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HIGHLIGHTS
e SRMs integrate intrinsic diode-like rectification, enabling sneak path suppression in crossbar arrays without external selectors, sim-
plifying design, and enhancing energy efficiency for high-density in-memory computing.

e Key metrics such as rectification ratio, nonlinearity, and CMOS compatibility are systematically reviewed, highlighting progress in

3D integration and scalable array.

® Applications span in-memory computing, neuromorphic networks, and hardware security, with emerging potentials in in-sensor

computing and self-supervised learning, positioning SRMs as pivotal beyond-CMOS building blocks.

ABSTRACT The deceleration of Moore’s law and the energy—latency drawbacks of the von

Neumann bottleneck have heightened the pursuit for beyond-CMOS designs that integrate i : ‘ % = /e :
memory and compute. Self-rectifying memristors (SRMs) have emerged as promising build- Roadar ey e Optoscioniccel
ing blocks for high-performance, low-power systems by combining resistive switching with Ns%% 8%00
intrinsic diode-like behavior. Their unidirectional conduction inhibits sneak-path currents in B e
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crossbar arrays devoid of external selectors, while nonlinear /-V characteristics, adjustable T 55\
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conductance states, low operating voltages, and rapid switching facilitate efficient vector— H DOE
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matrix operations, neuromorphic plasticity, and hardware security primitives. This review e
synthesizes the working mechanisms of SRMs, surveys material, and structural strategies
and compares device metrics relevant to array-scale deployment (rectification ratio, non-
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linearity, endurance, retention, variability, and operating voltage). We assess SRM-enabled

)

in-memory computing and neuromorphic applications, as well as security functions such
as physical unclonable functions and reconfigurable cryptographic primitives. Integration
pathways toward CMOS compatibility are analyzed, including back-end-of-line thermal budgets, uniformity, write disturb mitigation, and
reliability. Finally, we outline key challenges and opportunities: materials/architecture co-design, precision analog training, stochastic-
ity control/exploitation, 3D stacking, and standardized benchmarking that can accelerate large-scale SRM adoption. Through the use of
specialized materials and structural optimization, SRMs are set to provide selector-free, densely integrated, and energy-efficient hardware
for future information processing.
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1 Introduction

With the rapid advancement of information technology,
Moore’s law is increasingly challenged by the physical
limits of device miniaturization and rising power consump-
tion issues [1]. Although it has long driven the scaling and
performance enhancement of integrated circuits [2], further
miniaturization beyond the sub-nanometer regime poses
significant hurdles [1, 3]. Technologies such as Fin Field-
Effect Transistor (FinFET) have partially mitigated leakage
currents [4], yet at the 3-nm node and below, nanosheet
gate-all-around (GAA) field-effect transistors are expected to
become essential [5, 6]. Moreover, the von Neumann archi-
tecture characterized by the physical separation of memory
and computing units incurs substantial energy and latency
penalties due to continuous data shuttling, thereby limiting
overall efficiency [7]. These limitations have spurred interest
in beyond-CMOS computing paradigms [8, 9], including in-
memory computing and neuromorphic architectures, which
merge memory and processing to eliminate data transfer bot-
tlenecks [10, 11]. Neuromorphic computing, in particularly,
mimics the structure and functionality of biological neu-
ral systems, enabling highly parallel, low-power operation
through deep integration of storage and computation.

The realization of ultra-large-scale neuromorphic hard-
ware is essential for emulating brain-like functions in real
time and with high energy efficiency, yet it faces critical
challenges in maintaining integration density, interconnect
complexity, and signal integrity. A critical enabler for such
neuromorphic hardware is the passive crossbar array, which
offers exceptional scalability and integration density [12,
13]. However, its practicality is hampered by sneak path cur-
rents, which impair read/write accuracy. Conventional solu-
tions to mitigate this issue, such as the one-transistor—one-
RRAM (1T1R) [14], one-selector—one-RRAM (1S1R) [15],
and one-diode—one-RRAM (1D1R) [16] configurations,
reduce sneak paths but incur trade-offs in complexity, foot-
print, power, and variability [12]. An emerging solution is
the self-rectifying memristor (SRM), which incorporates
inherent diode-like rectification and non-volatile memory
within a two-terminal structure. This built-in nonlinear-
ity effectively suppresses sneak currents without external
components [17], streamlining design and lowering power
consumption. SRMs also exhibit desirable characteristics
including high nonlinearity [18, 19], tunable conductance
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[20, 21], fast switching [22], and low operating power [23,
24], making them a foundational technology for advanc-
ing high-density neuromorphic computing systems. While
the goal of beyond-CMOS technology is to break the per-
formance limitations of conventional CMOS, in practice,
large-scale computing arrays are realized on the premise
of compatibility with existing mature CMOS processes
[25-27]. This compatibility is an important factor in real-
izing mass production, cost reduction, and the basis for the
smooth integration of new technologies into existing semi-
conductor manufacturing systems [28]. Therefore, beyond-
CMOS technology is faced with an important contradiction
to improve system performance while maintaining device
compatibility with CMOS processes. Notably, SRMs com-
patible with CMOS processes have been extensively studied
and scaled up to small-scale arrays [17,29-31]. Meanwhile,
SRMs-based in-memory computing architectures and neu-
romorphic computing systems have been well exploited [12,
17, 32-44], providing an ambitious blueprint for large-scale
beyond-CMOS computing paradigm.

In this review, we comprehensively examine the potential
of SRMs for beyond-CMOS applications, with emphasis on
CMOS compatibility and implications for novel computing
architectures. Through a systematic analysis of the operating
mechanisms, material choices and electrical characteristics
of SRMs, we evaluate their advantages and applications in
in-memory computing, neuromorphic computing, and hard-
ware security. Finally, the review discusses the prevailing
challenges and future opportunities facing the development
of CMOS-compatible, high-performance, low-power, and
scalable computing systems (Fig. 1). All key terms used in
this review and their corresponding definitions are summa-
rized at the end of the document.

2 Characteristics and Mechanisms of SRM

2.1 Self-Rectifying Characteristics and Metrics

SRMs exhibit significant differences from conventional
memristors in their direct-current current—voltage (DC
I-V) characteristics, primarily manifested in enhanced
asymmetry and nonlinearity (Fig. 2a, b). These proper-
ties stem from deliberate design of the device structure
or material interface bandgaps. Conventional memris-
tors typically exhibit symmetric or nearly symmetric

https://doi.org/10.1007/s40820-025-02035-1
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I-V loops, with relatively balanced current responses in
high- and low-resistance states under positive and negative
biases, respectively. This balance facilitates the emergence
of “sneak paths” in crossbar arrays. In contrast, SRMs
introduce mechanisms such as Schottky barriers, interfa-
cial defect gradients, or asymmetric ion migration. This
enables high conduction currents under forward bias while
exhibiting strong current suppression under reverse bias,
creating a pronounced rectification effect. This self-recti-
fying characteristic not only effectively suppresses leakage
currents but also enables SRMs to achieve high-density
integration without requiring external selectors (such as
transistors or diodes). In this section, we will comprehen-
sively analyze and summarize the current characteristics
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and related mechanisms of SRM, and conduct a thorough
discussion of its metrics.

2.1.1 Rectification Ratio and Nonlinearity

Rectification ratio (RR) is a key parameter describing the
performance of SRMs and is defined as the ratio of the on-
state current of the device under positive bias to the off-state
current under negative bias (Fig. 2b) [17], corresponding
to the unselected cells in the crossbar array (Fig. 2¢) [31].
Nonlinearity (NL) is defined as the ratio of the current of the
device at the read voltage under low-resistance state (LRS)
to its current at the half-read voltage (Fig. 2b) with respect
to the partially selected cell (Fig. 2c). Both RR and NL

-
=3
i
i
.

L} [
- |

Optoelectronic cell
. - bl

Ne#’oo' m .(* ’ m g k
oz Self-supervised
4,- learning
(<]
%3 Accelerator
©
a o) s
s
«Q

Resérvior
computing

Physically unclonable
functions

Fig. 1 SRMs have been developed for a variety of foreground beyond-CMOS applications, including in-memory computing, neuromorphic
computing, and hardware security currently, where CMOS compatibility is an important basis for their further expansion. Reprinted from [17,
34, 37, 45-48], with permission from Springer Nature, American Chemical Society. Copyright 2023 American Association for the Advance-
ment of Science
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Fig. 2 Characteristics of SRMs. a Typical DC I-V curves of traditional memristors. Reprinted from [32], with permission of Springer Nature.
b DC I-V curves of the SRMs based on the structure of Pt/HfO,/Ta0O,/Ta. Reproduced from [17], Copyright 2023 American Association for the
Advancement of Science. ¢ Schematic diagram of the sneak path in the crossbar array consisting of SRMs based on Au/h-BN/Graphene/h-BN/
Ag van der Waals heterojunction. Reprinted from [31], Copyright 2024 American Physical Society. The common d 1/2, e 1/3, and f 1/4 volt-
age scheme when programming SRM cells in the passive crossbar array. The blue cell denotes the selected SRM cell (ideal cell), the pink cells
denote the partially selected SRM cells (nonideal cells), and the gray cells denote the unselected SRM cells (nonideal cells)

determine the level of inter-cell crosstalk in passive cross-
bar arrays to characterize the accuracy of write and read
operations achieved by the array. They reflect the difference
in current transfer capability of the device under positive and
negative bias and are important parameters of the self-rec-
tifying characteristics. They are both significantly affected
by the conduction mechanism. For SRMs, the rectification
characteristics mainly originate from the asymmetric struc-
ture or interface barriers inside the device. When the upper
and lower electrodes of a two-terminal SRM have different
figure of merit, a Schottky barrier is formed at the metal/
oxide interface, and the difference in the height of this bar-
rier leads to different electron transport characteristics under
positive and negative bias. Under positive bias, the barrier
decreases and the current passes easily, while under negative
bias, the barrier increases and the current is suppressed. In

© The authors

addition, the formation and distribution of the conducting
channels affect the rectification ratio. In some SRMs, the
conductive channels may be formed or enhanced only under
positive bias and weakened or disappeared under negative
bias to achieve the rectification behavior. For example, as
described above, in ion migration-based SRMs, ions migrate
to form conductive channels under positive bias, whereas
under negative bias, the direction of ion migration changes,
the conductive channels are weakened, and the RR and NL
are thus increased significantly [12]. In short, higher RR
and NL are highly desirable in SRMs as they significantly
enhance array scalability and effectively suppress sneak path
currents in crossbar arrays, enabling larger and more reliable
passive memory and computing architectures.

https://doi.org/10.1007/s40820-025-02035-1
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2.1.2 On/Off Ratio

The on/off ratio of SRM refers to the current or resistance
ratio of LRS to high resistance state (HRS) corresponding
to its read voltage, which is usually used to measure the
degree of resistance change of the memristor under differ-
ent operating states (Fig. 2b) [17]. This metric is one of the
key indicators of the performance of SRMs and traditional
memristors, reflecting their switching ability under different
resistive states as well as their read margins. The importance
of the on/off ratio for SRMs is reflected in several aspects.
First, a higher on/off ratio means that there is a more pro-
nounced resistance difference between the LRS and HRS,
which contributes to improved signal discrimination and
stability. This is critical for applications such as storage and
logic operations, as a clear distinction between resistance
states reduces misreading and miswriting, thereby improv-
ing system reliability and accuracy. Second, a higher on/
off ratio helps to reduce power consumption because the
leakage current of the device is significantly reduced at high
resistive states, which is highly compatible with the purpose
of SRM. In addition, in neuromorphic computation, a high
on/off ratio can better simulate the weight changes of bio-
logical synapses, thus improving the performance of neural
networks. Therefore, optimizing the on/off ratio is one of the
key directions to enhance the performance and scalability of
SRMs and expand their applications [12, 32].

