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HIGHLIGHTS

•	 A molecular engineering of Ta-doped Li7La3Zr2O12 (LLZTO) incorporated with polymethacrylate-based (PMA) copolymer moves 
beyond simple blending to combine the polar carbonyl groups and interfacial Li⁺ transport pathways, yielding high ionic conductivity 
(0.266 mS cm − 1) and high Li+ transference number (0.621) at 20 °C.

•	 The integration of LLZTO triggers the in situ formation of a hybrid LiF-Li3N-rich solid electrolyte interphase with a low Li+ diffusion 
barrier for uniform Li deposition and exceptional interfacial stability.

•	 The LLZTO-PMA contributes an ultra-stable anode interphase, thus delivering symmetric cell over 10,000 h.

ABSTRACT  Li7La3Zr2O12-based electrolytes have 
got great promise for solid-state lithium (Li) metal 
batteries because of their high elastic modulus and 
wide electrochemical stability window. However, the 
insufficient contact and heterogeneous Li deposition 
severely hinder their practical applications. Here, a 
flexible ternary polymethacrylate (PMA) matrix is 
designed to incorporate with Ta-doped Li7La3Zr2O12 
(LLZTO-PMA). The PMA matrix ensures excellent 
interfacial contact, while the synergistic effects of its 
polar carbonyl groups and its interaction with LLZTO 
creating fast interfacial Li+ pathways yield a high 
ionic conductivity of 0.266 mS cm − 1 at 20 °C. Moreover, the interaction between LLZTO and PMA matrix further guides the formation 
of a hybrid LiF/Li3N-rich solid electrolyte interphase, which allows a fast Li+ interfacial kinetic due to its lowered Li+ diffusion barrier. 
Consequently, the LLZTO-PMA electrolyte contributes an ultra-stable Li anode interphase, attaining a lifespan exceeding 10,000 h in 
symmetric cells and retaining over 96% capacity after 600 cycles in full battery, demonstrating a breakthrough for high-performance 
solid-state batteries.
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1  Introduction

Solid-state Li metal batteries have attracted great attention 
owing to their non-flammable and high specific capacity 
properties, particularly in response to the growing pursuit 
of high energy density and high safety for next-generation 
batteries [1–3]. Solid-state electrolyte serves as a critical 
component in such systems, where the Li7La3Zr2O12-based 
(LLZO) electrolytes have been regarded as one of the most 
promising candidates, owing to their high shear modulus 
and wide electrochemical stability window [4, 5]. However, 
the poor interfacial contact impedes Li ion transport, lead-
ing to high interfacial impedance and uneven Li deposition 
[6–8]. Compositing with solid polymer electrolytes (SPEs) 
or constructing asymmetric electrolytes by merging LLZO 
into SPEs layers [9, 10] is the common strategy to address 
the interfacial issues, where the flexible polymer com-
ponents enhance the interfacial contacts and adapt to the 
volume changes of electrodes during batteries operation. 
Therefore, numerous SPEs for constructing LLZO-polymer 
composite electrolytes have been employed, such as poly-
ethylene oxide [11], poly(vinylidene fluoride-co-hexafluo-
ropropylene) [12], polyacrylonitrile [13], 1,3-dioxolane 
[14], and poly(ethylene glycol) diacrylate [15].

While this approach is promising, the state of the art 
remains constrained by fundamental compromises. Com-
monly used SPEs, such as polyethylene oxide, suffer from 
low ionic conductivity at room temperature [10, 16, 17], 
while others like polyacrylonitrile exhibit continuous 
decomposition at the lithium anode, leading to an unstable 
interface [13, 18, 19]. Furthermore, while ideal solid elec-
trolyte interphase (SEI) components like LiF and Li3N are 
known for their high mechanical strength and ability to sup-
press dendrites [20, 21], their inherently low ionic conduc-
tivity and high Li⁺ diffusion barriers can paradoxically lead 
to space-charge effects and promote dendrite growth [8, 22, 
23]. Therefore, the critical challenge lies in developing a 
composite electrolyte that simultaneously ensures mechani-
cal robustness, high ionic conductivity, and an interfacial 
layer that is both stable and highly ion-conductive.

