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 HIGHLIGHTS

•	 SRMs integrate intrinsic diode-like rectification, enabling sneak path suppression in crossbar arrays without external selectors, sim-
plifying design, and enhancing energy efficiency for high-density in-memory computing.

•	 Key metrics such as rectification ratio, nonlinearity, and CMOS compatibility are systematically reviewed, highlighting progress in 
3D integration and scalable array.

•	 Applications span in-memory computing, neuromorphic networks, and hardware security, with emerging potentials in in-sensor 
computing and self-supervised learning, positioning SRMs as pivotal beyond-CMOS building blocks.

ABSTRACT  The deceleration of Moore’s law and the energy–latency drawbacks of the von 
Neumann bottleneck have heightened the pursuit for beyond‑CMOS designs that integrate 
memory and compute. Self‑rectifying memristors (SRMs) have emerged as promising build-
ing blocks for high‑performance, low‑power systems by combining resistive switching with 
intrinsic diode-like behavior. Their unidirectional conduction inhibits sneak‑path currents in 
crossbar arrays devoid of external selectors, while nonlinear I–V characteristics, adjustable 
conductance states, low operating voltages, and rapid switching facilitate efficient vector–
matrix operations, neuromorphic plasticity, and hardware security primitives. This review 
synthesizes the working mechanisms of SRMs, surveys material, and structural strategies 
and compares device metrics relevant to array‑scale deployment (rectification ratio, non-
linearity, endurance, retention, variability, and operating voltage). We assess SRM-enabled 
in-memory computing and neuromorphic applications, as well as security functions such 
as physical unclonable functions and reconfigurable cryptographic primitives. Integration 
pathways toward CMOS compatibility are analyzed, including back-end-of-line thermal budgets, uniformity, write disturb mitigation, and 
reliability. Finally, we outline key challenges and opportunities: materials/architecture co‑design, precision analog training, stochastic-
ity control/exploitation, 3D stacking, and standardized benchmarking that can accelerate large‑scale SRM adoption. Through the use of 
specialized materials and structural optimization, SRMs are set to provide selector‑free, densely integrated, and energy‑efficient hardware 
for future information processing.
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1  Introduction

With the rapid advancement of information technology, 
Moore’s law is increasingly challenged by the physical 
limits of device miniaturization and rising power consump-
tion issues [1]. Although it has long driven the scaling and 
performance enhancement of integrated circuits [2], further 
miniaturization beyond the sub-nanometer regime poses 
significant hurdles [1, 3]. Technologies such as Fin Field-
Effect Transistor (FinFET) have partially mitigated leakage 
currents [4], yet at the 3-nm node and below, nanosheet 
gate-all-around (GAA) field-effect transistors are expected to 
become essential [5, 6]. Moreover, the von Neumann archi-
tecture characterized by the physical separation of memory 
and computing units incurs substantial energy and latency 
penalties due to continuous data shuttling, thereby limiting 
overall efficiency [7]. These limitations have spurred interest 
in beyond-CMOS computing paradigms [8, 9], including in-
memory computing and neuromorphic architectures, which 
merge memory and processing to eliminate data transfer bot-
tlenecks [10, 11]. Neuromorphic computing, in particularly, 
mimics the structure and functionality of biological neu-
ral systems, enabling highly parallel, low-power operation 
through deep integration of storage and computation.

The realization of ultra-large-scale neuromorphic hard-
ware is essential for emulating brain-like functions in real 
time and with high energy efficiency, yet it faces critical 
challenges in maintaining integration density, interconnect 
complexity, and signal integrity. A critical enabler for such 
neuromorphic hardware is the passive crossbar array, which 
offers exceptional scalability and integration density [12, 
13]. However, its practicality is hampered by sneak path cur-
rents, which impair read/write accuracy. Conventional solu-
tions to mitigate this issue, such as the one-transistor–one-
RRAM (1T1R) [14], one-selector–one-RRAM (1S1R) [15], 
and one-diode–one-RRAM (1D1R) [16] configurations, 
reduce sneak paths but incur trade-offs in complexity, foot-
print, power, and variability [12]. An emerging solution is 
the self-rectifying memristor (SRM), which incorporates 
inherent diode-like rectification and non-volatile memory 
within a two-terminal structure. This built-in nonlinear-
ity effectively suppresses sneak currents without external 
components [17], streamlining design and lowering power 
consumption. SRMs also exhibit desirable characteristics 
including high nonlinearity [18, 19], tunable conductance 

[20, 21], fast switching [22], and low operating power [23, 
24], making them a foundational technology for advanc-
ing high-density neuromorphic computing systems. While 
the goal of beyond-CMOS technology is to break the per-
formance limitations of conventional CMOS, in practice, 
large-scale computing arrays are realized on the premise 
of compatibility with existing mature CMOS processes 
[25–27]. This compatibility is an important factor in real-
izing mass production, cost reduction, and the basis for the 
smooth integration of new technologies into existing semi-
conductor manufacturing systems [28]. Therefore, beyond-
CMOS technology is faced with an important contradiction 
to improve system performance while maintaining device 
compatibility with CMOS processes. Notably, SRMs com-
patible with CMOS processes have been extensively studied 
and scaled up to small-scale arrays [17, 29–31]. Meanwhile, 
SRMs-based in-memory computing architectures and neu-
romorphic computing systems have been well exploited [12, 
17, 32–44], providing an ambitious blueprint for large-scale 
beyond-CMOS computing paradigm.

In this review, we comprehensively examine the potential 
of SRMs for beyond-CMOS applications, with emphasis on 
CMOS compatibility and implications for novel computing 
architectures. Through a systematic analysis of the operating 
mechanisms, material choices and electrical characteristics 
of SRMs, we evaluate their advantages and applications in 
in-memory computing, neuromorphic computing, and hard-
ware security. Finally, the review discusses the prevailing 
challenges and future opportunities facing the development 
of CMOS-compatible, high-performance, low-power, and 
scalable computing systems (Fig. 1). All key terms used in 
this review and their corresponding definitions are summa-
rized at the end of the document.

2 � Characteristics and Mechanisms of SRM

2.1 � Self‑Rectifying Characteristics and Metrics

SRMs exhibit significant differences from conventional 
memristors in their direct-current current–voltage (DC 
I–V) characteristics, primarily manifested in enhanced 
asymmetry and nonlinearity (Fig. 2a, b). These proper-
ties stem from deliberate design of the device structure 
or material interface bandgaps. Conventional memris-
tors typically exhibit symmetric or nearly symmetric 
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I–V loops, with relatively balanced current responses in 
high- and low-resistance states under positive and negative 
biases, respectively. This balance facilitates the emergence 
of “sneak paths” in crossbar arrays. In contrast, SRMs 
introduce mechanisms such as Schottky barriers, interfa-
cial defect gradients, or asymmetric ion migration. This 
enables high conduction currents under forward bias while 
exhibiting strong current suppression under reverse bias, 
creating a pronounced rectification effect. This self-recti-
fying characteristic not only effectively suppresses leakage 
currents but also enables SRMs to achieve high-density 
integration without requiring external selectors (such as 
transistors or diodes). In this section, we will comprehen-
sively analyze and summarize the current characteristics 

and related mechanisms of SRM, and conduct a thorough 
discussion of its metrics.

2.1.1 � Rectification Ratio and Nonlinearity

Rectification ratio (RR) is a key parameter describing the 
performance of SRMs and is defined as the ratio of the on-
state current of the device under positive bias to the off-state 
current under negative bias (Fig. 2b) [17], corresponding 
to the unselected cells in the crossbar array (Fig. 2c) [31]. 
Nonlinearity (NL) is defined as the ratio of the current of the 
device at the read voltage under low-resistance state (LRS) 
to its current at the half-read voltage (Fig. 2b) with respect 
to the partially selected cell (Fig. 2c). Both RR and NL 

Fig. 1   SRMs have been developed for a variety of foreground beyond-CMOS applications, including in-memory computing, neuromorphic 
computing, and hardware security currently, where CMOS compatibility is an important basis for their further expansion. Reprinted from [17, 
34, 37, 45–48], with permission from Springer Nature, American Chemical Society.  Copyright 2023 American Association for the Advance-
ment of Science
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determine the level of inter-cell crosstalk in passive cross-
bar arrays to characterize the accuracy of write and read 
operations achieved by the array. They reflect the difference 
in current transfer capability of the device under positive and 
negative bias and are important parameters of the self-rec-
tifying characteristics. They are both significantly affected 
by the conduction mechanism. For SRMs, the rectification 
characteristics mainly originate from the asymmetric struc-
ture or interface barriers inside the device. When the upper 
and lower electrodes of a two-terminal SRM have different 
figure of merit, a Schottky barrier is formed at the metal/
oxide interface, and the difference in the height of this bar-
rier leads to different electron transport characteristics under 
positive and negative bias. Under positive bias, the barrier 
decreases and the current passes easily, while under negative 
bias, the barrier increases and the current is suppressed. In 

addition, the formation and distribution of the conducting 
channels affect the rectification ratio. In some SRMs, the 
conductive channels may be formed or enhanced only under 
positive bias and weakened or disappeared under negative 
bias to achieve the rectification behavior. For example, as 
described above, in ion migration-based SRMs, ions migrate 
to form conductive channels under positive bias, whereas 
under negative bias, the direction of ion migration changes, 
the conductive channels are weakened, and the RR and NL 
are thus increased significantly [12]. In short, higher RR 
and NL are highly desirable in SRMs as they significantly 
enhance array scalability and effectively suppress sneak path 
currents in crossbar arrays, enabling larger and more reliable 
passive memory and computing architectures.

Fig. 2   Characteristics of SRMs. a Typical DC I–V curves of traditional memristors. Reprinted from [32], with permission of Springer Nature. 
b DC I–V curves of the SRMs based on the structure of Pt/HfO2/TaOx/Ta. Reproduced from [17], Copyright 2023 American Association for the 
Advancement of Science. c Schematic diagram of the sneak path in the crossbar array consisting of SRMs based on Au/h-BN/Graphene/h-BN/
Ag van der Waals heterojunction. Reprinted from [31], Copyright 2024 American Physical Society. The common d 1/2, e 1/3, and f 1/4 volt-
age scheme when programming SRM cells in the passive crossbar array. The blue cell denotes the selected SRM cell (ideal cell), the pink cells 
denote the partially selected SRM cells (nonideal cells), and the gray cells denote the unselected SRM cells (nonideal cells)
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2.1.2 � On/Off Ratio

The on/off ratio of SRM refers to the current or resistance 
ratio of LRS to high resistance state (HRS) corresponding 
to its read voltage, which is usually used to measure the 
degree of resistance change of the memristor under differ-
ent operating states (Fig. 2b) [17]. This metric is one of the 
key indicators of the performance of SRMs and traditional 
memristors, reflecting their switching ability under different 
resistive states as well as their read margins. The importance 
of the on/off ratio for SRMs is reflected in several aspects. 
First, a higher on/off ratio means that there is a more pro-
nounced resistance difference between the LRS and HRS, 
which contributes to improved signal discrimination and 
stability. This is critical for applications such as storage and 
logic operations, as a clear distinction between resistance 
states reduces misreading and miswriting, thereby improv-
ing system reliability and accuracy. Second, a higher on/
off ratio helps to reduce power consumption because the 
leakage current of the device is significantly reduced at high 
resistive states, which is highly compatible with the purpose 
of SRM. In addition, in neuromorphic computation, a high 
on/off ratio can better simulate the weight changes of bio-
logical synapses, thus improving the performance of neural 
networks. Therefore, optimizing the on/off ratio is one of the 
key directions to enhance the performance and scalability of 
SRMs and expand their applications [12, 32].

2.1.3 � Scalability

SRM scalability is the ability to integrate SRMs into large-
scale, high-density memory arrays or three-dimensional 
(3D) integrated architectures while maintaining their critical 
performance. Due to the intrinsic rectification characteris-
tics of SRMs, the sneak path problem in the array (Fig. 2c) 
can be effectively suppressed, thus enabling large-scale, 
high-density integration from two-dimensional (2D) to 3D 
without adding additional selectors or transistors [14, 15, 
41]. Among them, it is worth noting that compatibility with 
CMOS process is the basis for realizing large-scale SRM-
based scaling. Commonly, in the SRM field, read margin is 
used to characterize the degree of scalability. Read margin 
is the maximum range or margin of error that can be toler-
ated during a read operation in a memory or logic circuit. In 
order to ensure the accuracy of the simulation, it is essential 

to incorporate RR, NL, and on/off ratio into the calculation 
of the read margin (Eqs. (1) and (2)) [29]. The read margin 
is a critical parameter that guarantees the accurate reading 
of data stored in memory cells, even when the memristor 
crossbar array is subjected to noise or interference. A higher 
read margin indicates greater stability and reliability of the 
crossbar array during data readout, thereby preventing mis-
reading. The one bit-line pull-up strategy is commonly used 
to calculate the read margin [49].

