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HIGHLIGHTS

e A molecular engineering of Ta-doped Li;La;Zr,0,, (LLZTO) incorporated with polymethacrylate-based (PMA) copolymer moves
beyond simple blending to combine the polar carbonyl groups and interfacial Li* transport pathways, yielding high ionic conductivity
(0.266 mS cm ') and high Li* transference number (0.621) at 20 °C.

e The integration of LLZTO triggers the in situ formation of a hybrid LiF-Li;N-rich solid electrolyte interphase with a low Li* diffusion

barrier for uniform Li deposition and exceptional interfacial stability.

e The LLZTO-PMA contributes an ultra-stable anode interphase, thus delivering symmetric cell over 10,000 h.

ABSTRACT Li;La;Zr,0,,-based electrolytes have Flexible Hybrid SEI for fast Li ion migration  Rapid Li ion transport
got great promise for solid-state lithium (Li) metal S
batteries because of their high elastic modulus and
wide electrochemical stability window. However, the
insufficient contact and heterogeneous Li deposition
severely hinder their practical applications. Here, a
flexible ternary polymethacrylate (PMA) matrix is
designed to incorporate with Ta-doped Li,La;Zr,0,,
(LLZTO-PMA). The PMA matrix ensures excellent

interfacial contact, while the synergistic effects of its

polar carbonyl groups and its interaction with LLZTO
creating fast interfacial Lit pathways yield a high
ionic conductivity of 0.266 mS cm ~ ! at 20 °C. Moreover, the interaction between LLZTO and PMA matrix further guides the formation
of a hybrid LiF/Li;N-rich solid electrolyte interphase, which allows a fast Li* interfacial kinetic due to its lowered Li* diffusion barrier.
Consequently, the LLZTO-PMA electrolyte contributes an ultra-stable Li anode interphase, attaining a lifespan exceeding 10,000 h in
symmetric cells and retaining over 96% capacity after 600 cycles in full battery, demonstrating a breakthrough for high-performance

solid-state batteries.
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1 Introduction

Solid-state Li metal batteries have attracted great attention
owing to their non-flammable and high specific capacity
properties, particularly in response to the growing pursuit
of high energy density and high safety for next-generation
batteries [1-3]. Solid-state electrolyte serves as a critical
component in such systems, where the Li;La;Zr,0,,-based
(LLZO) electrolytes have been regarded as one of the most
promising candidates, owing to their high shear modulus
and wide electrochemical stability window [4, 5]. However,
the poor interfacial contact impedes Li ion transport, lead-
ing to high interfacial impedance and uneven Li deposition
[6-8]. Compositing with solid polymer electrolytes (SPEs)
or constructing asymmetric electrolytes by merging LLZO
into SPEs layers [9, 10] is the common strategy to address
the interfacial issues, where the flexible polymer com-
ponents enhance the interfacial contacts and adapt to the
volume changes of electrodes during batteries operation.
Therefore, numerous SPEs for constructing LLZO-polymer
composite electrolytes have been employed, such as poly-
ethylene oxide [11], poly(vinylidene fluoride-co-hexafluo-
ropropylene) [12], polyacrylonitrile [13], 1,3-dioxolane
[14], and poly(ethylene glycol) diacrylate [15].

While this approach is promising, the state of the art
remains constrained by fundamental compromises. Com-
monly used SPEs, such as polyethylene oxide, suffer from
low ionic conductivity at room temperature [10, 16, 17],
while others like polyacrylonitrile exhibit continuous
decomposition at the lithium anode, leading to an unstable
interface [13, 18, 19]. Furthermore, while ideal solid elec-
trolyte interphase (SEI) components like LiF and Li;N are
known for their high mechanical strength and ability to sup-
press dendrites [20, 21], their inherently low ionic conduc-
tivity and high Li* diffusion barriers can paradoxically lead
to space-charge effects and promote dendrite growth [8, 22,
23]. Therefore, the critical challenge lies in developing a
composite electrolyte that simultaneously ensures mechani-
cal robustness, high ionic conductivity, and an interfacial
layer that is both stable and highly ion-conductive.

