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HIGHLIGHTS

•	 This review systematically summarizes recent advances in dynamic radiative cooling (DRC), spanning from fundamental physical 
principles to intrinsic molecular and electronic mechanisms, and further to representative material systems.

•	 This study deeply explored the innovative design of DRC technology in active response materials, passive response materials, and 
multi-stimuli response materials.

•	 The current challenges and development trends of DRC technology are comprehensively analyzed, providing reference and guidance 
for further research in this field.

ABSTRACT  As an emerging thermal management strategy, dynamic 
radiative cooling (DRC) technology enables dynamic modulation of 
spectral radiation properties under varying environmental conditions 
through the directional design of material spectral characteristics. 
However, a comprehensive review of the basic physical mechanisms of 
radiative heat transfer in DRC materials and various design principles 
involved in dynamic radiative thermal regulation is still lacking. This 
review systematically summarizes recent advances in this field, span-
ning from fundamental physical principles to intrinsic molecular and 
electronic mechanisms, and further to representative material systems 
and multi-band regulation strategies, highlighting the interdisciplinary 
research achievements and technological innovations. This work outlines the core mechanisms governing the regulation of different spectral 
bands during radiative heat transfer processes. Then, the main categories of DRC materials are systematically reviewed, including actively 
responsive structures, passively responsive structures, and multi-stimuli-responsive materials. Furthermore, the challenges faced by current 
DRC technology and future development trends are summarized and discussed, providing valuable reference and guidance for further research 
in this field. Although DRC technologies still face significant challenges in material stability, manufacturing processes, and system integration, 
the continuous advances in related areas and multifunctional materials are expected to broaden the application prospects of DRC in the future.
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1  Introduction

The over-reliance on traditional fossil fuels has not only 
accelerated resource depletion but also exacerbated green-
house gas emissions, leading to severe climate change [1, 2]. 
Temperature regulation in living and working environments 
has always been a critical aspect of human development. 
While technological advancements over the past centuries 
have introduced efficient and convenient methods for heating 
and cooling (such as gas heating and air conditioning), these 
energy-intensive devices have contributed significantly to 
the excessive consumption of fossil fuels and the associated 
greenhouse gas emissions [3, 4]. To address these urgent 
challenges, energy conservation, emission reduction, and the 
development of environmentally friendly technologies have 
become the focus in global research, resulting in the world 
facing unprecedented energy crisis and environmental pres-
sure [5]. In a pathway aligned with the IEA’s scenario for 
achieving net-zero energy sector emissions by 2050, accel-
erating energy efficiency improvements can deliver over 70% 
of the projected decline in oil demand [6].

Passive radiative cooling (PRC) technology has gar-
nered increasing attention due to its distinctive capability to 
achieve temperature reduction without external energy input, 
relying solely on radiative heat transfer [20]. This passive 
and sustainable mechanism plays a pivotal role in energy 
utilization, thermal regulation, and sustainable development. 
At typical ambient temperatures (~ 25–30 °C), the peak 
wavelength of thermal emission is consistent with the wave-
length range of the atmospheric transparent window (ATW, 
8–13 µm). This spectral overlap enables terrestrial objects 
to radiate heat directly into the cold outer deep space (~ 3 K) 
beyond earth’s atmosphere for radiative heat exchange [21]. 
As shown in Fig. 1, the evolution of PRC technology can be 
summarized by the following time points: In 1828, Arago 
published the first scientific discussion on the phenomenon 
of PRC in a publication [22]. During the 1970s and 1980s, 
researchers began to explore the practical designs for PRC. 
With the advancement of materials science, early selective 
PRC materials, including polymer and metal-based coatings, 
laying the groundwork for efficient radiative exchange within 
the ATW [23]. In 1981, Ge et al. [24] calculated the cooling 
power of three different radiative surfaces (ideal emitter, alu-
minum-coated polyvinyl fluoride, and white paint with TiO2 
particle) based on PRC technology. The calculation method 

of the radiation heat transfer between the radiator and the 
sky in the cooling system was analyzed. Since the twenty-
first century, breakthroughs in nanofabrication technology 
and optical design theory have propelled PRC technology 
into a new era. In 2013, Fan et al. [7] fabricated a multilayer 
structure of quartz/SiC/TiO2/MgF2/silver, achieving a solar 
spectrum reflectance of 96.5%, an average PRC power of 
105 W m−2, and a sub-ambient temperature reduction of 
7 °C. This breakthrough research demonstrated that PRC 
entered the passive “daytime” radiative cooling. In 2017, 
Yang et al. [9] reported a mass-producible glass–polymer 
film capable of achieving a cooling power of 93 W m−2 
under direct sunlight, further advancing the application and 
dissemination of daytime PRC technology. Nowadays, PRC 
has shown immense potential in various applications, includ-
ing energy-efficient building design [25], personal thermal 
management [26, 27], preservation of food and chemical 
products [28], thermal regulation of electronic devices [29, 
30], automotive and aerospace systems [31], and mitiga-
tion of ice melting in response to global warming [32]. The 
schematic diagram of main categories of PRC materials is 
presented in Fig. 2 to intuitively demonstrate the research 
foundations and evolution of current PRC technology.

Conventional PRC materials are usually static, whose 
spectral radiation properties remain fixed post-fabrication, 
posing limitations in adapting to dynamic environmen-
tal conditions such as diurnal and seasonal variations or 
extreme climates [33]. In the context of evolving modern 
energy technologies and thermal management strategies, 
dynamic radiative cooling (DRC) has garnered significant 
interest as an emerging approach that dynamically modu-
lates radiative characteristics to achieve self-regulated across 
varying environmental conditions (in Fig. 2) [34]. Although 
the cooling capacity of DRC technology may not be as good 
as that of traditional PRC technology, the advantage of DRC 
is its compatibility with complex environments (temperature 
differences, humidity fluctuations, and changes in solar irra-
diance) [35]. To this end, multiple regulation mechanisms 
have been proposed, including thermal response materials 
[36], electrical-response materials [37], light-response mate-
rials, humidity-responsive materials [38], as well as meta-
material [39, 40]. These technologies enable materials to 
alter their spectral selectivity in response to external stimuli, 
facilitating dynamic radiative characteristic regulation.

Recently, several comprehensive reviews on dynamic radi-
ative thermal management have been published, providing 
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insights into the development and applications of this field 
[41, 42]. However, most of these reviews do not systemati-
cally analyze the fundamental physical mechanisms underly-
ing radiative heat transfer processes or focus on the diverse 
design principles involved in dynamic radiative thermal 
management, which are critical factors influencing material 
selection and regulation capabilities. This review aims to 
systematically summarize the latest advancements in DRC 
technology, covering its fundamental physical principles, 
intrinsic regulation mechanisms, key material systems, and 
multi-band regulation strategies. The structure of this review 
is as follows: Sect. 2 provides an overview of the funda-
mental physical principles of radiative regulation, including 
radiative transfer theory and the prediction of spectral radia-
tion properties. Section 3 delves into the intrinsic regula-
tory mechanisms that affect DRC regulation, analyzing the 
application of various material systems and control strate-
gies in DRC. Section 4 focuses on recent advances in DRC 

by combining multiple regulation methods. Finally, the chal-
lenges faced by current technologies and future development 
trends are summarized and prospected, in order to provide 
reference and guidance for further research in this field.

2 � Fundamental Principles of Radiative 
Regulation

2.1 � Fundamental Physical Principles

As solar radiation traverses the Earth’s atmosphere and 
reaches the surface, it is attenuated due to scattering and 
absorption by atmospheric [43]. On a clear day, the global 
solar irradiance is about 1000 W m−2 [44]. The absorbed 
solar energy within the solar spectrum wavelength range 
(0.3–2.5 µm) is expressed as follows [45]:

Fig. 1   Timeline showing the development of radiative cooling technologies of four generations: materials design, performance improvement, 
practical application, and function expansion. “2013”: reproduced with permission [7]. Copyright 2013, American Chemical Society. “2015”: 
reproduced with permission [8]. Copyright 2015, John Wiley & Sons. “2017”: reproduced with permission [9]. Copyright 2017, AAAS. “2018”: 
reproduced with permission [10]. Copyright 2018, AAAS. “2019”: reproduced with permission [11]. Copyright 2019, AAAS. “2021”: repro-
duced with permission [12–14]. Copyright 2021, AAAS. Copyright 2021, AAAS. Copyright 2021, AAAS. “2022”: reproduced with permission 
[15, 16]. Copyright 2022, Springer Nature. Copyright 2022, National Academy of Sciences. “2024”: reproduced with permission [17–19]. Copy-
right 2024, American Chemical Society. Copyright 2024, Springer Nature. Copyright 2025, Springer Nature
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where θ denotes the angle of incidence of solar radiation, 
ε(θ, λ) represents the spectral emittance of the object at the 
incidence angle θ, and Isolar(λ) is the spectral intensity of 
solar radiation. According to the Kirchhoff’s law, under 

(1)Psolar = ∫
2.5 μm

0.3 μm

�(�, �)Isolar (�)d�
conditions of thermal equilibrium between the object and 
blackbody radiation, the absorptance of the object equals 
its emittance.

Besides solar radiation, thermal radiation is another critical 
parameter in process of solar heating and radiative cooling 
[46]. This is because all objects with a temperature greater 

Fig. 2   Schematic illustration of the main categories of radiative cooling materials, including structural, functional, dynamic regulation, and 
practical application. Taking advantage of their unique advantages in spectral selectivity and passive heat dissipation, radiative cooling materials 
exhibit broad development prospects across a wide range of fields. Their diversified evolution is deeply rooted in the interdisciplinary integration 
of physics, materials science, heat transfer, and chemistry, which collectively provide the "nutrition" for innovation and advancement in this area
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than 0 K emit radiative energy according to their temperature 
and material properties, which is the fundamental physics of 
radiative cooling [47]. The thermal radiation power emitted 
by an object is a function of its thermal emittance and its tem-
perature, described as follows:

where ε(λ, θ) is the emittance of the object at wavelength λ 
and angle θ, T is the temperature of the object, and IBB(λ, 
T) is radiative intensity from a blackbody at temperature T. 
IBB(λ, T) can be used to describe the spectral emissive power 
per unit area, per unit solid angle (Ω) for wavelength λ at 
absolute temperature T, as follows:

where k is regarded as the Boltzmann’s constant with the 
value of 1.3807 × 10–23 J K−1, h = 6.625 × 10–34 J Hz−1 is 
known as the Planck constant, and c is the velocity of light in 
vacuum with the value of 2.998 × 108 m s−1. Thermal radia-
tion had a maximum intensity at a wavelength that depended 
on the temperature of the substance. For example, the sur-
face of sun is about 5800 K and is surrounded by vacuum 
(n = 1), its emission peak is close to the middle of the visible 
spectrum (~ 0.5 μm). In contrast, the surface of the earth in 
the vicinity is 290–300 K, the earth emitted thermal radia-
tion that is mainly long wavelength infrared and invisible, 
and the earth’s peak emission appeared in the intermediate 
infrared (~ 10 μm), resulting in infrared cameras and detec-
tors for night “vision.”

In solar heating, thermal radiation emitted by the object 
tends to counterbalance the absorbed solar radiation, espe-
cially at higher temperatures. Efficient solar heating requires 
materials with high solar absorptivity and controlled thermal 
emissivity. According to the energy balance equation, the net 
heating or cooling power Pnet of an object can be expressed 
as follows [48]:

Here Pner(T) represents the net power, where a negative 
value indicates heating power and a positive value denotes 
cooling power. Patw is the absorbed atmospheric radiation 
power, and Pnon-rad represents the non-radiative heat transfer 
power. The specific calculation method has been explained in 
detail by other researches [49].