2.1.3 Scalability

SRM scalability is the ability to integrate SRMs into large-
scale, high-density memory arrays or three-dimensional
(3D) integrated architectures while maintaining their critical
performance. Due to the intrinsic rectification characteris-
tics of SRMs, the sneak path problem in the array (Fig. 2c)
can be effectively suppressed, thus enabling large-scale,
high-density integration from two-dimensional (2D) to 3D
without adding additional selectors or transistors [14, 15,
41]. Among them, it is worth noting that compatibility with
CMOS process is the basis for realizing large-scale SRM-
based scaling. Commonly, in the SRM field, read margin is
used to characterize the degree of scalability. Read margin
is the maximum range or margin of error that can be toler-
ated during a read operation in a memory or logic circuit. In
order to ensure the accuracy of the simulation, it is essential

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

to incorporate RR, NL, and on/off ratio into the calculation
of the read margin (Eqgs. (1) and (2)) [29]. The read margin
is a critical parameter that guarantees the accurate reading
of data stored in memory cells, even when the memristor
crossbar array is subjected to noise or interference. A higher
read margin indicates greater stability and reliability of the
crossbar array during data readout, thereby preventing mis-
reading. The one bit-line pull-up strategy is commonly used
to calculate the read margin [49].

RM = VLRS - vHRS — RPU _ RPU
Vpu Rpu + Rs—LRS//Rsnea.k Rpu + Rs—HRS//Rsneak
ey
R _ 2X Ry 3 R )
sneak — N=1 (N—1)2 2

Notably, when programming SRM cells, the selection
of the voltage scheme directly determines all key metrics
including RR, NL, and on/off ratio, thereby impacting the
scalability of the SRM and the effectiveness of sneak path
suppression. Here, we first consider the 1/2 voltage scheme,
as illustrated in Fig. 2d. This scheme applies the full oper-
ating voltage (V) to the BL where the selected SRM cell
resides while grounding the WL, resulting in full positive
bias across the SRM cell terminals. Simultaneously, 1/2 VOp
is applied to all other WLs and BLs. In this state, partially
selected cells are positively biased at 1/2 V,,,, while unse-
lected units remain unbiased [50]. This partially mitigates
crosstalk between cells in the crossbar array. Additionally,
Fig. 2e, f illustrates the implementation diagrams for the 1/3
and 1/4 voltage schemes, respectively. Only when an optimal
trade-off is achieved among key parameters does the selected
voltage scheme become meaningful (schemes such as 1/5 or
1/6 may also be considered as appropriate [51]).

Moreover, SRM-based multilayer 3D integration technol-
ogy represents the critical path to overcoming the density,
energy efficiency, and crosstalk limitations of traditional
compute-in-memory architectures. Its characteristics of
interlayer uniformity, picosecond-level switching energy
consumption, and nanosecond-level read latency provide a
highly energy-efficient, high-density hardware foundation
for complex tasks such as high-precision matrix solving and
neuromorphic computing. Li et al. [52] successfully fab-
ricated a 4-layer stacked, 4 Kb-capacity Ta/TaO,/HfO,/Pt
3D vertical SRM array. Through an innovative “split cell”
design, they doubled the integration density and reduced bit

@ Springer
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cost compared to traditional parallel cell structures. In the
fabrication process, multiple pairs of Ta/SiO, layers were
alternately stacked using physical vapor deposition and
plasma-enhanced chemical vapor deposition. Combined
with inductively coupled plasma etching, this formed gate
line structures with smooth sidewalls. Uniform HfO, rectify-
ing layers were prepared via atomic layer deposition, ensur-
ing consistency and reliability in the multilayer stacking.
This 3D vertical SRM exhibits excellent electrical perfor-
mance with NL and RR values of approximately 6900 and
4750, respectively. Lu et al. constructed a TiN/TiO,/NbO,/
Ru multilayer stack architecture (Fig. 3a, b) through innova-
tive interlayer isolation and sidewall functional layer depo-
sition techniques [49]. Without external gating devices, its
ultra-high RR (> 107) and NL (> 10°) effectively suppressed
crosstalk currents, enabling 3D SRM arrays to scale beyond
1 Tb (Fig. 3¢). Additionally, Ding et al. pioneered a 16-layer
3D vertical SRM [53]. By engineering band structures to
form barrier peaks in TiO, and leveraging the low oxygen
vacancy aggregation tendency in NbO,, they achieved a high
NL (> 5000).

2.2 Mechanisms of SRMs

The core of the SRM lies in its simultaneous capabilities of
memristive switching and diode-like rectification. Memris-
tive behavior is typically caused by the reversible formation
and destruction of mobile ions (such as oxygen vacancies
or metal ions), conductive filaments, or the trapping/detrap-
ping behavior of electrons within the material [54, 55]. The
transition between the HRS and LRS formed by this process
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endows the device with multi-state storage capabilities. On
the other hand, the rectification function relies on barrier
control at the interface layer, where the barrier decreases
to allow current flow under forward voltage, while under
reverse voltage, the barrier significantly increases to limit
current, thus creating directional conduction characteris-
tics. Generally, the operating principle of SRMs is deter-
mined by the combined effects of material properties and
structural design. In terms of material selection, functional
materials with ionic migration characteristics, such as oxides
and sulfides, are commonly used; in structural design, het-
erojunctions or asymmetry between the electrodes and the
active layer form the basis for rectifying behavior. A deep
understanding of this mechanism not only helps to enhance
device performance but also provides an important theo-
retical basis for the development of new types of memory
devices. Below is a detailed introduction to the mechanism
including interface barrier (Schottky effect, interface oxy-
gen vacancies), ionic migration, and trap effects (oxygen
vacancies).

2.2.1 Interface Barrier

The core role of the interface barrier in SRMs lies in
introducing asymmetric charge conduction characteris-
tics through physical mechanisms (Schottky barrier, tun-
neling effect). By reasonably selecting electrode materials,
regulating interface chemical properties, and utilizing the
defect distribution in oxide films, the barrier height and rec-
tification performance can be conveniently adjusted. The

2 10 1 2
Voltage (V)

Fig. 3. 3D integration based on SRMs. a Device schematic of the 3D vertical crossbar array based on TiN/TiO,/NbO,/Ru vertical SRM cell. b
Optical microscope image of the stepping region from the vertical crossbar array. ¢ DC I-V plot of the TiN/TiO,/NbO,/Ru vertical SRM cell.

Reproduced from [49], Copyright 2024 American Chemical Society
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rectification function of SRM is primarily caused by the dif-
ferent Schottky barrier heights between the two electrodes
and the functional layer (Fig. 4a) [17].

Li et al. reported a p-Si/SiO,/n-Si memristor, where an
asymmetric barrier exists at the Si/Si0O, interface (p—n junc-
tion effect) [56]. The modulation of the electric field facili-
tates the formation of carrier transport paths under forward
bias, while suppressing leakage current under reverse bias,
thus generating self-rectifying behavior with an excellent
rectification ratio (10°) and good retention performance
(>2x10° s). Similar to self-rectifying devices such as Pt/
TiO,/Ti and Al/MoO,/Pt, Ni et al. reported a Pt/TaO,/Ta
memristor, where the combination of low work function
and high work function electrodes forms an asymmetric
Schottky barrier, achieving directional rectification [57].
The functional layer (TaO,) acts as a switching medium,
supporting HRS and LRS transitions and memory functions
by regulating the internal distribution of oxygen vacancies,
exhibiting superior rectification ratio and nonlinearity. Most
reliable SRMs benefit from the blocking layer that restricts
the disordered diffusion of charge carriers, preventing the
formation of complete conductive filaments, which is a
cause of leakage current. The presence of the blocking layer
effectively suppresses the leakage current of the material
under low voltage or reverse bias, thereby enhancing the
reliability of device writing and reading. Additionally, the
blocking layer can reduce power consumption, as the lower
leakage current implies a more energy-efficient operating
state. In numerous studies, the blocking layer forms a thin
barrier, limiting the migration of ions/electrons, executing
tunneling/thermionic emission mechanisms. As a result, the
device’s nonlinearity, durability, and data retention capabil-
ity are improved. In 2023, Li et al. [17] proposed a SRM
based on the Pt/HfO,/TaO,/Ta structure, where HfO, serves
as the blocking layer. Under positive bias, electrons migrate
through shallow energy level defects in the functional layer,
with Poole-Frenkel (P—F) transport dominating the barrier
crossing in the switching layer (Fig. 4a). When the positive
voltage decreases to a certain value, the electron energy is
insufficient to overcome this high barrier. The interruption of
electron transport returns to the HRS, exhibiting high non-
linearity. Under negative voltage, a Schottky barrier forms
between Pt and the blocking layer HfO,, blocking electron
conduction between the electrodes and resulting in low cur-
rent, leading to the rectifying effect observed in the device

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

(Fig. 4b). The DC I-V curves of typical SRMs are shown
in Fig. 2b.

Zhang et al. reported a Pt/HfO,/WO,/TiN SRM struc-
ture, where the abundant traps in the WO, switching
layer and the excellent insulating properties of HfO,
synergistically promote positive polarity while sup-
pressing negative polarity current, achieving a rectifica-
tion ratio exceeding 10% [29]. Meanwhile, the increase
in the thickness of the switching layer leads to a higher
number of defects, resulting in a greater probability of
electrons being trapped after passing through the switch-
ing layer. Under negative bias, the number of electrons
emitted from traps decreases, leading to smaller leakage
current. Conversely, under positive bias, more trapped
electrons favor current accumulation, generating larger
positive current. Lee et al. proposed a SRM based on the
Ti/NiO,/Al,O5/Pt structure [58]. Under positive bias, the
migration of oxygen vacancies from the NiO, RS layer to
the Al,O; blocking layer reduces the barrier thickness in
the Al,O; blocking layer, facilitating tunneling to produce
high current values. Under negative voltage, the Schottky
barrier at the Ti/NbO, interface and the thickening bar-
rier of the Al,O; rectifying layer jointly suppress reverse
leakage current. In 2025, Pham et al. conducted an in-
depth analysis of the underlying mechanism of interfacial
conduction in SRM from the perspective of band theory,
making significant contributions to the advancement of
this field [59]. Similarly, the HfOX/ZrOy structure also
presented dominant interfacial mechanism recently [60].
These studies indicate that the self-rectifying properties
are not solely determined by the material work function;
the generation, distribution, and migration of ions also
affect the barrier thickness and energy band height.

2.2.2 Ion Migration

Ton movement-type memristors utilize the migration and
distribution of active ions (such as metal cations or oxygen
vacancies) under an electric field to regulate the device’s
resistance state. Through specially designed device struc-
tures (such as gradient oxide layers), ion movement can be
promoted in one direction to form conductive channels (low
resistance) while being suppressed in the opposite direction
(high resistance), thereby achieving the self-rectifying char-
acteristics of the current (Fig. 4¢) [41].

@ Springer
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Fig. 4 Mechanisms of SRMs. a Conductivity mechanism of double-layer oxide-based SRMs under positive bias and b positive bias. Repro-
duced from [17], Copyright 2023 American Association for the Advancement of Science. ¢ Conductivity mechanism of SRMs based on Au/h-
BN/graphene/h-BN/Ag van der Waals heterojunction. Reproduced from [41], with permission from Springer Nature. The conducting mecha-
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on Pt/NbO,/TiO,/NbO,/TiN structure. Reprinted from [43], Copyright 2016 American Chemical Society

Kim et al. fabricated a Pt/Na-doped TiO,/Pt-based SRM,
where the asymmetric distribution of defects regulated the
migration of Na ions, leading to self-rectifying behavior
[36]. Lim et al. proposed alkali metal ion SRMs, utilizing
lithium metal as the adhesive layer for the bottom elec-
trode, with an alkali ion reservoir forming at the bottom of
the memristor layer [61]. Aluminum dopants were used to
improve retention characteristics and suppress the diffusion
of alkali cations. In the optimized aluminum-doped mem-
ristor device, retention characteristics were maintained for
over 20 h at 125 °C, durability exceeded 5.5 103 cycles,

© The authors

and high linear/symmetrical weight update characteristics
were achieved.