Poly(methyl methacrylate) (PMMA) SPEs demonstrate
promise in this regard, as its strong polar carbonyl groups
facilitate Li salt dissociation, yielding high ionic conductiv-
ity, while also offering favorable interfacial stability with Li
anode [24, 25]. However, the poor mechanical strength and
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film brittleness limit its standalone application, which can
hardly restrain Li dendrite penetration and may promote the
Li dendrite growth due to the uneven Li* distribution, while
the general mitigation strategies include copolymerization,
cross-linking, and incorporation with a scaffold [24, 26, 27].
Herein, we report a paradigm that moves beyond simple
physical blending by demonstrating molecular-level inter-
facial engineering in a LLZO-based composite electrolyte.
We rationally integrate the Ta-doped Li;La;Zr,0,, parti-
cles with polymethacrylate-based (PMA) SPEs (named as
LLZTO-PMA) through an ultraviolet-initiated copolymeri-
zation among methacrylic acid (MAA), methyl methacrylate
(MMA), and N-methyl methacrylamide (NMMA) (Fig. 1a).
This unique PMA matrix firstly provides mechanical tough-
ness through an internal hydrogen-bonding network among
carboxyl and amide groups, which enhances the interface
contacts and volume change adaptability at the Li anode
(Fig. 1a(I)). Secondly, its polar carbonyl groups deliver
high ionic conductivity, while the interfacial pathways with
LLZTO facilitate selective Li ions migration, together ena-
bling the LLZTO-PMA electrolyte to achieve high ionic con-
ductivity of 0.266 mS cm~! with Li ion transference number
of 0.621 at 20 °C (Fig. la(Il)). Moreover, this PMA matrix
also acts as a precursor for forming a superior SEI. We reveal
that the LLZTO-PMA interface preferentially reduces the
lowest unoccupied molecular orbital (LUMO) energy level of
both FSI™ anion and NMMA, leading to the in situ formation
of a hybrid LiF-Li;N-rich SEI. Theoretical calculations con-
firm that this hybrid SEI establishes a dual-phase ion trans-
port pathway with an ultralow Li* diffusion barrier (0.58 eV),
significantly lower than that of bare LiF or Li;N, thus guid-
ing uniform Li deposition (Fig. 1a(IIl)). This molecular-level
design results in the LLZTO-PMA composite electrolyte that
attains exceptional electrochemical performance, including
unprecedented stability in Li symmetric cells (> 10,000 h) and
high-capacity retention in full cells, thereby addressing the
core interfacial challenges in solid-state Li metal batteries.

2 Experimental Section
2.1 Materials

The chemicals and materials utilized in this study include
N-methyl methacrylamide (NMMAm) (Aladdin, 98.0%),
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methacrylic acid (MAAc) (Aladdin, > 99.0%), methyl
methacrylate (MMA) (Aladdin, 99.0%), tetraglyme (Alad-
din, >99%), tetraglyme (Aladdin, >99%), 2-hydroxy-2-me-
thyl-1-phenylpropan-1-one (HMPP) (Aladdin, >97%),
lithium bis(fluorosulfonyl)imide (LiFSI) (99.5%), N-methyl-
pyrrolidone (NMP) (99.5%, water content <50 ppm, Mack-
lin), Ta-doped Li;La;Zr,0,, (Lig 4La,Zr, ,Ta, 40,,) powders
were purchased from Wuxi Kai-Star Electro-Optical Materi-
als Co., Ltd; Li foil (battery level), carbon black (Super-P),
aluminum foils, and LiFePO, (battery level) were purchased
from Guangdong Canrd New Energy Technology Co., Ltd.

2.2 Preparation of LLZTO Pellets, PMA, and GO/
HCPA Nanocomposite Papers

2.2.1 Synthesis of LLZTO Pellets

The purchased LLZTO powders were compressed under an
isostatic pressure of 300 MPa to form pellets. These pellets
underwent sintering at 1180 °C for 6 h, with the sintering
process being aided by the presence of mother powder. The
resulting LLZTO pellets were collected and subjected to
sanding using sandpapers of varying mesh sizes to prepare
them for further applications.

2.2.2 Preparations of PMA

Firstly, LiFSI (3.74 g) was dissolved in tetraglyme (5 mL) at
the room temperature, followed by mixing MAAc (0.387 g),
MMA (0.9 g), NMMAm (0.446 g), and HMPP (5.0 uL) with
stirring. The PMA was subsequently synthesized via copo-
lymerization under 365 nm UV irradiation for 1 h at room
temperature.