(2)Prad(T) = ∫
2�

0

dΩ cos � ∫
∞

0

�(�, �)IBB(T , �)d�

(3)IBB (�, T)=
2hc2

�5

1

ehc∕(�kBT) − 1

(4)Pnet(T) = Prad(T) − Psol − Patm(Tatm) − Pnon - rad

2.2 � Interaction of Light with Objects

Dynamic radiative thermal management, spanning from the 
solar spectrum composed of ultraviolet (UV, 0.3–0.36 µm), 
visible light (VIS, 0.36–0.78 µm), and near-infrared (NIR, 
0.78–2.5 µm) to the broadband infrared spectrum encom-
passing mid-wave infrared (MWIR, 3–8 µm) and long-wave 
infrared (LWIR, 8–13 µm, ATW band), is importance for 
the directional design of spectral radiation properties [50]. 
As illustrated in Fig. 3, the requirements for spectral radia-
tion properties vary significantly across different application 
scenarios. In spacecraft thermal protection, it is essential 
to modulate the surface emittance based on orientation to 
ensure thermal stability in space [51]. In the field of infrared 
camouflage, the thermal radiation properties of the object 
are required to match the dynamic background changes to 
achieve visible light (naked eye recognition) and infrared 
band (machine recognition) camouflage [52–54]. Infor-
mation encryption requires the ability to be directionally 
detected by the detection equipment under dynamic condi-
tions [55, 56]. In the field of building energy conservation, 
the enclosure structure needs to dynamically adjust its radia-
tion heat transfer capacity to reduce energy consumption 
[57, 58].

The focus of radiative thermal regulation is to understand 
the interaction between electromagnetic waves and object. 
Thermal radiation, an electromagnetic process driven by 
thermal vibrations and quantum transitions of charged parti-
cles within an object, represents a fundamental mechanism 
of energy transfer from the surface of an object in the form 
of photons [59, 60]. As illustrated in Fig. 4a, the interac-
tion between object and light manifests microscopically as 
absorption and scattering, and as absorption, transmission, 
and reflection on a macroscopically scale, which represent the 
macroscopic manifestations of the interaction of light with 
atoms or molecules [61]. These processes collectively dictate 
the optical properties of materials, and the radiative prop-
erties of the material can be designed by controlling these 
interactions. Various materials such as photonic crystals [62], 
multilayered films [63], nanoparticles [64–66], porous poly-
mers [67, 68], and other materials have been developed for 
the regulation of spectral radiation properties. However, their 
mechanisms for achieving exceptional reflection/absorption 
vary in principle. To elucidate the methodologies for modu-
lating radiative characteristics in detail, this review catego-
rizes such modulation into two distinct spectral domains: the 
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solar spectrum and the infrared spectrum. The modulation 
strategies are further classified into active, passive, and multi-
band coupling approaches. As shown in Fig. 4b, radiative 
thermal regulation materials exhibit distinct excitation tran-
sition mechanisms under varying energy intensities. In the 
solar band, the primary mechanisms involve electrons excita-
tion in inorganic dielectric materials, vibrations and accelera-
tion in the free electrons of metallic materials, and vibrational 
transitions in polymers. In the infrared band, the dominant 
mechanisms are molecular vibrations of chemical bonds or 
functional groups and phonon–polariton resonance within the 
Reststrahlen band of polar dielectrics [69]. By strategically 
combining these different excitation mechanisms, it is possi-
ble to achieve effective regulation of radiative characteristics 
over a broad wavelength range.

It is obvious from the definition that the design of Rsolar 
and εLWIR plays a pivotal role in achieving the desired 
radiative cooling or heating performance of materials. 
The microscopic structure of matter typically formed by 
atoms, ions, or molecules bound through chemical bonds 
or electromagnetic interactions. The absorption of spe-
cific electromagnetic waves by matter is essentially deter-
mined by its intrinsic material properties. In the solar 
band, absorption is primarily driven by electron transitions 
within molecules, with photon energies ranging from 0.49 
to 4.13 eV [70, 71]. According to the photoconductive 

effect, if the energy required to excite an electron from 
the valence band to the conduction band is less than the 
energy of the incident solar photons, the electrons absorb 
the photons, transitioning from the ground state to higher 
energy orbitals. Dielectric materials with larger bandgaps 
exhibit lower solar absorption due to their restricted elec-
tronic excitation [72, 73]. The refractive index and energy 
gap of semiconductors represent two fundamental physi-
cal aspects that characterize their optical and electronic 
properties. The energy gap determines the threshold for 
absorption of photons in semiconductors, and the refrac-
tive index in the semiconductor is a measure of its trans-
parency to incident spectral radiation [74]. A correlation 
between these two fundamental properties has significant 
bearing on the band structure of semiconductors, which 
helps to evaluate the performance of bandgap engineer-
ing to achieve optimal absorption of broad band spectral 
sources. The relationship between threshold wavelength 
and refractive index n can be expressed as follows [75]:

If energy gap is used as the standard, it can be expressed 
as [76]:

(5)
n
4

�e

= 77∕μm

(6)n
4
Eg = 96 eV

Fig. 3   Schematic and ideal spectra of DRC to a greenhouse, b human body, c rooftop, and d window
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The bandgap and refractive index of typical inorganic 
materials are summarized in Fig.  4c, including but not 
limited to BaSO4 (7.6, 1.64), Al2O3 (8.8, 1.78), TiO2 (3.0, 
2.56), SiO2 (9, 1.46), CaCO3 (6, 1.62), h-BN (5.96, 2.2), 
and ZnO (3.3, 1.96) [77–79]. Taking BaSO4 as an exam-
ple, it is often chosen as a candidate dielectric material for 
two reasons: (1) Its sufficiently large bandgap can minimize 
solar absorption, and (2) its complex crystal structure and 
optimal bond strength enable it to achieve high infrared 
emission through strong four-phonon scattering within the 
Reststrahlen bands [80]. The change of the intrinsic material 
properties will cause changes in its own spectral radiation 
properties. According to the work of Wen et al., for example, 

the dual-band regulation of amorphous cathodic electrochro-
mic oxide MO2 (M represents a specific transition metal) can 
be achieved through the combination of small polaron hop-
ping between Mn+ and M(n−1)+ sites and bipolaron hopping 
between Mn+ and M(n−2)+ sites, which can independently 
regulate the absorption in the visible and near-infrared bands 
(Fig. 4d) [81].

Another approach to control Rsolar is through Mie scat-
tering, which involves the scattering of incident solar light. 
Scattering is a phenomenon where the direction of photon 
propagation changes due to interactions with matter [82, 
83]. Mie scattering occurs particularly when the size of 
the scattering medium (e.g., spheres, infinite cylinders, or 

Fig. 4   Fundamental intrinsic properties of materials. a The bandgap and functional groups of commonly used DRC materials in the range of 
0.3–14 μm. b Summary of design strategies for representative DRC materials. c Refractive index and bandgap distribution of commonly used 
dielectric particles. d Optical density and photon energy of small polaron hopping and bipolaron hopping [81]. Copyright 2025, AIP Publishing.  
e Vibration modes of functional groups in polymers [61]. Copyright 2023, Elsevier
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other geometric shapes) is comparable to the wavelength 
of the incident light (λ), and the refractive index of the 
scattering medium (n2) differs from that of the surrounding 
medium (n1) [84]. Generally, a scatterer with a size similar 
to the wavelength of incident sunlight exhibits high Mie 
scattering efficiency (Qscat). Therefore, altering the dielec-
tric contrast and scatterer size can effectively control the 
capture and diffusion of photons. By combining multiple 
dielectric materials with specific proportions and struc-
tures [85, 86], spatial heterogeneity in dielectric distribu-
tion can be engineered to modify the propagation path of 
electromagnetic waves, thereby achieving the regulation 
of the spectral radiative characteristics [87, 88].

The absorption in the infrared band is closely related to 
the vibrational transitions of chemical bonds or functional 
groups within a material [89]. Figure 4a shows several typi-
cal vibration frequencies of chemical bonds or functional 
groups. The bending and stretching of chemical bonds 
usually occur in the wavelength range of 400–4000 cm−1 
(2.5–25 µm), such as C–O (1050–1310 cm−1, 7.6–9.5 µm) 
and C-H (700–900 cm−1, 11.1–14.3 µm) [90]. These vibra-
tional frequencies align with the photon energy of the infra-
red region, leading to selective absorption or emission of 
specific wavelengths [91]. For example, polydimethylsilox-
ane (PDMS) is a widely used material with high infrared 
emission due to its molecular bonds, such as Si–O (1019 
cm−1) and Si–CH3 (873 cm−1), which contribute to its a high 
εLWIR [92, 93]. Similarly, the presence of C–F (1234–1279 
cm−1), C–H (855–976 cm−1), and C–H2 (812–840 cm−1) 
in polymers polyvinylidene fluoride (PVDF) and polytetra-
fluoroethylene [94, 95] makes them promising for radiative 
cooling. As illustrated in Fig. 4e, six common vibrational 
modes arise due to variations in bond length and bond angle: 
two stretching vibrations (symmetric in radial direction and 
antisymmetric in radial direction) and four bending modes 
(scissoring in latitudinal direction, rocking in latitudinal 
direction, wagging in longitudinal direction, and twisting 
in longitudinal direction) [96, 97]. The degree and type of 
vibrational modes are determined by the number of atoms 
and the molecular geometry. Since vibrational transitions 
interact with electromagnetic waves through changes in 
dipole moment or polarizability, stretching vibrations gen-
erally exhibit higher intensity than bending vibrations, and 
asymmetric vibrations are stronger than symmetric vibra-
tions [98]. Additionally, the high infrared emission of these 
materials is also attributed to strong interfacial interactions. 

Interfacial interactions and hydrogen-bond interactions pro-
mote an inhomogeneous electric charge distribution within 
chemical bonds, thereby increasing the variation in dipole 
moment during molecular vibrations [99].

Another factor that determines εLWIR is the crystal struc-
ture of the material. In the infrared spectrum, the interaction 
between light and matter involves electron transitions and 
the response of free carriers [100]. Semiconductor materials 
can change their band structure through bandgap, doping, or 
defect, thereby achieving selective absorption or reflection 
of infrared spectrum. Vanadium dioxide (VO2) exemplifies 
this concept, exhibiting a phase transition between metallic 
and insulating states depending on its crystal structure. In 
its metallic phase, VO2 typically displays infrared emission, 
whereas in its insulating phase, it is known for high infrared 
transmittance, resulting in lower εLWIR. This phase change 
behavior has been widely applied in smart windows and 
optical switching materials [101, 102]. Moreover, materi-
als designed based on surface plasmon resonance effects 
hold significant potential in the infrared spectrum. Noble 
metal nanoparticles, such as gold and silver, exhibit strong 
surface plasmon resonance effects in the near-infrared range, 
leading to pronounced absorption or reflection peaks at spe-
cific wavelengths [103]. This design strategy is valuable in 
optical filters and smart windows [104]. Specific switching 
mechanisms and detailed principles will be discussed in the 
following sections, categorized by control methods.

3 � Dynamic Radiative Cooling Materials

3.1 � Classification Dynamic Radiative Thermal 
Management

At present, a variety of control methods have been devel-
oped to meet the needs of DRC, each with its own unique 
mechanisms and advantages. Thermal response materials, 
such as VO2 and GeSbTe, use temperature-induced phase 
transitions to achieve spectral regulation within specific ther-
mal thresholds, thereby enhancing or suppressing thermal 
radiation [105]. Electrical tunable materials, exemplified 
by indium tin oxide (ITO) and AZO, use external electric 
field to modulate free carrier densities, enabling dynamic 
spectral control through plasma resonance [106]. Photo- and 
humidity-sensitive materials, including polymeric liquid 
crystal (LC) and photochromic compounds, undergo rapid 
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molecular reconfiguration under external illumination or 
humidity variations, thereby altering their spectral radia-
tion properties [107]. In addition, with the development of 
metamaterials and metasurface technologies, the design of 
DRC technology has gradually diversified, achieving the 
improvement of modulation efficiency and broadening of 
spectral tunable range [108].

The internal logic of dynamic radiative thermal manage-
ment can be divided into two aspects: spatial structure and 
intrinsic material properties. As described in Sect. 2, by 
using the spatial variation of the refractive index and the 
variation of the electromagnetic properties of the material 
itself under different excitations to change the propagation 
path and mode of electromagnetic waves, thereby achieving 
adjustable reflection, absorption, and transmission of ther-
mal radiation [109], which will be discussed in the following 
chapters.