Bae et al. developed a fluorine ion-doped TiO, SRM
[42]. Fluorine ions attracted oxygen vacancies, reducing
the migration energy of nearby oxygen vacancies, which
improved the reversible redistribution and reduced device
variability. The fluorinated memristor showed improvements
in switching ratio, rectification ratio, device time uniform-
ity, and switching speed, overcoming the trade-off between
performance and reliability seen in traditional memristors.
Zhang et al. reported Ni-doped WO,/ZnO SRMs, where Ni

https://doi.org/10.1007/s40820-025-02035-1
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ions reduced the electron affinity of the WO, layer, forming
asymmetric electron transport paths with shallow deep-level
traps, leading to self-rectifying behavior [30]. Interestingly,
the concentration gradient caused an asymmetric distribu-
tion of ions within the device, creating an internal electric
field. The direction of this electric field either reinforced or
weakened the applied bias direction, altering the switching
bias between the on-state and off-state, resulting in nonlinear
differences in conductivity under two polarities. To achieve
unique dynamic functions with large-scale in-memory com-
puting, Choi et al. fabricated dynamic Pt/WO,/W SRMs
[45]. The asymmetric distribution of oxygen vacancies in
WO, between the Pt and W electrodes led to the forma-
tion of a stable Schottky barrier at the PtYWO, interface and
dynamic modulation of the Schottky barrier at the WO,/W
interface. The migration of oxygen vacancies driven by the
electric field was observed even without externally applied
compliance current, exhibiting high switching uniformity
and device yield (> 98%), stable durability (> 10° cycles),
and low programming voltage (~0.7 V) for self-rectifying
switching.

Wang et al. proposed an SRM structure of Pt/WO5/WO;_,/
TiN [31]. The concentration of oxygen vacancies in the WO,
functional layer exhibited a gradient distribution, causing dif-
ferent energy level distributions at the top and bottom elec-
trodes, resulting in asymmetric energy barriers for electron
movement. This achieved a remarkable rectification ratio
(approximately 10°), a satisfactory switching ratio (approxi-
mately 10°), low operating voltage (2 V), and high stability
(>10°s, 10* cycles). When integrated into a 100x 100 array,
the device achieved a significant resistance reading accuracy
of 97.3%. Additionally, by setting the read margin at 10%, the
passive array integrated with this device could reach a storage
capacity of up to 180.3 Gb. Zhang et al. proposed Pt/NiO,/
WO,_,:Ti/W self-rectifying devices, where the difference
in work function between the rich O*~ region at the NiO,/
WO,_,:Ti interface and the rich region of oxygen vacancies at
the WO;_,:Ti side formed an interface barrier, resulting in HRS
and low conductivity [33]. By controlling the oxidation in the
two oxide layers, the HRS current and interface barrier could
be optimized, achieving ultra-high weight-enhanced linearity
(0.9997). Choi et al. proposed TaO,/NP TaO, SRMs, where
the device operation relies on the formation, movement, and
aggregation of oxygen vacancies in the nanopore structure
[62]. When a certain electric field is applied, the migration of
oxygen vacancies changes the resistance state of TaO, from
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the HRS to the LRS, realizing memristive behavior. The self-
rectifying characteristics are caused by asymmetric conduction
induced by the heterojunction between the TaO, thin film and
the nanoporous TaO, layer, achieving low-power, stable, and
interference-resistant memristive switching behavior. Sun et al.
[41] proposed a self-selective storage unit based on an Au/h-
BN/Graphene/h-BN/Ag van der Waals heterojunction, where
h-BN and graphene represent hexagonal boron nitride and
graphene, respectively. Non-volatile boron vacancy layers and
volatile silver layers were formed in the Au/h-BN/ Graphene
and Graphene /h-BN/Ag structures (Fig. 4c). In the unit inte-
grating non-volatile and volatile structures, the graphene layer
effectively prevented the diffusion of the volatile silver layer,
resulting in highly nonlinear resistance switching with self-
selection of 10'° and a switching resistance ratio exceeding
10°. Further, as illustrated in Fig. 4d, e, combining interfacial
barrier and ion migrant could realize surprising performance
of SRMs, exemplified by the Pt/HfO,/TiN single-layer SRM
[51].

2.2.3 Defect Regulation

The resistive switching characteristics of devices are due to
the capture and release of charge carriers (such as oxygen
vacancies, metal ions, or other defect states), while the rec-
tifying characteristics arise from controlling the filling and
release directionality of charge carriers.

Kim et al. designed a low-current self-rectifying Pt/NbO,/
TiOy/N bO,/TiN device, where the memristive behavior is
attributed to the electron capture/detrapping process, and
the asymmetric barrier results in a self-rectification ratio of
10°, with trap energy levels formed up to 0.8 eV in the TiO,
layer (Fig. 4f) [43]. By optimizing the dynamic behavior of
oxygen vacancies in the active layer and the design of the
barrier layer, excellent performance was further achieved
through using of ion migration driven by local electric fields
and built-in electric fields at heterogeneous interfaces: no
forming process required, self-rectification, high rectifica-
tion ratio, low-power operation, and asymmetric program-
ming voltage. Yoon et al. prepared Ta,0s/HfO,_, based
SRMs, where Ta,O5 with high electron affinity serves as
the rectifying layer [44]. Although this design weakens the
Schottky barrier at the rectifying interface, it facilitates the
forward injection of electrons within the dielectric layer.
Cheong et al. reported a Pt/HfO,/Nb,Os/HfO,/Ti SRM,
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with the Nb,Os layer acting as a charge trap layer [63]. Due
to the oxygen scavenging effect of the bottom Ti electrode,
even with the same HfO, layer, the lower HfO, film contains
oxygen defects, which aids in trap-assisted tunneling.

Ionic memristors, relying on the dynamic migration of
oxygen vacancies/ions, exhibit excellent dynamic control
capabilities and multi-resistive state storage characteris-
tics, making them suitable for online learning and neuro-
morphic computing, but they have poor long-term stability
and complex fabrication processes. Barrier-type memristors
provide high rectification ratios and stability through inter-
face barrier engineering, making them suitable for leakage
current suppression and high-density storage, but they lack
dynamic control capabilities and have lower complexity,
which can be optimized through multiple metal-oxide sys-
tems. Defect-type memristors, based on the distribution of
material defects, offer stable switching performance and
simple manufacturing processes, with lower power con-
sumption than barrier-type memristors, making them suit-
able for fixed-weight storage, but their rectification ratios
and dynamics are relatively limited. The choice among these
three mechanisms depends on the requirements of the appli-
cation scenarios.

2.3 Metrics

In this section, we delve into the key factors influencing the
core device-level metrics of SRMs—such as RR, nonlinear-
ity NL, CMOS compatibility, switching speed, and reliabil-
ity—which have been partially introduced previously. The
discussion will focus on how material selection, interface
engineering, structural design, and switching mechanisms
affect these critical performance parameters. By analyzing
these influencing factors, we aim to provide deeper insight
into the operational principles and performance limits of
SRMs at the device level. A comprehensive review of array-
level implementations and system applications will be pre-
sented in subsequent sections.

2.3.1 Rectification Ratio

As mentioned earlier, the RR of SRMs is closely related to
the energy band structure of the selected electrodes, resis-
tive and insulating layers. For example, oxygen anion migra-
tion and barrier modulation can improve the rectification
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characteristics of TaO,/Al,O; memristors [64], but optimiz-
ing the thickness of the Al,0; switching layer requires pre-
cise control of the distribution and migration of the oxygen
vacancies to achieve the expected RR. For material design,
it is not the case that simply increasing the barriers of the
metal-insulating layer can lead to a larger RR, but also the
contact barriers of the metal-oxide at the other end as well
as oxide—oxide and the state of the individual interfaces need
to be considered. If the barrier between the metal-insulat-
ing layer is too large, the emitted electrons cannot tunnel
through the insulating layer to the other end, thus suppress-
ing the positive current and further not achieving a sufficient
RR. In addition, the optimization requires precise control
of the preparation process parameters, such as temperature,
time, atmosphere, etc. When the resistive layer film needs to
be prepared, it is necessary to control the temperature, time,
atmosphere, etc. precisely. When the resistive layer films
need to be annealed rapidly in argon or oxygen atmosphere,
the increase in oxygen vacancies leads to changes in the
nature of the interfacial contacts, which affects the recti-
fication effect. Since the roughness, defect concentration,
and other factors of the films at different locations are com-
pletely different, precise control of such process parameters
is difficult to achieve in large-scale production, significantly
increasing the difficulty of optimizing RR.

2.3.2 Nonlinearity

Unlike RR, NL is mainly influenced by the first metal—oxide
barrier in the conducting direction, and a proper barrier will
result in a wide NL region corresponding to the SRM [17].
Optimizing NL encounters the same challenges as RR,
where excessive metal-oxide and oxide—oxide barriers can
similarly limit the magnitude of the peak current and thus
the NL enhancement. Also, when there are too many defects
such as oxygen vacancies in the resistive layer, the defects
will continue to migrate and accumulate with the small elec-
tric field and thus form conductive filaments, at which point
the current, which would otherwise barely increase with
increasing voltage, will gradually rise, i.e., NL failure [30].

2.3.3 On/Off Ratio

The on/off ratio needs to be synergistically optimized with RR
and NL rather than sacrificed. First, the energy band structure

https://doi.org/10.1007/s40820-025-02035-1
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and oxygen vacancy concentration have a direct effect on the
on/off ratio. For example, the increase in oxygen vacancies in
the WO;_, layer improves the electron trapping and de-trapping
efficiencies, thus increasing the on/off ratio [31]. Subsequently,
preparation process parameters such as temperature, time, and
atmosphere have important effects on the energy band struc-
ture and oxygen vacancy distribution of the materials, e.g.,
the preparation of WO; and WO, , layers by low-power and
high-power sputtering techniques, respectively, achieves dif-
ferent oxygen vacancy concentrations, which in turn affect the
on/off ratio [31]. Similarly, the selection of electrode materials
and intermediate oxide layers has a significant effect on the on/
off ratio, e.g., in the PUWO;/WO;_/TiN structure, the differ-
ence in the work function between the Pt and TiN electrodes
and the WOj; layer, as well as the oxygen vacancy traps in
the WO;_, layer, works together to achieve a high on/off ratio
[31]. Wang et al. systematically verified the above phenomena
and mechanisms to achieve a large on/off ratio while realizing
perfect nonvolatility [31], providing a fundamental guide for
large-scale scaling. However, the blind pursuit of large on/off
ratios may sacrifice the data retention capability of SRMs [40],
which in turn fails to store data reliably, which is unnecessary.

2.3.4 Switching Speed

The optimization of the switching speed of SRMs is limited
by several factors. First, SRMs usually rely on materials with
nonlinear ion mobility properties, and the ion mobility rate
and defect distribution of these materials directly affect the
device response speed. Although few SRMs have a conduc-
tive mechanism based on conductive filaments [41], continu-
ous conductive pathways formed by defects such as oxygen
vacancies can also prevent devices from switching (conductive
pathway formation is slow) [29, 31, 47]. Second, the design
of the device structure has a significant impact on the switch-
ing speed; the interfacial properties between the electrodes
and the memristive material, the device dimensions, and the
homogeneity of the internal electric field distribution all affect
the efficiency and path of ion migration, thus constraining the
optimization of the switching speed. Ultra-thin oxide resistive
and insulating layers enable ultrafast switching [17, 49], while
increasing the thickness above 30 nm significantly slows down
the switching significantly [47]. In addition, external operating
conditions such as voltage amplitude, pulse frequency, and
temperature can also have a significant impact on switching
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speed; too high or too low a voltage can lead to material dam-
age or impeded ion migration. Even though Lu et al. achieved
ultrafast response at the ps level, the overly complex prepara-
tion process based on 16 layers limits its potential for large
scaling [49]. Nevertheless, they still provided valuable instruc-
tions concerning moderate 3D integration for fast switching
with ultra-thin film.

