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TENG‑Based Self‑Powered Silent Speech 
Recognition Interface: from Assistive 
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HIGHLIGHTS

•	 A porous pyramid-structured triboelectric nanogenerator sensor is designed for self-powered silent speech signal acquisition.

•	 A hybrid neural network that combines convolutional neural network with long short-term memory is proposed to accurately decode 
silent speech signals.

•	 Silent speech commands enable real-time, contactless control of smartphones and immersive AR/VR interaction.

ABSTRACT  Lip language provides a silent, intuitive, and efficient mode of com-
munication, offering a promising solution for individuals with speech impairments. 
Its articulation relies on complex movements of the jaw and the muscles surrounding 
it. However, the accurate and real-time acquisition and decoding of these movements 
into reliable silent speech signals remains a significant challenge. In this work, we 
propose a real-time silent speech recognition system, which integrates a triboelectric 
nanogenerator-based flexible pressure sensor (FPS) with a deep learning framework. 
The FPS employs a porous pyramid–structured silicone film as the negative tribo-
electric layer, enabling highly sensitive pressure detection in the low-force regime 
(1 V N− 1 for 0–10 N and 4.6 V N− 1 for 10–24 N). This allows it to precisely capture 
jaw movements during speech and convert them into electrical signals. To decode the signals, we proposed a convolutional neural network-
long short-term memory (CNN–LSTM) hybrid network, combining CNN and LSTM model to extract both local spatial features and 
temporal dynamics. The model achieved 95.83% classification accuracy in 30 categories of daily words. Furthermore, the decoded silent 
speech signals can be directly translated into executable commands for contactless and precise control of the smartphone. The system can 
also be connected to AR glasses, offering a novel human–machine interaction approach with promising potential in AR/VR applications.

KEYWORDS  Flexible pressure sensor; Silent speech recognition; Triboelectric nanogenerator; Deep learning; AR/VR interaction

Shuai Lin and Yanmin Guo have contributed equally to this work.
 *	 Chengda Li, lichengda@xmcu.edu.cn; Chaoxing Wu, chaoxing_wu@fzu.edu.cn

1	 School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
2	 Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People’s Republic of China
3	 School of Artificial Intelligence, Xiamen City University, Xiamen 361008, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-025-01982-z&domain=pdf


	 Nano-Micro Lett.          (2026) 18:143   143   Page 2 of 14

https://doi.org/10.1007/s40820-025-01982-z© The authors

1  Introduction

Language, the cornerstone of human connection, is essential 
for expressing thoughts and building social bonds [1–3]. Yet, 
for millions with speech impairments due to neurological 
disorders, brain injuries, or congenital conditions [4–14], 
the inability to vocalize severely limits social participation 
and access to services [15]. Silent speech technologies, par-
ticularly lip-based communication, offer a critical alternative 
for these individuals to reclaim their voice.

Lip language provides a natural, intuitive, and hands-free 
means of silent speech communication [16–19]. Importantly, 
its articulation involves not only the lips but also the jaw and 
the muscles surrounding it, whose kinematic patterns carry 
essential information for recognizing silent speech. Despite 
its potential, accurately capturing and decoding these subtle 
articulatory movements remains a significant technical chal-
lenge, especially in real-world conditions.

Currently, silent speech recognition (SSR) methods 
mainly include vision-based, electromyography (EMG)-
based, and radar-based techniques, which have achieved sig-
nificant breakthroughs in recent years. Vision-based meth-
ods have leveraged multimodal fusion and deep learning, 
such as Yu et al.’s cascade fusion algorithm with pre-trained 
Visual-HuBERT for integrating tongue and lip features [20], 
and Wang et al.’s PointVSR model using depth-sensed point 
cloud data from multiple sensor positions [21]. EMG-based 
methods have explored novel combinations of time–fre-
quency features, deep learning architectures, and signal-to-
image transformations, including Huang et al.’s GRU-based 
modeling on a Chinese word corpus [22] and Li et al.’s 
SVIT-SSR framework employing Vision Transformers [23]. 
Radar-based methods have demonstrated the potential of 
non-contact recognition. Menezes et al. explored continuous 
phoneme recognition with radar signals using feature combi-
nations and CNN-MLP models [24], and further investigated 
on-body antenna configurations to optimize multi-speaker 
recognition [25]. These studies collectively highlight recent 
innovations in multimodal fusion, model design, and non-
contact recognition, providing a foundation for advancing 
SSR technologies.