3.2 � Active Response Structure

Depending on whether energy is consumed during the regu-
lation process, dynamic radiative thermal management can 
be classified into active and passive response. The most 
prominent feature of active response is that the timing of 
activation being under the control of the manager, independ-
ent of environmental fluctuations, but at the cost of external 
energy consumption and associated low spatial efficiency. 
Active response refers to the radiative thermal regulation of 
material spectral radiation properties through external stim-
uli such as electric fields, mechanical, and magnetic fields. 
It offers advantages of rapid response times and high preci-
sion in regulation but necessitates additional energy input 
and complex control systems. The following sections will 
provide a comprehensive understanding of active response 
through a categorized discussion.

3.2.1 � Electrical Response

Electrically responsive regulation is a dynamic radiative 
thermal management for real-time adjustment of optical and 
thermal properties by altering the internal electronic distri-
bution or band structure of materials through applied voltage 
or current. This mechanism is primarily based on the elec-
trochromic effects or electrochemical doping mechanisms, 
which modulate optical constants (e.g., refractive index and 

absorption) and thermal radiation properties by controlling 
free carrier concentration or ion intercalation/deintercala-
tion. Electrochromic materials, which exhibit exceptional 
optical regulation capabilities under electrical stimulation 
(encompassing precise control over Rsolar and εLWIR, low 
driving voltages, and ultra-fast switching speeds), hold sig-
nificant promise for thermal radiation regulation [92]. DRC 
technologies based on electrochromic materials are steadily 
advancing, with key approaches including reversible elec-
trodeposited metals and conductive metal oxides [110, 111], 
conjugated conductive polymers [112, 113], and valence/
state-switching metal oxides [114, 115].

For the reversible electrodeposited metals, color switching 
is achieved through controlled electrochemical metal depo-
sition/dissolution or redox-induced optical modulation. Li 
et al. [116] employed the electrodeposition of silver nano-
particles to modulate εLWIR. As shown in Fig. 5a, due to 
the high εLWIR of the nanoscale Pt film, the device exhibits 
a high-emissivity state when no metal is electrodeposited. 
Upon application of a deposition voltage, Ag is gradually 
electrodeposited on the surface of the nanoscale Pt film, 
gradually converting the infrared absorptivity and transmit-
tance of the nanoscale Pt film to infrared reflectivity, thereby 
shifting the device to a low-emissivity state. By adjusting 
the thickness of the Pt layer, the devices achieved varying 
tunability (Fig. 5b). As depicted in Fig. 5c, when the Pt layer 
thickness is 3 nm, both the εMWIR and εLWIR increased with 
deposition time. A 15-s deposition significantly enhanced 
the broadband emittance from 0.08 to 0.83. Similarly, Sui 
et al. [117] designed a water-based flexible electrochromic 
material for building envelopes, utilizing the electrodeposi-
tion of Cu nanoparticles to regulate εLWIR.. In the absence of 
voltage, copper ions are dispersed in the electrolyte, result-
ing in high εLWIR due to the strong infrared absorption of 
the electrolyte. Upon the application of deposition voltage, 
copper ions are electrodeposited onto the Pt–graphene elec-
trode surface, transforming the device into a highly reflective 
state and thus achieving low εLWIR. This reversible electro-
deposition exhibits excellent performance, with broadband 
infrared emittance spectra confirming a thermal emittance 
variation from 7% to 92%. Zhao et al. [118] developed a 
dual-mode material capable of switching between cooling 
and heating models. As shown in Fig. 5d, reversible electro-
deposition of a silver film on transparent glass allows for the 
reflectance to switch between 89% and 17%. In the cooling 
mode, the material utilizes PRC to achieve a cooling power 
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of 20–60 W m−2 under direct solar irradiance ranging from 
560 to 970 W m−2 during summer. In the heating mode, the 
device permits approximately 70% solar transmittance and 
provides a net heating power of around 400 W m−2 under 
540 W m−2 of solar irradiance. Hsu et al. [119] fabricated 
a flexible, ultra-broadband transparent conductive electrode 
with low sheet resistance (Rs = 22.4 Ω sq−1) and high opti-
cal transmittance (TUV–VIS = 85.63%, TNIR = 87.85%, and 
TMWIR = 84.87%). As illustrated in Fig. 5e, the metal-based 
electrochromic device exhibits distinct image characteris-
tics under different cameras. Moreover, by optimizing the 
electrodeposited morphology to control surface plasmon 
resonance, the device can switch between solar heating 
mode (αsol = 0.60, εMWIR = 0.2) and radiative cooling mode 
(αsol = 0.33 and εMWIR = 0.94) (Fig. 5f). Liu et al. [120] 
demonstrated an electrically controlled infrared emittance 
modulator that can independently regulate infrared emit-
tance while maintaining high visible light transparency 
(84.7% transmittance in the 400–760 nm). The modulation 
of infrared emittance is attributed to changes in carrier con-
centration within the surface depletion layer of aluminum-
doped zinc oxide nanocrystals. The modulator exhibits high 
emittance tunability (0.51 in 3–5 μm and 0.41 in 7.5–13 μm, 
Fig. 5g), rapid response (< 600 ms), and exceptional cycling 
stability (> 104 cycles).

For the conjugated conductive polymers and valence/
state-switching metal oxides, light absorption is modu-
lated through reversible redox reactions. Wang et al. [113] 
fabricated a bioinspired film with infrared thermal radia-
tion regulation inspired by the color-changing mechanism 
of chameleon. In this design, PANI and Ce4+ mimic the 
skin receptors and pigment capsules of chameleon skin, 
respectively, achieving an emittance variation of 0.58 in 
the wavelength range of 8–14 μm. Hsu et al. [121] devel-
oped a wearable, variable-emissivity device, which is an 
electrochromic film featuring a kirigami-enabled design 
and can provide stretchability and conformal deforma-
tion across various modes (Fig. 5h). The device allows 
programmable, personalized thermal regulation through 
electronic control. Each switching cycle requires less 
than 5.58 mJ cm−2 of energy input, extending the ther-
mal comfort range by 4.9 °C, equivalent to a continuous 
power input of 33.9 W m−2. Yang et al. [122] fabricated an 
electrically stimulated thermochromic material composed 
of lithium titanium oxide integrated within a multilayer 
structure. As shown in Fig. 5i, voltage-induced transitions 

between the semiconductor and metallic phases of lithium 
titanium oxide enable switching between high reflection 
and high absorption states, with ΔRsol and ΔεMWIR being 
74% and 0.68, respectively (Fig. 5j).

3.2.2 � Mechanical Response

Mechanically driven regulation is a dynamic approach that 
utilizes mechanical forces as external stimuli to alter the 
internal structure, microscopic arrangement, or geometric 
shape of materials, thereby changing its scattering effi-
ciency to optical and thermal radiation properties [123–125]. 
Mechanical stimuli, such as flipping, rotation, compression, 
and stretching, are among the most widely employed meth-
ods for manipulating material states, which mainly includ-
ing elastic materials, film materials, and Janus materials. 
For instance, in thin film materials, mechanical bending 
can modify surface morphology, thereby adjusting spectral 
radiation properties. Elastic materials, when subjected to 
mechanical forces, experience changes in molecular spacing 
or alignment, leading to alterations in their spectral radia-
tion properties [126, 127]. Similarly, certain nanomaterials 
exhibit lattice changes under mechanical stress, which, in 
turn, affects their radiative properties. Moreover, mechanical 
deformation materials, such as wrinkled films and micro/
nanostructured surfaces, undergo geometric reconfiguration 
in response to mechanical forces, facilitating dynamic tun-
ing of their optical behavior. For example, the stretching of 
wrinkled films induces surface flattening, thereby reducing 
surface roughness and consequently modifying light absorp-
tion characteristics.

Feng et al. [128, 129] designed and fabricated a mecha-
nochromic, shape-programmable, and self-healing cho-
lesteric LC elastomer. Through mechanical stretching, the 
circularly polarized reflection of the LC elastomer can be 
dynamically and reversibly tuned across the entire vis-
ible spectrum (Fig. 6a). Choi et al. [130] introduced chiral 
photonic elastomers with simultaneous multicolor control. 
Electrical stretching of multimodular engineered chiral pho-
tonic elastomers on dielectric elastomer actuators can simul-
taneously achieve multicolor modification of chiral pho-
tonic elastomers (Fig. 6b). Jiang et al. [131] demonstrated 
ordered, crack-free surface wrinkles on a PDMS/PVA elas-
tomer substrate through uniaxial stretching and releasing. 
This approach achieved a broad transmittance modulation 
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range (from 6 to 91% in the visible spectrum, Fig. 6c) and a 
long switching cycle exceeding 2000 repetitions. Deng et al. 
[132] developed an electrically controlled polymer-dispersed 
LC smart window with PRC properties by incorporating 
mid-infrared emissive monomers into the conventional LC 
matrix. The PRC efficiency could be further modulated by 
adjusting the content of the infrared emissive component, 
film thickness, and microstructural morphology. Dynamic 
camouflage mechanisms are also observed in nature, where 

organisms alter their pore distribution in response to envi-
ronmental stimuli. Inspired by the dynamic skin of chame-
leons, which achieve color change by adjusting the size and 
arrangement of guanine crystals [133]. Kim et al. [126] uti-
lized LC elastomers to program pore structure distribution 
and size. This innovation enables pixelated color switching 
across a broad wavelength range from ultraviolet to near-
infrared. As shown in Fig. 6d, e, Chen et al. [134] inspired by 
the dynamic skin of squid, developed a multilayer structure 

Fig. 5   Electrical response DRC materials. a Schematic demonstration of the Pt film-based device and  b the control capability of the electro-
chromic system under different Pt layer thicknesses [116]. Copyright 2020, AAAS. c Infrared reflectance spectra of the 3 nm Pt/BaF2 substrate 
before and after Ag electrodeposition (15 s) in an RSE three-electrode system [116]. Copyright 2020, AAAS. d Schematic demonstration and 
photos of the dynamic glazing panel in heating and cooling modes, respectively [118]. Copyright 2022, Elsevier. e Images and f spectra of 
device prepared by Hsu at the cooling and heating states [119]. Copyright 2021, ACS Publications. g Spectra of transparent dynamic infrared 
emissivity regulators at various applied voltages [120]. Copyright 2023, Springer Nature. h Thermal images and photos of the kirigami-enabled 
electrochromic wearable device [121]. Copyright 2023, National Academy of Sciences. i Crystal structures, photograph, and j spectral character-
istic of the Li4Ti5O12- and Li7Ti5O12-based broadband electrochromic material [122]. Copyright 2018, John Wiley & Sons
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that utilizes a mechanical–optical coupling mechanism to 
achieve synchronous solar and thermal radiation regula-
tion. This system achieved a maximum solar modulation 
rate of 0.72 and a thermal modulation rate of 0.3. As shown 
in Fig. 6f, Leung et al. [135] demonstrated a dynamic opti-
cal regulation system where mechanical stretching induces 
distributed microcracks on the film surface, exposing the 
substrate and resulting in a change in infrared emittance.

Efficiently integrating both cooling and heating modes 
within a single material presents significant challenges. 
Janus materials offer a promising solution to address this 
issue [136, 137]. The term “Janus” originates from the 
Roman god with two faces, symbolizing the ability to look 
both into the past and the future. Inspired by this duality, 
researchers have developed various Janus materials with 
distinct properties [138, 139]. Among them, the double-
layer design is particularly suitable for all season thermal 
management due to its simpler manufacturing process 
[140]. The independence of the two components in Janus 
materials also enhances their tunability and control capa-
bilities. Drawing inspiration from louver, some studies use 
the open/closed states of blade structures to regulate spec-
tral characteristics [141, 142]. For example, Yang et al. 
[143] combined selective PRC materials with solar heating 
materials using adjustable blades. As shown in Fig. 6g, by 
rotating the blades, the system can switch between radia-
tive cooling, solar heating, and natural daylighting. Simi-
larly, as illustrated in Fig. 6h, Xiao et al. [144] utilized 
the thermal expansion of phase change materials (PCM) 
to drive the motion of blinds, achieving reversible cycling 
within a temperature range of less than 3 °C. When closed, 
the black selective absorbing blinds generate significant 
heat, while when opened, they reveal a white infrared 
emitting surface that facilitates heat dissipation (Fig. 6i). 
Cui et al. [145] demonstrated a Janus dual-mode textile 
capable of providing both passive radiative heating and 
cooling without external energy input. As shown in Fig. 6j, 
this dual-mode textile consists of a bilayer emitter embed-
ded within a nanoPE layer. When the low-emittance layer 
faces outward, the textile functions as a heating surface, 
while reversing the orientation exposes the high emittance 
layer, enabling PRC. Shi et al. [146] developed a dual-
mode structure by designing a hierarchical porous PVDF 
film modified with MXene nanosheets using an inverse 
phase method, which also can be flipped to adapt to 
dynamic cooling and heating scenarios (Fig. 6k). Hsu et al. 