Poly(methyl methacrylate) (PMMA) SPEs demonstrate 
promise in this regard, as its strong polar carbonyl groups 
facilitate Li salt dissociation, yielding high ionic conductiv-
ity, while also offering favorable interfacial stability with Li 
anode [24, 25]. However, the poor mechanical strength and 

film brittleness limit its standalone application, which can 
hardly restrain Li dendrite penetration and may promote the 
Li dendrite growth due to the uneven Li+ distribution, while 
the general mitigation strategies include copolymerization, 
cross-linking, and incorporation with a scaffold [24, 26, 27].

Herein, we report a paradigm that moves beyond simple 
physical blending by demonstrating molecular-level inter-
facial engineering in a LLZO-based composite electrolyte. 
We rationally integrate the Ta-doped Li7La3Zr2O12 parti-
cles with polymethacrylate-based (PMA) SPEs (named as 
LLZTO-PMA) through an ultraviolet-initiated copolymeri-
zation among methacrylic acid (MAA), methyl methacrylate 
(MMA), and N-methyl methacrylamide (NMMA) (Fig. 1a). 
This unique PMA matrix firstly provides mechanical tough-
ness through an internal hydrogen-bonding network among 
carboxyl and amide groups, which enhances the interface 
contacts and volume change adaptability at the Li anode 
(Fig.  1a(Ⅰ)). Secondly, its polar carbonyl groups deliver 
high ionic conductivity, while the interfacial pathways with 
LLZTO facilitate selective Li ions migration, together ena-
bling the LLZTO-PMA electrolyte to achieve high ionic con-
ductivity of 0.266 mS cm−1 with Li ion transference number 
of 0.621 at 20 °C (Fig. 1a(II)). Moreover, this PMA matrix 
also acts as a precursor for forming a superior SEI. We reveal 
that the LLZTO–PMA interface preferentially reduces the 
lowest unoccupied molecular orbital (LUMO) energy level of 
both FSI− anion and NMMA, leading to the in situ formation 
of a hybrid LiF-Li3N-rich SEI. Theoretical calculations con-
firm that this hybrid SEI establishes a dual-phase ion trans-
port pathway with an ultralow Li⁺ diffusion barrier (0.58 eV), 
significantly lower than that of bare LiF or Li3N, thus guid-
ing uniform Li deposition (Fig. 1a(III)). This molecular-level 
design results in the LLZTO-PMA composite electrolyte that 
attains exceptional electrochemical performance, including 
unprecedented stability in Li symmetric cells (> 10,000 h) and 
high-capacity retention in full cells, thereby addressing the 
core interfacial challenges in solid-state Li metal batteries.

2 � Experimental Section

2.1 � Materials

The chemicals and materials utilized in this study include 
N-methyl methacrylamide (NMMAm) (Aladdin, 98.0%), 
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methacrylic acid (MAAc) (Aladdin, > 99.0%), methyl 
methacrylate (MMA) (Aladdin, 99.0%), tetraglyme (Alad-
din, ≥ 99%), tetraglyme (Aladdin, ≥ 99%), 2-hydroxy-2-me-
thyl-1-phenylpropan-1-one (HMPP) (Aladdin, ≥ 97%), 
lithium bis(fluorosulfonyl)imide (LiFSI) (99.5%), N-methyl-
pyrrolidone (NMP) (99.5%, water content ≤ 50 ppm, Mack-
lin), Ta-doped Li7La3Zr2O12 (Li6.4La2Zr1.4Ta0.6O12) powders 
were purchased from Wuxi Kai-Star Electro-Optical Materi-
als Co., Ltd; Li foil (battery level), carbon black (Super-P), 
aluminum foils, and LiFePO4 (battery level) were purchased 
from Guangdong Canrd New Energy Technology Co., Ltd.