However, each method has its own application scenarios 
and challenges. Vision-based method provides rich articu-
latory information in well-lit, unobstructed environments, 
achieving high accuracy, but is susceptible to lighting 

variations and occlusion. EMG-based method achieves high 
sensitivity by detecting muscle activity directly, yet requires 
skin-attached electrodes and external power. Radar-based 
method enables non-contact detection and can operate under 
low-light or occluded conditions, although its spatial resolu-
tion is moderate and it is sensitive to electromagnetic inter-
ference (Table S1).

Since it was first proposed in 2012 [26, 27], the triboelec-
tric nanogenerator (TENG) has rapidly become a technology 
of great interest due to its unique self-powered characteris-
tics, low cost, and easy fabrication [28–31]. TENG converts 
mechanical energy into electrical energy through the prin-
ciple of the triboelectric effect and electrostatic induction, 
showing potential application in human–machine interaction 
[32–36]. For example, by using this technology, accurate 
recognition of large-range joint motions can be achieved, 
enabling self-powered control of robotic devices through 
neck gestures [37]. Due to its high sensitivity, self-pow-
ered operation, and wearable compatibility, TENG shows 
strong potential for applications in real-time silent speech 
recognition.

Here, we report a real-time silent speech recognition 
system (RT-SSRS) that integrates a self-powered flexible 
pressure sensor (FPS) based on TENG with a deep learn-
ing framework. The FPS employs a porous pyramid-struc-
tured silicone (PPS) film as the negative triboelectric layer, 
designed to precisely capture jaw movements during speech. 
To decode these complex spatiotemporal signals, we pro-
posed a hybrid neural network that combines convolutional 
neural network (CNN) for spatial feature extraction with long 
short-term memory (LSTM) for capturing temporal dynam-
ics. This model achieves a classification accuracy of 95.83% 
across 30 daily words. Furthermore, we demonstrate the 
practical utility of RT-SSRS in real-world human–machine 
interaction scenarios, translating silent speech commands 
into contactless smartphone control actions. The system can 
also be connected to AR glasses, demonstrating a potential 
prototype for future human–machine interaction in AR/VR 
applications. Compared to other methods, our TENG-based 
approach demonstrates high sensitivity to subtle pressure 
variations, lightweight and comfortable wearable design, 
self-powered operation, and excellent environmental robust-
ness (Table S1). Moreover, all components of our sensor 
are made from common, low-cost materials, providing bio-
compatibility, mechanical flexibility, and scalability. These 
characteristics make it highly suitable for integration into 
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AR/VR interaction systems. With further optimization in 
the future, we believe there will be further breakthroughs in 
accuracy and other aspects. Overall, the RT-SSRS ensures 
reliable silent speech recognition for speech-impaired 
users, reduces communication burden, and offers a novel 
human–machine interaction approach with broad application 
prospects and significant societal value.

2 � Experimental Section

2.1 � Fabrication of the PPS Film

The PPS film was prepared using a simple and efficient 
sacrificial NaCl template method. First, component A and 
component B of Ecoflex 00–30 were mixed in a 1:1 weight 
ratio. Subsequently, NaCl particles were added to the pre-
pared Ecoflex mixture in a 1:1 weight ratio with continuous 
stirring for 20 min to allow for thorough mixing. Next, the 
stirred Ecoflex-NaCl mixture was poured into a mold with 
a pyramidal structure and vacuumed to completely remove 
air bubbles. The mixture was then cured on a heating table at 
60 °C for 1 h to ensure that the mixture was fully cured and a 
stable pyramid structure was formed. Once curing was com-
plete, the Ecoflex-NaCl mixture was carefully peeled from 
the mold using tweezers and immersed in deionized water 
for 12 h, during which time the water was changed peri-
odically to accelerate the dissolution of the NaCl particles, 
resulting in the formation of a porous structure. Finally, the 
soaked samples were thoroughly rinsed with deionized water 
to remove residual salts and other impurities. After clean-
ing, the samples were dried in an oven at 100 °C for 12 h to 
ensure that their internal water was completely evaporated, 
and finally PPS film were obtained.

