-
nologies, diverse architectural designs exhibit distinctive
performance characteristics and application potentials due
to differences in core principles, hardware support, and sce-
nario adaptability. This section systematically compares
the advantages and limitations of three representative mul-
timodal architectures, providing references for subsequent
technical refinement and scenario-specific selection. The
multi-sensor and single-memristor neuromorphic architec-
ture employs discrete high-performance sensors (e.g., opti-
cal, pressure, and chemical) to capture modality-specific sig-
nals. Following preprocessing, these signals are fed into a
shared memristor array for fusion computation. This design
maintains compatibility with existing sensing technolo-
gies while enabling high-precision, wide-bandwidth signal
acquisition, with memristors processing only pre-encoded
signals to reduce design complexity [308]. However, physi-
cal isolation between sensors introduces spatial mismatch
requiring complex cross-modal calibration, inevitably cre-
ating hardware redundancy and necessitating sophisticated
synchronization algorithms for data fusion [354]. Its fusion
mechanism implements feature-level integration through
memristive weighted fusion after analog-to-digital or pulse
encoding of sensor signals, making it particularly suit-
able for applications demanding stringent single-modality
accuracy such as biomedical multi-parameter monitoring
[348]. In contrast, the single-sensor and single-memristor
architecture significantly reduces hardware redundancy,
eliminates synchronization challenges, and enhances noise
immunity and stability [355]. Nevertheless, it requires sen-
sors with cross-modal response capabilities, posing signifi-
cant material design challenges. Concurrently, signal cou-
pling introduces crosstalk and constrains the dynamic range
within individual sensing units. Its primary fusion strategy
employs dynamic adaptive weighting that continuously
adjusts weights between sensor-derived and memristor-pro-
cessed signals [356]. This configuration is ideal for space-
constrained edge intelligence devices like wearable health
monitors. Conversely, the single-memristor architecture
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integrates sensing and computation within homogeneous
memristive elements, achieving minimal hardware complex-
ity without signal conversion losses, thereby enabling low-
latency operations and ultralow power consumption [357].
Challenges include co-optimizing multimodal sensitivity
with accuracy, limited signal dynamic range, and signifi-
cant fabrication complexities [358]. Its fusion mechanism
leverages stimulus-specific energy thresholds or temporal
scales to differentially drive resistance state transitions,
accomplishing feature extraction and fusion directly at the
device level [331]. The single-memristor approach excels in
high-efficiency real-time processing scenarios such as neuro-
morphic vision for dynamic environmental perception [305].

Multimodal neuromorphic systems still face significant
challenges in data conversion and fusion. A critical issue
lies in the requirement for additional conversion modules to
achieve spike encoding of multimodal signals. To address this
limitation, the nonlinear threshold switching characteristics
of memristors can be leveraged to directly map multimodal
analog signals into spatiotemporal pulse sequences [359]. This
can be implemented through cross-modal threshold modula-
tion by designing differentiated voltage thresholds for distinct
physical quantities, where composite input signals exceeding
these thresholds spontaneously trigger conductance transi-
tions and spike generation in memristors [40]. Alternatively,
pulse frequency-intensity correlation enables signal strength
modulation through input amplitude or duty cycle [327].
High-amplitude signals generate high-frequency spikes while
low-amplitude signals produce low-frequency pulses, thereby
eliminating the need for external frequency modulation cir-
cuits. The most efficient approach exploits multi-physical field
coupling effects to achieve concurrent multimodal perception
and fusion within single memristor-based multimodal sys-
tems [360]. Another fundamental challenge involves potential
information loss during multimodal data fusion, particularly
the suppression of weak signal features. This issue can be
mitigated through coordinated hierarchical feature preserva-
tion strategies and adaptive fusion mechanisms [361]. During
the preprocessing stage, dedicated independent units within
the memristor array implement dual-channel parallel process-
ing. One channel preserves raw signals through lossless or
low-compression encoding techniques such as pulse interval
modulation or time—amplitude hybrid coding, enabling direct
storage or transmission of original data streams [362]. The
complementary channel extracts multimodal joint features
through spatiotemporal filtering or sparse coding algorithms.
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This architecture effectively balances the requirements for
information fidelity and fusion efficiency while maintaining
hardware compactness, providing a hardware—software co-
design paradigm for robust neuromorphic perception systems.

4 Conclusion and Perspective

In summary, with the advancement of the Internet of
Things era, the application scenarios and modality recog-
nition requirements of neuromorphic devices/systems have
become increasingly diversified, driving growing research
enthusiasm for multimodal/multi-task recognition. Herein,
we investigate the complex physical mechanisms underly-
ing multimodal neuromorphic devices, focusing on six dis-
tinct resistive switching mechanisms: charge trapping, ion
migration, electrochemical doping, conductive filament for-
mation, ferroelectric polarization, and phase transition. The
working principles of these mechanisms in sensing various
input signals are systematically elucidated. A comprehensive
analysis is presented regarding their implementation strate-
gies for multimodal perception. This analysis reveals that
electrochemical doping and ion migration mechanisms dem-
onstrate superior applicability in multimodal signal fusion
due to their exceptional linearity, wide dynamic range, and
direct signal transduction capabilities. Furthermore, the
study categorizes multisensory neuromorphic devices into
three architectural classifications. It then examines diverse
multisensory fusion approaches and signal processing tech-
niques within each category, aiming to effectively process
multisensory stimuli and construct high-efficiency neuro-
morphic sensory systems. Finally, the current challenges in
multimodal perception systems are critically summarized,
accompanied by forward-looking perspectives on their
future development directions.