2.2 � Preparation of LLZTO Pellets, PMA, and GO/
HCPA Nanocomposite Papers

2.2.1 � Synthesis of LLZTO Pellets

The purchased LLZTO powders were compressed under an 
isostatic pressure of 300 MPa to form pellets. These pellets 
underwent sintering at 1180 °C for 6 h, with the sintering 
process being aided by the presence of mother powder. The 
resulting LLZTO pellets were collected and subjected to 
sanding using sandpapers of varying mesh sizes to prepare 
them for further applications.

2.2.2 � Preparations of PMA

Firstly, LiFSI (3.74 g) was dissolved in tetraglyme (5 mL) at 
the room temperature, followed by mixing MAAc (0.387 g), 
MMA (0.9 g), NMMAm (0.446 g), and HMPP (5.0 μL) with 
stirring. The PMA was subsequently synthesized via copo-
lymerization under 365 nm UV irradiation for 1 h at room 
temperature.

2.2.3 � Fabrications of LLZTO‑PMA Electrolyte

0, 20, 40, and 60 wt% of LLZTO powders were mixed with 
the above PMA precursor solution at room temperature, and 
then, the LLZTO-PMA precursors were dropped into the 
mold for copolymerization under 365 nm UV irradiation 
for 1 h at room temperature. To fabricate electrolyte with 
consistent thickness, a predetermined mass of the electrolyte 
slurry (PMA precursor solution with LLZTO particles or 
bare PMA precursor solution) is cast into a glass mold with 
a fixed area. Since the density of the slurry is consistent, 

the final thickness is directly and accurately determined by 
the mass of the slurry poured into the fixed-area mold. This 
method ensures excellent reproducibility in membrane thick-
ness across different batches.

3 � Results and Discussion

3.1 � Design Principle and Structural Characterizations

The synthesis of LLZTO-PMA is based on the previous pub-
lications (Fig. 1a) [28, 29]. To explore the optimal LLZTO 
content, PMA with various LLZTO mass fractions (0, 20, 
40, and 60 wt%) is prepared and tested, which exhibits the 
highest ionic conductivity with 20 wt% of LLZTO (Fig. S1), 
thus being selected as the target product and for the over-
all subsequent characterizations. The thermogravimetric 
curves comparison also verifies the 20 wt% content of 
LLZTO in LLZTO-PMA (Fig. S2). Meanwhile, compared 
to bare PMA, LLZTO-PMA exhibits an enhanced ther-
mal stability (Fig. S2), suggesting an interaction between 
LLZTO and PMA. Additionally, to optimize the LLZTO-
PMA electrolyte thickness, 100–600 μm of LLZTO-PMA 
electrolytes is prepared and evaluated their critical current 
densities (Fig. S3). The results show that LLZTO-PMA thin-
ner than ~ 500 μm exhibits reduced critical current densities 
due to insufficient mechanical strength against Li dendrite 
penetration, while thicker membranes show increased polari-
zation from higher ionic resistance. Thus, ~ 500 μm is identi-
fied as the optimal thickness, balancing mechanical integ-
rity and ionic conductivity for stable cycling. Proton nuclear 
magnetic resonance (1H-NMR) spectroscopies (Fig. S4), 
Fourier-transform infrared (FTIR) spectroscopies (Fig. S5), 
and the corresponding optical photographs (Fig. S6) indi-
cate the successful copolymerization of PMA, which are 
consistent with the previous publications [29]. Additionally, 
the PMA and LLZTO-PMA display similar characteristic 
peaks, implying the negligible influence of LLZTO incor-
poration on the PMA copolymerization. However, the peak 
at 1580 cm−1 that comes from LLZTO exhibits obvious 
shift after PMA incorporation, indicating an interaction in 
between (Fig. 1b), which is consistent with the enhanced 
thermal stability (Fig. S2). These interactions should be 
attributed to the Li2CO3 contaminants on LLZTO particle 
surfaces [30, 31], which show interactions with carboxyl and 
amide groups in PMA [32, 33]. These interactions as well as 
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the physically blending of LLZTO particles with PMA dis-
rupt the hydrogen bonds between carboxyl and amide groups 
in PMA, as evidenced by an intensity reduction of the hydro-
gen-bond signature at ~ 1710 cm−1 and obvious peak shifts 

of –OC–N and –OC = O from 1547 and 1726 cm−1 to 1555 
and 1729 cm−1, respectively (Fig. 1b) [28, 29], as well as the 
decreased intensity and shifted characteristic peak of hydro-
gen bond at ~ 3548 cm−1 (Fig. S5). This disruption ultimately 