2.2 � Fabrication of the FPS

The PPS film and nylon were used as the negative and 
positive triboelectric layers, respectively, and were cut into 
rectangular pieces with dimensions of 2 cm × 8 cm. Then, 
copper foils of the same size were pasted as electrodes, and 
a conductive copper wire was led out from each of them to 
facilitate the connection with external circuits. Next, the PPS 
film was placed opposite to the nylon, and the entire sensor 
was encapsulated with a polyimide (PI) film to mitigate the 

effects of the external environment during use while main-
taining its flexibility and durability. Finally, a 3 cm × 16 cm 
piece of fabric was cut, rubber bands were tied at both ends, 
and the FPS was fixed to the fabric.

2.3 � Characterization and Measurements

A linear motor (LinMot B 01–37 × 166/260) was used to 
generate periodic reciprocating motion for applying pres-
sure. The pressure magnitude was adjusted by varying 
the movement distance and measured using a force gauge 
(ZNLBM-IIX-20  KG). A programmable electrometer 
(Keithley 6514) was employed to measure output voltage. 
Silent speech signals were acquired using an NI 1252A read-
out electronic on the PyCharm platform. The CNN-LSTM 
model was developed based on the PyTorch framework and 
trained on a GeForce RTX 4070 GPU. The UI interface is 
designed based on PyQt, and the mobile application is devel-
oped using App Inventor.

3 � Results and Discussion

3.1 � Design of the RT‑SSRS and the FPS

The architecture of RT-SSRS is shown in Fig. 1a. The RT-
SSRS consists of a FPS, a readout electronic, and a neural 
network. The FPS is worn on the chin and is capable of 
converting pressure variations caused by muscle movements 
into electrical signals. The readout electronic module is 
responsible for transmitting the signals. Finally, the signals 
are input into a trained neural network model, enabling pre-
cise and real-time decoding of silent speech signals.

Recent research advancements have highlighted the crit-
ical importance of microstructural engineering in enhanc-
ing the performance of flexible electronic devices. As 
systematically reviewed by Huang et al., the importance 
of microstructural engineering in flexible metamaterial 
electronics provides key design guidelines for achieving 
high-performance sensing [38]. Here, we fabricated FPS 
by combining PPS film with copper foil, nylon and poly-
imide (PI) in the structure shown in Fig. 1b. PPS film is 
used as the negative triboelectric layer, which has excel-
lent triboelectric electrical properties, elasticity, durability 
and biocompatibility, and can be customized with different 
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surface morphologies. Nylon is used as a positive tribo-
electric layer because it shows the highest output voltage 
in triboelectric electrical performance test. Copper foil is 
used as an electrode, and PI is used to encapsulate the 
entire sensor to reduce interference from sweat and human 
body potential. The materials used are low-cost and easy 
to process for mass production, and the sensor is light-
weight and comfortable to wear with little extra burden.

This study employs a simple and efficient sacrificial 
NaCl templating method for the preparation of PPS film 
(Fig. S1). First, NaCl was thoroughly mixed with Ecoflex 
00–30 material and poured into a pyramid-structured mold 
for curing. The PPS film is subsequently obtained by dis-
solving the NaCl particles and drying the material. The 
detailed steps of this preparation process are described in 
the experimental section. The PPS film can be stretched 

and twisted (Fig. S2), indicating its good mechanical 
properties. The PPS film is illustrated in Fig. 1c, which 
includes a top-view image showing a uniformly distrib-
uted pyramid structure that deforms under external forces, 
and an SEM image revealing a porous microstructure that 
helps reduce its elastic resistance. The film exhibits excel-
lent mechanical and triboelectric properties, enabling it to 
detect subtle pressure variations.