[147] introduced a dual-mode device with electrostatically 
controlled thermal contact conductance. As illustrated in 
Fig. 6l, the cooling side employs a silver coating to reflect 
sunlight while using PDMS to maintain uniform emit-
tance, thereby maximizing radiative cooling. Conversely, 
the heating side features a dark copper/zinc coating that 
absorbs solar energy and minimizes radiative loss.

3.2.3 � Magnetic Response

Magnetically driven regulation utilizes external magnetic 
fields to alter the alignment or magnetization state of mag-
netic materials, thereby influencing their optical and ther-
mal radiation properties (e.g., transmission, diffraction, 
polarization, and plasmonic properties). This approach is 
grounded in principles such as the magneto-optical effect, 
magnetically induced phase transitions, or magnetic field-
induced microstructural changes [148]. The primary advan-
tages of magnetic regulation lie in its non-contact and high 
efficiency, offering significant potential for applications in 
magneto-optical devices, magnetic sensors, and smart win-
dows [149].

At present, the radiative thermal regulation based on mag-
netic response is mainly focused on the visible spectrum, 
and there is relatively little research on the coupling with the 
MWIR. As a typical magnetically controlled optical regula-
tion system, photonic crystal structures constructed from 
1D magnetic arrays on the visible light wavelength scale 
have garnered extensive research attention. For instance, 
Yang et al. [150] developed a magnetically tunable smart 
optical material that exhibits rapid and high-contrast optical 
switching. As shown in Fig. 7a, the system combines the 
large shape anisotropy of the 1D structure with the super-
paramagnetic properties of Fe3O4 nanoparticles to achieve a 
visible light modulation of 60%. Guan et al. [151] achieved 
dynamic optical regulation by altering the lattice spacing 
of these arrays. As shown in Fig. 7b, the reflection spectra 
of Fe3O4@PVP@poly(HEA-co-AA) PNCs vary with pH, 
demonstrating their sensitivity to environmental changes. 
Wondraczek et al. [152] demonstrated that loading circulat-
ing fluid with magnetic nanoparticles enables active shading 
and solar energy harvesting. As shown in Fig. 7d, the optical 
properties of the fluid can be remotely controlled through 
a particle collector-suspender device, achieving up to 45% 
modulation of solar radiation. Nematic LC (e.g., 5CB and 
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8CB) can orient carbon nanotubes in an ordered structure 
arrangement under the action of magnetic or electric fields 
[153]. Li et al. [154] constructed a highly anisotropic supra-
molecular LC composite by using halloysite nanotubes as a 
doping agent (Fig. 7e). Through the in situ grown superpara-
magnetic nanoparticles on the halloysite nanotube surfaces, 
this system achieves solar modulation of up to 75%. Yin 
et al. [155] designed an anti-counterfeiting label using LC 
composed of Fe3O4@SiO2 nanorods with different aspect 

ratios. These predesigned patterns exhibit distinct optical 
polarizations and produce a contrasting image under linearly 
polarized light (Fig. 7f). When the LC is aligned at an angle 
to the orthogonal polarizers, light passes through the system. 
In contrast, when the LC is parallel to the direction of either 
the linear polarizer (P) or the analyzer (A), the light is effec-
tively blocked. Huang et al. [156] designed and fabricated a 
2D inorganic LC functional material based on vermiculite. 
As shown in Fig. 7g, h, the material exhibits gradient color 

Fig. 6   Mechanical response DRC materials. a Schematic illustration (top) and photographs (bottom) of the mechanochromism LC elastomer 
[128, 129].  Copyright 2022, John Wiley & Sons. Copyright 2025, John Wiley & Sons. b Invisible chameleon photonic e-skin control with mul-
ticolored change [130]. Copyright 2023, John Wiley & Sons. c A large size PVA/PDMS bilayer film with surface wrinkles for smart windows 
[131]. Copyright 2018, John Wiley & Sons. d Thickness and e spectral characteristic of the styrene ethylene butylene styrene Ag film with dif-
ferent strain states [134]. Copyright 2024, Royal Society of Chemistry. f Schematic of the mechanical actuation of the composite with different 
strains [135]. Copyright, 2019, Springer Nature. g Schematic and spectral characteristic of the Hierarchical-Morphology Metal/Polymer Het-
erostructure [143]. Copyright 2022, ACS Publications. h Schematic and i emittance of the two surfaces of the adaptive switch [144]. Copyright 
2024, Elsevier. j Layered structure of the dual-mode textile [145]. Copyright 2017, AAAS. k Schematic of dual-mode film at heating (left) and 
cooling (right) mode [146]. Copyright 2023, ACS Publications. l Absorptance/emittance of dual-mode material prepared by Hsu [147]. Copy-
right 2020, Springer Nature
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changes in response to magnetic field direction variations.  
The morphology, materials, key properties, and regulation 
ability of  active response structure are presented in Table 1.

3.3 � Passive Response Structure

Passive response of dynamic radiative thermal management 
refers to the mechanisms uses the intrinsic material proper-
ties or their presentation forms to achieve self-adaptation 
with changes in ambient temperature, humidity, etc. Passive 
response does not require additional energy input and has 
a simple structure and low cost, but the response speed is 
relatively slow, and the regulation accuracy is limited. For 
instance, PCM can undergo structural transitions in response 
to temperature fluctuations, thereby achieving regulation of 

PRC efficiency. With the growing demand for dynamic con-
trol over spectral radiative characteristics, various passive 
regulation strategies have emerged. Among these, tempera-
ture-responsive passive response has been widely promoted 
due to its direct use of temperature changes to dynamically 
adjust spectral radiation properties, which can be seamlessly 
integrated with thermal management systems. This section 
provides an overview of existing passive DRC technology, 
with a particular emphasis on thermal response.

3.3.1 � Thermal Response

Thermally driven response is a dynamic regulation method 
that uses temperature variations as external stimuli to induce 
changes in the internal structure, phase state, or chemical 

Fig. 7   Magnetic response DRC materials. a Photos and transmission spectra of smart window materials with and without magnetic field [150].  
Copyright 2020, ACS Publications. b Schematic illustration (left) and dark-field optical microscopy images (right) of pH-responsive photonic 
nanochains [151]. Copyright 2018, ACS Publications. c Photos of suspended particle device with and without charged fluid [152]. Copyright 
2017, John Wiley & Sons. d Schematic illustration of the Nematic LC smart window [154]. Copyright 2023, American Chemical Society. e 
Polarized optical microscopy images with polarization-modulated pattern before and after shifting the direction of the transmission axis [155]. 
Copyright 2014, ACS Publications. f, g Color changes of color-tunable optical device with various magnetic fields and strain [156]. Copyright 
2022, John Wiley & Sons
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properties of materials, thereby achieving dynamic regula-
tion of its optical and thermal radiation characteristics [158]. 
For instance, elevated temperatures may trigger phase transi-
tions, leading to significant changes in absorption or reflec-
tion within specific wavelength regions, or induce thermal 

expansion effects that modify the material’s microstructure. 
Thermal-responsive materials can be categorized into two 
primary mechanisms: One involves direct modifications to 
the intrinsic material properties, while the other relies on 
temperature-driven alterations of the dielectric environment. 

Table 1   Summary of active response

Category 
Structures or 

strategies  
Morphology Main Materials Key properties Regulation ability Refs. 

Electrical 

response 

Reversible 

electrodeposit

ed metals and 

conductive 

metal oxides 

Ag layer deposited at 

the counter electrode 

to replace the Cu2
+

ions as the mediator 

layer 

ε2.5-25=0.75 at 0 V 

ε2.5-25=0.27 at -2.5 V 

Δε2.5-25=0.48, ΔεMWIR=0.53, 

ΔεLWIR=0.48 

[111] 

Nanoscopic Pt film 

based reversible Ag 

electrodeposition 

devices 

>350 cycles 

Stable time>20 min 

ΔεMWIR=0.77, ΔεLWIR=0.71 

[116]

Reversible 

electrodeposition of a 

silver film on a 

transparent glass 

Rsol=89% at 2.5 V 

Tsol=70% at 0 V 

ΔRsol=72% 

[118]

Aluminum-doped zinc 

oxide nanocrystals 

Tvis=84.7% 

Cycle>104

Δε3-5 μm=0.51, Δε7-13 μm=0.41 

[120]

Graphene-based ultra-

wideband transparent 

conducting electrode  

Rs=22.4Ω/sq 

TUV−vis=85.63% 

Tnear‑IR=87.85% 

Tmid‑IR=84.87% 

Δεmid-IR=0.82 

[119]

NiHPO4·3H2O/ITO/P

ET 

Switching time<10s 

Specifc capacity of 

47.8 mAh/g at 0.4 A/g 

ΔT500nm=76.7% 

[157]

Conjugated 

conductive 

polymers Ionically conductive 

electrolyte-filled 

porous cellulose layer. 

ε10 μm=0.54 at 1.5 V 

ε10 μm=0.77 at -1.5 V 

Δε10 μm=0.23 

[112]

Polyaniline (PANI) 

and cerium ion 
Voltage: 0.75-0.45V 

Δε8-14=0.58, Δε2.5-25=0.49

[113]

Electrodeposited 

PANI on an Au-

sputtered nanoporous 

nylon membrane 

ε2.5-16.67=0.65 at 0.4 V 

ε2.5-16.67=0.38 at -0.1 V 

ΔεI2.5-16.67=0.34 

[121]
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Table 1   (continued)

Valance/State 

change metal 

oxides ITO/SiO2/ITO F-P 

cavity 

Tvis=79% 

Tsol=75% 

Δɛ2.5-25μm=0.42, Δɛ8-14 μm=0.53 

[100]

Li4Ti5O12 ΔRsol=74% 

Δɛ0.4-2.5µm=0.78, ΔɛMWIR=0.68, 

ΔɛLWIR=0.30 

[122]

WO3 film with Cu 

nanocluster film. 
Response time=12.6 s 

Δαmax=88% 

 [115]

Mechanica

l 

response 

Liquid 

crystalline 

elastomers 
Chiral photonic 

elastomers 

Elastic moduli: 0.96-

9.51 MPa 

Δλc=183 nm 

[130]

E7/CHMA/HFMA 
ε8-14 μm=0.926 

cycles>100 

ΔTsol=56.5%, ΔTlum=48.5% 

[132]

Janus 

structure 

Cu/Zn+PI 

film+Ag+PDMS 

Heating: ΔR0.3-

2.0=6.6% 

ɛLWIR=14.2% 

Cooling: ΔR0.3-

2.0=97.3% 

ɛLWIR=94.1% 

ΔR0.3-2.0=90.7%, ΔɛLWIR=79.9% 

[147]

MXene/PVDF 

Cooling: Rsol=96.7% 

ɛLWIR=0.96 

Heating: Rsol =24.3% 

ɛLWIR=0.12 

ΔRsol=72.4%, ΔɛLWIR=0.85 

[146]

PE/SiO2+MB-PP+Pe-

g-MAH+Cu-Zn 

Cooling: Rsol=97% 

ɛLWIR=0.82 

Heating: Rsol 9% 

ɛLWIR=0.06 

ΔRsol=88%, ΔɛLWIR=0.76 

[143]

PVDF/PCM/solar-

heating film 

Cooling: Rsol=92% 

ɛLWIR=0.81 

Heating: Rsol=10% 

ɛLWIR=0.01 

ΔRsol=82%, ΔɛLWIR=0.8 

[141]

Black chrome-coated 

aluminum/PCM/BaS

O4

Cooling: R0.26-2.5=95% 

ɛ7-14=0.88 

Heating: R0.26-2.5=4% 

ɛ7-14=0.3 

ΔR0.26-2.5=91%, Δɛ7-14=0.58 

[144]

Category 
Structures or 

strategies  
Morphology Main Materials Key properties Regulation ability Refs. 
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The implementation of the first method mainly relies on 
thermochromic materials or thermally responsive nanoma-
terials. Thermochromic materials, such as VO2, LC poly-
mers, and thermosensitive dyes, undergo phase transitions 
or molecular rearrangements within defined temperature 
ranges, thereby modulating their radiative characteristics. 
Similarly, LC polymers exhibit changes in molecular order-
ing at specific temperatures, which directly affect their trans-
parency or scattering behavior. On the other hand, materi-
als with thermal expansion/contraction mechanism (such as 
thermal-responsive hydrogels and shape memory polymers) 
undergo volume or morphology changes with temperature, 
thereby modulating their spectral radiation properties. For 
example, hydrogels contract upon dehydration at elevated 
temperatures, leading to microstructural alterations that 
impact their scattering or absorption properties.