Notably, when programming SRM cells, the selection 
of the voltage scheme directly determines all key metrics 
including RR, NL, and on/off ratio, thereby impacting the 
scalability of the SRM and the effectiveness of sneak path 
suppression. Here, we first consider the 1/2 voltage scheme, 
as illustrated in Fig. 2d. This scheme applies the full oper-
ating voltage (Vop) to the BL where the selected SRM cell 
resides while grounding the WL, resulting in full positive 
bias across the SRM cell terminals. Simultaneously, 1/2 Vop 
is applied to all other WLs and BLs. In this state, partially 
selected cells are positively biased at 1/2 Vop, while unse-
lected units remain unbiased [50]. This partially mitigates 
crosstalk between cells in the crossbar array. Additionally, 
Fig. 2e, f illustrates the implementation diagrams for the 1/3 
and 1/4 voltage schemes, respectively. Only when an optimal 
trade-off is achieved among key parameters does the selected 
voltage scheme become meaningful (schemes such as 1/5 or 
1/6 may also be considered as appropriate [51]).

Moreover, SRM-based multilayer 3D integration technol-
ogy represents the critical path to overcoming the density, 
energy efficiency, and crosstalk limitations of traditional 
compute-in-memory architectures. Its characteristics of 
interlayer uniformity, picosecond-level switching energy 
consumption, and nanosecond-level read latency provide a 
highly energy-efficient, high-density hardware foundation 
for complex tasks such as high-precision matrix solving and 
neuromorphic computing. Li et al. [52] successfully fab-
ricated a 4-layer stacked, 4 Kb-capacity Ta/TaOx/HfO2/Pt 
3D vertical SRM array. Through an innovative “split cell” 
design, they doubled the integration density and reduced bit 

(1)

RM =
VLRS − VHRS

Vpu

=
Rpu

Rpu + Rs−LRS∕∕Rsneak

−
Rpu

Rpu + Rs−HRS∕∕Rsneak

(2)Rsneak =
2 × R1∕3s

(N − 1)
+

Runs

(N − 1)2
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cost compared to traditional parallel cell structures. In the 
fabrication process, multiple pairs of Ta/SiO2 layers were 
alternately stacked using physical vapor deposition and 
plasma-enhanced chemical vapor deposition. Combined 
with inductively coupled plasma etching, this formed gate 
line structures with smooth sidewalls. Uniform HfO2 rectify-
ing layers were prepared via atomic layer deposition, ensur-
ing consistency and reliability in the multilayer stacking. 
This 3D vertical SRM exhibits excellent electrical perfor-
mance with NL and RR values of approximately 6900 and 
4750, respectively. Lu et al. constructed a TiN/TiOx/NbOx/
Ru multilayer stack architecture (Fig. 3a, b) through innova-
tive interlayer isolation and sidewall functional layer depo-
sition techniques [49]. Without external gating devices, its 
ultra-high RR (> 107) and NL (> 105) effectively suppressed 
crosstalk currents, enabling 3D SRM arrays to scale beyond 
1 Tb (Fig. 3c). Additionally, Ding et al. pioneered a 16-layer 
3D vertical SRM [53]. By engineering band structures to 
form barrier peaks in TiOx and leveraging the low oxygen 
vacancy aggregation tendency in NbOx, they achieved a high 
NL (> 5000).

2.2 � Mechanisms of SRMs

The core of the SRM lies in its simultaneous capabilities of 
memristive switching and diode-like rectification. Memris-
tive behavior is typically caused by the reversible formation 
and destruction of mobile ions (such as oxygen vacancies 
or metal ions), conductive filaments, or the trapping/detrap-
ping behavior of electrons within the material [54, 55]. The 
transition between the HRS and LRS formed by this process 

endows the device with multi-state storage capabilities. On 
the other hand, the rectification function relies on barrier 
control at the interface layer, where the barrier decreases 
to allow current flow under forward voltage, while under 
reverse voltage, the barrier significantly increases to limit 
current, thus creating directional conduction characteris-
tics. Generally, the operating principle of SRMs is deter-
mined by the combined effects of material properties and 
structural design. In terms of material selection, functional 
materials with ionic migration characteristics, such as oxides 
and sulfides, are commonly used; in structural design, het-
erojunctions or asymmetry between the electrodes and the 
active layer form the basis for rectifying behavior. A deep 
understanding of this mechanism not only helps to enhance 
device performance but also provides an important theo-
retical basis for the development of new types of memory 
devices. Below is a detailed introduction to the mechanism 
including interface barrier (Schottky effect, interface oxy-
gen vacancies), ionic migration, and trap effects (oxygen 
vacancies).

2.2.1 � Interface Barrier

The core role of the interface barrier in SRMs lies in 
introducing asymmetric charge conduction characteris-
tics through physical mechanisms (Schottky barrier, tun-
neling effect). By reasonably selecting electrode materials, 
regulating interface chemical properties, and utilizing the 
defect distribution in oxide films, the barrier height and rec-
tification performance can be conveniently adjusted. The 

Fig. 3.   3D integration based on SRMs. a Device schematic of the 3D vertical crossbar array based on TiN/TiO2/NbOx/Ru vertical SRM cell. b 
Optical microscope image of the stepping region from the vertical crossbar array. c DC I–V plot of the TiN/TiO2/NbOx/Ru vertical SRM cell. 
Reproduced from [49], Copyright 2024 American Chemical Society
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rectification function of SRM is primarily caused by the dif-
ferent Schottky barrier heights between the two electrodes 
and the functional layer (Fig. 4a) [17].

Li et al. reported a p-Si/SiO2/n-Si memristor, where an 
asymmetric barrier exists at the Si/SiO2 interface (p–n junc-
tion effect) [56]. The modulation of the electric field facili-
tates the formation of carrier transport paths under forward 
bias, while suppressing leakage current under reverse bias, 
thus generating self-rectifying behavior with an excellent 
rectification ratio (105) and good retention performance 
(> 2 × 105 s). Similar to self-rectifying devices such as Pt/
TiOx/Ti and Al/MoOx/Pt, Ni et al. reported a Pt/TaOx/Ta 
memristor, where the combination of low work function 
and high work function electrodes forms an asymmetric 
Schottky barrier, achieving directional rectification [57]. 
The functional layer (TaOx) acts as a switching medium, 
supporting HRS and LRS transitions and memory functions 
by regulating the internal distribution of oxygen vacancies, 
exhibiting superior rectification ratio and nonlinearity. Most 
reliable SRMs benefit from the blocking layer that restricts 
the disordered diffusion of charge carriers, preventing the 
formation of complete conductive filaments, which is a 
cause of leakage current. The presence of the blocking layer 
effectively suppresses the leakage current of the material 
under low voltage or reverse bias, thereby enhancing the 
reliability of device writing and reading. Additionally, the 
blocking layer can reduce power consumption, as the lower 
leakage current implies a more energy-efficient operating 
state. In numerous studies, the blocking layer forms a thin 
barrier, limiting the migration of ions/electrons, executing 
tunneling/thermionic emission mechanisms. As a result, the 
device’s nonlinearity, durability, and data retention capabil-
ity are improved. In 2023, Li et al. [17] proposed a SRM 
based on the Pt/HfO2/TaOx/Ta structure, where HfO2 serves 
as the blocking layer. Under positive bias, electrons migrate 
through shallow energy level defects in the functional layer, 
with Poole–Frenkel (P–F) transport dominating the barrier 
crossing in the switching layer (Fig. 4a). When the positive 
voltage decreases to a certain value, the electron energy is 
insufficient to overcome this high barrier. The interruption of 
electron transport returns to the HRS, exhibiting high non-
linearity. Under negative voltage, a Schottky barrier forms 
between Pt and the blocking layer HfO2, blocking electron 
conduction between the electrodes and resulting in low cur-
rent, leading to the rectifying effect observed in the device 

(Fig. 4b). The DC I–V curves of typical SRMs are shown 
in Fig. 2b.

Zhang et al. reported a Pt/HfO2/WOx/TiN SRM struc-
ture, where the abundant traps in the WOx switching 
layer and the excellent insulating properties of HfO2 
synergistically promote positive polarity while sup-
pressing negative polarity current, achieving a rectifica-
tion ratio exceeding 106 [29]. Meanwhile, the increase 
in the thickness of the switching layer leads to a higher 
number of defects, resulting in a greater probability of 
electrons being trapped after passing through the switch-
ing layer. Under negative bias, the number of electrons 
emitted from traps decreases, leading to smaller leakage 
current. Conversely, under positive bias, more trapped 
electrons favor current accumulation, generating larger 
positive current. Lee et al. proposed a SRM based on the 
Ti/NiOx/Al2O3/Pt structure [58]. Under positive bias, the 
migration of oxygen vacancies from the NiOx RS layer to 
the Al2O3 blocking layer reduces the barrier thickness in 
the Al2O3 blocking layer, facilitating tunneling to produce 
high current values. Under negative voltage, the Schottky 
barrier at the Ti/NbOx interface and the thickening bar-
rier of the Al2O3 rectifying layer jointly suppress reverse 
leakage current. In 2025, Pham et al. conducted an in-
depth analysis of the underlying mechanism of interfacial 
conduction in SRM from the perspective of band theory, 
making significant contributions to the advancement of 
this field [59]. Similarly, the HfOx/ZrOy structure also 
presented dominant interfacial mechanism recently [60]. 
These studies indicate that the self-rectifying properties 
are not solely determined by the material work function; 
the generation, distribution, and migration of ions also 
affect the barrier thickness and energy band height.

2.2.2 � Ion Migration

Ion movement-type memristors utilize the migration and 
distribution of active ions (such as metal cations or oxygen 
vacancies) under an electric field to regulate the device’s 
resistance state. Through specially designed device struc-
tures (such as gradient oxide layers), ion movement can be 
promoted in one direction to form conductive channels (low 
resistance) while being suppressed in the opposite direction 
(high resistance), thereby achieving the self-rectifying char-
acteristics of the current (Fig. 4c) [41].
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Kim et al. fabricated a Pt/Na-doped TiO2/Pt-based SRM, 
where the asymmetric distribution of defects regulated the 
migration of Na ions, leading to self-rectifying behavior 
[36]. Lim et al. proposed alkali metal ion SRMs, utilizing 
lithium metal as the adhesive layer for the bottom elec-
trode, with an alkali ion reservoir forming at the bottom of 
the memristor layer [61]. Aluminum dopants were used to 
improve retention characteristics and suppress the diffusion 
of alkali cations. In the optimized aluminum-doped mem-
ristor device, retention characteristics were maintained for 
over 20 h at 125 °C, durability exceeded 5.5 × 105 cycles, 

and high linear/symmetrical weight update characteristics 
were achieved.

Bae et al. developed a fluorine ion-doped TiOx SRM 
[42]. Fluorine ions attracted oxygen vacancies, reducing 
the migration energy of nearby oxygen vacancies, which 
improved the reversible redistribution and reduced device 
variability. The fluorinated memristor showed improvements 
in switching ratio, rectification ratio, device time uniform-
ity, and switching speed, overcoming the trade-off between 
performance and reliability seen in traditional memristors. 
Zhang et al. reported Ni-doped WOx/ZnO SRMs, where Ni 

Fig. 4   Mechanisms of SRMs. a Conductivity mechanism of double-layer oxide-based SRMs under positive bias and b positive bias. Repro-
duced from [17], Copyright 2023 American Association for the Advancement of Science. c Conductivity mechanism of SRMs based on Au/h-
BN/graphene/h-BN/Ag van der Waals heterojunction. Reproduced from [41], with permission from Springer Nature. The conducting mecha-
nisms, including interfacial barrier and ion migrant, of the proposed SRMs when d negative bias and e positive bias are added, respectively. 
Reproduced from [51], with permission of Springer Nature. f Illustration of the charge trapping and detrapping processes in the SRM cell based 
on Pt/NbOx/TiOy/NbOx/TiN structure. Reprinted from [43], Copyright 2016 American Chemical Society
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ions reduced the electron affinity of the WOx layer, forming 
asymmetric electron transport paths with shallow deep-level 
traps, leading to self-rectifying behavior [30]. Interestingly, 
the concentration gradient caused an asymmetric distribu-
tion of ions within the device, creating an internal electric 
field. The direction of this electric field either reinforced or 
weakened the applied bias direction, altering the switching 
bias between the on-state and off-state, resulting in nonlinear 
differences in conductivity under two polarities. To achieve 
unique dynamic functions with large-scale in-memory com-
puting, Choi et al. fabricated dynamic Pt/WOx/W SRMs 
[45]. The asymmetric distribution of oxygen vacancies in 
WOx between the Pt and W electrodes led to the forma-
tion of a stable Schottky barrier at the Pt/WOx interface and 
dynamic modulation of the Schottky barrier at the WOx/W 
interface. The migration of oxygen vacancies driven by the 
electric field was observed even without externally applied 
compliance current, exhibiting high switching uniformity 
and device yield (> 98%), stable durability (> 105 cycles), 
and low programming voltage (~ 0.7 V) for self-rectifying 
switching.