2.2.3 Fabrications of LLZTO-PMA Electrolyte

0, 20, 40, and 60 wt% of LLZTO powders were mixed with
the above PMA precursor solution at room temperature, and
then, the LLZTO-PMA precursors were dropped into the
mold for copolymerization under 365 nm UV irradiation
for 1 h at room temperature. To fabricate electrolyte with
consistent thickness, a predetermined mass of the electrolyte
slurry (PMA precursor solution with LLZTO particles or
bare PMA precursor solution) is cast into a glass mold with
a fixed area. Since the density of the slurry is consistent,
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the final thickness is directly and accurately determined by
the mass of the slurry poured into the fixed-area mold. This
method ensures excellent reproducibility in membrane thick-
ness across different batches.

3 Results and Discussion
3.1 Design Principle and Structural Characterizations

The synthesis of LLZTO-PMA is based on the previous pub-
lications (Fig. 1a) [28, 29]. To explore the optimal LLZTO
content, PMA with various LLZTO mass fractions (0, 20,
40, and 60 wt%) is prepared and tested, which exhibits the
highest ionic conductivity with 20 wt% of LLZTO (Fig. S1),
thus being selected as the target product and for the over-
all subsequent characterizations. The thermogravimetric
curves comparison also verifies the 20 wt% content of
LLZTO in LLZTO-PMA (Fig. S2). Meanwhile, compared
to bare PMA, LLZTO-PMA exhibits an enhanced ther-
mal stability (Fig. S2), suggesting an interaction between
LLZTO and PMA. Additionally, to optimize the LLZTO-
PMA electrolyte thickness, 100-600 pm of LLZTO-PMA
electrolytes is prepared and evaluated their critical current
densities (Fig. S3). The results show that LLZTO-PMA thin-
ner than ~ 500 pm exhibits reduced critical current densities
due to insufficient mechanical strength against Li dendrite
penetration, while thicker membranes show increased polari-
zation from higher ionic resistance. Thus, ~ 500 pm is identi-
fied as the optimal thickness, balancing mechanical integ-
rity and ionic conductivity for stable cycling. Proton nuclear
magnetic resonance (\H-NMR) spectroscopies (Fig. S4),
Fourier-transform infrared (FTIR) spectroscopies (Fig. S5),
and the corresponding optical photographs (Fig. S6) indi-
cate the successful copolymerization of PMA, which are
consistent with the previous publications [29]. Additionally,
the PMA and LLZTO-PMA display similar characteristic
peaks, implying the negligible influence of LLZTO incor-
poration on the PMA copolymerization. However, the peak
at 1580 cm™! that comes from LLZTO exhibits obvious
shift after PMA incorporation, indicating an interaction in
between (Fig. 1b), which is consistent with the enhanced
thermal stability (Fig. S2). These interactions should be
attributed to the Li,CO; contaminants on LLZTO particle
surfaces [30, 31], which show interactions with carboxyl and
amide groups in PMA [32, 33]. These interactions as well as
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Fig. 1 a Schematic of synthesis, composition, ion transport, and interphase stabilization mechanism of LLZTO-PMA. b FTIR spectra, ¢ XRD
diffraction patterns, and d strain-stress curves of LLZTO, PMA, and LLZTO-PMA, the insets are optical photographs of PMA and LLZTO-
PMA films. e SEM and f cross-sectional SEM images of LLZTO-PMA

the physically blending of LLZTO particles with PMA dis-  of -OC-N and —OC = O from 1547 and 1726 cm™ to 1555
rupt the hydrogen bonds between carboxyl and amide groups ~ and 1729 cm™!, respectively (Fig. 1b) [28, 29], as well as the
in PMA, as evidenced by an intensity reduction of the hydro-  decreased intensity and shifted characteristic peak of hydro-
gen-bond signature at~ 1710 cm™! and obvious peak shifts  gen bond at~3548 cm™! (Fig. S5). This disruption ultimately
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exposes free amide and carboxyl functional groups in the
LLZTO-PMA.