3.3.1.1  VO2  VO2 is renowned for its reversible tempera-
ture-dependent dielectric constants, exhibiting significant 
disparities between their metallic and insulating states. At 
a relatively moderate phase transition temperature (68 °C), 

rutile VO2 undergoes a reversible metal–insulator transition 
to monoclinic VO2. These optical properties transition has 
made VO2 an ideal thermochromic material for smart win-
dow [159, 160]. VO2-based material designs are typically 
categorized into thin films, metamaterials, and core–shell 
structures [161]. Long et al. [13] fabricated a PMMA-based 
thermochromic smart window incorporating tungsten-doped 
VO2 (Fig. 8a). As shown in Fig. 8b, by constructing a Fabry–
Perot (F-P) resonator, the smart window achieved a ΔɛLWIR 
of 0.4 and an ΔRsol of 9.3% under varying temperature con-
ditions. In addition, Long et  al. [162] further modulated 
the F-P resonator’s broadband emissivity by adjusting the 
porosity of the VO2 layer to accommodate diverse climate 
regions’ energy-saving needs (Fig. 8c). Compared to dense 
VO2, the optimized porous VO2 samples exhibit enhanced 
LWIR emittance contrast (ΔεLwɪʀ ≥ 0.4) while maintaining a 
high average visible transmittance (Tvis = 41%).

For opaque components, thermal regulation requires 
materials that reflect heat at low temperatures to prevent 
heat loss and emit heat at high temperatures for cooling. 
This desired behavior is contrary to the intrinsic phase tran-
sition properties of VO2 [41]. Pei et al. [163] developed a 

Table 1   (continued)

NanoPE/Carbon/Copp

er/NanoPE 

Cooling: ɛ2-18=0.85 

Heating: ɛ2-18=0.3 

Δɛ2-18=0.59 

[145]

Shape 

deformation 

PVA/CS/HEC/PVA&

CS/PDMS 

Off: Tvis=6% 

On: Tvis=91% 

Cycles>2000 

ΔTvis=85% 

[131]

SEBS/Al2O3 layer/Ag 

layer/Al2O3 layer 

Strain 0: Rsol=97% 

TLWIR=0.07

Strain 200%:

Rsol=25% 

TLWIR=0.37 

ΔRsol=72%, ΔTLWIR=0.37 

[134]

Infrared-transparent 

polymer matrix/ 

overlaid array of 

infrared-reflecting 

metal domains 

Strain 0 R6-16=100% 

T6-16=0% 

Strain 100% R6-

16=53% 

T6-16=39% 

Cycle>1000 

ΔR6-16=47% 

[135]

Magnetical

ly 

Responsiv

e 

Shape 

anisotropy 

Fe3O4@SiO2
On: T0.48-0.78=85.6% 

Off: T0.48-0.78=27% 

ΔT0.48-0.78=58.6% 

[150]

Category 
Structures or 

strategies  
Morphology Main Materials Key properties Regulation ability Refs. 
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self-adaptive absorber/emitter for PT and PRC with strong 
solar absorption and switchable emission within the ATW 
band (Fig. 8d). Another application of VO2 involves creat-
ing F-P resonators with an inverse functionality. At high 
temperatures, a metallic VO2 top mirror forms a resonator 
with high emittance. At low temperatures, VO2 becomes 
transparent, transforming the device into a low-emittance, 
high-reflectance surface [164]. The phase transition tem-
perature can be finely tuned to ambient levels by varying 
tungsten (W) doping concentrations [165]. Using this prin-
ciple, Tang et al. [12] developed a temperature-adaptive 
DRC radiative cooling using the MIT of WxV1−xO2. By 
adjusting the composition (x ≈ 1.5%), the transition tem-
perature is tuned to 22 °C. As shown in Fig. 8e, dynamic 
thermal radiation regulation can be achieved by embedding 
a patterned WxV1−xO2 2D array of F-P resonators in a BaF2 
dielectric layer on an Ag film. Figure 8f illustrates that the 

temperature-adaptive DRC achieves a solar absorptivity of 
25% while the εLWIR increases from 0.20 in the insulating 
state to 0.90 in the metallic state. Similarly, Li et al. [166] 
designed a covering structure composed of a PE layer, a 
periodic array of WxV1−xO2 blocks, an Al bottom layer, and 
a PET substrate (Fig. 8g). This covering, fabricated using 
roll-to-roll manufacturing and recyclable materials, exhibits 
significant emittance variation between heating and cooling 
modes while maintaining nearly constant solar absorptance. 
As shown in Fig. 8h, i, the PEAC system can switch ɛLWIR 
from 0.25 to 0.85.

VO2-based core–shell nanostructures can be categorized 
into bilayer and trilayer architectures, where VO2 is encap-
sulated within a dielectric shell (e.g., SiO2, TiO2, and Al2O3) 
or a metallic shell (e.g., Au and Ag) [167]. Xie et al. [168] 
investigated the impact of the shell’s optical constants and 
thickness on VO2’s light transmittance and solar regulation 

Fig. 8   VO2-based thermal response DRC materials. a Schematic structure and b photos of the smart window [13].  Copyright 2021, AAAS. c 
Three-dimensional schematic demonstrates the operation of VO2/ZnSe/ITO/Glass RCRT windowpane [162]. Copyright 2024, De Gruyter Brill. 
d Photos and multilayered structure of the spectrally self-adaptive absorber/emitter [163]. Copyright 2022, National Academy of Sciences. e 
Structural schematics and f spectral characteristics of the temperature-adaptive radiative coating [12]. Copyright 2021, AAAS. g Roll-to-roll 
printing process, h solar absorption and thermal emissivity, and i sky-window emissivity of the printable, emissivity-adaptive, and albedo-opti-
mized covering [166]. Copyright 2023, Elsevier. j Schematic procedure and reflectance spectra of the SiO2/TiO2/VO2 coatings [170]. Copyright 
2018, John Wiley & Sons
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using effective medium theory combined with the transfer 
matrix method. Wu et al. [169] proposed an thermal control 
coating based on CaF2/VO2 core–shell microspheres. This 
coating exhibits a reversible increase in emittance from 0.47 
at 30 °C to 0.83 at 90 °C. Yao et al. [170] synthesized SiO2/
TiO2/VO2 trilayer hollow nanospheres and developed mul-
tifunctional coatings based on this structure. As shown in 
Fig. 8j, the coating displays exceptional optical performance 
with a Tvis of 74% and a ΔTsol of 12%.

3.3.1.2  Thermochromic Materials  PRC technology is 
typically achieved using white materials with high Rsolar 
to maximize cooling efficiency. However, their broadband 
reflectance in the visible spectrum limits practical applica-
tions. For instance, white coatings may be esthetically or 
functionally unsuitable for buildings or other structures, 
and their high reflectance poses challenges in adapting to 
dynamic environments [171]. To address these limitations, 
researchers have developed colored PRC materials [172]. 
Thermochromic microcapsules, a key component of colored 
PRC materials, consist of a shell material and a core com-
prising organic dyes, color developers, and solvents. At 
lower temperatures, the thermochromic dye accepts elec-
trons from the color developer, displaying a specific color. 
As the temperature rises, the solvent mixture gradually 
melts, dissolving the color developer and separating it from 
the dye [173, 174]. As a result, the color of the microcap-
sule fades. In colored PRC materials, the VIS spectrum is 
selectively absorbed to present the desired color, while other 
wavelengths are reflected [175, 176].

Dong et al. [177], inspired by the temperature adapt-
ability of Namibian chameleons, combined biomimetic 
design with radiative thermal regulation and pioneered 
a novel approach integrating temperature-adaptive solar 
absorption with PRC technology (Fig. 9a). The temper-
ature-adaptive PRC coating they designed and fabricated 
achieves a visible light modulation capacity of 41% while 
maintaining a 93% emittance within the LWIR. Wang et al. 
[178] thermochromic materials into PRC coatings, pro-
ducing adaptive and colorful solar heating and PRC coat-
ings (as shown in Fig. 9b). This method allows for tunable 
phase change temperatures and a wide range of colors, 
enhancing the versatility of the coating. Yin et al. [179] 
proposed a colored temperature-adaptive cloak. As illus-
trated in Fig. 9c, the cloak consists of a color functional 
top layer constructed of thermochromic microcapsules and 
fluorescent dyes and a PRC bottom layer. The color top 
layer is responsible for color display by reflecting light in 

the desired color in the visible light wavelength range and 
has controllable solar reflection in response to temperature 
fluctuations. Similarly, Son et al. [180] developed a dual-
layer material where the bottom layer comprises PVDF 
and Al2O3 particles to reflect maximum sunlight, while 
the top layer contains thermochromic pigments that dis-
play different colors depending on temperature. Ma et al. 
[181] developed a thermochromic conductive fiber with 
a coaxial structure consisting of a conductive core and a 
thermochromic outer shell. As shown in Fig. 9d, compared 
to commercially available colored textiles, the TC fiber-
based fabric exhibits consistent color in cold environments 
but transitions to a white appearance in hot conditions, 
facilitating adaptive thermal management.

3.3.1.3  Hydrogels  Hydrogels represent another extensively 
studied class of thermal response materials for regulating 
spectral characteristics [188, 189]. Hydrogel polymers are 
dispersed in water molecules below the critical temperature 
and generate high solar transmittance. Conversely, when 
the temperature exceeds the critical temperature, the hydro-
gen bonds within the hydrogel break, causing the polymers 
to become hydrophobic. This transition induces polymer 
aggregation and the formation of polymer clusters, leading 
to phase separation and strong internal scattering, which 
significantly reduces solar transmittance. Recent studies 
have integrated hydrogels with PRC materials that exhibit 
consistently high εLWIR, such as PVDF, PDMS, and PMMA. 
This integration has expanded the functional capabilities of 
hydrogel-based smart windows, enhancing their potential 
for dynamic radiative thermal management.

Long et  al. [182] developed a thermally responsive 
smart window by trapping thermochromic the poly(N-
isopropylacrylamide) (PNIPAm) hydrogel-derived liquid 
within glass. As illustrated in Fig. 9e, the material exhib-
its remarkable thermally responsive optical properties, 
including 90% light transmittance and 68.1% solar modu-
lation. This results in a significant transparency difference 
around the critical solution temperature, making it ideal for 
dynamic radiative thermal management. Wu et al. [183] 
designed a sandwich-structured adaptive film composed 
of PNIPAm hydrogel and a PVDF film. This film dem-
onstrates significant visible light reflection/transmission 
modulation (ΔRvis = 70.0% and ΔTvis = 86.3%) and a high 
εLWIR (0.96). As shown in Fig. 9f, outdoor tests reveal dra-
matic changes in optical transparency with temperature 
fluctuations. At low temperatures, the view through the 
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film remains clear, while at high temperatures, the view 
becomes obscured, offering privacy and thermal regula-
tion. Zhao et al. [184] proposed a temperature-responsive 
smart window by introducing hydrogels that modulate opti-
cal properties in response to thermal stimuli. As shown in 
Fig. 9g, this window exhibits a switchable solar transmit-
tance that varies from 0% (hot state) to 78% (cool state) 
across the solar spectrum, enabling dynamic solar energy 
regulation. Fang et al. [185] introduced a pNIPAm/PET/
Cr sandwich-structured thermal homeostasis. As depicted 
in Fig. 9h, the total solar transmittance of the pNIPAm 

hydrogel decreases from 73.1% to 17.9% across the critical 
solution temperature, and with a ΔTsolar of 55.2%. Long 
et al. [186] developed a tunable emittance thermochromic 
smart window with a Low-E/glass/PE/HPC/PE structure 
that can simultaneously regulating solar transmission and 
thermal radiation. As shown in Fig. 9i, j, this smart window 
demonstrates a ΔTlum of 71.6% and 50.3% ΔTsol at room 
temperature. By reversing the window panel, the window 
achieves high εLWIR (0.95) in summer for efficient heat dis-
sipation and low εLWIR (0.1) in winter to retain indoor heat.