The working principle of FPS adopts the contact separation 
mode (Fig. S3). The whole cycle is divided into four stages: 
first, when the muscle squeezes the FPS, the PPS film comes 
into contact with the nylon. Owing to the different electron-
egativity of the two triboelectric layers, negative triboelectric 
charges are generated on the PPS film side, while positive 
triboelectric charges are generated on the nylon side (Stage 
1). When the muscle contracts, the two triboelectric layers 

Fig. 1   Design of the RT-SSRS and the FPS. a Overall architecture of the RT-SSRS. b Schematic representation of the structure of the FPS. c 
Top view and SEM image of the PPS film
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begin to separate, and due to the potential difference generated 
by electrostatic induction, which drives electrons to flow in 
the external circuit from the PPS film electrode to the nylon 
electrode (stage 2). Until the muscle completely contracts, 
the external force disappears, and the two triboelectric layers 
reach the maximum separation distance (stage 3). When the 
muscle starts to squeeze the FPS again, the two triboelectric 
layers come close to each other, driving the flow of electrons 
from the nylon side to the PPS film side, generating a reverse 
current (stage 4). Once the muscle completely squeezes the 
FPS, this cycle returns to stage 1, completing one cycle. It can 
be seen that the FPS is self-powered and does not require an 
external power source to generate a voltage output, which is 
one of its main advantages over other sensors.

3.2 � Electrical Characteristics of the FPS

The surface structure of FPS has a significant impact on 
its pressure response characteristics. We fabricated silicone 
films as the negative triboelectric layer with different surface 
structures using various molds, with nylon as the positive 
triboelectric layer. First, we compared the open-circuit volt-
age of FPS with flat and pyramid structures under the same 
pressure (29 N). As shown in Fig. 2a, the output voltage 
of pyramid structure (31 V) is about four times that of the 
flat structure (8 V). This result can be attributed to the fol-
lowing factors: (1) This is because the capacitance change 
in the deformation process is significantly improved due to 
the presence of the air voids and the increase in effective 
dielectric constant [39]. (2) In the structured films, the tribo-
electric charges are more easily separated and thus a larger 
dipole moment will form between the electrodes [40].

Figure 2b shows the pressure response curves of FPSs 
with different surface structures (pyramid and hemi-
sphere). The output voltage increases with pressure, as 
higher pressure deforms the surface, enlarging the con-
tact area between triboelectric layers and generating more 
charges. The curves exhibit several nearly linear intervals. 
In the 0–10 N range, the pyramid structure shows higher 
sensitivity (0.58 V N− 1) than the hemisphere structure 
(0.33 V N− 1). In the 10–35 N range, both sensitivities 
increase, with the pyramid structure (2.8 V N− 1) remain-
ing superior to the hemisphere structure (1.67 V N− 1). 
Beyond 35 N, the pyramid structure saturates due to full 

deformation, while the hemisphere structure continues to 
rise steadily owing to its higher elastic resistance.

To further investigate the effect of surface geometry, three 
pyramid-structured FPSs with different sizes and densities 
were fabricated: (1) small-size, low-density (1.5 mm height, 
3 mm width, 3 × 3 array), (2) large-size, low-density (2 mm 
height, 4 mm width, 3 × 3 array), and (3) small-size, high-
density (1.5 mm height, 3 mm width, 4 × 4 array). The small-
size, low-density structure corresponds to that in Fig. 2b. 
As shown in Fig. 2c, the size and density of the FPS affect 
both its sensitivity and pressure range. A trade-off must be 
considered for practical applications. For silent speech rec-
ognition, we selected the small-size, low-density structure, 
as it offers the highest sensitivity while maintaining a suit-
able pressure range for this scenario.

As can be seen, adjusting the shape, size, and density 
of surface structures can reduce elastic resistance and 
increase voltage output under the same pressure. However, 
the accompanying reduction in overall surface area limits 
the growth of effective contact area, resulting in only mod-
est improvements in pressure sensitivity. To overcome this 
limitation, we fabricated a porous structure based on the 
small-size, low-density pyramid design. This approach not 
only lowers elastic resistance but also increases the specific 
surface area [41], significantly enhancing pressure sensitiv-
ity. As shown in Fig. 2d, the porous pyramid exhibits mark-
edly higher sensitivity than the non-porous counterpart (1 V 
N− 1 for 0–10 N and 4.6 V N− 1 for 10–24 N), with an over-
all response range of 0–24 N, making it suitable for silent 
speech signal acquisition.