The incorporation of LLZTO transforms the color of
originally PMA film from transparent to milky white (insets
in Fig. 1c). X-ray diffraction (XRD) spectra reveal that the
LLZTO remains its original crystalline (Fig. 1c), match-
ing well with the standard cubic-LLZO (PDF No. 00-45-
0109). The broad amorphous hump at around 20°-25° is
attributed to the PMA SPEs. According to the strain—stress
curves (Fig. 1d), both PMA and LLZTO-PMA films exhibit
superior elasticity with tensile strains exceeding 80%,
while the LLZTO incorporation enhances the mechanical
strength from 48 Kpa (PMA) to 740 Kpa (LLZTO-PMA).
Additionally, the optical images of bending/folding LLZTO-
PMA film also suggest its flexibility without structural fail-
ure (insets in Fig. 1d), further demonstrating its superior
mechanical performance. According to the scanning electron
microscope (SEM) images and the corresponding elemental
mappings, the bare PMA film with thickness of ~500 pm
displays porous structure (Fig. S7), which is resulted from
the volumetric shrinkage during copolymerization. In con-
trast, the LLZTO-PMA film presents smooth and pore-free
morphology with thickness of ~500 um, where the LLZTO
particles are dispersed and encapsulated within PMA
(Figs. 1f and S8). The pore-free morphology is attributed
to the interaction of LLZTO and PMA, which reduces the
bulk shrinkage during copolymerization. For comparison,
bare LLZTO pellet with around 500 pm thickness (Fig. S7c,
d) is also prepared for the following electrochemical tests.

3.2 Electrochemical Characterizations and Mechanism
Investigations

The ionic conductivities at different temperatures of LLZTO,
PMA, and LLZTO-PMA electrolytes are measured from
20 to 90 °C (Fig. S9). The corresponding Arrhenius plots
reveal that the LLZTO-PMA film displays the highest ionic
conductivity of 0.266 mS cm™', in comparison with bare
LLZTO of 0.016 mS cm™" and PMA of 0.07 mS m™" at
20 °C (Fig. 2a). Meanwhile, LLZTO-PMA electrolyte exhib-
its an activation energy of 0.331 eV, which is lower than both
bare LLZTO (0.369 eV) and PMA (0.501 eV), suggesting
an enhanced kinetics in Li ion transport. To investigate the
Li ion transport mechanism of LLZTO-PMA, solid-state 'Li
nuclear magnetic resonance spectroscopies are conducted,
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which discovers an additional interfacial transport pathway
in LLZTO-PMA electrolyte (Fig. 2b), in comparison with
the conventional Li ion migration pathway through the poly-
mer matrixes in PMA. According to the further quantita-
tive analysis, the interfacial transport contributes 12.35%
to the overall ionic conductivity, while the polymer bulk
transport accounts for the remaining 87.65%. This additional
interfacial transport pathway contributes to the enhanced
ionic conductivity in LLZTO-PMA [34, 35]. Meanwhile, the
LLZTO-PMA electrolyte also demonstrates an increased Li
ion transference number (7 ;, =0.632) (Fig. 2¢) compared to
PMA (#;;, =0.435) and bare LLZTO (#;, =0.520) electro-
lytes (Fig. S10). This enhanced Li ion transference number
should be attributed to the LLZTO phase, which is rich in
Lewis acid sites. These sites interact with the anions from
the Li salt, thus anchoring or slowing down anion mobility
and consequently increasing the Li ion transference num-
ber. Due to the rapid Li ion transport kinetics and continu-
ous interfacial contact, LLZTO-PMA electrolyte attains an
enhanced critical current density of 0.8 mA cm~2 at 20 °C,
while the bare LLZTO and PMA electrolytes only operate
at 0.25 and 0.35 mA cm™2, respectively (Fig. S11), demon-
strating an improved capability in suppression of Li den-
drite growth. Moreover, the LLZTO-PMA electrolyte also
displays a broadened electrochemical stability window of
4.76 V in comparison with 4.2 V of bare LLZTO and 4.26 V
of PMA (Fig. S12). This enhanced voltage window may be
attributed to the exposed amide functional groups in the
LLZTO-PMA that may generate a stable cathode electrolyte
interphase layer [36, 37].