Fig. 9   Thermal response DRC materials based on thermochromic materials. a Temperature-adaptive radiative cooling coating inspired by 
Namibian chameleon [177].  Copyright 2023, ACS Publications. b PRC coating with thermochromic materials at different temperatures [178]. 
Copyright 2022, Elsevier. c Measured reflectivity of dual-mode colored temperature-adaptive cloak [179]. Copyright 2024, John Wiley & Sons. 
d Spectral characteristics and morphology of the thermochromic conductive fiber [181]. Copyright 2023, ACS Publications. e Structure and 
optical photos of smart window at different temperatures [182]. Copyright 2020, Elsevier. f Optical photos of the PVDF@PNIPAm film at 20 °C 
and 40 °C [183]. Copyright 2020, Royal Society of Chemistry. g The structure and sunlight transportation of the proposed thermal-responsive 
smart window [184]. Copyright 2025, Elsevier. h Comparison of solar transmittance before and after phase transition of pNIPAm hydrogel 
[185]. Copyright 2021, ACS Publications. i Working principle and j optical photo of tunable emissivity thermochromic smart window at differ-
ent temperatures [186]. Copyright 2021, Elsevier. k Transmittance and temperature of paraffin at different temperatures and phases [187]. Copy-
right 2022, Elsevier
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Similar to the function of hydrogel, another approach 
to modulate radiative properties in the visible wavelength 
range involves using solid–liquid PCM [190, 191], whose 
optical characteristics exhibit significant changes near 
their phase change temperature [192, 193]. This property 
enables efficient thermal regulation across different tem-
perature conditions. Su et al. [187] investigated the tem-
perature-dependent radiative properties of paraffin wax, a 
commonly used PCM. As illustrated in Fig. 9k, paraffin 
exhibits distinct emittance changes between its solid and 
liquid states, resulting in a ΔT of 85% in the 0.19–1.1 μm 
range and 41.1% in the 8–13 μm range.

3.3.2 � Photodriven Response

The primary factor influencing thermally driven regu-
lation is the ambient temperature. Beyond temperature 
responsiveness, light intensity can also serve as a stim-
ulus for modulation [194]. Photodriven response is a 
dynamic approach that utilizes light to trigger structural 
or chemical state changes in materials. Photochromic 
materials undergo molecular isomerization or chemical 
transformations under illumination at specific wave-
lengths, leading to alterations in their optical character-
istics. Additionally, photothermal nanomaterials, such as 
gold nanorods and carbon nanotubes, generate localized 
thermal effects upon exposure to light, which can mod-
ify their surface plasmon resonance properties or induce 
thermal expansion, enabling dynamic tuning of optical 
behavior [195].

Hao et al. [196] developed a smart coating by hybrid-
izing thermochromic VO2 with plasmonic TiN nano-
particles. It exhibits infrared regulation properties, as 
shown in Fig.  10a, blocking infrared radiation under 
strong illumination at 28 °C, while remaining infrared 
transparent under weak irradiation or at a low tempera-
ture of 20 °C. The VO2/TiN coatings achieve an integral 
Tvis of 51% and demonstrate excellent infrared switching 
efficiency of 48% at 2000 nm, making them promising 
for dynamic radiative thermal management. Zhou et al. 
[197] introduced a bioinspired light-adaptive shutter 
with a multilayer structure that autonomously toggles 
between open and closed states due to the photothermal 

expansion mismatch effect. As depicted in Fig. 10b, this 
shutter, when integrated into a solar thermal storage sys-
tem, governs the incident and dissipated radiation, and 
achieving near-zero net radiative heat loss. As a special 
case of photodriven regulation, fluorescent materials with 
upconversion or downconversion capabilities have also 
been employed for the regulation of radiative properties 
[198, 199]. Fan et al. [200] achieved PRC by integrating 
particle scattering, solar-excited fluorescence, and mid-
infrared broadband radiation. As illustrated in Fig. 10c, 
this advanced coating provides daytime cooling and miti-
gates nighttime overcooling. Under direct sunlight with a 
solar intensity of 850 W m−2, the coated aluminum panel 
maintains a surface temperature 6 °C below the ambient 
temperature, effectively improving thermal management 
in architectural applications. Zhu et  al. [201] demon-
strated a photoluminescent-based colored PRC with high 
internal quantum efficiency, capable of achieving sub-
ambient cooling across the full color spectrum. As shown 
in Fig. 10d, they developed a scalable electrostatic-spin-
ning/inkjet printing method to fabricate the film. The 
quantum dot layer converts UV–VIS light into emission 
wavelengths, thereby minimizing solar heat gain, while 
the CA nanofiber substrate reflects sunlight and facili-
tates thermal dissipation. Building on this work, Zhu 
et al. [195] proposed a photosynthetically active PRC film 
that lowers ambient air temperature, reduces water evapo-
ration, and enhances photosynthesis in dryland plants. 
This film consists of a photonic crystal layer sandwiched 
between PDMS layer and PAM antifogging layer. The 
photonic crystal selectively transmits photosynthetically 
active sunlight with 71% transmittance at 0.4–0.5 μm 
and 77% at 0.6–0.7 μm, optimizing conditions for plant 
growth while maintaining effective radiative cooling. 
Zhao et al. [202] showed an intrinsic photoluminescent 
biomass aerogel, which uses the phosphorescence and 
fluorescence characteristics generated by the synergistic 
interaction between gelatin and DNA to convert UV light 
to VIS light (Fig. 10e). By using a postmonochromator 
UV–VIS–NIR device, the received light from photolu-
minescence is identified and detected. Due to the energy 
conversion, the aerogel receives 104.0% of the energy in 
the VIS spectrum (400–800 nm) (Fig. 10f).
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3.3.3 � Spatial Structure Regulation

3.3.3.1  Pore Structure  As described in Sect. 3.1, the intro-
duction of a dielectric function difference interface with the 
same scale as the incident wavelength in the electromagnetic 
wave propagation path can cause the electromagnetic wave 
propagation path to deflect. One of the simplest methods to 
achieve spatially dynamic radiative regulation is to immerse 
porous materials, with a refractive index similar to the bulk 
material, into a liquid medium [203, 204]. As illustrated 
in Fig. 11a, the high refractive index contrast between the 
material and air at the pore boundaries induces strong Mie 
scattering effects when the pore size is comparable to the 
incident wavelength, which leads to high solar reflectance 
[205]. However, when the pores are filled with a liquid that 
matches the material’s refractive index, the sharp reduction 

in refractive index contrast weakens the Mie scattering effi-
ciency [206]. Dynamic radiative thermal management can 
be achieved by combining this mechanism with humidity-
responsive porous materials [207].

As shown in Fig. 11b and c, the porous structures gener-
ally divided into two categories: particle-based and poly-
mer-based structures [208, 209]. Fie et al. [210] reported 
a single-layer coating with a multi-level porous structure 
capable of rapid switching between high Rsol (96.6%) and 
high Tsol (86.6%). In its dry state, the coating exhibits high 
ɛLWIR (0.96), enabling PRC even under harsh tropical cli-
mates. Upon wetting, the coating becomes highly transparent 
across the solar band, facilitating solar heating and provid-
ing switchable thermal regulation. Mandal et al. [211] intro-
duced a porous polymer coating, as illustrated in Fig. 11d, 

Fig. 10   Photodriven response DRC materials. a Schematic representation of hybrid VO2/TiN material applied as an intelligent window coat-
ing [196].  Copyright 2018, John Wiley & Sons. b Schematics mechanism and photos of the bioinspired light-adaptive shutter [197]. Copyright 
2021, Elsevier. c Schematics of the cooling mechanism of the self-adaptive DRC coating [200]. Copyright 2020, John Wiley & Sons. d Sche-
matic of the electrostatic-spinning setup for producing CA nanofibers film [201]. Copyright 2022, Elsevier. e Diagram and f reflectance spectra 
of the photoluminescent hydrogen-bonded biomass aerogel [202]. Copyright 2024, AAAS
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which exhibits reversible optical transmittance changes upon 
wetting with ordinary liquids. At solar wavelengths, reduced 
light scattering during wetting shifts the coating from a 
reflective to a transparent state. Deng et al. [209] developed 
a dynamic radiative thermal management device by utilizing 
a porous SiO2 coating combined with a refractive index-
matching liquid to regulate solar transmittance and reflec-
tance. The graded structure, created through heterogeneous 
particle sizes, enhances scattering efficiency, enabling 80% 
modulation of solar transmittance (Fig. 11e, f). Feng et al. 
[212] designed a flexible PRC material with switchable solar 

transmittance by entangling silica microspheres of varying 
sizes with bacterial cellulose. This lightweight and scalable 
material shows promising applications (Fig. 11g, h). Chen 
et al. [213] engineered a PE film with dynamic solar and 
thermal regulation. The 100 µm-thick PE film demonstrates 
outstanding solar modulation, varying from 92% (dry state) 
to 32% (wet state), and thermal regulation, shifting from 
0.86 (dry state) to 0.05 (wet state) (Fig. 11i).

3.3.3.2  Shape Deformation  In addition to the temperature- 
or humidity-dependent reversible pore structures described 

Fig. 11   DRC materials based on spatial structure. a Schematic illustration of working principle of designed hierarchical porous structure [210]. 
Copyright 2022, John Wiley & Sons. b, c Morphology of the polymer film [208, 209]. Copyright 2024, Springer Nature. Copyright 2022, John 
Wiley & Sons. d Photograph of the system showing dry and wet states [211]. Copyright 2019, Elsevier. e, f Transmittance performance of the 
DRC device at different working states [209]. Copyright 2022, John Wiley & Sons. g, h Photographs of Bio-RC films [212]. Copyright 2023, 
John Wiley & Sons. i Spectral reflectance and transmittance of PE film in dried and wetted states [213]. Copyright 2024, American Chemical 
Society. j Design principles of an infrared gating textile [223]. Copyright 2019, AAAS. k Working rationale of the adaptive clothing [218]. 
Copyright 2025, AAAS. l Schematic of bendable smart clothing [220]. Copyright 2017, Springer Nature. m Photos of the bending process of 
nylon-Ag actuators over different humidities [221]. Copyright 2021, AAAS
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above, shape memory materials offer an alternative approach 
to macro-scale reversible thermal radiation regulation [214]. 
This strategy is particularly beneficial for personal thermal 
management [215]. A simple implementation involves ther-
mal switches, such as nickel–titanium alloy springs, which 
alternate between a low thermal resistance (open) and high 
thermal resistance (closed) state [216]. For temperature-
induced deformation, materials like polypropylene use their 
thermal expansion properties to regulate thermal radia-
tion. Additionally, dynamic transmittance switching can 
be achieved by exploiting the photon bandgap variations in 
expanded polymer clusters. Shape memory structures can 
also be combined with humidity control mechanisms to 
prevent radiative heat loss and improve heating efficiency. 
Under humid conditions, flaps automatically open to pro-
mote convection, radiative, and sweat evaporation, thus 
facilitating cooling. The inclusion of a metal layer not only 
enhances the flexibility of materials like nylon but also sup-
presses mid-infrared emission from the human body [217].