Optimizing for a higher RR or NL often involves increas-
ing the barrier height at the device interfaces. While this can
effectively suppress reverse currents, it may also increase
the energy barrier for electron transport under forward bias,
thereby slowing down the switching speed [65]. For example,
in devices with high RR and NL, the formation and rupture of
conductive filaments may require higher activation energies,
leading to longer switching times.

2.3.5 CMOS Compatibility

Recently, combined with Ag*-mediated filamentary switch-
ing in the 2D perovskite channels, the design from Son et al.
overcomes the voltage-consumption trade-off plaguing con-
ventional SRMs [66]. However, constructing high-perfor-
mance SRMs based on 2D materials that are incompatible
with CMOS processes contradicts the path of future devel-
opment. There are numerous CMOS process-compatible
resistive layer oxides used for SRMs, and the one that has
been extensively studied is WO; [29-31, 45]. WO; has abun-
dant oxygen vacancies and tunable conductive properties,
and these oxygen vacancies are able to migrate under the
action of an external electric field to form or break conduc-
tive filaments and achieve the resistive behavior [67, 68].
At the same time, the high thermal and chemical stability
makes it perfectly compatible with CMOS processes. How-
ever, the compatibility of other mainstream resist materials
with CMOS processes still needs to be further explored, for
example, indium—gallium—zinc—oxide (IGZO) has excellent
conductivity tunability, electron mobility, and photographic
properties [69], but high temperature oxidation or annealing
environments in the CMOS process can lead to the dena-
turation of the IGZO film. Although popular and with good
CMOS compatibility, the resistive denaturation mechanism
of WOj; relies on the migration of oxygen vacancies and the
formation of conductive filaments, and its oxygen vacan-
cies are poorly controllable, which therefore tends to lead
to instability and poor uniformity of SRM performance.
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Therefore, the development of CMOS process compatibility
of other resistive oxides is a major challenge but a neces-
sary path to achieve large-scale integration. High-k oxides,
such as HfO, [17], Ta,O5 [44], AL,04 [70], TiO, [46], and
others with good CMOS compatibility, have also received
much attention. For example, notably, the SRMs proposed
by Zhang et al. exhibit CMOS middle-of-line compatibility,
leveraging HfO, and TiN—materials routinely integrated
in intermediate fabrication stages [29], and the architecture
present by Wang et al. demonstrates back-end-of-line pro-
cess alignment, where Pt electrodes and WO; layers conform
to back-end metallization requirements [31]. These distinct
material stacks reflect tailored integration strategies for
CMOS workflows, respectively.

2.3.6 Reliability

The reliability characterization of SRM is consistent with
that of common memristor with data retention and endur-
ance as the two main factors [71]. As shown in Table 1,
starting from 2015 until 2025, SRMs have experienced a
gradual development from data retention characteristics that
are generally less than 10* s to greater than 10* s or even
resistant high temperature. Endurance follows a similar pat-
tern of development. It is worth noting that reliability is very
closely linked to operating voltage. High operating voltage
leads to a significant increase in the electric field strength
inside the SRM, accelerating the migration of oxygen vacan-
cies or metal ions, thus promoting the formation or break-
age of conductive filaments. But the ion migration under
this strong electric field is often difficult to be precisely
controlled, which easily triggers excessive or non-uniform
filament growth and leads to unstable device performance.
In addition, high operating voltages can exacerbate the
Joule heating effect within the material, and the localized
temperature increase may cause structural changes (e.g.,
crystallization or phase transitions) in the material, or even
lead to chemical reactions or degradation at the interface
between the electrodes and the functional layer, which fur-
ther affects the endurance and data retention of the device.
As a result, SRMs based on conductive filaments or con-
tinuous conductive pathways tend to be significantly less
reliable than SRMs based on electromigration. However, the
oxide films underlying SRMs based on electromigration to
achieve high RR, NL, on/off ratio, and fast switching are as
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thin as possible to 10 nm or even less than 5 nm, which may
be subject to localized breakdowns and thus lead to SRM
failures. Meanwhile, the continuous conductive pathways are
the basis for ensuring a large on/off ratio [31, 40], creating
a significant contradiction.

With RR and NL increasing, the increased barrier height
may lead to more significant stress on the device materials
during repeated switching cycles, potentially reducing the
device’s lifespan [72]. High barrier height values can also
sometimes be achieved at the expense of data retention. The
increased barrier heights and reduced current flow can lead
to slower relaxation processes, potentially causing the device
to switch back to the off-state over time. This is particularly
problematic in applications requiring long-term data stor-
age. Additionally, the higher operating voltages required to
overcome these barriers can exacerbate Joule heating effects,
further degrading device performance over time [12, 51].
Lowering the operating voltage to increase switching speed
can reduce the stress on the device materials [73], poten-
tially improving endurance. However, if the operating volt-
age is too low, it may not be sufficient to drive the necessary
switching processes, leading to incomplete state transitions
and reduced device reliability [74]. To balance the trade-offs
of RR (or NL), speed, and endurance, one optimal approach
is to further optimize the device structure and materials to
achieve a moderate RR or NL while maintaining accept-
able switching speed and endurance. For instance, using
thin insulating layers and optimizing the doping levels can
help reduce the energy barriers without significantly com-
promising RR and NL [42], and advanced materials with
high thermal stability and low defect densities can improve
endurance while maintaining high RR and NL. Moreover,
using materials with high ionic mobility and optimizing the
device dimensions can help achieve faster switching with-
out significantly increasing power consumption [75, 76].
As an example, Tan et al. introduce a self-rectifying two-
dimensional memtransistor, employing asymmetric metal
contacts—a Schottky Platinum contact and a quasi-ohmic
Bismuth contact and integrating memristor resistive switch-
ing with transistor gate tunability for advanced neuromor-
phic computing [77].

From the perspective of the fabrication process, the fab-
rication of SRMs involves several critical steps, including
material deposition, annealing, and doping, each of which
can significantly influence the device’s performance.
Understanding how specific process variations affect
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key performance metrics is also essential for developing
more reliable and consistent SRM fabrication processes.
First, the thickness of the active layer in SRMs is a criti-
cal parameter that affects both the RR and NL. Thicker
layers generally enhance the RR and NL by increasing the
energy barriers under enough forward bias [29]. Second,
annealing temperature plays a crucial role in determin-
ing the crystallinity and defect density of the active layer.
Higher annealing temperatures can improve the crystallin-
ity, leading to lower defect densities and enhanced device
performance [78]. However, excessively high tempera-
tures can cause material degradation or unwanted phase
transitions, negatively impacting the device’s stability
and performance. Last but not least, doping is a common
technique used to control the electrical properties of the
active layer in SRMs [42]. The concentration of dopants
can significantly affect the device’s on/off ratio, switching
speed, and endurance. Moderate doping concentrations
can increase the conductivity of the active layer, enhancing
the on/off ratio and switching speed. Recently, Wang et al.
epitaxially grew the AlScN film on a silicon substrate for
reliable SRMs, whose crystallinity, surface roughness, and
ferroelectric properties were meticulously optimized via
dual-target nitrogen reactive magnetron sputtering, fine-
tuning the doping ratio [79].

In summary, balancing all the metrics of SRMs while
ensuring superior reliability is difficult to achieve. And
current state-of-the-art SRMs are still operated at higher
voltages (> 1.5 V) [17, 37, 46]. Possible strategies include
using multilayer stacking for fine control of the conductive
pathways, optimizing the precision of the CMOS process,
introducing isolation layers around the device, and protect-
ing the device using encapsulation processes, etc. The next
phase of exploration will be based on the CMOS process,
the matching of the available functional materials, the high
temperature reliability characterization with lower and lower
operating voltage to ensure that the reliability is as syner-
gistic as possible with the optimization of the key metrics.
Besides, optimizing the performance of SRMs involves care-
fully balancing multiple key metrics. By understanding the
trade-offs between these metrics and tailoring the device
design to specific application requirements, SRMs can be
optimized for high performance, reliability, and scalability
in various beyond-CMOS computing paradigms. It is worth
noting that all key terms mentioned in this paper are sum-
marized and explained in Table 2.
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3 Applications of SRM in Beyond CMOS

In the previous section, we provided a detailed discus-
sion of the working principle, conductive mechanism,
and unique features of SRMs. Based on these, SRMs are
capable of a large number of cutting-edge applications for
beyond CMOS. The great scalability potential of SRMs
provides a solid hardware foundation for ultra-high-preci-
sion in-memory computing [99], neuromorphic computing
[50], and hardware security [100].

3.1 In-Memory Computing

SRM-based in-memory computing utilizes the non-vol-
atile, high-density, and programmable characteristics of
memristors to efficiently perform vector matrix multipli-
cation (VMM) by reading the rows and collecting current
along the columns of memory cells, thus realizing the deep
integration of memory and computing [101].

3.1.1 Regular VMM

For regular VMM, the memristors are distributed as storage
units at the intersection of word lines (WLs) and bit lines
(BLs), and the writing and updating of the memristor resist-
ance state can be realized by controlling the voltage of WLs,
while BLs are used to read the current signals of the mem-
ristors to obtain the stored data. By storing the weights of
the matrix in the conductance values of the memristors and
applying the voltage signals of the input vectors on the word
lines, the current of each memristor is proportional to its
conductance value according to Ohm’s law. The bit line col-
lects the currents of all the memristors through Kirchhoff’s
law, thus directly outputting the result of the VMM [102].
As mentioned earlier, SRMs can effectively suppress leak-
age currents in passive crossbar arrays, thereby improving
read accuracy and data accuracy. Further, the SRM cell-
based crossbar arrays are able to perform multiply-accu-
mulate computation (MAC) in a massively parallel manner.
This parallelism allows the computational complexity of the
VMM to be reduced from the traditional O(n?) to O(n) or
even better [103, 104], significantly improving the compu-
tational efficiency. In recent years, a large number of state-
of-the-art SRMs with applications to regular VMM have
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Table 2 Key glossary

A novel type of memristor that exhibits intrinsic diode-like rectification, enabling
unidirectional conduction and suppressing sneak path currents in crossbar arrays

The ratio of the on-state current of the device under positive bias to the off-state
current under negative bias, indicating the level of current suppression in reverse

The ratio of the current of the device at the read voltage under the low-resistance
state (LRS) to its current at the partial read voltage, indicating the degree of
nonlinearity in the current—voltage characteristics

A widely used technology for manufacturing integrated circuits, characterized by
low-power consumption and high scalability

A fundamental operation in many computing tasks, where a vector is multiplied by
a matrix to produce a result vector, often used in neural networks and in-memory

A type of cell that allows data to be retrieved based on its content rather than its
address, often used in high-speed search applications

A computational model inspired by the structure and function of biological neural
networks, used for tasks such as image recognition and pattern classification

A type of neural network that uses convolutional layers to process data with grid-
like topology, commonly used for image and video recognition tasks

Systems that enable vehicles to operate without human intervention, often using
advanced sensors, computing, and machine learning techniques

A type of recurrent neural network that uses a fixed, highly dynamic reservoir to
map input signals to a high-dimensional space, followed by a linear readout layer

A security primitive that generates unique and unclonable digital fingerprints
based on the inherent physical variations in a device, used for authentication and

A hardware device that generates random numbers based on physical processes,
providing high entropy for cryptographic applications

Term Abbreviation Definition
Self-rectifying memristor SRM
Rectification ratio RR

bias
Nonlinearity NL
Complementary metal-oxide—semiconductor CMOS
Vector—matrix multiplication VMM

computing
Ternary content-addressable memory TCAM
Artificial neural network ANN
Convolutional neural network CNN
Autonomous driving systems ADS
Reservoir computing RC

for output
Physical unclonable function PUF

key storage
True random number generator TRNG
Homomorphic encryption HE

A form of encryption that allows computations to be performed on ciphertext, pro-
ducing an encrypted result that, when decrypted, matches the result of operations
performed on the plaintext

been developed. For example, Zhao et al. developed an SRM
based on a quasi-free-state Bi,O,Se single-crystal thin film,
achieving fast switching (<20 ns) and low-power consump-
tion (< 1.2 pJ) [40]. In 2019, Sun et al. introduced an SRM
based on a van der Waals heterostructure of hexagonal boron
nitride (h-BN) and graphene, achieving self-selectivity in
excess of 100, switching ratios in excess of 103, and terabit-
level scalability [41].