The long-term cycling stability of electrolytes to Li anode
is measured through the LillLi symmetric cells at 20 °C.
LilLLZTO-PMAILI cell delivers over 10,000 h with over-
potential of ~400 mV at the 0.1 mA cm~2/0.1 mAh cm™2
(Fig. 2d), while LiILLZTOILi and LilPMAILi cells only
work for 140 and 740 h with ~420 and ~ 680 mV overpoten-
tials, respectively. The detailed voltage profiles confirm the
short-circuit state in both LilLLZTOILi and LilPMAILi cells,
while demonstrating the stable and low-overpotential opera-
tion of LiILLZTO-PMAILi cell (insets in Fig. 2d). At a cur-
rent density of 0.2 mA cm~2, the bare LilLLZTOILi cell can
hardly work and the LilPMAILIi cell only survives ~630 h
with ~750 mV overpotential. In contrast, LilLLZTO-
PMAILI cell operates stably over 4700 h with overpotential
of ~400 mV (Fig. S13). Moreover, LilPMAILi cell can hardly
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Fig. 2 a Arrhenius plots and activation energies of LLZTO-PMA, PMA, and LLZTO electrolytes. b "Li-NMR spectroscopies of LLZTO-
PMA and PMA electrolytes. ¢ Chronoamperometry curve and AC impedance spectra before and after polarization of LilLLZTO-
PMAILIi cell. Galvanostatic Li plating/stripping curves of LillLi cells with LLZTO-PMA, PMA, and LLZTO electrolytes at 20 °C with d
0.1 mA cm™%/0.1 mAh cm™2, and e 0.3 mA cm~%0.3 mAh cm™? (the insets are detailed voltage profile comparisons). f Comparisons with other
previously reported works for LLZO-based composite electrolytes [14, 33, 38—48]

work at 0.3 mA c¢cm~2, but LiILLZTO-PMAILi operates
over 3500 h with~480 mV overpotential (Fig. 2e) and even
maintains stable operations at both 0.4 and 0.5 mA c¢cm™
(maintaining stable operation for over 750 h with voltage
polarization of approximately 800 mV at 0.4 mA cm™ and
over 80 h at 0.5 mA cm™2, as shown in Figs. S14 and S15).
The voltage fluctuations during cycling at different current
density should be attributed to the dynamic changes at the
electrode—electrolyte interface, the formation and dissolution

of the SEI, localized inhomogeneities in ion transport, and
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sometimes the randomly changed test temperature. These
fluctuations are reproducible and do not indicate instability
of cells; rather, they reflect intrinsic material behavior and
kinetic processes under dynamic cycling conditions. Over-
all, the LLZTO-PMA electrolyte shows an ultrastability to
Li anode, which is superior to most similar previous works
(Fig. 2f) [14, 33, 38-48].

To investigate the reasons for the ultra-stable LLZTO-
PMA-based cells operation, symmetric cells with vari-

2

ous electrolytes after different cycles at 0.1 mA cm™ are
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disassembled for interfacial characterizations. In compari-
son with the severe interfacial delamination of LLZTO with
Li anode after 50 cycles (Fig. S16c), cross-sectional SEM
images reveal that both PMA and LLZTO-PMA electrolytes
retain close contact with Li anodes after cycling (Figs. 3a—e,
S16, and S17), demonstrating the superior performance of
the PMA for adapting the volume changes of electrodes dur-
ing cell operations. However, LLZTO-PMA exhibits straight
interfacial boundary with uniform Li deposition (Figs. 3a,
S16a, and S17a), while PMA exhibits an arched interfacial
boundary with Li anode (Figs. 3d, S16b, and S17b), imply-
ing a heterogeneous Li deposition. This obvious distinction
demonstrates that LLZTO-PMA can effectively restrain Li
dendrite growth but the bare PMA although enabling good
interfacial contact with Li anode, its inability to suppress
heterogeneous Li deposition governed by multiple factors.
Furthermore, metallic Li penetrations are observed in the
PMA bulk (Fig. 3e), where the highlight areas can hardly
detect the characteristic elemental signals of PMA by
energy-dispersive X-ray spectroscopy (EDX) (Fig. S18a),
in comparison with the intact LLZO-PMA after 300 cycles
(Figs. 3b and S18b). The observed Li permeation reveals
that PMA lacks the mechanical robustness required to block
dendrite piercing. Additionally, the Li anode surface images
also verify the uniform Li deposition in LilLLZTO-PMAILi
cell in comparison with mossy Li deposition in LilPMAILi
cell (Fig. 3c, ).