Wang et al. proposed an SRM structure of Pt/WO3/WO3-x/
TiN [31]. The concentration of oxygen vacancies in the WOx 
functional layer exhibited a gradient distribution, causing dif-
ferent energy level distributions at the top and bottom elec-
trodes, resulting in asymmetric energy barriers for electron 
movement. This achieved a remarkable rectification ratio 
(approximately 105), a satisfactory switching ratio (approxi-
mately 103), low operating voltage (2 V), and high stability 
(> 106 s, 104 cycles). When integrated into a 100 × 100 array, 
the device achieved a significant resistance reading accuracy 
of 97.3%. Additionally, by setting the read margin at 10%, the 
passive array integrated with this device could reach a storage 
capacity of up to 180.3 Gb. Zhang et al. proposed Pt/NiOx/
WO3−x:Ti/W self-rectifying devices, where the difference 
in work function between the rich O2− region at the NiOx/
WO3-x:Ti interface and the rich region of oxygen vacancies at 
the WO3-x:Ti side formed an interface barrier, resulting in HRS 
and low conductivity [33]. By controlling the oxidation in the 
two oxide layers, the HRS current and interface barrier could 
be optimized, achieving ultra-high weight-enhanced linearity 
(0.9997). Choi et al. proposed TaOy/NP TaOx SRMs, where 
the device operation relies on the formation, movement, and 
aggregation of oxygen vacancies in the nanopore structure 
[62]. When a certain electric field is applied, the migration of 
oxygen vacancies changes the resistance state of TaOx from 

the HRS to the LRS, realizing memristive behavior. The self-
rectifying characteristics are caused by asymmetric conduction 
induced by the heterojunction between the TaOy thin film and 
the nanoporous TaOx layer, achieving low-power, stable, and 
interference-resistant memristive switching behavior. Sun et al. 
[41] proposed a self-selective storage unit based on an Au/h-
BN/Graphene/h-BN/Ag van der Waals heterojunction, where 
h-BN and graphene represent hexagonal boron nitride and 
graphene, respectively. Non-volatile boron vacancy layers and 
volatile silver layers were formed in the Au/h-BN/ Graphene 
and Graphene /h-BN/Ag structures (Fig. 4c). In the unit inte-
grating non-volatile and volatile structures, the graphene layer 
effectively prevented the diffusion of the volatile silver layer, 
resulting in highly nonlinear resistance switching with self-
selection of 1010 and a switching resistance ratio exceeding 
103. Further, as illustrated in Fig. 4d, e, combining interfacial 
barrier and ion migrant could realize surprising performance 
of SRMs, exemplified by the Pt/HfOx/TiN single-layer SRM 
[51].

2.2.3 � Defect Regulation

The resistive switching characteristics of devices are due to 
the capture and release of charge carriers (such as oxygen 
vacancies, metal ions, or other defect states), while the rec-
tifying characteristics arise from controlling the filling and 
release directionality of charge carriers.

Kim et al. designed a low-current self-rectifying Pt/NbOx/
TiOy/NbOx/TiN device, where the memristive behavior is 
attributed to the electron capture/detrapping process, and 
the asymmetric barrier results in a self-rectification ratio of 
105, with trap energy levels formed up to 0.8 eV in the TiOy 
layer (Fig. 4f) [43]. By optimizing the dynamic behavior of 
oxygen vacancies in the active layer and the design of the 
barrier layer, excellent performance was further achieved 
through using of ion migration driven by local electric fields 
and built-in electric fields at heterogeneous interfaces: no 
forming process required, self-rectification, high rectifica-
tion ratio, low-power operation, and asymmetric program-
ming voltage. Yoon et al. prepared Ta2O5/HfO2-x based 
SRMs, where Ta2O5 with high electron affinity serves as 
the rectifying layer [44]. Although this design weakens the 
Schottky barrier at the rectifying interface, it facilitates the 
forward injection of electrons within the dielectric layer. 
Cheong et al. reported a Pt/HfO2/Nb2O5/HfO2/Ti SRM, 
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with the Nb2O5 layer acting as a charge trap layer [63]. Due 
to the oxygen scavenging effect of the bottom Ti electrode, 
even with the same HfO2 layer, the lower HfO2 film contains 
oxygen defects, which aids in trap-assisted tunneling.

Ionic memristors, relying on the dynamic migration of 
oxygen vacancies/ions, exhibit excellent dynamic control 
capabilities and multi-resistive state storage characteris-
tics, making them suitable for online learning and neuro-
morphic computing, but they have poor long-term stability 
and complex fabrication processes. Barrier-type memristors 
provide high rectification ratios and stability through inter-
face barrier engineering, making them suitable for leakage 
current suppression and high-density storage, but they lack 
dynamic control capabilities and have lower complexity, 
which can be optimized through multiple metal–oxide sys-
tems. Defect-type memristors, based on the distribution of 
material defects, offer stable switching performance and 
simple manufacturing processes, with lower power con-
sumption than barrier-type memristors, making them suit-
able for fixed-weight storage, but their rectification ratios 
and dynamics are relatively limited. The choice among these 
three mechanisms depends on the requirements of the appli-
cation scenarios.

2.3 � Metrics

In this section, we delve into the key factors influencing the 
core device-level metrics of SRMs—such as RR, nonlinear-
ity NL, CMOS compatibility, switching speed, and reliabil-
ity—which have been partially introduced previously. The 
discussion will focus on how material selection, interface 
engineering, structural design, and switching mechanisms 
affect these critical performance parameters. By analyzing 
these influencing factors, we aim to provide deeper insight 
into the operational principles and performance limits of 
SRMs at the device level. A comprehensive review of array-
level implementations and system applications will be pre-
sented in subsequent sections.

2.3.1 � Rectification Ratio

As mentioned earlier, the RR of SRMs is closely related to 
the energy band structure of the selected electrodes, resis-
tive and insulating layers. For example, oxygen anion migra-
tion and barrier modulation can improve the rectification 

characteristics of TaOx/Al2O3 memristors [64], but optimiz-
ing the thickness of the Al2O3 switching layer requires pre-
cise control of the distribution and migration of the oxygen 
vacancies to achieve the expected RR. For material design, 
it is not the case that simply increasing the barriers of the 
metal-insulating layer can lead to a larger RR, but also the 
contact barriers of the metal–oxide at the other end as well 
as oxide–oxide and the state of the individual interfaces need 
to be considered. If the barrier between the metal-insulat-
ing layer is too large, the emitted electrons cannot tunnel 
through the insulating layer to the other end, thus suppress-
ing the positive current and further not achieving a sufficient 
RR. In addition, the optimization requires precise control 
of the preparation process parameters, such as temperature, 
time, atmosphere, etc. When the resistive layer film needs to 
be prepared, it is necessary to control the temperature, time, 
atmosphere, etc. precisely. When the resistive layer films 
need to be annealed rapidly in argon or oxygen atmosphere, 
the increase in oxygen vacancies leads to changes in the 
nature of the interfacial contacts, which affects the recti-
fication effect. Since the roughness, defect concentration, 
and other factors of the films at different locations are com-
pletely different, precise control of such process parameters 
is difficult to achieve in large-scale production, significantly 
increasing the difficulty of optimizing RR.

2.3.2 � Nonlinearity

Unlike RR, NL is mainly influenced by the first metal–oxide 
barrier in the conducting direction, and a proper barrier will 
result in a wide NL region corresponding to the SRM [17]. 
Optimizing NL encounters the same challenges as RR, 
where excessive metal–oxide and oxide–oxide barriers can 
similarly limit the magnitude of the peak current and thus 
the NL enhancement. Also, when there are too many defects 
such as oxygen vacancies in the resistive layer, the defects 
will continue to migrate and accumulate with the small elec-
tric field and thus form conductive filaments, at which point 
the current, which would otherwise barely increase with 
increasing voltage, will gradually rise, i.e., NL failure [30].

2.3.3 � On/Off Ratio

The on/off ratio needs to be synergistically optimized with RR 
and NL rather than sacrificed. First, the energy band structure 
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and oxygen vacancy concentration have a direct effect on the 
on/off ratio. For example, the increase in oxygen vacancies in 
the WO3-x layer improves the electron trapping and de-trapping 
efficiencies, thus increasing the on/off ratio [31]. Subsequently, 
preparation process parameters such as temperature, time, and 
atmosphere have important effects on the energy band struc-
ture and oxygen vacancy distribution of the materials, e.g., 
the preparation of WO3 and WO3-x layers by low-power and 
high-power sputtering techniques, respectively, achieves dif-
ferent oxygen vacancy concentrations, which in turn affect the 
on/off ratio [31]. Similarly, the selection of electrode materials 
and intermediate oxide layers has a significant effect on the on/
off ratio, e.g., in the Pt/WO3/WO3-x/TiN structure, the differ-
ence in the work function between the Pt and TiN electrodes 
and the WO3 layer, as well as the oxygen vacancy traps in 
the WO3-x layer, works together to achieve a high on/off ratio 
[31]. Wang et al. systematically verified the above phenomena 
and mechanisms to achieve a large on/off ratio while realizing 
perfect nonvolatility [31], providing a fundamental guide for 
large-scale scaling. However, the blind pursuit of large on/off 
ratios may sacrifice the data retention capability of SRMs [40], 
which in turn fails to store data reliably, which is unnecessary.

2.3.4 � Switching Speed

The optimization of the switching speed of SRMs is limited 
by several factors. First, SRMs usually rely on materials with 
nonlinear ion mobility properties, and the ion mobility rate 
and defect distribution of these materials directly affect the 
device response speed. Although few SRMs have a conduc-
tive mechanism based on conductive filaments [41], continu-
ous conductive pathways formed by defects such as oxygen 
vacancies can also prevent devices from switching (conductive 
pathway formation is slow) [29, 31, 47]. Second, the design 
of the device structure has a significant impact on the switch-
ing speed; the interfacial properties between the electrodes 
and the memristive material, the device dimensions, and the 
homogeneity of the internal electric field distribution all affect 
the efficiency and path of ion migration, thus constraining the 
optimization of the switching speed. Ultra-thin oxide resistive 
and insulating layers enable ultrafast switching [17, 49], while 
increasing the thickness above 30 nm significantly slows down 
the switching significantly [47]. In addition, external operating 
conditions such as voltage amplitude, pulse frequency, and 
temperature can also have a significant impact on switching 

speed; too high or too low a voltage can lead to material dam-
age or impeded ion migration. Even though Lu et al. achieved 
ultrafast response at the ps level, the overly complex prepara-
tion process based on 16 layers limits its potential for large 
scaling [49]. Nevertheless, they still provided valuable instruc-
tions concerning moderate 3D integration for fast switching 
with ultra-thin film.

Optimizing for a higher RR or NL often involves increas-
ing the barrier height at the device interfaces. While this can 
effectively suppress reverse currents, it may also increase 
the energy barrier for electron transport under forward bias, 
thereby slowing down the switching speed [65]. For example, 
in devices with high RR and NL, the formation and rupture of 
conductive filaments may require higher activation energies, 
leading to longer switching times.

2.3.5 � CMOS Compatibility

Recently, combined with Ag⁺-mediated filamentary switch-
ing in the 2D perovskite channels, the design from Son et al. 
overcomes the voltage-consumption trade-off plaguing con-
ventional SRMs [66]. However, constructing high-perfor-
mance SRMs based on 2D materials that are incompatible 
with CMOS processes contradicts the path of future devel-
opment. There are numerous CMOS process-compatible 
resistive layer oxides used for SRMs, and the one that has 
been extensively studied is WO3 [29–31, 45]. WO3 has abun-
dant oxygen vacancies and tunable conductive properties, 
and these oxygen vacancies are able to migrate under the 
action of an external electric field to form or break conduc-
tive filaments and achieve the resistive behavior [67, 68]. 
At the same time, the high thermal and chemical stability 
makes it perfectly compatible with CMOS processes. How-
ever, the compatibility of other mainstream resist materials 
with CMOS processes still needs to be further explored, for 
example, indium–gallium–zinc–oxide (IGZO) has excellent 
conductivity tunability, electron mobility, and photographic 
properties [69], but high temperature oxidation or annealing 
environments in the CMOS process can lead to the dena-
turation of the IGZO film. Although popular and with good 
CMOS compatibility, the resistive denaturation mechanism 
of WO3 relies on the migration of oxygen vacancies and the 
formation of conductive filaments, and its oxygen vacan-
cies are poorly controllable, which therefore tends to lead 
to instability and poor uniformity of SRM performance. 
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Therefore, the development of CMOS process compatibility 
of other resistive oxides is a major challenge but a neces-
sary path to achieve large-scale integration. High-k oxides, 
such as HfO2 [17], Ta2O5 [44], Al2O3 [70], TiO2 [46], and 
others with good CMOS compatibility, have also received 
much attention. For example, notably, the SRMs proposed 
by Zhang et al. exhibit CMOS middle-of-line compatibility, 
leveraging HfO2 and TiN—materials routinely integrated 
in intermediate fabrication stages [29], and the architecture 
present by Wang et al. demonstrates back-end-of-line pro-
cess alignment, where Pt electrodes and WO3 layers conform 
to back-end metallization requirements [31]. These distinct 
material stacks reflect tailored integration strategies for 
CMOS workflows, respectively.