The triboelectric properties of the positive layer directly 
influence the efficiency of charge generation. Figure 2e com-
pares the output voltage of FPSs using different materials as 
the positive triboelectric layer. Nylon exhibits a significantly 
higher output voltage than other materials, due to its stronger 
tendency to lose electrons in the triboelectric series, gener-
ating more charges during contact–separation. Therefore, 
nylon was chosen as the positive triboelectric material.

In practical applications, sweat on the skin surface may 
affect the triboelectric properties of the FPS. Figure 2f shows 
the output voltage of the FPS as the amount of artificial sweat 
increases. The FPS exhibited a slight voltage drop, verify-
ing its suitability for use in high-humidity environments. In 
addition, temperature-dependent tests (Fig. S4) reveal that 
the output voltage slightly increases with rising temperature 
but remains overall stable. Since the FPS is worn in close 
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contact with the human body, the temperature variations are 
limited; within the physiological range of 23.6–42.3 °C, the 
output voltage remains stable, further demonstrating reliable 
performance under practical thermal conditions.

To further assess the long-term reliability of the FPS, a 
90-day endurance test was conducted, with output voltage 
measured at 1, 30, 60, and 90 days. The voltage remained 
stable (Fig. 2g), and after 580 contact–separation cycles, 
the output was well maintained (Fig. 2h). SEM images of 
the pyramid structures after cycling (Fig. S5) show that the 
morphology remains intact without noticeable deformation. 

Considering that the FPS is mainly used to detect jaw and 
surrounding muscle movements in silent speech recogni-
tion, which involve relatively low and intermittent pres-
sures, the pyramid structures are unlikely to experience 
significant stress, further ensuring long-term stability.

3.3 � Acquisition and Analysis of Silent Speech Signals

During actual speech, jaw movements and local muscular 
activities exert pressures on the FPS surface, driving the 

Fig. 2   Electrical characteristics of FPS. a Comparison of open-circuit voltage between pyramid and flat structures under the same pressure. b 
Pressure response of pyramid and hemisphere structures. c Pressure response of pyramid structures with different sizes and densities. d Pressure 
response of porous pyramid structure and non-porous pyramid structure. e Output voltage of FPS using different positive triboelectric materials. 
f Output voltage of FPS under different amounts of artificial sweat. g 90 days durability test. h 580 cycles stability test
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contact–separation process of the triboelectric layers and 
thereby inducing dynamic charge transfer. Specifically, jaw 
closing or local muscle contraction, corresponding to the 
separation process (Stages II–IV in Fig. S3), drive electrons 
from the PPS film electrode to the nylon electrode. If the 
PPS film electrode is defined as the positive terminal, this 
results in a negative voltage spike. In contrast, jaw opening 
or muscle relaxation, corresponding to the contact process 
(Stages IV–II in Fig. S3), induce electron transfer in the 
opposite direction, and generate a positive spike. Conse-
quently, the sequence of jaw motions is directly converted 
into a characteristic voltage waveform. The resulting volt-
age waveform accurately reflects the temporal characteristics 
of muscle movements during speech, providing a reliable 
electrical signal foundation for subsequent speech pattern 
recognition and classification.

In order to investigate the characteristics of the silent 
speech signals captured by FPS, we analyzed 30 categories 
of daily words as representative samples for analysis. To 
ensure the validity and accuracy of the subsequent analysis, 
the silent speech signals were preprocessed to preserve the 
original signal characteristics and reduce the interference 
from external factors. First, the raw signals were passed 
through a low-pass filter with a cutoff frequency of 20 Hz 
to filter out work-frequency interference and other high-fre-
quency noise. Next, the baseline was removed to eliminate 
slow drift due to environmental changes or physiological 
factors to ensure signal stability. Figure 3a–f shows the pre-
processed silent speech signals for six selected categories, 
while signals for all 30 categories are shown in Fig. S6.

It is worth noting that to achieve real-time performance 
and portability, we employed a data acquisition (DAQ) 
card to replace electrometers for signal acquisition, which 
resulted in a reduction in signal amplitude (Note S1 and Fig. 
S7). Furthermore, the output voltage waveforms acquired 
initially and after 10 h of wear exhibit high consistency with-
out noticeable deformation (Fig. S8). This demonstrates that 
the FPS can ensure stable signal acquisition and reliable 
performance during extended use.