Fan et al. [216] proposed a switchable DRC structure 
consisting of a PRC coating and a temperature-responsive 
component. In hot weather, this structure transitions to a low 
thermal resistance state, enabling internal heat dissipation. 
In cold weather, it shifts to a high thermal resistance state, 
effectively inhibiting heat loss. Li et al. [218, 219] proposed 
an adaptive warm cloth, featuring a filling made of a natu-
ral bacterial cellulose membrane that responds to human 
sweating. As shown in Fig. 11k, the thickness of the fabric 
can be automatically adjusted from 13 mm (low humidity) 
to 2 mm (high humidity), and its thermal regulation ability 
has been improved by 82.8%. Similarly, Zhong et al. [220] 
designed a Nafion-based smart clothing structures that rap-
idly and reversibly alter their pore size and insulation prop-
erties in response to humidity changes (Fig. 11l). Li et al. 
[221] demonstrated a multimodal adaptive wearable with 
moisture-responsive flaps composed of a nylon/metal hetero-
structure. As shown in Fig. 11m, this design simultaneously 
regulates convection, sweat evaporation, and MIR emission, 
enabling rapid and large-scale heat transfer in response 
to human perspiration vapor, and expanding the thermal 
comfort zone by 30.7% compared to traditional static tex-
tiles. Zhao et al. [222] reported a bimorph textile actuator 
consists of polypropylene and MXene. Due to the oppos-
ing thermal expansion of the two layers and the enhanced 
photothermal efficiency of MXene, the actuator exhibits 
effective deformation (1.38 cm−1) under low solar power 
conditions (100 mW cm−2). Zhang et al. [223] constructed 

an infrared-adaptive textile composed of carbon nanotube. 
As shown in Fig. 11j, these fibers expand and collapse under 
temperature and humidity stimuli, altering the internal pore 
distribution and enabling 35% modulation of infrared emit-
tance, facilitating dynamic thermal regulation in wearable 
applications. Similarly, Hu et al. [224] developed a dual-
layer fabric designed to simultaneously manage sweat and 
cooling. This fabric consists of hydrophobic PET on the one 
side and hydrophilic cellulose fibers on the other, achieving 
high infrared transmittance while maintaining thermal-mois-
ture comfort. The detailed information on various passive 
response structure are summarized in Table 2.

4 � Multi‑stimuli Response

4.1 � Significance of Multi‑band Radiation Regulation

Over the past decade, radiative thermal regulation has wit-
nessed remarkable advancements. However, the application 
of single-mode regulation in complex environments remains 
constrained by various limitations. For instance, while elec-
trochromic material can rapidly modulate solar spectrum, 
it exerts minimal influence over the infrared emittance. 
Humidity-responsive materials, though highly sensitive to 
environmental changes, suffer from relatively slow response 
times. Consequently, the synergistic integration of multiple 
regulation mechanisms (such as electrical, optical, thermal, 
humidity-driven, and mechanical stimuli) has emerged as a 
pivotal strategy for achieving broadband, adaptive thermal 
management. The core of this technology is to construct 
a composite structure that can respond to various external 
stimuli, which not only enhances performance optimization 
but also significantly broadens the scope of practical appli-
cations [225].

The principal advantage of multi-band dynamic radia-
tive thermal management is its ability to adapt to complex 
environmental conditions. In the field of building energy 
efficiency, an ideal smart window should reflect solar 
radiation while enhancing infrared emission for passive 
cooling in summer, whereas in winter, it should facilitate 
solar absorption while minimizing thermal losses. A single 
regulatory mechanism struggles to fulfill these competing 
demands simultaneously. However, by integrating electrical 
and thermal control with optical coatings, selective spectral 
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Table 2   Summary of passive response

Category 
Structures or 

strategies  
Morphology Main Materials Key properties Regulation ability Refs. 

Thermal 

Response 

VO2

VO2/PMMA/Low-

E/glass/Low-E 

High: εLWIR=0.61 

Low: εLWIR=0.21 

ΔεLWIR=40%, ΔTsol=9.3% 

[13] 

VO2/ZnSe/ITO/glass 

Tvis=41 % 

High: εLWIR=0.78 

Low: εLWIR=0.35 

ΔɛLWIR=0.43 

[162] 

Al2O3/VO2/Al2O3/Al 

High: αsol=89%, 

εMIR=0.75 

Low: αsol=83%, 

εMIR=0.25 

ΔɛLWIR=0.5 

[163] 

WxV1-xO2/BaF2/Ag 

Rsol=75% 

High: εLWIR=0.9 

Low: εLWIR=0.2 

ΔɛLWIR=0.7 [12] 

WxV1-

xO2/PE/Al/PET 

High: εLWIR=0.85 

Low: εLWIR=0.25 

ΔɛLWIR=0.6 

[166] 

CaF2/VO2
High: ɛ4-12.5=0.83 

Low: ε4-12.5=0.47

Δɛ4-12.5=0.36 

[169] 

SiO2/TiO2/VO2 Tvis=74% 

ΔTsol=12% 

[170] 

Thermochro

mic materials 

Nanoparticls/thermoc

hromic powder 

ɛLWIR=0.94 

High: Rvis=91% 

Low: Rvis=50% 

ΔRvis=41% 

[177] 
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Table 2   (continued)

Fluorescent 

dyes/Thermochromic 

microcapsules/PRC 

layer 

ɛLWIR=0.96 

High: Rsol=91.0% 

Low: Rvis=72.8% 

ΔRsol=18.2% 

[179] 

Ag-Pu/ 

thermochromic 

microparticles 

High: Rvis=40% 

Low: Rvis=90% 

ΔRvis=50% 

[181] 

Paraffin wax 
High: T0.19-1.1=90% 

Low: T0.19-1.1=5% 

ΔTLWIR=41.1%, ΔT0.19-1.1=85% 

[187] 

Hydrogels 

poly (N-

isopropylacrylamide) 
Tvis>90% 

ΔTsol=68.1% 

[182] 

PNIPAm/PVDF ɛLWIR=0.96 

ΔRvis=70.0%, ΔTvis=86.3% 

[183] 

PNIPAm 
High: Tsol=0% 

Low: Tsol=78% 

ΔTsol=78% 

[184] 

PET/pNIPAm/Cr 
High: Tsol=17.9% 

Low: Tsol=73.1% 

ΔTsol=55.2% 

[185] 

Low-

E/glass/PE/HPC/PE 

High: Tsol=7.1%, 

Tlum=7.8% 

Low: Tsol=57.7%, 

Tlum=71.6% 

ΔTsol=51%, ΔTlum=72% 

[186] 

Category 
Structures or 

strategies  
Morphology Main Materials Key properties Regulation ability Refs. 
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Table 2   (continued)

Spatial 

structure 

Pore structure 

PVDF/SiO2
RH=33% Rsol=95.7 

RH=67% Rsol=77% 

ΔRsol=18.7% 

[208] 

SiO2/carbon 

tetrachloride 

Wet state: Tsol=93% 

Dry state: Tsol=13% 

ΔTsol=80% 

[209] 

PVDF/CA 

Dry state: Rsol=96.6%, 

ɛLWIR=0.96 

Wet state: Tsol=86.6% 

ΔRsol=82.6% 

[210] 

PVDF 
Dry state: Tsol=20%, 

Wet state: Tsol=94% 

ΔTsol=74%, ΔTvis=80% 

[211] 

Bacterial 

cellulose/SiO2

Dry state: Tsol=4.7% 

Wet state: Tsol=70% 

ΔεMIR=0.93 

ΔTsol=65.3% 

[212] 

PE 

Dry state: Rsol=92%, 

TLWIR=86% 

Wet state: Rsol=32% 

TLWIR=5% 

ΔRsol=60%, ΔTLWIR=81% 

[213] 

Shape 

deformation 

polyester fabric/ 

AgNW 

Dry state: ɛLWIR=0.39 

Wet state: ɛLWIR=0.83 

ΔɛLWIR=0.44 

[215] 

RC 

film/Nickel−titanium 

springs 

Rsol=96% 

ɛLWIR=0.95 

/ 

[216] 

Category 
Structures or 

strategies  
Morphology Main Materials Key properties Regulation ability Refs. 
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regulation can be effectively achieved. Similarly, military 
camouflage systems operating under multi-spectral recon-
naissance require dynamic regulation spanning from the 
visible to mid- and far-infrared wavelengths. By combining 
different regulatory strategies, materials and devices can 
transcend the constraints of individual mechanisms, offer-
ing tunable thermal radiation properties over an extended 
spectral range. Furthermore, the integration of multiple 
regulation modes enhances both dynamic response capa-
bility and energy efficiency. Electrically driven approaches 
require continuous energy input for rapid actuation. Humid-
ity- or temperature-responsive materials are energy efficient 
but have slow response times. The hybridization of these 
methods offers a complementary advantage: electrical or 
optical activation can be employed for rapid adjustments, 
while passive stimuli-driven maintain stability in steady 
state conditions, thereby reducing overall energy consump-
tion. Likewise, bioinspired material designs have further 
advanced the development of DRC technology [226], as 
seen in chameleon-inspired multilayer structures, which 
use the interplay between chemical tuning and mechanical 
deformation to achieve rapid and large-scale optical property 
regulation.

4.2 � Multi‑stimuli Response Structure

Among the various dynamic regulation strategies, thermal-
responsive materials have garnered significant attention 
due to its ability to directly utilize temperature variations 
for dynamic radiative control and seamlessly integrate with 
thermal management systems. Existing approaches that cou-
ple multiple regulation mechanisms primarily build upon 
temperature-responsive radiative control while incorporating 
additional stimuli such as mechanical flipping, pressure, and 
electrical excitation.

Cao et al. [227] designed a tri-mode thermochromic com-
posite thin film based on two PCM (WxV1−xO2 and paraffin), 
as illustrated in Fig. 12a. By utilizing different phase transi-
tion mechanisms, the system enables synchronized regula-
tion in the solar and NIR spectrum. In the low-temperature 
zone, the transparent heating mode has a Tvis of 53.2%, 
which meets the requirement of indoor lighting and solar 
heating. In the mid-temperature zone, the metal–insulator 
transition of WxV1−xO2 activates a transparent cooling mode, 
maintaining high visible transmittance while significantly 

reducing near-infrared transmission (Tlum = 49.97% and 
ΔTsol = 8.86%), thereby ensuring high visibility while mini-
mizing cooling energy consumption. In the high-temper-
atures zone, the solid–liquid phase transition of paraffin 
induces a pronounced refractive index mismatch with the 
PVA substrate, resulting in intense light scattering, with a 
ΔTsol of 33.7%. Inspired by squid skin, Wang et al. [228] 
developed a micropatterned thermochromic hydrogel based 
on pNIPAm, featuring two distinct optical regulation mech-
anisms: temperature-induced optical property regulation 
and pressure-controlled optical scattering. As depicted in 
Fig. 12b, the disruption and reformation of hydrogen bonds 
between polymer chains and water molecules across the 
phase transition enable a 61% modulation of visible light 
transmittance. Additionally, surface roughness variations 
under applied pressure facilitate a transition from diffuse 
to normal solar transmission. Huang et al. [229] integrated 
pNIPAm with silver nanowires to develop a smart window 
capable of regulating both solar transmission and thermal 
radiation (Fig. 12c). The temperature-triggered water cap-
ture and release associated enabled simultaneous solar and 
thermal regulation, achieving 58.4% solar control and 57.1% 
thermal regulation. Guo et al. [230] designed a hydrogel-
based smart window exhibiting high transmittance, excellent 
tunable photothermal gain, and PRC properties (Fig. 12d). 
The pNIPAm hydrogel ensures superior solar light trans-
mission and thermal gain, while a manual or mechanically 
reversible anisotropic glass template modulates the emit-
tance. Long et al. [231] reported a reconfigurable interwo-
ven surface capable of dynamically switching overlapping 
sequences to achieve spectral selectivity and ultra-broadband 
modulation (ΔεLWIR = 0.57). This approach enables win-
dows, walls, and rooftops to exhibit tailored spectral tuning 
for enhanced energy efficiency.