2.3.6 � Reliability

The reliability characterization of SRM is consistent with 
that of common memristor with data retention and endur-
ance as the two main factors [71]. As shown in Table 1, 
starting from 2015 until 2025, SRMs have experienced a 
gradual development from data retention characteristics that 
are generally less than 104 s to greater than 104 s or even 
resistant high temperature. Endurance follows a similar pat-
tern of development. It is worth noting that reliability is very 
closely linked to operating voltage. High operating voltage 
leads to a significant increase in the electric field strength 
inside the SRM, accelerating the migration of oxygen vacan-
cies or metal ions, thus promoting the formation or break-
age of conductive filaments. But the ion migration under 
this strong electric field is often difficult to be precisely 
controlled, which easily triggers excessive or non-uniform 
filament growth and leads to unstable device performance. 
In addition, high operating voltages can exacerbate the 
Joule heating effect within the material, and the localized 
temperature increase may cause structural changes (e.g., 
crystallization or phase transitions) in the material, or even 
lead to chemical reactions or degradation at the interface 
between the electrodes and the functional layer, which fur-
ther affects the endurance and data retention of the device. 
As a result, SRMs based on conductive filaments or con-
tinuous conductive pathways tend to be significantly less 
reliable than SRMs based on electromigration. However, the 
oxide films underlying SRMs based on electromigration to 
achieve high RR, NL, on/off ratio, and fast switching are as 

thin as possible to 10 nm or even less than 5 nm, which may 
be subject to localized breakdowns and thus lead to SRM 
failures. Meanwhile, the continuous conductive pathways are 
the basis for ensuring a large on/off ratio [31, 40], creating 
a significant contradiction.

With RR and NL increasing, the increased barrier height 
may lead to more significant stress on the device materials 
during repeated switching cycles, potentially reducing the 
device’s lifespan [72]. High barrier height values can also 
sometimes be achieved at the expense of data retention. The 
increased barrier heights and reduced current flow can lead 
to slower relaxation processes, potentially causing the device 
to switch back to the off-state over time. This is particularly 
problematic in applications requiring long-term data stor-
age. Additionally, the higher operating voltages required to 
overcome these barriers can exacerbate Joule heating effects, 
further degrading device performance over time [12, 51]. 
Lowering the operating voltage to increase switching speed 
can reduce the stress on the device materials [73], poten-
tially improving endurance. However, if the operating volt-
age is too low, it may not be sufficient to drive the necessary 
switching processes, leading to incomplete state transitions 
and reduced device reliability [74]. To balance the trade-offs 
of RR (or NL), speed, and endurance, one optimal approach 
is to further optimize the device structure and materials to 
achieve a moderate RR or NL while maintaining accept-
able switching speed and endurance. For instance, using 
thin insulating layers and optimizing the doping levels can 
help reduce the energy barriers without significantly com-
promising RR and NL [42], and advanced materials with 
high thermal stability and low defect densities can improve 
endurance while maintaining high RR and NL. Moreover, 
using materials with high ionic mobility and optimizing the 
device dimensions can help achieve faster switching with-
out significantly increasing power consumption [75, 76]. 
As an example, Tan et al. introduce a self-rectifying two-
dimensional memtransistor, employing asymmetric metal 
contacts—a Schottky Platinum contact and a quasi-ohmic 
Bismuth contact and integrating memristor resistive switch-
ing with transistor gate tunability for advanced neuromor-
phic computing [77].

From the perspective of the fabrication process, the fab-
rication of SRMs involves several critical steps, including 
material deposition, annealing, and doping, each of which 
can significantly influence the device’s performance. 
Understanding how specific process variations affect 
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key performance metrics is also essential for developing 
more reliable and consistent SRM fabrication processes. 
First, the thickness of the active layer in SRMs is a criti-
cal parameter that affects both the RR and NL. Thicker 
layers generally enhance the RR and NL by increasing the 
energy barriers under enough forward bias [29]. Second, 
annealing temperature plays a crucial role in determin-
ing the crystallinity and defect density of the active layer. 
Higher annealing temperatures can improve the crystallin-
ity, leading to lower defect densities and enhanced device 
performance [78]. However, excessively high tempera-
tures can cause material degradation or unwanted phase 
transitions, negatively impacting the device’s stability 
and performance. Last but not least, doping is a common 
technique used to control the electrical properties of the 
active layer in SRMs [42]. The concentration of dopants 
can significantly affect the device’s on/off ratio, switching 
speed, and endurance. Moderate doping concentrations 
can increase the conductivity of the active layer, enhancing 
the on/off ratio and switching speed. Recently, Wang et al. 
epitaxially grew the AlScN film on a silicon substrate for 
reliable SRMs, whose crystallinity, surface roughness, and 
ferroelectric properties were meticulously optimized via 
dual-target nitrogen reactive magnetron sputtering, fine-
tuning the doping ratio [79].

In summary, balancing all the metrics of SRMs while 
ensuring superior reliability is difficult to achieve. And 
current state-of-the-art SRMs are still operated at higher 
voltages (> 1.5 V) [17, 37, 46]. Possible strategies include 
using multilayer stacking for fine control of the conductive 
pathways, optimizing the precision of the CMOS process, 
introducing isolation layers around the device, and protect-
ing the device using encapsulation processes, etc. The next 
phase of exploration will be based on the CMOS process, 
the matching of the available functional materials, the high 
temperature reliability characterization with lower and lower 
operating voltage to ensure that the reliability is as syner-
gistic as possible with the optimization of the key metrics. 
Besides, optimizing the performance of SRMs involves care-
fully balancing multiple key metrics. By understanding the 
trade-offs between these metrics and tailoring the device 
design to specific application requirements, SRMs can be 
optimized for high performance, reliability, and scalability 
in various beyond-CMOS computing paradigms. It is worth 
noting that all key terms mentioned in this paper are sum-
marized and explained in Table 2.

3 � Applications of SRM in Beyond CMOS

In the previous section, we provided a detailed discus-
sion of the working principle, conductive mechanism, 
and unique features of SRMs. Based on these, SRMs are 
capable of a large number of cutting-edge applications for 
beyond CMOS. The great scalability potential of SRMs 
provides a solid hardware foundation for ultra-high-preci-
sion in-memory computing [99], neuromorphic computing 
[50], and hardware security [100].

3.1 � In‑Memory Computing

SRM-based in-memory computing utilizes the non-vol-
atile, high-density, and programmable characteristics of 
memristors to efficiently perform vector matrix multipli-
cation (VMM) by reading the rows and collecting current 
along the columns of memory cells, thus realizing the deep 
integration of memory and computing [101].

3.1.1 � Regular VMM

For regular VMM, the memristors are distributed as storage 
units at the intersection of word lines (WLs) and bit lines 
(BLs), and the writing and updating of the memristor resist-
ance state can be realized by controlling the voltage of WLs, 
while BLs are used to read the current signals of the mem-
ristors to obtain the stored data. By storing the weights of 
the matrix in the conductance values of the memristors and 
applying the voltage signals of the input vectors on the word 
lines, the current of each memristor is proportional to its 
conductance value according to Ohm’s law. The bit line col-
lects the currents of all the memristors through Kirchhoff’s 
law, thus directly outputting the result of the VMM [102].

As mentioned earlier, SRMs can effectively suppress leak-
age currents in passive crossbar arrays, thereby improving 
read accuracy and data accuracy. Further, the SRM cell-
based crossbar arrays are able to perform multiply-accu-
mulate computation (MAC) in a massively parallel manner. 
This parallelism allows the computational complexity of the 
VMM to be reduced from the traditional O(n2) to O(n) or 
even better [103, 104], significantly improving the compu-
tational efficiency. In recent years, a large number of state-
of-the-art SRMs with applications to regular VMM have 
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been developed. For example, Zhao et al. developed an SRM 
based on a quasi-free-state Bi2O2Se single-crystal thin film, 
achieving fast switching (< 20 ns) and low-power consump-
tion (< 1.2 pJ) [40]. In 2019, Sun et al. introduced an SRM 
based on a van der Waals heterostructure of hexagonal boron 
nitride (h-BN) and graphene, achieving self-selectivity in 
excess of 1010, switching ratios in excess of 103, and terabit-
level scalability [41].

In 2021, SRMs based on Ru/Hf0.8Si0.2O2 /Al2O3/
Hf0.5Si0.5O2/TiN structures, with DC I–V curves shown 
in Fig. 5a, were used to construct 30 × 30 passive crossbar 
arrays [34]. The group selected four random matrices with 
different sparsities in the experiment and mapped them onto 
the passive crossbar array. The efficiency and accuracy of 
the arrays in handling large-scale matrix operations were 
verified by quantizing the currents using sense amplifiers at 

the end of the column lines (Figs. 5b and 3c). The experi-
mental results show that the measured current vectors are 
almost identical to those obtained by extrapolating the cur-
rents from individual cells, indicating that the interference 
of unselected cells is negligible even in large-scale arrays 
(Fig. 5d). At the same time, the power consumption level 
of the realized VMM is much lower than that of conven-
tional computing architectures, especially when dealing 
with intensive matrix operations. This suggests that SRM-
based crossbar arrays are not only advantageous in terms of 
computational efficiency, but also show great potential in 
terms of energy efficiency. In addition, related concerns were 
reasonably presented. Despite the excellent performance 
of crossbar arrays in in-memory computation, there are 
still some challenges to achieve the desired computational 
temporal complexity O(1). Theoretically, by activating all 

Table 2   Key glossary

Term Abbreviation Definition

Self-rectifying memristor SRM A novel type of memristor that exhibits intrinsic diode-like rectification, enabling 
unidirectional conduction and suppressing sneak path currents in crossbar arrays

Rectification ratio RR The ratio of the on-state current of the device under positive bias to the off-state 
current under negative bias, indicating the level of current suppression in reverse 
bias

Nonlinearity NL The ratio of the current of the device at the read voltage under the low-resistance 
state (LRS) to its current at the partial read voltage, indicating the degree of 
nonlinearity in the current–voltage characteristics

Complementary metal–oxide–semiconductor CMOS A widely used technology for manufacturing integrated circuits, characterized by 
low-power consumption and high scalability

Vector–matrix multiplication VMM A fundamental operation in many computing tasks, where a vector is multiplied by 
a matrix to produce a result vector, often used in neural networks and in-memory 
computing

Ternary content-addressable memory TCAM A type of cell that allows data to be retrieved based on its content rather than its 
address, often used in high-speed search applications

Artificial neural network ANN A computational model inspired by the structure and function of biological neural 
networks, used for tasks such as image recognition and pattern classification

Convolutional neural network CNN A type of neural network that uses convolutional layers to process data with grid-
like topology, commonly used for image and video recognition tasks

Autonomous driving systems ADS Systems that enable vehicles to operate without human intervention, often using 
advanced sensors, computing, and machine learning techniques

Reservoir computing RC A type of recurrent neural network that uses a fixed, highly dynamic reservoir to 
map input signals to a high-dimensional space, followed by a linear readout layer 
for output

Physical unclonable function PUF A security primitive that generates unique and unclonable digital fingerprints 
based on the inherent physical variations in a device, used for authentication and 
key storage

True random number generator TRNG A hardware device that generates random numbers based on physical processes, 
providing high entropy for cryptographic applications

Homomorphic encryption HE A form of encryption that allows computations to be performed on ciphertext, pro-
ducing an encrypted result that, when decrypted, matches the result of operations 
performed on the plaintext
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column lines simultaneously, the crossed-bar array enables 
on-the-fly computation of VMM. However, in practice, the 
finite line resistance leads to uneven cell voltage distribu-
tion, which affects the computational accuracy. In addition, 
activating all column lines simultaneously requires separate 
sense amplifiers and subsequent logic circuits for each col-
umn line, which may lead to additional area overhead in 
large-scale arrays.

With the unique property of SRMs to significantly sup-
press the sneak path currents in passive crossbar arrays, the 
realization of a massively integrated VMM can significantly 
enhance the parallel processing capability of the hardware 
while significantly reducing the computational temporal 
complexity.

Compared to single-layer SRMs, 3D-stacked SRMs have 
significant advantages for in-memory computing integration 
[105, 106]. First, the 3D-stacked structure can fully utilize 
the vertical space and significantly increase the storage den-
sity and computing power per unit area. This high-density 
integration not only increases storage capacity, but also sig-
nificantly enhances the computing power of the in-memory 
computing chip, making it more suitable for processing 
large-scale data and complex computing tasks [12]. What’s 
more, the 3D-stacked memristors can be seamlessly inte-
grated into existing CMOS processes [107]. In the recent 
decade, there has been little research on in-memory comput-
ing with 3D SRMs, but the related device mechanism has 
become much hotter [53, 91, 95, 96, 98].