In 2021, SRMs based on Ru/Hf¢Si;,0, /Al,0,/
Hf, sSi, s0,/TiN structures, with DC I-V curves shown
in Fig. 5a, were used to construct 30 X 30 passive crossbar
arrays [34]. The group selected four random matrices with
different sparsities in the experiment and mapped them onto
the passive crossbar array. The efficiency and accuracy of
the arrays in handling large-scale matrix operations were
verified by quantizing the currents using sense amplifiers at

© The authors

the end of the column lines (Figs. 5b and 3c). The experi-
mental results show that the measured current vectors are
almost identical to those obtained by extrapolating the cur-
rents from individual cells, indicating that the interference
of unselected cells is negligible even in large-scale arrays
(Fig. 5d). At the same time, the power consumption level
of the realized VMM is much lower than that of conven-
tional computing architectures, especially when dealing
with intensive matrix operations. This suggests that SRM-
based crossbar arrays are not only advantageous in terms of
computational efficiency, but also show great potential in
terms of energy efficiency. In addition, related concerns were
reasonably presented. Despite the excellent performance
of crossbar arrays in in-memory computation, there are
still some challenges to achieve the desired computational
temporal complexity O(1). Theoretically, by activating all

https://doi.org/10.1007/s40820-025-02035-1
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column lines simultaneously, the crossed-bar array enables
on-the-fly computation of VMM. However, in practice, the
finite line resistance leads to uneven cell voltage distribu-
tion, which affects the computational accuracy. In addition,
activating all column lines simultaneously requires separate
sense amplifiers and subsequent logic circuits for each col-
umn line, which may lead to additional area overhead in
large-scale arrays.

With the unique property of SRMs to significantly sup-
press the sneak path currents in passive crossbar arrays, the
realization of a massively integrated VMM can significantly
enhance the parallel processing capability of the hardware
while significantly reducing the computational temporal
complexity.

SHANGHAI JIAO TONG UNIVERSITY PRESS

Compared to single-layer SRMs, 3D-stacked SRMs have
significant advantages for in-memory computing integration
[105, 106]. First, the 3D-stacked structure can fully utilize
the vertical space and significantly increase the storage den-
sity and computing power per unit area. This high-density
integration not only increases storage capacity, but also sig-
nificantly enhances the computing power of the in-memory
computing chip, making it more suitable for processing
large-scale data and complex computing tasks [12]. What’s
more, the 3D-stacked memristors can be seamlessly inte-
grated into existing CMOS processes [107]. In the recent
decade, there has been little research on in-memory comput-
ing with 3D SRMs, but the related device mechanism has
become much hotter [53, 91, 95, 96, 98].
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3.1.2 Content Addressing

Content addressing is a method for organizing and retriev-
ing data based on the data’s intrinsic content, rather than its
storage location [108]. In this approach, each data object
generates a unique identifier through its content. SRM arrays
achieve content addressing through their unique in-memory
computing function, which utilizes self-rectifying features to
suppress the sneak path current, thus ensuring accurate data
storage and efficient retrieval [109, 110]. Fast content-based
access and processing is achieved by mapping the hash value
of the data content to specific SRM cells and performing
logical operations directly on these cells. Among them,
three-state content-addressable memory (TCAM) supports
three states of “0,” “1” and “don’t care” in each SRM cell
with flexible matching operations realized through masks
[111].

In 2018, Chen et al. developed a Ge-based SRM using a
full CMOS-compatible technology and a thin AlO,/GeO,
interfacial layer, demonstrating excellent switching and rec-
tification properties [109]. Based on this device, they propose
and validate a high-density nonvolatile TCAM whose func-
tionality is verified by experimental measurements. Wang
et al. experimentally verified the parallel search function of
a 2-bit TCAM array based on a Ge-based SRM [112]. With a
sub-nanosecond ultrafast measurement system, it is confirmed
that the search energy consumption of this TCAM is as low
as 1.0 fJ/bit/mismatch, and the search operation can be com-
pleted within 200 ps, which significantly improves the data
retrieval speed. The match reliability of Ge-based SRM-based
TCAM cells combined with their full CMOS compatibility
validates their potential for scaling up to ultra-large-scale
TCAM systems. Moreover, the outstanding advantages of
SRM suppression of sneak path currents applied to TCAM
cell design were particularly emphasized by Goh et al. [110].
By employing a TiN/HZO/TaN/W stacked structure, the real-
ized ferroelectric tunnel junction (FTJ) exhibits a rectification
ratio of up to 1000 and a tunneling electroresistance of about
100, preliminarily demonstrating its characteristic of prevent-
ing crosstalk between array cells. This FTJ-based TCAM cell
structure achieves a compact area (only two FTJ cells are
required) and exhibits high endurance (10% cycles) and low-
power consumption, while achieving about 90% accuracy in
pattern recognition tasks, providing a highly promising solu-
tion for high-density, low-power TCAM applications [110].
This approach markedly enhances the density and reliability of

© The authors

the TCAM while simultaneously decreasing power consump-
tion and error rate. Yu et al. [48] introduced a 3D SRM-TCAM
that significantly advanced in-memory search capabilities. As
illustrated in the schematic (Fig. 6a), the memory array adopts
a compact 3D vertical architecture, where multiple storage lay-
ers are stacked to achieve high integration density and N-fold
improvement in search parallelism. The fundamental build-
ing block is a novel TCAM cell (Fig. 6b) consisting of just
two SRMs connected to a common match line (ML), storing
ternary states through different resistance state combinations
of the two devices. This minimalist design enables efficient
implementation within a 3D crossbar array for parallel exact
matching operations (Fig. 6¢). The crucial advantage emerges
when comparing the operational mechanisms with conven-
tional designs. While the traditional two-memristor TCAM
(Fig. 6d) suffers from insufficient ML charging due to simul-
taneous charging and discharging paths, the SRM-based coun-
terpart (Fig. 6e) benefits from the self-rectifying characteristic
that functionally creates a one-diode—one-resistor structure.
This effectively blocks the discharge path to ground, allowing
more adequate charging current and consequently a signifi-
cantly larger sense margin.

Obviously, in the development of SRM applications for
content addressing, researchers have focused on the CMOS
compatibility of the selected materials to confirm the feasibil-
ity of the proposed TCAM architecture for large-scale scaling
[113]. Nonetheless, the SRM devices utilized in the TCAM
cells at this stage are still unable to achieve substantial RR
and NL, which fundamentally prevents excellent scalability.

3.1.3 Other Applications

In the field of in-memory computing based on SRMs, except
regular VMM and content addressing, there are unique
applications being initially developed [17, 47, 57, 92].
First, for basic logic functions, Ni et al. [S7] verified
that controlled majority-inverter graph logic based on
SRMs offers significant advantages in terms of computa-
tional complexity, enabling the implementation of com-
plex logic functions, such as 1-bit full adder and 4-bit
square root computation, with fewer devices and steps. In
addition, parallel logic gates based on SRMs are capable

https://doi.org/10.1007/s40820-025-02035-1
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of implementing priority encoders and XOR logic func-
tions through logic cascading [92].

Besides, in many in-memory computating scenarios,
most of the elements in the matrix are zero, while the

SHANGHAI JIAO TONG UNIVERSITY PRESS

o)
AP e

nonzero elements account for only a few. This makes tra-
ditional matrix multiplication methods inefficient when
dealing with sparse matrices, as a large amount of com-
putational resources are wasted on operations with zero
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elements. Sparse matrix multiplication significantly
reduces computational complexity and storage require-
ments by optimizing storage and computation methods to
operate only on nonzero elements [114]. SRMs are very
suitable for sparse matrix multiplication due to their pow-
erful self-rectification capability. In 2023, Li et al. sig-
nificantly reduced the energy consumption and hardware
overhead at the hardware level by compressing the storage
format of sparse matrices, mapping nonzero elements into
memory arrays, and utilizing the low-power and rectifi-
cation characteristics of SRMs with both of RR and NL
exceeding 10* and ultra-low leakage current below 0.1 pA
to suppress crosstalk currents (Fig. 7) [17]. Experimental
results show that the system achieves a performance of
about 97 to 11 TOPS/W in 2- to 8-bit sparse computa-
tion tasks, which improves the energy efficiency by more
than 85 times and reduces the hardware overhead by about
340 times compared to conventional memory computation
systems.

© The authors

With its non-volatile, high-density and self-rectifying
features, SRM demonstrates high-performance and low-
power consumption advantages in in-memory computing
paradigm, significantly enhancing computational accuracy
and parallel processing capability by suppressing leakage
current. In addition, SRMs support a 3D-stacked structure,
which further enhances the density and performance of in-
memory computing, and are compatible with CMOS pro-
cesses, making large-scale applications possible. In special
applications such as content addressing and sparse matrix
multiplication, SRM further reduces hardware overhead and
power consumption by optimizing the storage format and
reducing invalid calculations, demonstrating the potential
for a wide range of applications with much more mature
CMOS compatibility.

https://doi.org/10.1007/s40820-025-02035-1
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3.2 Neuromorphic Computing

Relying on in-memory computing, neuromorphic computing
is a brain-inspired computing paradigm that aims to achieve
efficient information processing and learning capabilities by
modeling the structure and function of biological neural net-
works [115], owning dominant status in the beyond-CMOS
computing paradigm. It achieves brain-like parallel comput-
ing and learning functions by constructing brain-like networks
of neurons and synapses simulating synaptic weight changes.
Although You et al. present a significant advancement by
developing a dynamic SRM that integrates leaky integrate-
and-fire neuron emulation and refractory period simulation
[116], applications of SRM-based neuromorphic computing
have primarily focused on emulating synaptic behaviors cur-
rently. Compared with traditional computing architectures, the
advantages of neuromorphic computing lie in its high degree
of parallelism and efficient processing of complex tasks, while
its uniqueness lies in its ability to mimic the plasticity and
dynamic behaviors of the brain, such as short- and long-term
synaptic plasticity, as well as learning through mechanisms
such as spiking timing-dependent plasticity (STDP) [115,
117]. A prerequisite for embedding into a neuromorphic
computing system is that the selected SRMs should have suf-
ficient dynamic properties [42]. Moreover, SRMs can provide
a massively scalable hardware foundation for existing mature
neuromorphic computing architectures, further improving
computational efficiency and energy efficiency ratio.

3.2.1 Artificial Neural Network

The computational accuracy of traditional artificial neu-
ral networks (ANNS5) is limited by arithmetic power when
running on CPUs or GPUs. When dealing with large-scale
image recognition tasks, memristor-based hardware can be
more easily scaled to larger network structures, thus break-
ing through the bottleneck of the traditional algorithm ANN
that is difficult to scale with limited hardware resources
[118]. Further, dynamic SRMs could provide synaptic char-
acteristics with great scalability for high-precision hardware-
based ANN.