The stable interphase between LLZTO-PMA electro-
lyte and Li anode after cycling is further verified by the
electrochemical impedance spectra (EIS) characterizations.
The calculated interfacial impedances based on equivalent
circuit are shown in Table S1. Specifically, LilLLZTO-
PMAILI cell presents an interfacial impedance of 472 Q
after the first cycle, which decreases to 354 Q (10 cycles)
and increases to 365 Q (100 cycles), followed with main-
taining at~400 Q after 200 and 300 cycles (Fig. 3g). The
maintained interfacial impedance suggests a stable inter-
phase with homogeneous Li deposition [28, 49]. In com-
parison, LilPMAILi cell displays fluctuating interfacial
impedances of 310 - 172 — 581 — 51 — 656 Q after 1,
10, 100, 200, and 300 cycles (Fig. 3h), where the suddenly
decreased impedance reveals a soft short circuit like inac-
tive Li penetrations in PMA (Fig. 3e) [50] and the progres-
sively increased impedances indicate an interphase deg-
radation [28, 49]. This degradation is also discovered in
LilLLZTOILi cell with the increased interfacial impedances
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of 883 — 616 — 748 — 1040 Q after 1, 10, 30, and 50 cycles
(Fig. 31). These interfacial impedance variations are consist-
ent with the interphase evolutions observed by SEM.

To further explore the root causes for the stable interphase
with dendritic-free Li deposition in LLZTO-PMA-based
cells, the SEI layers on Li anodes after cycling are analyzed
through X-ray photoelectron spectroscopy (XPS) (Fig. S19).
The high-resolution Li 1s peak on PMA-based Li anode is
assigned as LiF (55.9 eV) and Li (54.8 eV) (Fig. S20a) [51].
However, an additional peak at 55.4 eV, corresponding to
Li;N [51], is observed on LLZTO-PMA-based Li anode
(Fig. 4a). Furthermore, the N 1s peak on PMA-based Li
anode is primarily from amide group (399.9 eV) (Fig. S20b),
being attributed to the residual PMA electrolyte, while the N
Ls peak on LLZTO-PMA-based Li anode is assigned to both
amide group and Li;N (398.3 eV) [21] (Fig. 4b). The forma-
tion of Li;N is attributed to the reactions between Li anode
and free amide groups in LLZTO-PMA electrolyte. Mean-
while, both F 1s peaks (Figs. S20c and 4c) and Li 1s peaks
(Figs. S20a and 4a) indicate that an increased LiF content
on LLZTO-PMA-based Li anode, which may be ascribed to
that the LLZTO induces the decomposition of FSI™ anions
in PMA matrixes. Additionally, XPS depth profiling further
demonstrates the coexistence of both Li;N and LiF com-
ponents, where the Li;N content increases with the depth
etching (Fig. 4d, e), while the LiF almost maintains constant
(Fig. 4d, f). This LisN enrichment in the inner SEI near the
Li anode may originate from the preferential interfacial reac-
tions between exposed amide groups in LLZTO-PMA and
metallic Li anode. Overall, the SEI layer on LLZTO-PMA-
based Li anode is rich in both Li;N and LiF, which have
been demonstrated to restrain Li dendrite growth due to their
inherent mechanical strength and ionic conductivity [20, 21].

To further investigate the fundamental mechanism for the
Li;N-LiF SEI formation, the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energy levels of NMMA, MMA, MAA mono-
mers, and FSI™ anion with/without LLZTO are calculated
systematically [52]. In the bare PMA, MAA exhibits the
lowest LUMO energy (—2.27 eV) (Fig. 4g). However, the
hydrogen bonds between MAA and NMMA restrict the
exposure of MAA functional groups, thus suppressing
its preferential decomposition on Li anode. This inhibi-
tion enables FSI™ anions with the second lowest LUMO
(—2.11 eV) to dominantly decompose into LiF component
on Li anode [53, 54], which is consistent with the above
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LiF-rich SEI on PMA-based Li anode. In comparison, the
incorporation of LLZTO disrupts hydrogen-bond interac-
tions within the PMA matrixes, exposing reactive amide
groups from NMMA and carboxyl groups from MAA, that
actively participate in SEI formation. Furthermore, the den-
sity functional theory (DFT) calculations reveal an energy
hierarchy inversion, where the LUMO energy of NMMA
(decreasing from —1.84 to—3.33 eV) and MAA (decreas-
ing from —2.27 to—3.25 eV) is lower than FSI™ (decreasing
from—2.11 to—2.35 eV) (right side of Figs. 4g and S21),
thus generating Li;N-rich phase as the primary reduction
site through preferential amide groups decompositions [53,
54]. Besides, the decomposition of MAA introduces organic
components into the SEI, acting as a binding matrix, which
enhances the structural integrity and cohesion of the SEI.