Fig. 5   Passive crossbar arrays based on SRMs for regular VMM. a DC I–V curves of SRMs based on Ru/Hf0.8Si0.2O2 /Al2O3/Hf0.5Si0.5O2/TiN 
structures, serving as cells of passive crossbar arrays. b Scheme of 30 × 30 matrix mapped onto a crossbar array of the same size. c Schematic 
timing diagrams of the row and column line signals, with inhibit voltages applied to unchosen column-lines. d Conductance maps and measured 
current vectors of four random matrices (w1–w4). Reproduced from [34], with permission from Springer Nature
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3.1.2 � Content Addressing

Content addressing is a method for organizing and retriev-
ing data based on the data’s intrinsic content, rather than its 
storage location [108]. In this approach, each data object 
generates a unique identifier through its content. SRM arrays 
achieve content addressing through their unique in-memory 
computing function, which utilizes self-rectifying features to 
suppress the sneak path current, thus ensuring accurate data 
storage and efficient retrieval [109, 110]. Fast content-based 
access and processing is achieved by mapping the hash value 
of the data content to specific SRM cells and performing 
logical operations directly on these cells. Among them, 
three-state content-addressable memory (TCAM) supports 
three states of “0,” “1” and “don’t care” in each SRM cell 
with flexible matching operations realized through masks 
[111].

In 2018, Chen et al. developed a Ge-based SRM using a 
full CMOS-compatible technology and a thin AlOx/GeOx 
interfacial layer, demonstrating excellent switching and rec-
tification properties [109]. Based on this device, they propose 
and validate a high-density nonvolatile TCAM whose func-
tionality is verified by experimental measurements. Wang 
et al. experimentally verified the parallel search function of 
a 2-bit TCAM array based on a Ge-based SRM [112]. With a 
sub-nanosecond ultrafast measurement system, it is confirmed 
that the search energy consumption of this TCAM is as low 
as 1.0 fJ/bit/mismatch, and the search operation can be com-
pleted within 200 ps, which significantly improves the data 
retrieval speed. The match reliability of Ge-based SRM-based 
TCAM cells combined with their full CMOS compatibility 
validates their potential for scaling up to ultra-large-scale 
TCAM systems. Moreover, the outstanding advantages of 
SRM suppression of sneak path currents applied to TCAM 
cell design were particularly emphasized by Goh et al. [110]. 
By employing a TiN/HZO/TaN/W stacked structure, the real-
ized ferroelectric tunnel junction (FTJ) exhibits a rectification 
ratio of up to 1000 and a tunneling electroresistance of about 
100, preliminarily demonstrating its characteristic of prevent-
ing crosstalk between array cells. This FTJ-based TCAM cell 
structure achieves a compact area (only two FTJ cells are 
required) and exhibits high endurance (108 cycles) and low-
power consumption, while achieving about 90% accuracy in 
pattern recognition tasks, providing a highly promising solu-
tion for high-density, low-power TCAM applications [110]. 
This approach markedly enhances the density and reliability of 

the TCAM while simultaneously decreasing power consump-
tion and error rate. Yu et al. [48] introduced a 3D SRM-TCAM 
that significantly advanced in-memory search capabilities. As 
illustrated in the schematic (Fig. 6a), the memory array adopts 
a compact 3D vertical architecture, where multiple storage lay-
ers are stacked to achieve high integration density and N-fold 
improvement in search parallelism. The fundamental build-
ing block is a novel TCAM cell (Fig. 6b) consisting of just 
two SRMs connected to a common match line (ML), storing 
ternary states through different resistance state combinations 
of the two devices. This minimalist design enables efficient 
implementation within a 3D crossbar array for parallel exact 
matching operations (Fig. 6c). The crucial advantage emerges 
when comparing the operational mechanisms with conven-
tional designs. While the traditional two-memristor TCAM 
(Fig. 6d) suffers from insufficient ML charging due to simul-
taneous charging and discharging paths, the SRM-based coun-
terpart (Fig. 6e) benefits from the self-rectifying characteristic 
that functionally creates a one-diode–one-resistor structure. 
This effectively blocks the discharge path to ground, allowing 
more adequate charging current and consequently a signifi-
cantly larger sense margin.

Obviously, in the development of SRM applications for 
content addressing, researchers have focused on the CMOS 
compatibility of the selected materials to confirm the feasibil-
ity of the proposed TCAM architecture for large-scale scaling 
[113]. Nonetheless, the SRM devices utilized in the TCAM 
cells at this stage are still unable to achieve substantial RR 
and NL, which fundamentally prevents excellent scalability.

3.1.3 � Other Applications

In the field of in-memory computing based on SRMs, except 
regular VMM and content addressing, there are unique 
applications being initially developed [17, 47, 57, 92].

First, for basic logic functions, Ni et al. [57] verified 
that controlled majority-inverter graph logic based on 
SRMs offers significant advantages in terms of computa-
tional complexity, enabling the implementation of com-
plex logic functions, such as 1-bit full adder and 4-bit 
square root computation, with fewer devices and steps. In 
addition, parallel logic gates based on SRMs are capable 
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of implementing priority encoders and XOR logic func-
tions through logic cascading [92].

Besides, in many in-memory computating scenarios, 
most of the elements in the matrix are zero, while the 

nonzero elements account for only a few. This makes tra-
ditional matrix multiplication methods inefficient when 
dealing with sparse matrices, as a large amount of com-
putational resources are wasted on operations with zero 

Fig. 6   TCAM based on SRMs. a Schematic configuration of the 3D SRM-based TCAM array. b Cell structure and state definitions of a 1-bit 
SRM-based TCAM. c Schematic diagram of SRM-TCAM arrays for performing the exact match. ML charging circuit models for d 2R-TCAM 
and e SRM-TCAM. Reprinted from [48], Copyright 2025 Springer Nature
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elements. Sparse matrix multiplication significantly 
reduces computational complexity and storage require-
ments by optimizing storage and computation methods to 
operate only on nonzero elements [114]. SRMs are very 
suitable for sparse matrix multiplication due to their pow-
erful self-rectification capability. In 2023, Li et al. sig-
nificantly reduced the energy consumption and hardware 
overhead at the hardware level by compressing the storage 
format of sparse matrices, mapping nonzero elements into 
memory arrays, and utilizing the low-power and rectifi-
cation characteristics of SRMs with both of RR and NL 
exceeding 104 and ultra-low leakage current below 0.1 pA 
to suppress crosstalk currents (Fig. 7) [17]. Experimental 
results show that the system achieves a performance of 
about 97 to 11 TOPS/W in 2- to 8-bit sparse computa-
tion tasks, which improves the energy efficiency by more 
than 85 times and reduces the hardware overhead by about 
340 times compared to conventional memory computation 
systems.

With its non-volatile, high-density and self-rectifying 
features, SRM demonstrates high-performance and low-
power consumption advantages in in-memory computing 
paradigm, significantly enhancing computational accuracy 
and parallel processing capability by suppressing leakage 
current. In addition, SRMs support a 3D-stacked structure, 
which further enhances the density and performance of in-
memory computing, and are compatible with CMOS pro-
cesses, making large-scale applications possible. In special 
applications such as content addressing and sparse matrix 
multiplication, SRM further reduces hardware overhead and 
power consumption by optimizing the storage format and 
reducing invalid calculations, demonstrating the potential 
for a wide range of applications with much more mature 
CMOS compatibility.

Fig. 7   Motivation and metrics of the proposed sparse matrix multiplication based on SRMs. Reprinted from [17], Copyright 2023 American 
Association for the Advancement of Science
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3.2 � Neuromorphic Computing

Relying on in-memory computing, neuromorphic computing 
is a brain-inspired computing paradigm that aims to achieve 
efficient information processing and learning capabilities by 
modeling the structure and function of biological neural net-
works [115], owning dominant status in the beyond-CMOS 
computing paradigm. It achieves brain-like parallel comput-
ing and learning functions by constructing brain-like networks 
of neurons and synapses simulating synaptic weight changes. 
Although You et al. present a significant advancement by 
developing a dynamic SRM that integrates leaky integrate-
and-fire neuron emulation and refractory period simulation 
[116], applications of SRM-based neuromorphic computing 
have primarily focused on emulating synaptic behaviors cur-
rently. Compared with traditional computing architectures, the 
advantages of neuromorphic computing lie in its high degree 
of parallelism and efficient processing of complex tasks, while 
its uniqueness lies in its ability to mimic the plasticity and 
dynamic behaviors of the brain, such as short- and long-term 
synaptic plasticity, as well as learning through mechanisms 
such as spiking timing-dependent plasticity (STDP) [115, 
117]. A prerequisite for embedding into a neuromorphic 
computing system is that the selected SRMs should have suf-
ficient dynamic properties [42]. Moreover, SRMs can provide 
a massively scalable hardware foundation for existing mature 
neuromorphic computing architectures, further improving 
computational efficiency and energy efficiency ratio.

3.2.1 � Artificial Neural Network

The computational accuracy of traditional artificial neu-
ral networks (ANNs) is limited by arithmetic power when 
running on CPUs or GPUs. When dealing with large-scale 
image recognition tasks, memristor-based hardware can be 
more easily scaled to larger network structures, thus break-
ing through the bottleneck of the traditional algorithm ANN 
that is difficult to scale with limited hardware resources 
[118]. Further, dynamic SRMs could provide synaptic char-
acteristics with great scalability for high-precision hardware-
based ANN.

In 2018, the first SRMs-based ANN was constructed via 
nanoporous TaOx-based SRMs, and the device exhibited 
high nonlinearity, low synaptic coupling, good endurance, 
and excellent retention stability [62]. The synaptic device 

successfully modeled the key functions of long-term poten-
tiation (LTP), long-term depression (LTD), and STDP and 
achieved a high accuracy of 89.08% in MNIST image recog-
nition with only 15 training cycles. This work confirms the 
great potential of SRMs in developing neuromorphic com-
puting, provides a promising synaptic device platform for 
building high-density, low-power ANNs with high learning 
capabilities and provides initial guidance for related work in 
the following years [63, 93, 119]. More researches related 
to how SRMs can be more deeply integrated into ANN and 
the all-hardware implementation of ANN has increased at 
the time of the outbreak from the beginning of 2024 [32, 
49, 61]. Jeon et al. [32] explored in detail the application 
of SRMs in the construction of hardware accelerators for 
ANNs. They designed and prepared a 1-kb passive cross-
bar array that integrates HfSiOx-based SRMs, exhibiting 
high RR around 104 (Fig. 8b), low device-to-device vari-
ation less than 6% (Fig. 8c), and excellent nonvolatility 
ensuring precise conductance adjustment. By adopting a 
1/3 bias scheme (Fig. 8a), the SRMs can effectively sup-
press crosstalk currents from neighboring cells, ensuring 
the accuracy of VMM operation. This group utilized this 
1-kb passive crossbar array for the MNIST handwritten 
digit classification task (Fig. 8d), and the weights obtained 
through software training were mapped to the conductance 
states of the array, achieving 100% classification accuracy 
(Fig. 8e). In addition, it was found that defective cells in the 
passive crossbar array significantly degraded the classifica-
tion accuracy, whereas read margins had less impact on the 
classification task [32]. This suggests that SRMs with non-
conducting filament mechanisms are ideal for ANN appli-
cations due to their high consistency and reliability. It is 
also quite noteworthy that they visualized the importance 
of the selection function in passive crossbar arrays through 
detailed comparative experiments for the first time, elucidat-
ing crossbar arrays lacking the selection function are unable 
to accurately perform the VMM operation, and thus fail to 
realize reliable ANN computation (Figs. 8f and 6g) [32]. 
Moreover, combining a record-breaking oversized RR of 
over 107 and NL of 105 with ultrafast response at the ps level 
provides another in-depth guide to the development of ANN 
hardware accelerators [49]. Besides, Kim et al. present an 
interface-type Al/N-doped TaOx (ANTO) SRM engineered 
via ALD process to optimize oxygen vacancy concentration 
[83]. Hardware-level demonstrations based on the proposed 
doped SRMs confirm reliable multilevel programming, 
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including conductance-mapped word patterns, highlighting 
its potential for high-density, energy-efficient neuromorphic 
computing.

For ANN, the weight updating linearity refers to the lin-
ear relationship between the weight changes and the input 
stimuli during the training process of the ANN. High linear-
ity implies that the change of weights can more accurately 
reflect the change of external input stimuli, thus improving 

the learning efficiency and accuracy of ANN. Therefore, 
there are also corresponding researches focusing on the 
weight update linearity of ANN-oriented SRMs based on 
WO3-x themselves, greatly compatible with CMOS pro-
cesses [29, 33]. An unsupervised self-organizing mapping 
(SOM) neural network based on SRMs with vector coding 
and topological organization is highly resistant to noise and 
steep synaptic decay, breaking through the bottleneck of 

Fig. 8   A novel ANN accelerator based on 1-kb SRM array. a Schematic diagram of 1/3 bias scheme of the passive crossbar array. b DC I–V 
curves of HfSiOx-based SRMs. c Cumulative probability of resistance states in the 1-kb crossbar array with low device-to-device variation less 
than 6%. d Schematic diagram of downscaling. e Schematic diagram of VMM operation based on 1-kb passive crossbar array. f DC I–V curves 
of one memristor without rectification (left). The cumulative probability distribution of the read current where each state is extracted from the 
DC I–V curves (right). g DC I–V curves (left) of memristors in an 8 × 8 passive crossbar array. The cumulative probability distribution of the 
read current for each state is extracted from the DC I–V curves (right). Reproduced from [32], with permission from Springer Nature
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traditional ANN in classification accuracy [33]. Combined 
with the ultra-high weight-enhanced linearity of SRM itself, 
the recognition accuracy of the SOM network based on pas-
sive crossbar array can reach 98.41% after training 56 sets 
of samples, which is much higher than that of the traditional 
ANN in the direction recognition experiments [33].