In 2018, the first SRMs-based ANN was constructed via
nanoporous TaO,-based SRMs, and the device exhibited
high nonlinearity, low synaptic coupling, good endurance,
and excellent retention stability [62]. The synaptic device

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

successfully modeled the key functions of long-term poten-
tiation (LTP), long-term depression (LTD), and STDP and
achieved a high accuracy of 89.08% in MNIST image recog-
nition with only 15 training cycles. This work confirms the
great potential of SRMs in developing neuromorphic com-
puting, provides a promising synaptic device platform for
building high-density, low-power ANNs with high learning
capabilities and provides initial guidance for related work in
the following years [63, 93, 119]. More researches related
to how SRMs can be more deeply integrated into ANN and
the all-hardware implementation of ANN has increased at
the time of the outbreak from the beginning of 2024 [32,
49, 61]. Jeon et al. [32] explored in detail the application
of SRMs in the construction of hardware accelerators for
ANNSs. They designed and prepared a 1-kb passive cross-
bar array that integrates HfSiO,-based SRMs, exhibiting
high RR around 10* (Fig. 8b), low device-to-device vari-
ation less than 6% (Fig. 8c), and excellent nonvolatility
ensuring precise conductance adjustment. By adopting a
1/3 bias scheme (Fig. 8a), the SRMs can effectively sup-
press crosstalk currents from neighboring cells, ensuring
the accuracy of VMM operation. This group utilized this
1-kb passive crossbar array for the MNIST handwritten
digit classification task (Fig. 8d), and the weights obtained
through software training were mapped to the conductance
states of the array, achieving 100% classification accuracy
(Fig. 8e). In addition, it was found that defective cells in the
passive crossbar array significantly degraded the classifica-
tion accuracy, whereas read margins had less impact on the
classification task [32]. This suggests that SRMs with non-
conducting filament mechanisms are ideal for ANN appli-
cations due to their high consistency and reliability. It is
also quite noteworthy that they visualized the importance
of the selection function in passive crossbar arrays through
detailed comparative experiments for the first time, elucidat-
ing crossbar arrays lacking the selection function are unable
to accurately perform the VMM operation, and thus fail to
realize reliable ANN computation (Figs. 8f and 6g) [32].
Moreover, combining a record-breaking oversized RR of
over 107 and NL of 10° with ultrafast response at the ps level
provides another in-depth guide to the development of ANN
hardware accelerators [49]. Besides, Kim et al. present an
interface-type Al/N-doped TaO, (ANTO) SRM engineered
via ALD process to optimize oxygen vacancy concentration
[83]. Hardware-level demonstrations based on the proposed
doped SRMs confirm reliable multilevel programming,
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including conductance-mapped word patterns, highlighting
its potential for high-density, energy-efficient neuromorphic
computing.

For ANN, the weight updating linearity refers to the lin-
ear relationship between the weight changes and the input
stimuli during the training process of the ANN. High linear-
ity implies that the change of weights can more accurately
reflect the change of external input stimuli, thus improving

© The authors

. Reproduced from [32], with permission from Springer Nature

the learning efficiency and accuracy of ANN. Therefore,
there are also corresponding researches focusing on the
weight update linearity of ANN-oriented SRMs based on
WO,_, themselves, greatly compatible with CMOS pro-
cesses [29, 33]. An unsupervised self-organizing mapping
(SOM) neural network based on SRMs with vector coding
and topological organization is highly resistant to noise and
steep synaptic decay, breaking through the bottleneck of

https://doi.org/10.1007/s40820-025-02035-1
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traditional ANN in classification accuracy [33]. Combined
with the ultra-high weight-enhanced linearity of SRM itself,
the recognition accuracy of the SOM network based on pas-
sive crossbar array can reach 98.41% after training 56 sets
of samples, which is much higher than that of the traditional
ANN in the direction recognition experiments [33].

3.2.2 Convolutional Neural Network

Convolutional neural networks (CNNs) need to perform a
large number of sliding convolution operations when deal-
ing with tasks such as image recognition. These operations
involve a large number of MAC operations and thus require
compute units that support parallel MAC to meet the asso-
ciated arithmetic requirements [120]. Notably, SRMs have
revolutionized the way all needs are met in a comprehen-
sive manner aforementioned compared to conventional
memristors.

Kim et al. prepared Na-doped SRMs with excellent per-
formance using in situ doping by atomic layer deposition
technique to achieve reliable reading and writing in 6 X6
crossbar arrays [36]. On this basis, the group constructed a
LeNet-5-based CNN for MNIST handwritten digit recogni-
tion simulation experiments. The network is trained in two
stages, and the simulation process takes into account device
non-idealities by quantizing the weights and adding noise.
Ultimately, the Na-doped SRM crossbar array constructed
CNN achieves a validation accuracy of 99.1% on the MNIST
dataset, and the double-memristor scheme also achieves an
accuracy of over 95% without pre-training [36]. Recently,
the array based on Pt/HfO,/Ti SRMs, proposed by Zhao
et al., successfully implements an 8-bit convolutional neu-
ral network in hardware, achieving 98% accuracy on MNIST
handwritten digit recognition [84].

Despite preliminary research, hardware implementation of
CNNs based on SRMs faces a number of challenges, includ-
ing low yield and variation problems at the device level,
computational inefficiencies due to the sequential nature of
convolutional operations, and complex back-propagation and
weight-shifting problems during the training process [120].
The related potential challenges are discussed in detail in the
subsequent sections.

Remarkably, recently, Zhang et al. proposed a ground-
breaking advancement in CNN based on SRMs by intro-
ducing a Pt/HfO,/TiN structure that achieves unprecedented
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performance metrics, including a RR exceeding 10% and
excellent endurance over 107 cycles (Fig. 9a—c) [51]. These
achievements are attributed to meticulous engineering of the
HfO, layer through rapid thermal annealing, which effec-
tively reduces oxygen vacancy concentrations and optimizes
interfacial properties, thereby mitigating sneak path cur-
rents and enhancing device uniformity (Fig. 9f). The SRMs
exhibit remarkable stability, with minimal device-to-device
(3.32%) and cycle-to-cycle (1.55%) variations, making them
ideal for scalable crossbar arrays capable of supporting neu-
romorphic computations at densities exceeding 25.4 terabits
(Tb). A pivotal innovation lies in the SRMs’ ability to emu-
late synaptic plasticity, demonstrating LTP and LTD over
256 analog states with ultra-high precision (Figs. 9d and
7e). This synaptic behavior, coupled with the devices’ inher-
ent analog computing capabilities, enables the implementa-
tion of hardware-based autonomous driving systems (ADS)
based on CNN units (Fig. 9g), showcasing their resilience
against adversarial attacks, and maintaining classification
accuracies (84.25%) comparable to software models like
YOLOV9 (84.34%) even under complex attack scenarios.
The proposed SRMs’ intrinsic analog dynamics and local-
ized plasticity further enhance feature extraction and noise
suppression, addressing critical challenges in edge comput-
ing environments.

Looking ahead, the application of SRMs in CNNs holds
transformative potential. Their low-power, high-speed in-
memory computing architecture could significantly accel-
erate convolution operations and matrix multiplications by
minimizing data movement and energy consumption. Future
research should focus on optimizing SRM-based crossbar
arrays to better support weight storage and parallel computa-
tions intrinsic to CNNs, enhancing both training and infer-
ence efficiency. Additionally, exploring their compatibility
with spiking neural networks and attention mechanisms may
further boost computational throughput and adaptability. By
bridging the gap between hardware capability and algorith-
mic demand, SRM-accelerated CNNs could become a cor-
nerstone for future energy-efficient and high-performance
neural processing systems.

3.2.3 Reservoir Computing

With the development of Artificial Intelligence (Al), tra-
ditional neural networks such as feedforward Deep Neural
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Networks (DNNs) [123] and Recurrent Neural Networks
(RNNs) [124] have been facing many challenges when deal-
ing with complex tasks for many years. Feedforward DNNs
are less efficient when dealing with time series data because
they lack the ability to effectively model time dependencies

[123]. While traditional RNNs are capable of handling time
series data, they are prone to the problem of exploding or
vanishing gradients during training, leading to difficult train-
ing and convergence [125]. Meanwhile, the demand of these
traditional neural networks for a large number of training

© The authors https://doi.org/10.1007/s40820-025-02035-1
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samples and computational resources limits their application
in resource-constrained environments such as edge comput-
ing. Reservoir computing (RC), an emerging neuromorphic
computing paradigm, processes information by exploiting
the complex nonlinear behavior of dynamic systems [121,
126]. A fixed and highly dynamic reservoir layer maps
the input signal to a high-dimensional space, followed by
a simple linear readout layer for output (Fig. 10a), which
not only avoids the gradient-related problems of traditional
RNNs during the training process, but also ensures fast and
high-precision learning with minimal resource requirements
[121]. The dynamic behavior of memristors is highly com-
patible with the requirements of RC, effectively realizing
the complex dynamic mapping of the reservoir layer, and
at the same time reduce the hardware cost and power con-
sumption [102]. At the same time, the plasticity of mem-
ristors enables them to adapt to different input signals and
task requirements, further enhancing the flexibility of RC
systems [121]. In terms of large-scale integration, RC has
relatively low demand for hardware resources and excellent
compatibility with existing CMOS technology, providing a
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stage for dynamic SRMs to play a great role (Fig. 10b) [30,
45, 88, 94, 122, 127].

In 2022, Park et al. experimentally illustrated that the pro-
posed gradient TiO,-based SRMs (Fig. 10c) combine neu-
ronal properties, synaptic weight plasticity as well as large
RR and NL (Fig. 10d), further confirming the feasibility of
SRMs being applied to construct large-scale RC systems for
the first time [122]. The decay coefficient of the SRM can
be finely tuned by carefully regulating the pulse strategy.
Based on the reliable short-term memory effect (Fig. 10e),
they constructed a neuromorphic computing system that can
efficiently process sequence data, and successfully trained
and generated biomedical sequence data (antimicrobial pep-
tides), achieving efficient learning and generation of com-
plex sequences with only a few training parameters. Build-
ing on such temporal processing capabilities, the application
of SRM-based reservoirs has expanded into cybersecurity.
Zhang et al. used dynamic nonvolatile SRMs with dynamic
circuitry design to deeply integrate RC and intrusion detec-
tion system (IDS) to accurately capture time series patterns
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Reproduced from [45], with permission from Springer Nature

in network traffic for fast and accurate detection of anomalies
and intrusions [30].

Compared to the common single-layer RC systems, by
stacking multiple reservoir layers in 3D space, not only the
complexity and diversity of the system can be significantly
increased, but also local features in time series data can be
extracted and processed more effectively. In 2024, Choi et al.
designed and fabricated a 3D-integrated multilayer WO,
SRM crossover array (Fig. 11a) with a PtYWO,/W SRM

© The authors

cell integrated at each crossover point (Fig. 11b) [45]. This
3D integrated array features forming-free characteristics,
high switching uniformity, and over 98% device yield, as
well as an ultra-low operating voltage of ~0.7 V (compared
to advanced SRMs [17, 32]) (Fig. 11c). Based on this, the
team designed wide reservoir computing hardware, which
expands the feature space by increasing the number of res-
ervoirs (Fig. 11d). Each reservoir can independently process
and extract different local features of the time series and
map them to different feature spaces, enabling more efficient

https://doi.org/10.1007/s40820-025-02035-1
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processing of multivariate time series data. In the biological
cell location classification task, the three-reservoir-based RC
system achieves 100% classification accuracy using only 15
amniotic cells, while the single reservoir RC system requires
25 amniotic cells to achieve 93% accuracy [45]. In the
Lorenz attractor prediction task, Fig. 11e shows the three-
dimensional trajectory of the Lorenz attractor, which has a
complex dynamic behavior in the x, y, and z directions. To
perform the prediction, the researcher decomposed the 3D
Lorenz equation into three time-dependent one-dimensional
equations (corresponding to the components of the x, y, and
z axes, respectively) and input them into a 3D-stacked WO,
physical memory array (Fig. 11f). Each physical memory
layer processes the chaotic input signals in the correspond-
ing direction to generate separable memory states, subse-
quently passed to the output layer for learning and predic-
tion. Figure 11g shows the actual Lorenz attractor behavior
compared to the predicted behavior after 1400 time steps of
learning with remarkably conformity (Fig. 11h) The average
normalized mean square error (NMSE) of the three-layer
reservoir system is 2.62 X 107, which is one order of magni-
tude lower than that of the single reservoir system (NMSE of
1.35% 107%) (Fig. 11i), indicating that the 3D-stacked struc-
ture has higher accuracy and efficiency in predicting the
complex dynamic system [45]. This 3D-integrated physical
memory array is not only revolutionary and innovative in
terms of hardware implementation of RC, but also provides
an extremely efficient and compact solution for processing
time series data in future Al systems and is expected to play
an important role in areas such as large-scale edge comput-
ing compatible with CMOS processes.