Further extending this concept, Long et al. [232] pro-
posed a dual-control smart window inspired by shape-
morphing kirigami structures, designed for simultane-
ous solar transmission and PRC regulation. As shown 
in Fig. 12e, the strain-induced out-of-plane deformation 
of the origami structure exposes the underlying silver 
nanowires, enabling a long-wave infrared emittance mod-
ulation capacity of 0.5 through structural opening and 
closing control. Wang et al. [233] introduced a conceptual 
multilayer photonic architecture for temperature-adaptive 
solar and thermal radiation regulation. This structure, as 
shown in Fig. 12f, incorporating small and large cross 
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resonators composed of silver arrays, enables tunable 
solar absorption and mid-infrared absorption. Ma et al. 
[234, 235], drawing inspiration from Himalayan rabbit fur 
and Mimosa pudica leaves, developed a dual-mode ther-
mal management device utilizing shape memory polymers 
with selective electromagnetic spectral response. As illus-
trated in Fig. 12g, the integration of visible and infrared 
thermochromism enables autonomous temperature-driven 
switching between a heating mode (α0.4–0.78 = 73% and 
εLWIR = 0.28) and a cooling model (R0.4–0.78 = 65% and 
εLWIR = 0.95). Cao et al. [236] proposed a hybrid electro-
chromic–thermochromic structure combining PRC in the 
mid-infrared with maximized visible and near-infrared 
utilization. Utilizing a WO3/VO2 film structure with a 
controllable lithium-ion intercalation depth, the system 

enables three distinct active optical states, facilitating 
independent modulation of VIS and NIR transmittance. 
Yang et al. [237] combined electrochromism with thermo-
chromism to create a Janus window based on a polymer-
stabilized liquid–crystal film/thermochromic material. 
They employed an electrochromic layer as the primary 
control switch, while a thermochromic hydrogel layer 
served as an auxiliary functional module, achieving a 
combination of active and passive regulation. As shown 
in Fig. 12h, the smart window can achieve four distinct 
modes: highly transparent, electrochromic, thermochro-
mic, and highly opaque. These functions are achieved 
through the synergistic effect between the electrochromic 
properties of the liquid–crystal layer and the thermochro-
mic properties of the hydrogel layer. Table 3 summarizes 

Fig. 12   DRC materials based on multi-stimuli response structure. a The principle of temperature-adaptive tri-state smart window structure for 
WxV1−xO2/paraffin/PVA composite films [227].  Copyright 2024, Elsevier. b States of micropatterned thermochromic hydrogel under thermal 
and pressure modes [228]. Copyright 2024, Springer Nature. c Schematic of optical performance and the corresponding spectrum in hot (top) 
and cold (bottom) condition [229]. Copyright 2022, AAAS. d Scheme and usage scheme for the thermochromic smart windows [230]. Copy-
right 2023, Elsevier. e The working principle and photo of the durable solar/RC dual-control smart window in hot (top) and cold (bottom) condi-
tion [232]. Copyright 2023, Royal Society of Chemistry. f Design of both self-adaptive solar heating and radiative cooling with the compound 
cross metasurface [233]. Copyright 2020, Royal Society of Chemistry. g Design principle of the dual-mode thermal management device based 
on visible and infrared “thermochromism” [235]. Copyright 2022, National Academy of Sciences. h Photographs of composite windows in dif-
ferent states [237]. Copyright 2025, Springer Nature
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Table 3   Summary of multi-stimuli response

Category 
Structures or 

strategies  
Morphology Main Materials Key properties Regulation ability Refs. 

Multi-

stimuli-

response 

structure 

Thermal+ther

mal 

WxV1-

xO2/paraffin/P

VA 

State1: Tlum=53.24% 

Tsol=55.03% 

State2: Tlum=49.97% 

Tsol=46.17% 

State3: Tlum=16.72% 

Tsol=21.33% 

Tsol=33.7% 

[227] 

Thermal+flip 

PNIPAm 
Tsol=16% 

Tsol=77% 

ΔTsol=61% 

[228] 

Low-

E/glass/PNIPA

m/glass 

Hot: Tsol=3.52, 

ɛMIR=0.1 

Cold: Tsol=72.79, 

ɛMIR=0.85 

ΔɛMIR=0.75 

[230] 

ITO/PET/W-

WO2/PVC 

Hot: TNIR=41%, 

ɛLWIR=0.93 

Cold: TNIR=59%, 

ɛLWIR=0.36 

ΔTNIR=18%, ΔɛLWIR=0.57 

[231] 

Thermal+humi

dity 

pNIPAm/AgN

Ws 

Low: Tsol=65.5%, ɛ3-

16=35.2% 

High: Tsol=7.1%, ɛ3-

16=92.3% 

ΔTsol=58.4%, Δɛ3-16=0.571 

[229] 

Thermal+mech

anical 

PDMS/AgNW

s/PNIPAm 

On: Tlum=37.1%, 

ɛLWIR=0.95 

Off: Tlum<10%, 

ɛLWIR=0.45 

ΔTsol=23.7%, ΔɛLWIR=0.5 

[232] 

PMP/TiO2/nan

o-Cr black Al 

plate 

Heat: Rsol=9%, 

ɛLWIR=0.08 

Cold: Rsol=85%, 

ɛLWIR=0.97 

ΔRsol=76%, ΔɛLWIR=0.89 [234] 

PCL/thermoch

romic 

powder/TiO2/

Al foil 

Heat: Rsol=27%, 

ɛLWIR=0.28 

Cold: Rsol=65%, 

ɛLWIR=0.95 

ΔRsol=38%, ΔɛLWIR=0.66 

[235] 

TPU/HfO2/Ag/

HfO2/SMP/IT

O 

Heat: Tvis=63.4%, 

TNIR=67.3%, 

ɛMIR=0.12 

Cold: Tvis=86.9%, 

TNIR=23.3% 

ɛMIR=0.89 

ΔTNIR=44%, ΔɛLWIR=0.77 

[238] 

Themral+Elect

ro 
Polymer-

stabilized 

liquid crystal 

/KCWO-

PNIPAM 

Heat:TVIS=78%,ΔɛLWI

R=0.35 

Cold: TVIS=4.2%, 

ΔɛLWIR=0.95 

ΔTVIS=73.8%, ΔɛLWIR=0.6 

[237] 
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a set of research categorized by the mechanisms men-
tioned above.

5 � Challenges and Perspectives

DRC technology, as an emerging radiative thermal regu-
lation strategy, enables high-efficiency passive cooling 
through intelligent spectral regulation of materials under 
varying environmental conditions. This review provides a 
comprehensive summary of the latest advancements in DRC 
technology, covering its fundamental principles, intrinsic 
mechanisms, and various control strategies. Table 4 sum-
marizes the main features on spectral modulation of these 
works, highlighting the challenges and issues in different 
structures. Despite significant theoretical and experimental 
advancements, large-scale commercial application of DRC 
remains fraught with challenges. As outlined in Fig. 13, key 
obstacles include the interfacial compatibility among differ-
ent material components, the intricate interplay of multiple 
physical fields, and the optimal balance between response 
speed, regulation amplitude, and overall system efficiency. 
The suggested development perspectives are as follows:

(1) Development of novel multifunctional materials. 
Develop advanced material systems with both intelligent 
response characteristics and excellent radiative thermal 
regulation performance to further improve the environ-
mental adaptability and expand the modulation range of 
materials. Beyond excellent thermal control, such materials 
are expected to exhibit multimodal triggering capabilities, 
enabling adaptive performance under diverse environments. 
For example, as mentioned in Sect. 3.2.3, magnetic response 
technology has excellent visible light control capabilities, 
but its potential as a DRC technology remains largely unex-
plored. At the same time, the introduction of biomimetic 
design (e.g., moth-eye structure and hierarchical structures) 
provides a new source of inspiration for material design 
[239]. Natural organisms, shaped by millions of years of 
evolution, exhibit exquisite control over light–matter interac-
tions across multiple wavelength scales, and these strategies 
offer profound guidance for the development of DRC tech-
nology. Moreover, artificial intelligence technology plays an 
increasingly important role in the development of high-per-
formance materials. By using machine learning, the explora-
tion of compositional and structural of DRC materials can 
be quickly screened and optimized, enabling simultaneous 

Fig. 13   Practical challenges and prospects for large-scale applications of DRC
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optimization of both thermal and optical characteristics. In 
the recent work of Zhou et al. [240], the authors used a large 
number of AI technologies to precisely control the emis-
sion and reflection spectral characteristics of materials at the 
microstructure level, significantly broadening expanding the 
control range of PRC materials.

(2) Precision control in large-scale preparation. The main 
challenge for industrial application is to achieve large-area, 
high-precision, and cost-effective manufacturing. Particu-
larly for materials such as electrochromic films, hydrogels, 
and other materials, which need to develop a more stable 
and efficient fabrication methods. These materials often have 
problems such as poor durability, limited uniformity of the 
extended area, and performance degradation during long-
term operation, which seriously restrict their practical appli-
cation [241]. Emerging continuous production techniques, 
such as roll-to-roll coating and inkjet printing, present viable 
solutions for large-scale functional material manufacturing. 
At the same time, the integration of bottom-up self-assem-
bly strategies provides opportunities for achieving precise 
structural ordering at the micro- and nanoscale, thereby 
enhancing optical selectivity and radiation performance. 
Complementary to this, 3D printing provides unprecedented 
flexibility for manufacturing macrostructures with complex 
geometries [242]. The fusion of these methods not only 
enhances the scalability of advanced cooling materials, but 
also enables hierarchical structural design across multiple 
length scales.

(3) Seamless integration with thermal management 
systems. Practical applications necessitate compatibility 
with existing thermal management structure, especially 
in mature applications such as buildings, transportation, 
and electronic devices [243], are already highly optimized 

and deeply embedded within the operational framework. 
Consequently, the integration of DRC materials as isolated 
components often encounters practical barriers, since they 
cannot be directly interfaced with existing designs without 
extensive modification. On the other hand, replacing entire 
systems with novel DRC technology would demand high 
economic and technical costs, thereby limiting large-scale 
adoption. Recent research has shifted toward cross-scale 
system integration, such as integrating with photovoltaic 
and photothermal systems to improve efficiency, or inte-
grating with temporary buildings to reduce energy con-
sumption [244].

(4) Carbon footprint and life-cycle assessment. The 
development of environmentally friendly manufactur-
ing processes has become a focal point of contemporary 
research. While life-cycle assessment (spanning cradle-
to-grave evaluation from raw material acquisition, fab-
rication, deployment, to end-of-life treatment) is widely 
employed in industrial applications, a systematic approach 
remains still absent in the study of DRC technologies 
[245]. Current research focuses primarily on improving 
the optical properties of materials, but often overlooks 
the hidden environmental costs associated with large-
scale manufacturing, including energy consumption, sol-
vent use, greenhouse gas emissions, and the production 
of potentially harmful byproducts [246]. Furthermore, the 
sourcing of raw materials, especially transition metals and 
rare elements commonly used in electrochromic or nano-
structured systems, can raise concerns about supply chain 
sustainability and ecological impacts. Researchers should 
evaluate energy efficiency and pollutant emissions across 
the entire material lifecycle.

Table 4   Summary of dynamic radiative cooling technology

Category Strategies Advantages Limitations

Active response Electro response Fast response, precise regulation Complex structure, high cost
Mechanical response Simple structure, good reversibility Slow response, high-energy consumption
Humidity response Low cost, flexible regulation Poor durability, difficult to apply

Passive response Thermal response No external energy, simple structure Delayed response, limited control range
Light response Remote control Poor stability, photodegradation
Shape deformation No external energy, strong adaptability Limited deformation, poor stability

Multi-stimuli response Thermal + filp Simple and reliable Complicated structure, poor durability
Thermal + Mechanical Strong regulatory ability Delayed response, complicated structure
Thermal + electro Energy complementarity Poor coordination
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In conclusion, while PRC technology offers low-cost 
and maintenance-free heat dissipation, DRC technol-
ogy provides adaptability by enabling radiative thermal 
modulation across varying environmental conditions. By 
integrating stimuli-responsive materials with PRC mate-
rials, DRC can overcome PRC’s inherent limitations of 
fixed optical properties and seasonal inefficiency. This 
adaptability positions DRC as a promising solution for 
next-generation smart thermal management in buildings, 
electronics, and human body.
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