3.2.2 � Convolutional Neural Network

Convolutional neural networks (CNNs) need to perform a 
large number of sliding convolution operations when deal-
ing with tasks such as image recognition. These operations 
involve a large number of MAC operations and thus require 
compute units that support parallel MAC to meet the asso-
ciated arithmetic requirements [120]. Notably, SRMs have 
revolutionized the way all needs are met in a comprehen-
sive manner aforementioned compared to conventional 
memristors.

Kim et al. prepared Na-doped SRMs with excellent per-
formance using in situ doping by atomic layer deposition 
technique to achieve reliable reading and writing in 6 × 6 
crossbar arrays [36]. On this basis, the group constructed a 
LeNet-5-based CNN for MNIST handwritten digit recogni-
tion simulation experiments. The network is trained in two 
stages, and the simulation process takes into account device 
non-idealities by quantizing the weights and adding noise. 
Ultimately, the Na-doped SRM crossbar array constructed 
CNN achieves a validation accuracy of 99.1% on the MNIST 
dataset, and the double-memristor scheme also achieves an 
accuracy of over 95% without pre-training [36]. Recently, 
the array based on Pt/HfO2/Ti SRMs, proposed by Zhao 
et al., successfully implements an 8-bit convolutional neu-
ral network in hardware, achieving 98% accuracy on MNIST 
handwritten digit recognition [84].

Despite preliminary research, hardware implementation of 
CNNs based on SRMs faces a number of challenges, includ-
ing low yield and variation problems at the device level, 
computational inefficiencies due to the sequential nature of 
convolutional operations, and complex back-propagation and 
weight-shifting problems during the training process [120]. 
The related potential challenges are discussed in detail in the 
subsequent sections.

Remarkably, recently, Zhang et al. proposed a ground-
breaking advancement in CNN based on SRMs by intro-
ducing a Pt/HfOx/TiN structure that achieves unprecedented 

performance metrics, including a RR exceeding 108 and 
excellent endurance over 107 cycles (Fig. 9a–c) [51]. These 
achievements are attributed to meticulous engineering of the 
HfOx layer through rapid thermal annealing, which effec-
tively reduces oxygen vacancy concentrations and optimizes 
interfacial properties, thereby mitigating sneak path cur-
rents and enhancing device uniformity (Fig. 9f). The SRMs 
exhibit remarkable stability, with minimal device-to-device 
(3.32%) and cycle-to-cycle (1.55%) variations, making them 
ideal for scalable crossbar arrays capable of supporting neu-
romorphic computations at densities exceeding 25.4 terabits 
(Tb). A pivotal innovation lies in the SRMs’ ability to emu-
late synaptic plasticity, demonstrating LTP and LTD over 
256 analog states with ultra-high precision (Figs. 9d and 
7e). This synaptic behavior, coupled with the devices’ inher-
ent analog computing capabilities, enables the implementa-
tion of hardware-based autonomous driving systems (ADS) 
based on CNN units (Fig. 9g), showcasing their resilience 
against adversarial attacks, and maintaining classification 
accuracies (84.25%) comparable to software models like 
YOLOv9 (84.34%) even under complex attack scenarios. 
The proposed SRMs’ intrinsic analog dynamics and local-
ized plasticity further enhance feature extraction and noise 
suppression, addressing critical challenges in edge comput-
ing environments.

Looking ahead, the application of SRMs in CNNs holds 
transformative potential. Their low-power, high-speed in-
memory computing architecture could significantly accel-
erate convolution operations and matrix multiplications by 
minimizing data movement and energy consumption. Future 
research should focus on optimizing SRM-based crossbar 
arrays to better support weight storage and parallel computa-
tions intrinsic to CNNs, enhancing both training and infer-
ence efficiency. Additionally, exploring their compatibility 
with spiking neural networks and attention mechanisms may 
further boost computational throughput and adaptability. By 
bridging the gap between hardware capability and algorith-
mic demand, SRM-accelerated CNNs could become a cor-
nerstone for future energy-efficient and high-performance 
neural processing systems.

3.2.3 � Reservoir Computing

With the development of Artificial Intelligence (AI), tra-
ditional neural networks such as feedforward Deep Neural 
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Networks (DNNs) [123] and Recurrent Neural Networks 
(RNNs) [124] have been facing many challenges when deal-
ing with complex tasks for many years. Feedforward DNNs 
are less efficient when dealing with time series data because 
they lack the ability to effectively model time dependencies 

[123]. While traditional RNNs are capable of handling time 
series data, they are prone to the problem of exploding or 
vanishing gradients during training, leading to difficult train-
ing and convergence [125]. Meanwhile, the demand of these 
traditional neural networks for a large number of training 

Fig. 9   Hardware-level ADS system based on SRMs. a I–V characteristics of TiN/HfOx/Pt SRMs operating under a 1/6 voltage scheme, dem-
onstrating an exceptional rectification ratio of ~ 108 and nonlinearity of 105. b Progressive evolution of I–V curves under continuous unidirec-
tional voltage sweeps, illustrating the synaptic conductance modulation. c Endurance performance showcasing stable rectification ratio retention 
through 107 programming cycles, confirming exceptional cycling reliability. d LTP and depression LTD characteristics demonstrating synaptic 
weight modulation in the SRMs under 20-μs programming pulses. e Statistical analysis of cycle-to-cycle conductance variations during repeti-
tive weight updates, highlighting the exceptional stability (1.55% variation) at 20-μs pulse intervals. f Device-to-device uniformity assessment 
across a 32 × 32 crossbar array, revealing minimal variation (3.32%) that ensures reliable parallel operation in neuromorphic computing appli-
cations. g Schematic diagram and flowchart of the hardware-software cooperative anti-attack ADS based on the proposed single-layer SRMs. 
Reproduced from [51], with permission from Springer Nature
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samples and computational resources limits their application 
in resource-constrained environments such as edge comput-
ing. Reservoir computing (RC), an emerging neuromorphic 
computing paradigm, processes information by exploiting 
the complex nonlinear behavior of dynamic systems [121, 
126]. A fixed and highly dynamic reservoir layer maps 
the input signal to a high-dimensional space, followed by 
a simple linear readout layer for output (Fig. 10a), which 
not only avoids the gradient-related problems of traditional 
RNNs during the training process, but also ensures fast and 
high-precision learning with minimal resource requirements 
[121]. The dynamic behavior of memristors is highly com-
patible with the requirements of RC, effectively realizing 
the complex dynamic mapping of the reservoir layer, and 
at the same time reduce the hardware cost and power con-
sumption [102]. At the same time, the plasticity of mem-
ristors enables them to adapt to different input signals and 
task requirements, further enhancing the flexibility of RC 
systems [121]. In terms of large-scale integration, RC has 
relatively low demand for hardware resources and excellent 
compatibility with existing CMOS technology, providing a 

stage for dynamic SRMs to play a great role (Fig. 10b) [30, 
45, 88, 94, 122, 127].

In 2022, Park et al. experimentally illustrated that the pro-
posed gradient TiOx-based SRMs (Fig. 10c) combine neu-
ronal properties, synaptic weight plasticity as well as large 
RR and NL (Fig. 10d), further confirming the feasibility of 
SRMs being applied to construct large-scale RC systems for 
the first time [122]. The decay coefficient of the SRM can 
be finely tuned by carefully regulating the pulse strategy. 
Based on the reliable short-term memory effect (Fig. 10e), 
they constructed a neuromorphic computing system that can 
efficiently process sequence data, and successfully trained 
and generated biomedical sequence data (antimicrobial pep-
tides), achieving efficient learning and generation of com-
plex sequences with only a few training parameters. Build-
ing on such temporal processing capabilities, the application 
of SRM-based reservoirs has expanded into cybersecurity. 
Zhang et al. used dynamic nonvolatile SRMs with dynamic 
circuitry design to deeply integrate RC and intrusion detec-
tion system (IDS) to accurately capture time series patterns 

Fig. 10   a Schematic diagram of digital RC system. Win, Wres and Wout represent input weights, reservoir weights and output weights, respec-
tively, where Z−1 is decaying processing and f(x) is a nonlinear function. b Schematic diagram of physical RC system based on emerging memo-
ries dominant by SRMs herein. Reproduced from [121], with permission from Springer Nature. c Schematic diagram of dynamic volatile SRMs 
with gradual oxygen concentration in the TiOx layer. d DC I–V curves of dynamic volatile SRMs. e Decaying nature of the volatile TiOx SRM at 
different temperatures. Reproduced from [122], with permission from Springer Nature
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in network traffic for fast and accurate detection of anomalies 
and intrusions [30].

Compared to the common single-layer RC systems, by 
stacking multiple reservoir layers in 3D space, not only the 
complexity and diversity of the system can be significantly 
increased, but also local features in time series data can be 
extracted and processed more effectively. In 2024, Choi et al. 
designed and fabricated a 3D-integrated multilayer WOx 
SRM crossover array (Fig. 11a) with a Pt/WOx/W SRM 

cell integrated at each crossover point (Fig. 11b) [45]. This 
3D integrated array features forming-free characteristics, 
high switching uniformity, and over 98% device yield, as 
well as an ultra-low operating voltage of ~ 0.7 V (compared 
to advanced SRMs [17, 32]) (Fig. 11c). Based on this, the 
team designed wide reservoir computing hardware, which 
expands the feature space by increasing the number of res-
ervoirs (Fig. 11d). Each reservoir can independently process 
and extract different local features of the time series and 
map them to different feature spaces, enabling more efficient 

Fig. 11   a Macroscopic topographic image (left) as well as local magnification (right) of a 3D stacked three-layer 3 × 10 × 10 crossbar array with 
Pt/WOx/W SRMs vertically integrated at each crossing point. b Schematic diagram of 3D stack three-layer passive crossbar arrays and SRM 
cells. c DC I–V curves of WOx-based SRMs. d Schematic diagram of the three-layer RC system. e Schematic diagram of a 3D trajectory of Lor-
enz attractor in the x, y, and z components. f Schematic diagram of the decomposition of the one-dimensional Lorentzian attractor to three layers 
from the three-dimensional Lorentzian attractor as a function of time with the three physical reservoirs used to predict the three-dimensional 
Lorentzian attractor. g Actual and predicted scenarios for the three-dimensional Lorenz attractor. h Comparison of actual and predicted behavior 
of x, y and z components over time. i NMSE between actual and predicted behavior of single and multiple reservoirs on x, y and z components. 
Reproduced from [45], with permission from Springer Nature
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processing of multivariate time series data. In the biological 
cell location classification task, the three-reservoir-based RC 
system achieves 100% classification accuracy using only 15 
amniotic cells, while the single reservoir RC system requires 
25 amniotic cells to achieve 93% accuracy [45]. In the 
Lorenz attractor prediction task, Fig. 11e shows the three-
dimensional trajectory of the Lorenz attractor, which has a 
complex dynamic behavior in the x, y, and z directions. To 
perform the prediction, the researcher decomposed the 3D 
Lorenz equation into three time-dependent one-dimensional 
equations (corresponding to the components of the x, y, and 
z axes, respectively) and input them into a 3D-stacked WOx 
physical memory array (Fig. 11f). Each physical memory 
layer processes the chaotic input signals in the correspond-
ing direction to generate separable memory states, subse-
quently passed to the output layer for learning and predic-
tion. Figure 11g shows the actual Lorenz attractor behavior 
compared to the predicted behavior after 1400 time steps of 
learning with remarkably conformity (Fig. 11h) The average 
normalized mean square error (NMSE) of the three-layer 
reservoir system is 2.62 × 10–4, which is one order of magni-
tude lower than that of the single reservoir system (NMSE of 
1.35 × 10–3) (Fig. 11i), indicating that the 3D-stacked struc-
ture has higher accuracy and efficiency in predicting the 
complex dynamic system [45]. This 3D-integrated physical 
memory array is not only revolutionary and innovative in 
terms of hardware implementation of RC, but also provides 
an extremely efficient and compact solution for processing 
time series data in future AI systems and is expected to play 
an important role in areas such as large-scale edge comput-
ing compatible with CMOS processes.

Recently, the volatile properties of Pt/TaOx/TiN SRMs 
enable dynamic nociceptor-like behaviors such as thresh-
old detection, relaxation, and sensitization, mimicking 
biological pain responses [81]. The SRM’s uniformity 
and CMOS compatibility facilitate scalable integration, 
demonstrated in a 5 × 5 synaptic array and Morse code 
generation. More importantly, the short-term volatility 
and nonlinear response of the device are key features that 
make it particularly suitable for RC system, where such 
dynamics are harnessed to process temporal information. 
Additionally, its nonlinear dynamics support reservoir 
computing, achieving 92.35% accuracy in MNIST recog-
nition, and highlighting the SRMs’ potential for energy-
efficient neuromorphic computing, sensory systems, and 
edge AI applications.