Recently, the volatile properties of Pt/TaO,/TiN SRMs
enable dynamic nociceptor-like behaviors such as thresh-
old detection, relaxation, and sensitization, mimicking
biological pain responses [81]. The SRM’s uniformity
and CMOS compatibility facilitate scalable integration,
demonstrated in a 5 X 5 synaptic array and Morse code
generation. More importantly, the short-term volatility
and nonlinear response of the device are key features that
make it particularly suitable for RC system, where such
dynamics are harnessed to process temporal information.
Additionally, its nonlinear dynamics support reservoir
computing, achieving 92.35% accuracy in MNIST recog-
nition, and highlighting the SRMs’ potential for energy-
efficient neuromorphic computing, sensory systems, and
edge Al applications.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

3.2.4 Optoelectronic Neuromorphic Computing

For traditional architectures, a large amount of raw data col-
lected by sensors from the edge end-side needs to be trans-
mitted to the processor for processing, a process that not
only consumes a large amount of energy, but also increases
the latency of the system, with the data security receiving
a huge threat [7]. In-sensor computing fundamentally sub-
verts the design pattern of separating sensors and proces-
sors in traditional computing systems by integrating sens-
ing, memory, and computing functions in the same hardware
unit (Fig. 12a) [37]. Further, by simulating the function of
biological retina, the hardware based on the in-sensor com-
puting architecture is able to generate adjustable positive/
negative photoconductive responses directly after receiv-
ing optical stimuli and store them, thus realizing the signal
acquisition, conversion, memory, and processing functions
similar to those of biological retina [128]. Thus, the devel-
opment of optoelectronic SRMs and the feasibility of real-
izing corresponding intersensory computing arrays provide
valuable guidance for the future realization of large-scale
multimodal intelligent visual information processing sys-
tems [129].

In 2024, there are some impressive works about opto-
electronic SRMs and further crossbar array for in-sensor
computing [37, 86, 90]. Gu et al. found that the optoelec-
tronic SRM synapses based on FTO/TiO,/Au structure can
simulate multiple functions of synapses, including double-
pulse heterogeneous learning rule and learn—forget-relearn-
ing rule [90]. Moreover, the group innovatively incorporated
optoelectronic SRMs into RC [90]. Lu et al. introduced an
all-optical controlled (AOC) optoelectronic SRM array
based on NiO/TiO, heterostructure, enabling multilevel
storage function with self-rectification characteristics and
simulating multiple synaptic functions in the human brain at
the same time [86]. This group also proposed a reconfigur-
able AOC SRM based on Si/SiO,/TiN/TiO,/NbO,/NiO/Ru
structure (Fig. 12b), exhibiting high RR and NL to ensure
the accuracy of the programming operation (Fig. 12c¢) [37].
390 nm and 290 nm UV light was used for the LTP and LTD
processes at the synapse, respectively (Fig. 12d). Based on
this reconfigurable AOC SRM, they constructed a simple
pre-neuron/synapse/post-neuron structure for the realiza-
tion of an intersensory computational system. By scaling,
binarizing, and restructuring a 28 x 28 pixel image from the
MNIST dataset to fit a 4-bit pulse input, the device is able to
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convert pixel points of different gray levels into pulse signals
with different voltage amplitudes and pulse widths, which
are then fed into the pre-neuron. If the input signal is strong
enough, the neuron function of the device can output a bina-
rized image (Fig. 12e) [37]. These results indicate that the
proposed AOC SRMs have the potential to serve as efficient
hardware components in future intelligent sensing systems.

3.2.5 Self-Supervised Learning

In terms of supervised learning, models usually rely on
large-scale labeled datasets for training, which are quite
demanding in terms of labeling and susceptible to problems
such as overfitting, spurious correlation, and adversarial
attacks [130]. Whereas unsupervised learning is costly
and usually lacks direct guidance on downstream tasks,
its learned feature representations may not fully match the

© The authors

needs of a particular task, thus having limitations in task
migration and generalization capabilities [131]. Unlike tradi-
tional supervised and unsupervised learning, self-supervised
learning automatically obtains “labels” from data and learns
the intrinsic structure of the data by predicting parts of the
data, which is not only capable of dealing with large-scale
unlabeled data, but also capable of learning feature repre-
sentations that are broadly applicable to downstream tasks
[132]. In short, self-supervised learning utilizes the data
itself as a supervisory signal without manually labeling the
data, which significantly improves the processing efficiency
and generalization ability, and brings a new breakthrough
to the field of deep learning. Therefore, passive crossbar
arrays based on SRMs show great potential in processing
large-scale unlabeled data and improving model generaliza-
tion ability [46].
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In early 2025, Jeong et al. [46] broke new ground by
developing a self-supervised learning algorithm for fore-
ground and background separation of videos on an SRM-
based hardware platform (Fig. 13a). This algorithm decom-
poses video frames through an optimization problem, where
the background is considered as a low-rank projection of
the input data, while the foreground is regarded as a sparse
component. The algorithm is trained directly on hardware
via gradient descent method without the need for a pre-
training process, allowing the hardware platform to adapt to
frequently changing information environments and to self-
optimize through continuous training. Figure 13b shows the
statistical distribution of the unsigned 8-bit ADC outputs
(OUT =) of all SRM cells in the developed array, demon-
strating that all the memristor devices operate reliably in
the analog domain and that the cells perform operations
without the need for compliance currents and compensa-
tion algorithms. The low-rank component (L, background)
is obtained in the proposed self-supervised real-time video
processing architecture by performing two rounds of matrix
multiplication operations on the raw video data (Y, input
frame) using the same computational unit. The latent vari-
able (Z) is computed from the first round of matrix multipli-
cation and the sparse component (S, foreground) is obtained
by subtracting L from Y (Fig. 13c). By performing direct
on-device training, the system is able to automatically learn
and calibrate the non-idealities of the hardware (Fig. 13d). In
the experiment, the system separates foreground and back-

~! and after about

ground in real time at about 0.7 frames s
28 frames of training, the system successfully converges
(Fig. 13f) and is able to accurately separate foreground and
background in the video (Fig. 13e) [46]. To sum up, since
memristors introduce some non-ideal factors such as inter-
device variations and inter-week variations; these factors
may affect the accuracy of the computed results. By training
directly on the proposed SRM hardware, the self-calibration
algorithm is able to automatically learn and adapt to these
non-ideal factors, thus achieving accurate video separation

without relying on external compensation algorithms.

3.3 Hardware Security
In today’s highly interconnected information technology era,

hardware security faces many challenges, such as data leak-
age, hardware Trojans, and theft of chip design intellectual
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property [30]. To cope with these challenges, hardware
security technologies are constantly evolving. Among them,
Physical Unclonable Function (PUF) generates unique and
lightweight “digital fingerprints” by capturing small differ-
ences between chip devices [100]. For the beyond-CMOS
computing paradigm, PUFs are important because they pro-
vide a low-cost, highly secure and robust solution for key
storage, device authentication and IP protection [133]. For
example, silicon-photonic PUFs utilize the unique attrib-
utes of silicon photonic technology to provide direct security
authentication for optical communication systems by ena-
bling the integration of optical functionality in a standard
CMOS process [134]. By eliminating crosstalk between
array units, SRMs can improve the read accuracy and stabil-
ity of PUFs, thereby enhancing the robustness of PUFs in the
face of complex environments and attacks. At the same time,
SRMs also facilitate the ability of PUFs to achieve higher
security and sophistication in a smaller chip area, a light-
weight that is particularly important for resource-constrained
IoT devices and edge computing devices [135-138].

Woo et al. proposed a PUF based on ion-migration-
driven SRMs in a Cu;Te, ,/HfO, (CuTeHO) structure
with not only reconfigurability but also concealability
[47], which had not been realized in previous memristor-
based PUF systems [14, 100, 139]. They achieved the
transition from volatile threshold switching behavior to
nonvolatile resistive switching behavior by adjusting the
copper concentration (x) of the Cu,Te, .-based memristor.
At x=0.3, the CuTeHO-based memristor exhibits nonvola-
tile and self-rectification behavior (Fig. 14a). Copper ions
migrate from the CuTeHO electrode to the HfO, dielectric
layer under the action of an electric field, forming conduc-
tive filaments. The stability of these filaments depends on
their surface curvature and the thickness of the filaments.
At x=0.3, the filaments have less surface curvature and are
more stable (Fig. 14b). Also the filling and de-filling pro-
cess of the trap state affects the stability of the conducting
filaments, which in turn shapes the rectification behavior.
The SET voltage distribution of the CuTeHO-based SRM
has a random nature (Fig. 14c), making it possible for each
SRM to switch to a LRS or to remain in a high-resistive
state (HRS) under the same bias voltage, which gener-
ates the distinctive PUF response (Fig. 14d). The unique
concealability stems from the fact that applying a partial
RESET voltage to all SRMs converts them to a partial
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HRS, at which point the resulting response mapping is
scrambled to hide the PUF data (Fig. 14e). The critical
reconfigurability is achieved by assigning a new and ran-
dom SET voltage to the SRMs through the RESET process
after ensuring that all SRMs are in the LRS (Fig. 14f).
Finally, Fig. 14g confirms the reliability of the conceal-
ability feature of this SRM-based PUF [47]. Compared to
earlier SRM-based PUFs, this PUF is a breakthrough in
both energy efficiency and security [135-138]. Besides,
the veritical SRM with outstanding computational and
area efficiency exploits the inherent device-to-device vari-
ations in the HRS of 3-layer Pt/Ta,Os/Al-doped HfO,/TiN
devices to generate unique and reproducible PUF keys,
where the small cycle-to-cycle variation ensures reliable
key regeneration, while the concealment feature enhances
security by hiding keys when not in use [140]. This inte-
grated approach combines PUF generation and encryption
in a single platform, offering a compact, energy-efficient,
and scalable solution for secure edge computing applica-
tions. Recently, a novel SRM-based PUF model [141] and
a novel scheme for reliable encryption of high-resolution
images [142] were proposed that achieved high memory
density with mitigating sneak path currents, demonstrat-
ing significant improvements in uniqueness, uniformity,
and reliability for hardware security applications further.

The works seamlessly integrate SRMs with reconfig-
urable, concealable PUFs, facilitating the move toward
extreme lightweighting of PUF and even other hardware
security applications.

4 Potential Challenge and Outlook

In the last section, we provided a comprehensive overview
of the current state of research on SRMs and explored in
depth the potential of SRMs in beyond-CMOS computing
paradigms, analyzing their compatibility with CMOS pro-
cesses and their impact on novel computing architectures.
Although SRMs show great potential and wide applica-
tion perspectives in beyond-CMOS computing paradigms
including in-memory computing, neuromorphic comput-
ing, and hardware security, they all face serious challenges
in terms of fabrication process, device performance, and
application generalizability inevitably. In this section, we
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will provide a comprehensive discussion on the further
development of CMOS compatibility of SRMs as well as
the challenges, potential solutions, and opportunities for
the design of future high-performance, low-power comput-
ing architectures (Fig. 15).