© The authors

Concurrently, the FSI™ anions with reduced LUMO energy
contribute complementary LiF formation, ultimately creat-
ing a hybrid SEI layer rich in both Li;N and LiF. Meanwhile,
the enhanced FSI™ anions decompositions also result in an
increased LiF component on LLZTO-PMA-based Li anode.
Furthermore, the HOMO analysis shows the highest HOMO
energy of NMMA (—5.32 eV) with LLZTO incorporation,
which triggers a preferential oxidation at the cathode, form-
ing a stable cathode electrolyte interphase layer and expand-
ing the electrochemical stability window of LLZTO-PMA-
based batteries [53, 54].

Additionally, according to the DFT calculations, the diffusion
barrier of Li ion is 0.78 eV and is 0.64 eV in the bulk phases
of pure LiF and Li;N layer, which are higher than that in the
Li,;N-LiF hybrid bulk phase (0.58 eV) (Fig. 4h-j). The reduced

https://doi.org/10.1007/s40820-025-02041-3
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diffusion barrier is attributed to that the Li ions preferentially =~ This enhanced ion diffusion kinetics is consistent with the lower
migrate through the grain boundaries between Li;N and LiF  interfacial impedance observed in the LLZTO-PMA-based sym-
[55]. Therefore, compared to the PMA-based Li anode surface ~ metric Li cells compared to bare PMA-based cells after cycling
that only rich in LiF, the LLZO-PMA-based Li anode surface,  (Fig. 3g, h), which effectively facilitates rapid Li ion transport
enriched with Li;N-LiF, exhibits a lower Li ion diffusion barrier. ~  at the electrolyte-Li anode interphase, thereby suppressing
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dendrite growth induced by the space-charge layer while mini-
mizing interfacial electrochemical polarization [55-57]. Con-
sequently, compared to PMA, the LLZO-PMA-based Li anode
demonstrates a more uniform and denser Li deposition, ulti-
mately improving the overall battery performance.

3.3 Batteries Performance Characterizations

Based on the superior electrochemical performance, full bat-
teries with LiFePO, (LFP) cathodes, Li foil anodes, and the
corresponding electrolytes are assembled and tested at 20 °C.
The LiIILLZTO-PMAILFP battery exhibits enhanced rate capa-
bility and reversibility (Fig. 5a and 5b), which delivers 143.79,
136.29, 125.38, 112.89, and 101.90 mAh g~! discharge-specific
capacity at the 0.1, 0.2, 0.5, 1.0, and 2.0 C, respectively (1.0 C
is defined as a current density of 170 mA g~!, which is based
on the theoretical specific capacity of LFP (170 mAh g™)),
and recovers to 140.39 mAh g~! at the reversed 0.1 C with a
recovery of 97.63%. In contrast, LLZTO- and PMA-based bat-
teries display lower capacities. Voltage profile comparisons
reveal that the LiILLZTO-PMAILFP enables higher discharge
plateaus and lower charge plateaus at all rates (Fig. S22), fur-
ther demonstrating a reduced electrochemical polarization
(Fig. 5¢) and contributing its enhanced rate capability. Moreo-
ver, LILLZTO-PMAILFP battery delivers a discharge-specific
capacity of 134.13 mAh g! at the initial cycle at 0.2 C, which
attains 138.16 mAh g~! after activation with a capacity reten-
tion ratio of 96.79% after 610 cycles (Fig. 5d). The average
Coulombic efficiency is 99.89% of LilLLZTO-PMAILFP bat-
tery, while the nearly overlapped charge—discharge curves at
different cycles further confirm its exceptional cycle stability
(Fig. 5e). In comparison, the initial capacity of LIPMAILFP and
LiILLZTOILFP is 114.09 and 110.22 mAh g~!, which sharply
drops to 69.01 mAh g™ after 114 cycles and is short-circuited
after 227 cycles, respectively. The detailed charge—discharge
curves also verify their capacity fading with cycling (Fig. S23).
SEM characterizations reveal that the LLZTO-PMA-based Li
anode displays uniform Li deposition with a close interfacial
contact, in comparison with the mossy Li deposition with dis-
continuous or uneven interfacial contacts for LLZTO and PMA
electrolytes after cycling (Figs. 5f and S24). As the results, the
LILLZTO-PMAILFP battery displays lowest interfacial imped-
ance (Fig. S25), which also verifies its stable interphase, thus
contributing to the superior cycling performance. Meanwhile,