3.2.4 � Optoelectronic Neuromorphic Computing

For traditional architectures, a large amount of raw data col-
lected by sensors from the edge end-side needs to be trans-
mitted to the processor for processing, a process that not 
only consumes a large amount of energy, but also increases 
the latency of the system, with the data security receiving 
a huge threat [7]. In-sensor computing fundamentally sub-
verts the design pattern of separating sensors and proces-
sors in traditional computing systems by integrating sens-
ing, memory, and computing functions in the same hardware 
unit (Fig. 12a) [37]. Further, by simulating the function of 
biological retina, the hardware based on the in-sensor com-
puting architecture is able to generate adjustable positive/
negative photoconductive responses directly after receiv-
ing optical stimuli and store them, thus realizing the signal 
acquisition, conversion, memory, and processing functions 
similar to those of biological retina [128]. Thus, the devel-
opment of optoelectronic SRMs and the feasibility of real-
izing corresponding intersensory computing arrays provide 
valuable guidance for the future realization of large-scale 
multimodal intelligent visual information processing sys-
tems [129].

In 2024, there are some impressive works about opto-
electronic SRMs and further crossbar array for in-sensor 
computing [37, 86, 90]. Gu et al. found that the optoelec-
tronic SRM synapses based on FTO/TiOx/Au structure can 
simulate multiple functions of synapses, including double-
pulse heterogeneous learning rule and learn–forget–relearn-
ing rule [90]. Moreover, the group innovatively incorporated 
optoelectronic SRMs into RC [90]. Lu et al. introduced an 
all-optical controlled (AOC) optoelectronic SRM array 
based on NiO/TiO2 heterostructure, enabling multilevel 
storage function with self-rectification characteristics and 
simulating multiple synaptic functions in the human brain at 
the same time [86]. This group also proposed a reconfigur-
able AOC SRM based on Si/SiO2/TiN/TiO2/NbOx/NiO/Ru 
structure (Fig. 12b), exhibiting high RR and NL to ensure 
the accuracy of the programming operation (Fig. 12c) [37]. 
390 nm and 290 nm UV light was used for the LTP and LTD 
processes at the synapse, respectively (Fig. 12d). Based on 
this reconfigurable AOC SRM, they constructed a simple 
pre-neuron/synapse/post-neuron structure for the realiza-
tion of an intersensory computational system. By scaling, 
binarizing, and restructuring a 28 × 28 pixel image from the 
MNIST dataset to fit a 4-bit pulse input, the device is able to 
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convert pixel points of different gray levels into pulse signals 
with different voltage amplitudes and pulse widths, which 
are then fed into the pre-neuron. If the input signal is strong 
enough, the neuron function of the device can output a bina-
rized image (Fig. 12e) [37]. These results indicate that the 
proposed AOC SRMs have the potential to serve as efficient 
hardware components in future intelligent sensing systems.

3.2.5 � Self‑Supervised Learning

In terms of supervised learning, models usually rely on 
large-scale labeled datasets for training, which are quite 
demanding in terms of labeling and susceptible to problems 
such as overfitting, spurious correlation, and adversarial 
attacks [130]. Whereas unsupervised learning is costly 
and usually lacks direct guidance on downstream tasks, 
its learned feature representations may not fully match the 

needs of a particular task, thus having limitations in task 
migration and generalization capabilities [131]. Unlike tradi-
tional supervised and unsupervised learning, self-supervised 
learning automatically obtains “labels” from data and learns 
the intrinsic structure of the data by predicting parts of the 
data, which is not only capable of dealing with large-scale 
unlabeled data, but also capable of learning feature repre-
sentations that are broadly applicable to downstream tasks 
[132]. In short, self-supervised learning utilizes the data 
itself as a supervisory signal without manually labeling the 
data, which significantly improves the processing efficiency 
and generalization ability, and brings a new breakthrough 
to the field of deep learning. Therefore, passive crossbar 
arrays based on SRMs show great potential in processing 
large-scale unlabeled data and improving model generaliza-
tion ability [46].

Fig. 12   In-sensor computing based on optoelectronic SRMs. a Schematic diagrams of the Von Neumann architecture, the traditional architec-
ture with separate sensor and in-memory computing units, and the in-sensor computing architecture. b Structure of the optoelectronic SRM and 
schematic diagram of the dual-wavelength sensing characteristics. c DC I–V curves of the optoelectronic SRMs. d LTP and LTD characteristics 
of the optoelectronic SRMs with dual wavelength. e Schematic diagram of humanoid brain system with pre-neuron/synapse/post-neuron struc-
ture realized based on the proposed optoelectronic SRMs. Reproduced from [37], with permission from American Chemical Society
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In early 2025, Jeong et al. [46] broke new ground by 
developing a self-supervised learning algorithm for fore-
ground and background separation of videos on an SRM-
based hardware platform (Fig. 13a). This algorithm decom-
poses video frames through an optimization problem, where 
the background is considered as a low-rank projection of 
the input data, while the foreground is regarded as a sparse 
component. The algorithm is trained directly on hardware 
via gradient descent method without the need for a pre-
training process, allowing the hardware platform to adapt to 
frequently changing information environments and to self-
optimize through continuous training. Figure 13b shows the 
statistical distribution of the unsigned 8-bit ADC outputs 
(OUT ±) of all SRM cells in the developed array, demon-
strating that all the memristor devices operate reliably in 
the analog domain and that the cells perform operations 
without the need for compliance currents and compensa-
tion algorithms. The low-rank component (L, background) 
is obtained in the proposed self-supervised real-time video 
processing architecture by performing two rounds of matrix 
multiplication operations on the raw video data (Y, input 
frame) using the same computational unit. The latent vari-
able (Z) is computed from the first round of matrix multipli-
cation and the sparse component (S, foreground) is obtained 
by subtracting L from Y (Fig. 13c). By performing direct 
on-device training, the system is able to automatically learn 
and calibrate the non-idealities of the hardware (Fig. 13d). In 
the experiment, the system separates foreground and back-
ground in real time at about 0.7 frames s−1, and after about 
28 frames of training, the system successfully converges 
(Fig. 13f) and is able to accurately separate foreground and 
background in the video (Fig. 13e) [46]. To sum up, since 
memristors introduce some non-ideal factors such as inter-
device variations and inter-week variations; these factors 
may affect the accuracy of the computed results. By training 
directly on the proposed SRM hardware, the self-calibration 
algorithm is able to automatically learn and adapt to these 
non-ideal factors, thus achieving accurate video separation 
without relying on external compensation algorithms.

3.3 � Hardware Security

In today’s highly interconnected information technology era, 
hardware security faces many challenges, such as data leak-
age, hardware Trojans, and theft of chip design intellectual 

property [30]. To cope with these challenges, hardware 
security technologies are constantly evolving. Among them, 
Physical Unclonable Function (PUF) generates unique and 
lightweight “digital fingerprints” by capturing small differ-
ences between chip devices [100]. For the beyond-CMOS 
computing paradigm, PUFs are important because they pro-
vide a low-cost, highly secure and robust solution for key 
storage, device authentication and IP protection [133]. For 
example, silicon-photonic PUFs utilize the unique attrib-
utes of silicon photonic technology to provide direct security 
authentication for optical communication systems by ena-
bling the integration of optical functionality in a standard 
CMOS process [134]. By eliminating crosstalk between 
array units, SRMs can improve the read accuracy and stabil-
ity of PUFs, thereby enhancing the robustness of PUFs in the 
face of complex environments and attacks. At the same time, 
SRMs also facilitate the ability of PUFs to achieve higher 
security and sophistication in a smaller chip area, a light-
weight that is particularly important for resource-constrained 
IoT devices and edge computing devices [135–138].

Woo et al. proposed a PUF based on ion-migration-
driven SRMs in a Cu0.3Te0.7/HfO2 (CuTeHO) structure 
with not only reconfigurability but also concealability 
[47], which had not been realized in previous memristor-
based PUF systems [14, 100, 139]. They achieved the 
transition from volatile threshold switching behavior to 
nonvolatile resistive switching behavior by adjusting the 
copper concentration (x) of the CuxTe1-x-based memristor. 
At x = 0.3, the CuTeHO-based memristor exhibits nonvola-
tile and self-rectification behavior (Fig. 14a). Copper ions 
migrate from the CuTeHO electrode to the HfO2 dielectric 
layer under the action of an electric field, forming conduc-
tive filaments. The stability of these filaments depends on 
their surface curvature and the thickness of the filaments. 
At x = 0.3, the filaments have less surface curvature and are 
more stable (Fig. 14b). Also the filling and de-filling pro-
cess of the trap state affects the stability of the conducting 
filaments, which in turn shapes the rectification behavior. 
The SET voltage distribution of the CuTeHO-based SRM 
has a random nature (Fig. 14c), making it possible for each 
SRM to switch to a LRS or to remain in a high-resistive 
state (HRS) under the same bias voltage, which gener-
ates the distinctive PUF response (Fig. 14d). The unique 
concealability stems from the fact that applying a partial 
RESET voltage to all SRMs converts them to a partial 
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Fig. 13   Self-supervised video processing with self-calibration based on analog SRMs. a SEM image of passive crossbar array consisting of Pd/
TiOx/Ti SRMs. b Statistical distribution of the analog-to-digital converter (ADC) output that is automatically quantized based on the number of 
set pulses (Nset) and the number of treadmills for all 1024 Memristors when keeping tset (left) and Nset (right) at 100. c Schematic diagram of the 
self-supervised analog computing unit for real-time video processing. d 32 × 16 video data output obtained by analog computation without self-
calibration. e Real-time video processing with on-device training from untrained weights (left) and real-time inference after on-device training 
(right). f The corresponding mean square error for each frame. Reproduced from [46], with permission from Springer Nature
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HRS, at which point the resulting response mapping is 
scrambled to hide the PUF data (Fig. 14e). The critical 
reconfigurability is achieved by assigning a new and ran-
dom SET voltage to the SRMs through the RESET process 
after ensuring that all SRMs are in the LRS (Fig. 14f). 
Finally, Fig. 14g confirms the reliability of the conceal-
ability feature of this SRM-based PUF [47]. Compared to 
earlier SRM-based PUFs, this PUF is a breakthrough in 
both energy efficiency and security [135–138]. Besides, 
the veritical SRM with outstanding computational and 
area efficiency exploits the inherent device-to-device vari-
ations in the HRS of 3-layer Pt/Ta2O5/Al-doped HfO2/TiN 
devices to generate unique and reproducible PUF keys, 
where the small cycle-to-cycle variation ensures reliable 
key regeneration, while the concealment feature enhances 
security by hiding keys when not in use [140]. This inte-
grated approach combines PUF generation and encryption 
in a single platform, offering a compact, energy-efficient, 
and scalable solution for secure edge computing applica-
tions. Recently, a novel SRM-based PUF model [141] and 
a novel scheme for reliable encryption of high-resolution 
images [142] were proposed that achieved high memory 
density with mitigating sneak path currents, demonstrat-
ing significant improvements in uniqueness, uniformity, 
and reliability for hardware security applications further.

The works seamlessly integrate SRMs with reconfig-
urable, concealable PUFs, facilitating the move toward 
extreme lightweighting of PUF and even other hardware 
security applications.

4 � Potential Challenge and Outlook

In the last section, we provided a comprehensive overview 
of the current state of research on SRMs and explored in 
depth the potential of SRMs in beyond-CMOS computing 
paradigms, analyzing their compatibility with CMOS pro-
cesses and their impact on novel computing architectures. 
Although SRMs show great potential and wide applica-
tion perspectives in beyond-CMOS computing paradigms 
including in-memory computing, neuromorphic comput-
ing, and hardware security, they all face serious challenges 
in terms of fabrication process, device performance, and 
application generalizability inevitably. In this section, we 

will provide a comprehensive discussion on the further 
development of CMOS compatibility of SRMs as well as 
the challenges, potential solutions, and opportunities for 
the design of future high-performance, low-power comput-
ing architectures (Fig. 15).

4.1 � Application for Beyond CMOS

4.1.1 � In‑Memory Computing

Regarding in-memory computing, encompassing stand-
ard VMM [34], logic [57], and content addressing [109], 
103 RR and NL have adequately met the requirements of 
the associated proof-of-concept demonstration. However, 
the emerging in-memory computing architectures, led by 
sparse matrix multiplication, have demonstrated that to 
achieve high accuracy (lowest possible read error rate) it 
is necessary to significantly improve RR, NL, on/off ratio, 
and switching speed instead of compromising on trade-off 
to guarantee a virtually crosstalk-free VMM. As mentioned 
above and in conjunction with Table 1, these three param-
eters significantly affect the scalability of the SRM, which in 
turn deteriorates the application up-limitation of the devices 
for in-memory computing. Subsequently, one of the most 
important factors is the fact that it is difficult to achieve 
100% yields for passive crossbar arrays at this stage of the 
fabrication process for advanced SRMs, and the yields of 
devices obtained from non-CMOS-compatible processes are 
even worse [40]. This would significantly result in unneces-
sary read errors, making VMM much less reliable. However, 
following extensive research conducted in recent years [34], 
Reference [32] has developed passive crossbar arrays based 
on SRM with a yield of 100%, offering valuable insights for 
enhancing the yield of more advanced SRMs in the future.