4.1 Application for Beyond CMOS
4.1.1 In-Memory Computing

Regarding in-memory computing, encompassing stand-
ard VMM [34], logic [57], and content addressing [109],
10° RR and NL have adequately met the requirements of
the associated proof-of-concept demonstration. However,
the emerging in-memory computing architectures, led by
sparse matrix multiplication, have demonstrated that to
achieve high accuracy (lowest possible read error rate) it
is necessary to significantly improve RR, NL, on/off ratio,
and switching speed instead of compromising on trade-off
to guarantee a virtually crosstalk-free VMM. As mentioned
above and in conjunction with Table 1, these three param-
eters significantly affect the scalability of the SRM, which in
turn deteriorates the application up-limitation of the devices
for in-memory computing. Subsequently, one of the most
important factors is the fact that it is difficult to achieve
100% yields for passive crossbar arrays at this stage of the
fabrication process for advanced SRMs, and the yields of
devices obtained from non-CMOS-compatible processes are
even worse [40]. This would significantly result in unneces-
sary read errors, making VMM much less reliable. However,
following extensive research conducted in recent years [34],
Reference [32] has developed passive crossbar arrays based
on SRM with a yield of 100%, offering valuable insights for
enhancing the yield of more advanced SRMs in the future.
Notably, in the field of in-memory computing, the meas-
urement of low on-current (particularly < 1 pA) in SRMs
presents significant challenges in pulse mode, arising from
the combination of the small current levels and the tran-
sient nature of pulse measurements, which can introduce
severe noise and measurement inaccuracies [143]. In pulse
mode, the transient nature of the current can lead to signif-
icant noise, making it difficult to accurately measure low
on-current levels [144]. The short duration of the pulses
means that the current has limited time to stabilize, and
any noise present in the system can be magnified, which
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comes from various sources, including thermal noise, shot
noise, and power supply noise. Furthermore, the difficulty
in measuring low on-current in pulse mode has direct
implications for the design of low-power consumption in-
memory computing circuits, where accurate current meas-
urement is essential for optimizing the energy efficiency
of these circuits [145]. On the contrary, inaccurate meas-
urements can lead to overestimation or underestimation
of the current, which can further affect the overall power
consumption and performance of the system. For example,
if the on-current is underestimated, the circuit may not
provide sufficient current to perform the desired opera-
tions, leading to performance degradation. Conversely, if
the on-current is overestimated, the circuit may consume
more power than necessary, reducing energy efficiency and
even breakdown of the whole system.

© The authors

To address these challenges, several strategies can be
employed. One approach is to use high-precision current
measurement techniques, such as current—voltage measure-
ments with low noise amplifiers and high resolution digital-
to-analog converters. These techniques can help reduce the
impact of noise and improve the accuracy of low-current
measurements. Additionally, using pulse shaping techniques
to extend the duration of the pulses can help stabilize the
current and reduce the impact of transient noise [146].

4.1.2 Neuromorphic Computing
In relation to neuromorphic computing, the ANN accelera-

tor and RC system utilizing SRMs have reached maturity
for image recognition and time series signal classification

https://doi.org/10.1007/s40820-025-02035-1
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implementation [32, 45, 122]. By contrast, the hardware
implementation of CNNs using SRMs-based hardware
faces a number of challenges. In terms of the device level,
SRM-based passive crossbar arrays suffer from low yields
and excessive device-to-device and cycle-to-cycle variations
due to immature fabrication processes, which in turn affects
the overall computational accuracy and stability. In terms
of convolution operation, the key convolution operation in
CNN requires sliding operation on different input patches,
which is usually a sequential process, leading to speed
mismatch between the convolver and the passive crossbar
array used for the fully connected VMM, which reduces the
computational efficiency. In terms of training, traditional
pure in situ training requires highly complex operations to
back-propagate the target derivatives to determine the weight
updates, while training of complex memristor-based deep
neural networks becomes challenging due to the properties
of the device such as nonlinearity and asymmetric conduct-
ance tuning. In addition, when transferring the weights
obtained from offline training to the conductances of the
SRMs, defective devices of the hardware, parasitic line
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resistances and capacitances, etc. can blur the weights and
degrade the system performance [120]. For system integra-
tion, the integration and scalability of SRM arrays are key
issues. Scalability can be ensured by optimized RR, NL,
and on/off ratio, while integration depends on the maturity
of 3D integration technology. In the future, the weights of
the fully-connected layers are adjusted to compensate for the
non-ideal characteristics of the device by performing local
training in an SRM-based hardware system. This hybrid
training approach combines the efficiency of software train-
ing with the adaptability of hardware training and is able
to significantly reduce the hardware resource requirements
during training while maintaining high recognition accuracy
[120].

4.1.3 Hardware Security
In terms of hardware security, device-to-device varia-

tions in passive crossbar arrays enable a rich source of
entropy for the construction of secure primitives. However,
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cycle-to-cycle variation remains a great challenge that lim-
its their security. One of the current state-of-the-art PUFs
has ultra-low cycle-to-cycle variations with BER remain-
ing at < 6.78 X 107 after 108 read cycles, i.e., no errors in
144 Kb arrays [147]. After breaking, the performance bot-
tlenecks of RR, NL, and on/off ratio, need to take extra con-
sideration of their relationship with reliability (retention and
endurance) as a trade-off challenge. Besides, even though
existing memristor-based true random number generators
(TRNGs) have been able to achieve extremely high through-
put [148], the energy efficiency and area efficiency of large-
scale arrays based on 1TIR cells cannot be compared with
passive crossbar arrays based on SRM cells of the same size
[118]. In order to meet the demand for data protection in the
Big Data era, TRNG-oriented ultra-large-scale SRM arrays
are likely to become mainstream. Last but not least, homo-
morphic encryption (HE) enables data to be “counted but
not seen,” essentially securing data processing as well as
communication [149]. In 2024, the first case of memristor
implementation of HE was presented, which demonstrated
that HE requires particularly high analog characteristics and
uniformity of arrays [149], putting further pressure on SRM
development [150].

4.1.4 In-Sensor Computing

In terms of in-sensor computing, optoelectronic SRM units
with sensing capabilities have initially demonstrated the
feasibility of constructing and refining an ultra-large-scale
retinal-like neuromorphic system aiming for much higher
sensitivity and parallel processing speed [37, 90]. However,
according to the current researches, the processing data mag-
nitude is low, the task is relatively simple, and the devices
only have simple sensing or storing performance, which
is still far away from the real sense of all-in-one hardware
[37, 90]. We have discussed the challenges and solutions
for SRM-based in-memory computing applications in the
previous section, and there are still many problems to be
solved in sensing. The most notable ones remain uniform-
ity and stability, where the lack of the former will result
in the information captured by the sensing layer not being
effectively processed in situ, and the lack of the latter will
diminish the utility of the hardware. Subsequently, designing
a suitable material system is a prerequisite for constructing
the basic unit of sensing, memory, and computing [151].

© The authors

Sensing, memory and computing units are combined based
on different material combinations, device structures, and
heterogeneous integration techniques, and it is very chal-
lenging to integrate these three functions into a single device
while taking into account the rectification characteristics.
The availability of materials for different sensing sources
(chemical, radiation, temperature, pressure) is still very lim-
ited, so the development of SRM-based multimodal (visual,
tactile, auditory, olfactory, etc.) interoceptive computing
systems still has a long way to go.

4.2 Comparison with Other Beyond-CMOS
Technologies

In the quest for beyond-CMOS technologies, SRMs have
garnered significant attention due to their unique combi-
nation of intrinsic diode-like rectification and non-volatile
memory capabilities. Furthermore, to fully appreciate the
potential of SRMs, it is essential to compare them with other
emerging technologies that are also explored for applications
such as in-memory computing, neuromorphic computing,
and hardware security.

4.2.1 Spintronic Devices

Spintronic devices, which leverage the spin of electrons to
store and process information, offer high endurance and
fast switching speeds, making them suitable for high-speed
memory applications [152]. These devices, such as mag-
netic tunnel junctions used in spin transfer torque magnetic
random access memory, exhibit non-volatile memory and
low-power operation [153]. However, the fabrication of
spintronic devices often requires sophisticated processes
and materials, which can increase manufacturing complex-
ity and cost. And scaling down spintronic devices to smaller
dimensions can be challenging due to the need to maintain
magnetic stability and avoid interference between adjacent
devices. Furthermore, spintronic devices can generate sig-
nificant heat during operation, necessitating advanced ther-
mal management solutions to maintain performance and
reliability [154].

https://doi.org/10.1007/s40820-025-02035-1
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4.2.2 Quantum Computing Elements

Quantum computing elements, such as superconducting
qubits and trapped ions [155], exploit quantum phenomena
to perform computations and offer the potential for expo-
nential speedup in solving certain complex problems. These
technologies can handle complex problems that are infea-
sible for classical computers [156], opening up new pos-
sibilities in fields like cryptography, materials science, and
machine learning. However, quantum bits are highly sensi-
tive to environmental noise, leading to high error rates and
short coherence times, which limit the reliability and dura-
tion of quantum computations. Many quantum computing
elements require extremely low-temperature environments
to maintain their quantum states, necessitating complex and
expensive cooling systems. Scaling up quantum systems to
a large number of qubits while maintaining low error rates
and implementing effective error correction is a significant
challenge [27].

4.2.3 Other Emerging Technologies

Beside spintronics and quantum computing, several other
emerging technologies are explored for beyond-CMOS
applications. For instance, memristive devices based on
different material systems, such as two-dimensional materi-
als like molybdenum disulfide (MoS,) and graphene, offer
unique advantages. These materials exhibit high carrier
mobility, tunable bandgaps, and excellent mechanical flex-
ibility, making them suitable for flexible and wearable elec-
tronics [157-159]. Moreover, 2D materials can be integrated
into van der Waals heterostructures, enabling the develop-
ment of novel devices with enhanced performance [160].
However, the fabrication of 2D material-based devices often
requires precise control over the material synthesis and layer
stacking, which can be technically challenging and costly.
And the scalability and uniformity of 2D materials in large-
scale arrays remain significant challenges [161]. Another
promising technology is molecular electronics, which
involves using organic molecules as the active components
in electronic devices. Molecular electronics can offer high
scalability and low-cost fabrication, making them attractive
for large-area and flexible electronics applications [162]. But
the performance of molecular devices can be highly variable
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due to the inherent randomness in molecular structures and
the difficulty in achieving uniform molecular alignment.

Phase change memory (PCM) is another emerging tech-
nology that leverages the reversible phase transition of chal-
cogenide glasses between amorphous and crystalline states
to store information [163]. PCM devices offer high write
speeds and good scalability, making them suitable for high-
performance memory applications [164, 165]. The ability to
switch between states rapidly enables fast data write opera-
tions, which is crucial for applications requiring quick data
updates. Nonetheless, PCM devices typically require high
power to switch between states, which can limit their energy
efficiency. What’s more, PCM devices may have limited
endurance due to the physical changes in the material dur-
ing switching, which can lead to degradation over time, with
the fabrication of PCM devices often requiring sophisticated
processes and materials, which can increase manufacturing
complexity and cost [163].

In contrast, SRMs combine several desirable properties
that set them apart from other beyond-CMOS technologies.
Their intrinsic diode-like rectification and non-volatile
memory capabilities enable high-density integration without
external selectors, simplifying design and reducing power
consumption. This is particularly advantageous for appli-
cations such as in-memory computing and neuromorphic
computing, where high-density and low-power operation
are critical.

5 Conclusions

Self-rectifying memristors (SRMs) have emerged as a viable
candidate for beyond-CMOS computing systems, provid-
ing a distinctive combination of nonlinearity, tunable con-
ductance, rapid switching, and little power consumption.
Their capacity to inhibit sneak path currents via unidi-
rectional conductivity further amplifies their potential for
scalable in-memory computing, neuromorphic computing,
and hardware security applications. This review has system-
atically analyzed the working mechanisms, characteristics,
and applications of SRMs, highlighting their compatibility
with CMOS processes and their impact on novel computing
paradigms. Despite significant progress, several challenges
remain in the development of SRMs for large-scale integra-
tion and practical deployment. These include optimizing rec-
tification ratios, nonlinearity, on/off ratios, and switching
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speeds, while maintaining high reliability and CMOS com-
patibility. Additionally, addressing device-to-device variabil-
ity, improving yield rates, and ensuring scalability in passive
crossbar arrays are critical for realizing the full potential
of SRMs in beyond-CMOS applications. Future research
should focus on developing advanced material systems and
device structures that can achieve superior performance met-
rics while maintaining compatibility with existing CMOS
processes. Exploring novel applications such as in-sensor
computing and self-supervised learning will further expand
the scope of SRMs in next-generation information technol-
ogy. Through interdisciplinary collaboration and inventive
innovation, SRMs are set to significantly influence the future
of high-performance, low-power computing architectures.
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