As shown in Fig. 3g, the word “Koala” can be divided into 
multiple stages, with jaw contractions, openings, and closures 
producing characteristic positive and negative spikes. During 
Stage 1, the subject prepares to pronounce the syllable, and 
the signal remains at baseline. Stage 2, preparing /kəʊ/, shows 
a significant negative spike due to initial muscle contraction. 
Stage 3, during /kəʊ/ emission, produces prominent positive 

spikes from mouth opening and associated muscle activity. 
Stage 4, immediately after /ɑː/, exhibits a second positive 
spike before returning toward baseline. Stage 5, during the 
transition to /lə/, shows a negative spike from oral cavity 
closure. Stage 6, pronouncing /lə/, generates small positive 
spikes. Stage 7, at the end of articulation, produces small neg-
ative spikes as the mouth closes. Stage 8, after pronunciation 
completion, sees muscle activity cease and the signal return 
to baseline. This confirms that the FPS is capable of reliable 
mapping between articulation dynamics and electrical signals.

In order to further understand the silent speech signals, 
we constructed a database containing 120 samples for each 
class. We chose three shallow features, duration, spectral 
centroid and peak-to-peak value, for statistical analysis of 
the samples in the database. Figure 3h shows the ridge plot 
of the peak-to-peak value feature. It can be seen that the 
distribution differences between some categories are sig-
nificant. For example, “Banana” is predominantly distrib-
uted around 0.26 V, while “Grab” is concentrated around 
0.14 V. However, there is significant overlap in the distribu-
tion of other categories such as “Toilet” and “Zero”, which 
are predominantly distributed around 0.075 V. The same is 
true for duration and spectral centroid (Fig. S9), where the 
distributions of certain categories show some differentia-
tion, but there are also many categories with varying degrees 
of overlap between them. Therefore, classification of silent 
speech signals cannot be effectively performed by simply 
setting thresholds for these surface features.

To further investigate the similarity of silent speech sig-
nals in the database, we employed Dynamic Time Warp-
ing (DTW) distance as a metric. DTW effectively handles 
nonlinear distortions and differences in sequence length, 
making it suitable for evaluating silent speech signal simi-
larity. Taking "Apartment" and "Umbrella" as examples. As 
shown in Fig. 3i, the DTW distance between the "Apart-
ment" samples (1.47) is smaller than that between "Apart-
ment" and "Umbrella" samples (2.68), indicating higher 
similarity within the same category. We then computed 
average DTW distances across all categories (Fig. S10). 
The diagonal elements are the smallest in their respective 
rows and columns, confirming that intra-class similarity is 
higher than inter-class similarity. This demonstrates the sta-
bility of the FPS and its effectiveness in capturing distinctive 
silent speech features. However, some category pairs exhibit 
relatively low average DTW distances, with the minimum 
reaching 1.1, suggesting high similarity that could lead to 
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classification errors. These findings highlight the need for 
more advanced classification methods to further improve 
silent speech recognition performance.

3.4 � Design and Performance of the Neural Network

As analyzed above, some classes of voltage signals exhibit 
high similarity. Therefore, ensuring clear and accurate clas-
sification of different words has been one of our primary 
challenges, which is why we introduce the neural network. 
To further improve recognition performance, we developed 

a hybrid neural network combining convolutional neural net-
work (CNN) and long short-term memory (LSTM), which 
enables extraction of both local spatial features and temporal 
dynamic patterns of the signals. Instead of simply comparing 
waveform similarity, the model takes into account statistical 
indicators such as mean, variance, and power spectral den-
sity, thereby capturing deeper mappings between different 
wave forms and their corresponding vocabularies. Because 
of this approach, even if two wave forms present similar 
signal patterns, the statistical differences allow us to accu-
rately determine their respective words. For more complex 
and highly similar vocabularies, future work may require 

Fig. 3   Acquisition and analysis of silent speech signals. a-f Preprocessed waveforms of six selected silent speech signals. g Correspondence 
between silent speech signal and mouth movements, divided into eight phases for “Koala” as an example. h Ridge plot of peak-to-peak feature 
of silent speech signals. i Comparison of DTW distances between intra-class (“Apartment” and “Apartment”) and inter-class (“Apartment” and 
“Umbrella”)
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leveraging contextual information together with large lan-
guage models to address the issue.