Notably, in the field of in-memory computing, the meas-
urement of low on-current (particularly < 1 μA) in SRMs 
presents significant challenges in pulse mode, arising from 
the combination of the small current levels and the tran-
sient nature of pulse measurements, which can introduce 
severe noise and measurement inaccuracies [143]. In pulse 
mode, the transient nature of the current can lead to signif-
icant noise, making it difficult to accurately measure low 
on-current levels [144]. The short duration of the pulses 
means that the current has limited time to stabilize, and 
any noise present in the system can be magnified, which 



	 Nano-Micro Lett.          (2026) 18:188   188   Page 32 of 43

https://doi.org/10.1007/s40820-025-02035-1© The authors

comes from various sources, including thermal noise, shot 
noise, and power supply noise. Furthermore, the difficulty 
in measuring low on-current in pulse mode has direct 
implications for the design of low-power consumption in-
memory computing circuits, where accurate current meas-
urement is essential for optimizing the energy efficiency 
of these circuits [145]. On the contrary, inaccurate meas-
urements can lead to overestimation or underestimation 
of the current, which can further affect the overall power 
consumption and performance of the system. For example, 
if the on-current is underestimated, the circuit may not 
provide sufficient current to perform the desired opera-
tions, leading to performance degradation. Conversely, if 
the on-current is overestimated, the circuit may consume 
more power than necessary, reducing energy efficiency and 
even breakdown of the whole system.

To address these challenges, several strategies can be 
employed. One approach is to use high-precision current 
measurement techniques, such as current–voltage measure-
ments with low noise amplifiers and high resolution digital-
to-analog converters. These techniques can help reduce the 
impact of noise and improve the accuracy of low-current 
measurements. Additionally, using pulse shaping techniques 
to extend the duration of the pulses can help stabilize the 
current and reduce the impact of transient noise [146].

4.1.2 � Neuromorphic Computing

In relation to neuromorphic computing, the ANN accelera-
tor and RC system utilizing SRMs have reached maturity 
for image recognition and time series signal classification 

Fig. 14   PUF implementation by using tunable memristors with self-rectification effect. a DC I–V curves of the SRMs with specific component. 
b Conducting mechanism of the device when presenting the self-rectification effect. c Entropy source for PUF implementation. d 4 × 4 PUF 
map based on random switching. e Concealing process of the proposed PUF implementation based on SRMs. f Reconfiguring process of the 
proposed PUF implementation based on SRMs. g Bit error rate of ten concealing-revealing cycles. Reproduced from [47], with permission from 
Springer Nature
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implementation [32, 45, 122]. By contrast, the hardware 
implementation of CNNs using SRMs-based hardware 
faces a number of challenges. In terms of the device level, 
SRM-based passive crossbar arrays suffer from low yields 
and excessive device-to-device and cycle-to-cycle variations 
due to immature fabrication processes, which in turn affects 
the overall computational accuracy and stability. In terms 
of convolution operation, the key convolution operation in 
CNN requires sliding operation on different input patches, 
which is usually a sequential process, leading to speed 
mismatch between the convolver and the passive crossbar 
array used for the fully connected VMM, which reduces the 
computational efficiency. In terms of training, traditional 
pure in situ training requires highly complex operations to 
back-propagate the target derivatives to determine the weight 
updates, while training of complex memristor-based deep 
neural networks becomes challenging due to the properties 
of the device such as nonlinearity and asymmetric conduct-
ance tuning. In addition, when transferring the weights 
obtained from offline training to the conductances of the 
SRMs, defective devices of the hardware, parasitic line 

resistances and capacitances, etc. can blur the weights and 
degrade the system performance [120]. For system integra-
tion, the integration and scalability of SRM arrays are key 
issues. Scalability can be ensured by optimized RR, NL, 
and on/off ratio, while integration depends on the maturity 
of 3D integration technology. In the future, the weights of 
the fully-connected layers are adjusted to compensate for the 
non-ideal characteristics of the device by performing local 
training in an SRM-based hardware system. This hybrid 
training approach combines the efficiency of software train-
ing with the adaptability of hardware training and is able 
to significantly reduce the hardware resource requirements 
during training while maintaining high recognition accuracy 
[120].

4.1.3 � Hardware Security

In terms of hardware security, device-to-device varia-
tions in passive crossbar arrays enable a rich source of 
entropy for the construction of secure primitives. However, 

Fig. 15   Major challenges and opportunities for the future development of SRM
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cycle-to-cycle variation remains a great challenge that lim-
its their security. One of the current state-of-the-art PUFs 
has ultra-low cycle-to-cycle variations with BER remain-
ing at < 6.78 × 10–6 after 108 read cycles, i.e., no errors in 
144 Kb arrays [147]. After breaking, the performance bot-
tlenecks of RR, NL, and on/off ratio, need to take extra con-
sideration of their relationship with reliability (retention and 
endurance) as a trade-off challenge. Besides, even though 
existing memristor-based true random number generators 
(TRNGs) have been able to achieve extremely high through-
put [148], the energy efficiency and area efficiency of large-
scale arrays based on 1T1R cells cannot be compared with 
passive crossbar arrays based on SRM cells of the same size 
[118]. In order to meet the demand for data protection in the 
Big Data era, TRNG-oriented ultra-large-scale SRM arrays 
are likely to become mainstream. Last but not least, homo-
morphic encryption (HE) enables data to be “counted but 
not seen,” essentially securing data processing as well as 
communication [149]. In 2024, the first case of memristor 
implementation of HE was presented, which demonstrated 
that HE requires particularly high analog characteristics and 
uniformity of arrays [149], putting further pressure on SRM 
development [150].

4.1.4 � In‑Sensor Computing

In terms of in-sensor computing, optoelectronic SRM units 
with sensing capabilities have initially demonstrated the 
feasibility of constructing and refining an ultra-large-scale 
retinal-like neuromorphic system aiming for much higher 
sensitivity and parallel processing speed [37, 90]. However, 
according to the current researches, the processing data mag-
nitude is low, the task is relatively simple, and the devices 
only have simple sensing or storing performance, which 
is still far away from the real sense of all-in-one hardware 
[37, 90]. We have discussed the challenges and solutions 
for SRM-based in-memory computing applications in the 
previous section, and there are still many problems to be 
solved in sensing. The most notable ones remain uniform-
ity and stability, where the lack of the former will result 
in the information captured by the sensing layer not being 
effectively processed in situ, and the lack of the latter will 
diminish the utility of the hardware. Subsequently, designing 
a suitable material system is a prerequisite for constructing 
the basic unit of sensing, memory, and computing [151]. 

Sensing, memory and computing units are combined based 
on different material combinations, device structures, and 
heterogeneous integration techniques, and it is very chal-
lenging to integrate these three functions into a single device 
while taking into account the rectification characteristics. 
The availability of materials for different sensing sources 
(chemical, radiation, temperature, pressure) is still very lim-
ited, so the development of SRM-based multimodal (visual, 
tactile, auditory, olfactory, etc.) interoceptive computing 
systems still has a long way to go.

4.2 � Comparison with Other Beyond‑CMOS 
Technologies

In the quest for beyond-CMOS technologies, SRMs have 
garnered significant attention due to their unique combi-
nation of intrinsic diode-like rectification and non-volatile 
memory capabilities. Furthermore, to fully appreciate the 
potential of SRMs, it is essential to compare them with other 
emerging technologies that are also explored for applications 
such as in-memory computing, neuromorphic computing, 
and hardware security.

4.2.1 � Spintronic Devices

Spintronic devices, which leverage the spin of electrons to 
store and process information, offer high endurance and 
fast switching speeds, making them suitable for high-speed 
memory applications [152]. These devices, such as mag-
netic tunnel junctions used in spin transfer torque magnetic 
random access memory, exhibit non-volatile memory and 
low-power operation [153]. However, the fabrication of 
spintronic devices often requires sophisticated processes 
and materials, which can increase manufacturing complex-
ity and cost. And scaling down spintronic devices to smaller 
dimensions can be challenging due to the need to maintain 
magnetic stability and avoid interference between adjacent 
devices. Furthermore, spintronic devices can generate sig-
nificant heat during operation, necessitating advanced ther-
mal management solutions to maintain performance and 
reliability [154].
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4.2.2 � Quantum Computing Elements

Quantum computing elements, such as superconducting 
qubits and trapped ions [155], exploit quantum phenomena 
to perform computations and offer the potential for expo-
nential speedup in solving certain complex problems. These 
technologies can handle complex problems that are infea-
sible for classical computers [156], opening up new pos-
sibilities in fields like cryptography, materials science, and 
machine learning. However, quantum bits are highly sensi-
tive to environmental noise, leading to high error rates and 
short coherence times, which limit the reliability and dura-
tion of quantum computations. Many quantum computing 
elements require extremely low-temperature environments 
to maintain their quantum states, necessitating complex and 
expensive cooling systems. Scaling up quantum systems to 
a large number of qubits while maintaining low error rates 
and implementing effective error correction is a significant 
challenge [27].

4.2.3 � Other Emerging Technologies

Beside spintronics and quantum computing, several other 
emerging technologies are explored for beyond-CMOS 
applications. For instance, memristive devices based on 
different material systems, such as two-dimensional materi-
als like molybdenum disulfide (MoS2) and graphene, offer 
unique advantages. These materials exhibit high carrier 
mobility, tunable bandgaps, and excellent mechanical flex-
ibility, making them suitable for flexible and wearable elec-
tronics [157–159]. Moreover, 2D materials can be integrated 
into van der Waals heterostructures, enabling the develop-
ment of novel devices with enhanced performance [160]. 
However, the fabrication of 2D material-based devices often 
requires precise control over the material synthesis and layer 
stacking, which can be technically challenging and costly. 
And the scalability and uniformity of 2D materials in large-
scale arrays remain significant challenges [161]. Another 
promising technology is molecular electronics, which 
involves using organic molecules as the active components 
in electronic devices. Molecular electronics can offer high 
scalability and low-cost fabrication, making them attractive 
for large-area and flexible electronics applications [162]. But 
the performance of molecular devices can be highly variable 

due to the inherent randomness in molecular structures and 
the difficulty in achieving uniform molecular alignment.

Phase change memory (PCM) is another emerging tech-
nology that leverages the reversible phase transition of chal-
cogenide glasses between amorphous and crystalline states 
to store information [163]. PCM devices offer high write 
speeds and good scalability, making them suitable for high-
performance memory applications [164, 165]. The ability to 
switch between states rapidly enables fast data write opera-
tions, which is crucial for applications requiring quick data 
updates. Nonetheless, PCM devices typically require high 
power to switch between states, which can limit their energy 
efficiency. What’s more, PCM devices may have limited 
endurance due to the physical changes in the material dur-
ing switching, which can lead to degradation over time, with 
the fabrication of PCM devices often requiring sophisticated 
processes and materials, which can increase manufacturing 
complexity and cost [163].

In contrast, SRMs combine several desirable properties 
that set them apart from other beyond-CMOS technologies. 
Their intrinsic diode-like rectification and non-volatile 
memory capabilities enable high-density integration without 
external selectors, simplifying design and reducing power 
consumption. This is particularly advantageous for appli-
cations such as in-memory computing and neuromorphic 
computing, where high-density and low-power operation 
are critical.

5 � Conclusions

Self-rectifying memristors (SRMs) have emerged as a viable 
candidate for beyond-CMOS computing systems, provid-
ing a distinctive combination of nonlinearity, tunable con-
ductance, rapid switching, and little power consumption. 
Their capacity to inhibit sneak path currents via unidi-
rectional conductivity further amplifies their potential for 
scalable in-memory computing, neuromorphic computing, 
and hardware security applications. This review has system-
atically analyzed the working mechanisms, characteristics, 
and applications of SRMs, highlighting their compatibility 
with CMOS processes and their impact on novel computing 
paradigms. Despite significant progress, several challenges 
remain in the development of SRMs for large-scale integra-
tion and practical deployment. These include optimizing rec-
tification ratios, nonlinearity, on/off ratios, and switching 
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speeds, while maintaining high reliability and CMOS com-
patibility. Additionally, addressing device-to-device variabil-
ity, improving yield rates, and ensuring scalability in passive 
crossbar arrays are critical for realizing the full potential 
of SRMs in beyond-CMOS applications. Future research 
should focus on developing advanced material systems and 
device structures that can achieve superior performance met-
rics while maintaining compatibility with existing CMOS 
processes. Exploring novel applications such as in-sensor 
computing and self-supervised learning will further expand 
the scope of SRMs in next-generation information technol-
ogy. Through interdisciplinary collaboration and inventive 
innovation, SRMs are set to significantly influence the future 
of high-performance, low-power computing architectures.
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