Multimodal neuromorphic perception systems still con-
front multiple challenges in multimodal fusion. The limited
modality scalability of neuromorphic hardware, constrained
by synaptic precision, restricts existing memristor arrays
from effectively distinguishing subtle cross-modal differ-
ences due to insufficient conductance modulation accuracy
[142, 363]. Simultaneously, SNNs rely on discrete spike-
based encoding, which exhibits inferior ability to capture
continuous features of high-frequency vibration signals
(> 1 kHz) compared to conventional ADC sampling [364].
Information loss and weak signal suppression persist in
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neuromorphic devices, particularly when multimodal signals
share neural buses, where pulse collision-induced informa-
tion degradation occurs [163, 363]. High-energy modalities
(e.g., intense illumination) tend to overwhelm low-energy
signals (e.g., infrared thermal radiation), while analog-to-
pulse conversion inevitably sacrifices fine-grained signal
characteristics [365]. Furthermore, dynamic environmental
adaptability remains problematic as data quality fluctuates
with contextual variations, necessitating real-time adjust-
ment of multimodal data weights and fusion strategies. Cur-
rent static-environment-oriented algorithms, such as atten-
tion mechanisms and weighted fusion, demonstrate limited
effectiveness against abrupt interference. Another critical
limitation arises from the inherent heterogeneity across
modalities. Disparities in sampling rates and spatiotem-
poral resolution between different sensory signals create
alignment challenges, necessitating sophisticated dynamic
coordination mechanisms to resolve information redundancy
and conflicts [289, 366]. The disparities in sampling rates
across sensory signals originate from the inherent timescales
of their physical processes: visual sensors typically operate
at kilohertz frequencies, while temperature or gas sensors
require millisecond-to-second response times [367, 368].
Spatial resolution also varies with sensor size and pixel
density, causing divergent spatial granularity for the same
event across the array [369]. During real-time fusion within
a unified processing window, fast signals may recur multi-
ple times before slower signals update, inducing temporal
misalignment. Consequently, rapidly evolving visual cues
(e.g., object motion) fail to synchronize with slower ther-
mal responses, creating inconsistent feature representations
[370]. Simultaneously, high-resolution channels may spa-
tially oversample low-resolution regions, triggering spatial
mismatch [371]. These discrepancies intensify in dynamic
environments. For example, when visual and tactile sam-
pling rates differ by an order of magnitude, fusion accuracy
degrades sharply with increased error [372]. Addressing this
demands programmable delay lines, interpolation-based
alignment, and dynamic weighting mechanisms at either
device or algorithmic levels to achieve spatiotemporal syn-
chronization [373]. These challenges collectively underscore
the imperative for hardware-algorithm co-optimization to
advance neuromorphic multimodal integration.

The future development of multimodal neuromorphic
perception systems in multimodal fusion will revolve
around hardware innovation, algorithmic optimization, and
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revolutionary application scenarios. Advancements will
focus on breakthroughs in bio-inspired hardware and hetero-
geneous integration technologies, enabling deeper emulation
of biological parallel processing mechanisms through the
intrinsic fusion of multimodal sensors and neuromorphic
devices. This progression will extend to broader modality
integration while achieving precision improvements in cross-
modal discrimination. Next-generation systems will imple-
ment hybrid pulse-analog encoding strategies and dynamic
decoupling mechanisms to address high-frequency signal
acquisition and information preservation challenges, syner-
gistically combining the efficiency of pulse-based encoding
with the continuity of analog signal representation [374]. To
enhance adaptability in dynamic environments, these sys-
tems will incorporate reinforcement learning-driven weight
adjustment mechanisms that dynamically optimize modality
confidence levels based on real-time environmental changes.
To reduce power consumption and latency, future systems
must promote compute-in-memory architectures and edge
computing networks, enabling edge computing and energy
efficiency optimization [375]. The application landscape
will undergo transformative expansion, including real-time
collaborative perception through edge-deployed multimodal
devices (e.g., smart speakers with cameras and sensors)
for intelligent IoT ecosystems, neuroprosthetics decoding
electromyography and electroencephalography signals via
neuromorphic processing, and immersive virtual-physical
interaction systems integrating visual, auditory, and tactile
feedback. With the maturation of optoelectrochemical multi-
field-coupled devices, communication-perception co-design
frameworks, and context-aware adaptive algorithms, such
systems are poised to achieve unprecedented environmen-
tal adaptability and energy efficiency. These gains will be
realized across applications in robotics, autonomous vehi-
cles, and medical electronics, ultimately driving intelligent
upgrades in the closed-loop perception-decision-action
paradigm.
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