The structure of the CNN-LSTM is shown in Fig. 4a. 
It mainly consists of three modules: the CNN block, the 
LSTM block, and the classification block. The CNN block 
serves as the front end, capturing local features within a 
short time window, such as waveform peaks, valleys, and 
slopes. The LSTM block, whose unit structure is shown in 
Fig. 4b, receives the extracted features from the CNN block 
and performs dynamic temporal modeling. Finally, the pro-
cessed features are passed to the classification block, where 
a fully connected layer maps them to the output space, and 
a softmax activation converts the results into a probability 
distribution.

The dataset is crucial to the performance of the neural 
network, and the process of creating the dataset is as fol-
lows: Take "Koala" for example, participants were asked 
to say "Koala" once every 2 s, 30 times for each group, 10 
groups in total. Then, the data were preprocessed (filtered 
and de-baselined). Finally, the overlapping sliding window 
is applied to segment the data.

To evaluate the effectiveness of the overlapping sliding 
window, we applied different step sizes to the training set 
and tested the resulting CNN–LSTM performance (Fig. 4c). 
As the overlap ratio increased, test accuracy gradually 
improved, peaking at 95.83% with a 75% overlap. However, 
further increasing the overlap to 87.5% reduced accuracy to 
94.44%. This demonstrates that overlapping windows effec-
tively increase the number of training samples and improve 
the robustness of the model. Nevertheless, overly small step 
sizes introduce redundant samples, leading to overfitting 
and higher computational costs. Based on this trade-off, we 
selected a 100-step window (75% overlap), which balances 
data augmentation and sample diversity while avoiding 
redundancy.

To validate the contribution of the LSTM module, we 
compared CNN and CNN-LSTM in classifying 30 daily 
words. As shown in Fig. 4d, both models’ validation accu-
racy curves converge rapidly, but CNN-LSTM achieves a 
higher final accuracy of 94.17% compared to 88.33% for 
CNN, demonstrating its superior performance. To further 
evaluate the models’ dependence on training set size, we 
gradually reduced the training samples to 100%, 80%, 60%, 
40%, and 20%. While accuracy declines for both models 
with fewer samples, CNN-LSTM remains more stable, main-
taining 83.06% accuracy at 20% of the training data, whereas 

CNN drops to 60.00% (Fig. 4e). The t-distributed Stochas-
tic Neighbor Embedding (t-SNE) visualization of the high-
dimensional feature space shows that CNN-LSTM achieves 
better intra-class compactness and inter-class separability 
than CNN (Figs. 4f and S11a). Finally, the confusion matrix 
of CNN-LSTM indicates an average accuracy of 95.83%, 
with 17 categories reaching 100% and 11 categories above 
91.7%, whereas CNN achieves only 90.28% on average with 
a minimum accuracy of 66.7% (Figs. 4g and S11b). These 
results consistently demonstrate that incorporating LSTM 
substantially enhances classification of silent speech signals 
acquired by the FPS.

To further evaluate the generalization capability of 
the proposed RT-SSRS, we conducted cross-individual 
experiments. A supplementary dataset comprising 10 
daily phrases (e.g., “nice to meet you,” “thank you,” 
“see you later”) was acquired from three participants. 
Representative signals are provided (Fig. S12). And the 
recognition results reveal that the system achieved an 
average cross-individual accuracy of 91.13% across all 
phrase categories, with distinct clustering of signals cor-
responding to different phrases (Fig. S13). These results 
underscore the potential of the proposed approach for 
deployment in real-world multi-user scenarios.

Although the RT-SSRS demonstrates strong perfor-
mance in individual scenarios, its cross-individual accu-
racy (91.13% for 10 daily phrases across three individuals) 
reveals the challenge of generalization. However, this result 
also demonstrates its potential for multi-user applications. 
Future work will focus on further improving the generaliza-
tion and robustness of the proposed system. On the hardware 
side, developing higher-sensitivity sensors will facilitate the 
capture of subtle biomechanical variations across different 
users. On the algorithmic side, advanced strategies such as 
transfer learning, speaker adaptive modeling, and domain 
generalization are expected to enhance cross-individual 
performance.