© The authors

the enhanced interfacial impedance of LilPMAILFP than
LIILLZTOILFP after cycling is ascribed to the accumulations
of side reaction products and inactive Li at PMA-Li interface,
both of which hinder the transport of Li ions. Additionally,
LilLLZTO-PMAILFP battery also exhibits a better cycling
performance at 1.0 C, which delivers 119.19 mAh g~! after
activation and maintains 112.02 mAh g~! after 400 cycles,
with a capacity retention ratio of 93.98% (Fig. 5g). However,
the LilPMAILFP and LilLLZTOILFP batteries display lower
capacities and rapid capacity decays. The detailed Coulombic
efficiency and voltage profiles comparisons further confirm
the enhanced performance of LiILLZTO-PMAILFP battery
(Figs. S26 and S27). Over a comprehensive comparison, the
electrochemical performance of LLZTO-PMA, including ionic
conductivity, rate capability, full battery performance, remains
commendable and positions among the leading systems reported
(Table S2).

Moreover, high-voltage NCMS811 cathodes are further assem-
bled with Li anodes and LLZTO-PMA, PMA, and LLZTO elec-
trolytes for full batteries testing at 0.5 C and 20 °C (Fig. S28),
where the LLZTO-PMA electrolyte also exhibits superior per-
formance. Specifically, the LLZTO-PMA-based battery displays
150 mAh g™ at the initial after activation, which retains approx-
imately 70% of its capacity after 300 cycles at 0.5 C, while both
PMA- and LLZTO-based batteries suffers from rapid capacity
fade under the same conditions. This enhanced performance is
consistent with the higher oxidation potential of LLZTO-PMA
electrolyte revealed by LSV measurements (Fig. S12), confirm-
ing its compatibility with high-voltage cathodes. Furthermore,
LilLLZTO-PMAILFP pouch cell is assembled and powers a
commercial light-emitting diode (Fig. 5h), which maintains
operation after battery abuse tests of folding, penetration, and
cutting. It is worth noting that a dimming of the LED light after
the cutting tests occurs because the removed portion of the bat-
tery (including active materials and electrolyte) no longer con-
tributes to the energy supply, resulting in a reduction in total
capacity and energy output. These abuse tests demonstrate the
feasibility of LLZTO-PMA electrolyte for the practical applica-
tions in high safety, high energy density, and flexible batteries.

4 Conclusions
In summary, we have developed a molecularly engineered com-

posite electrolyte by integrating LLZTO particles into a PMA
SPE, where the polar carbonyl groups in PMA and the additional

https://doi.org/10.1007/s40820-025-02041-3
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interfacial ionic transport pathways between LLZTO and PMA  volume changes during cycling. More importantly, we demon-
matrixes synergistically enable LLZTO-PMA a high ionic con-  strate that the incorporation of LLZTO disrupts the hydrogen-
ductivity of 0.266 mS cm™" at 20 °C. The internal hydrogen-  bonding structure of PMA, exposing functional groups that
bonding network within the PMA enhances mechanical robust-  preferentially participate in the formation of a hybrid LiF-Li;N-
ness and interfacial adaptability, effectively accommodating  rich SEL Theoretical calculations confirm that this unique SEI
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exhibits a low Li" diffusion barrier, thus facilitating uniform Li*
flux and suppressing dendrite growth. As a result, the LLZTO-
PMA-based Li anode exhibits ultra-stable and homogeneous Li
deposition and the corresponding symmetric cells deliver over
10,000 h at 0.1 mA cm™2. Moreover, the corresponding LillLFP
battery maintains 133.73 mAh g~! capacity after 610 cycles with
a capacity retention over 96% at 0.2 C. This strategic approach of
designing composite solid electrolytes through molecular-level
interfacial engineering effectively addresses key challenges in
ionic conductivity, interfacial stability, and Li deposition behav-
ior, offering new insights into the rational construction of high-
performance solid-state Li metal batteries.
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