3.5 � Application of the RT‑SSRS

To demonstrate the practical application of the RT-SSRS in 
human–machine interaction, we implemented a prototype 
system as shown in Fig. 5a. When the user utters a com-
mand, RT-SSRS recognizes and decodes the signal in real 
time, displays the result on the interface, and transmits the 
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command to the smartphone via Bluetooth for execution, 
thereby enabling precise and contactless control. As shown 
in Fig. 5b, the computer interface displays both the real-time 
raw signals and the processed waveforms, along with the 
recognized command output. Figure 5c shows the mobile 
application interface, which performs the corresponding 
operation based on the received command. We implemented 
three representative functions: “Open camera,” “Make a 
call,” and “Open FZU.” The CNN-LSTM model achieved a 

classification accuracy of 97.22% for these commands on the 
test set, as illustrated by the confusion matrix in Fig. 5d. The 
waveform analysis in Fig. 5e demonstrates high intra-class 
consistency and clear inter-class distinction, confirming the 
system’s reliability.

A demonstration video is provided in Movie S1. As noted 
in Sect. 3.3, the use of a portable DAQ card resulted in a 
reduction of signal amplitude. Therefore, to ensure robust 
signal acquisition for demonstration and to better illustrate 

Fig. 4   Design and performance of the CNN-LSTM neural network. a Schematic diagram of the structure of the CNN-LSTM. b The internal 
structure of the LSTM unit. c Accuracy under different sliding window step sizes. d Validation accuracy curves of CNN and CNN-LSTM during 
training. e Accuracy of the CNN-LTM under different training set sizes. f t-SNE visualization of feature embeddings from the CNN-LSTM. g 
Confusion matrix of the CNN-LSTM for 30 categories of daily words
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the jaw motions involved in pronouncing words, high jaw 
movements were employed. Furthermore, as shown in 
Fig. 5f, we connected the smartphone to AR glasses, ena-
bling real-time display and interaction, which highlights the 
potential of RT-SSRS as a novel input modality for AR/VR 
applications and promotes the development of accessible and 
intelligent interaction technologies.

4 � Conclusions

In summary, this paper presents a real-time silent speech rec-
ognition system (RT-SSRS) which can acquire and decode 
silent speech signals in real time. The triboelectric nanogen-
erator (TENG)-based flexible pressure sensor (FPS), worn 
on the chin, detects subtle jaw movements during speech 

Fig. 5   Application of the RT-SSRS. a Schematic illustration of RT-SSRS in a human–machine interaction scenario. b Computer interface dis-
playing raw and processed signals along with recognition results. c Mobile application interface executing commands such as “Open camera,” 
“Make a call,” and “Open FZU.” d Confusion matrix for the three command words. e Waveforms of the three commands. f Integration with AR 
glasses for immersive interaction in AR/VR scenarios
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and converts them into electrical signals. Systematic char-
acterization and optimization revealed that the outstand-
ing performance of the FPS originates from its distinctive 
porous pyramid-structured silicone film (PPS) film, endow-
ing it with high pressure sensitivity of 1 V N− 1 for 0–10 N 
and 4.6 V N− 1 for 10–24 N. Silent speech signals of 30 
daily word categories were acquired and analyzed, reveal-
ing high similarity between classes, which demonstrates the 
necessity of using a neural network for accurate decoding. 
A hybrid deep learning framework CNN-LSTM was devel-
oped to accurately decode silent speech signals. This model 
achieving a classification accuracy of 95.83%, significantly 
outperforming the regular CNN model (90.28%). In prac-
tical human–machine interaction scenarios, the RT-SSRS 
enables precise and contactless control of smartphones 
through silent speech commands, offering a novel barrier-
free communication method for individuals with speech 
impairments. Furthermore, by interfacing with AR glasses 
via smartphone, the system demonstrating strong potential 
for broader applications in AR/VR and related domains.
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