Fig. 1   a Schematic of synthesis, composition, ion transport, and interphase stabilization mechanism of LLZTO-PMA. b FTIR spectra, c XRD 
diffraction patterns, and d strain–stress curves of LLZTO, PMA, and LLZTO-PMA, the insets are optical photographs of PMA and LLZTO-
PMA films. e SEM and f cross-sectional SEM images of LLZTO-PMA
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exposes free amide and carboxyl functional groups in the 
LLZTO-PMA.

The incorporation of LLZTO transforms the color of 
originally PMA film from transparent to milky white (insets 
in Fig. 1c). X-ray diffraction (XRD) spectra reveal that the 
LLZTO remains its original crystalline (Fig. 1c), match-
ing well with the standard cubic-LLZO (PDF No. 00-45-
0109). The broad amorphous hump at around 20°–25° is 
attributed to the PMA SPEs. According to the strain–stress 
curves (Fig. 1d), both PMA and LLZTO-PMA films exhibit 
superior elasticity with tensile strains exceeding 80%, 
while the LLZTO incorporation enhances the mechanical 
strength from 48 Kpa (PMA) to 740 Kpa (LLZTO-PMA). 
Additionally, the optical images of bending/folding LLZTO-
PMA film also suggest its flexibility without structural fail-
ure (insets in Fig. 1d), further demonstrating its superior 
mechanical performance. According to the scanning electron 
microscope (SEM) images and the corresponding elemental 
mappings, the bare PMA film with thickness of ~ 500 μm 
displays porous structure (Fig. S7), which is resulted from 
the volumetric shrinkage during copolymerization. In con-
trast, the LLZTO-PMA film presents smooth and pore-free 
morphology with thickness of ~ 500 μm, where the LLZTO 
particles are dispersed and encapsulated within PMA 
(Figs. 1f and S8). The pore-free morphology is attributed 
to the interaction of LLZTO and PMA, which reduces the 
bulk shrinkage during copolymerization. For comparison, 
bare LLZTO pellet with around 500 μm thickness (Fig. S7c, 
d) is also prepared for the following electrochemical tests.

3.2 � Electrochemical Characterizations and Mechanism 
Investigations

The ionic conductivities at different temperatures of LLZTO, 
PMA, and LLZTO-PMA electrolytes are measured from 
20 to 90 °C (Fig. S9). The corresponding Arrhenius plots 
reveal that the LLZTO-PMA film displays the highest ionic 
conductivity of 0.266 mS cm−1, in comparison with bare 
LLZTO of 0.016 mS cm−1 and PMA of 0.07 mS m−1 at 
20 °C (Fig. 2a). Meanwhile, LLZTO-PMA electrolyte exhib-
its an activation energy of 0.331 eV, which is lower than both 
bare LLZTO (0.369 eV) and PMA (0.501 eV), suggesting 
an enhanced kinetics in Li ion transport. To investigate the 
Li ion transport mechanism of LLZTO-PMA, solid-state 7Li 
nuclear magnetic resonance spectroscopies are conducted, 

which discovers an additional interfacial transport pathway 
in LLZTO-PMA electrolyte (Fig. 2b), in comparison with 
the conventional Li ion migration pathway through the poly-
mer matrixes in PMA. According to the further quantita-
tive analysis, the interfacial transport contributes 12.35% 
to the overall ionic conductivity, while the polymer bulk 
transport accounts for the remaining 87.65%. This additional 
interfacial transport pathway contributes to the enhanced 
ionic conductivity in LLZTO-PMA [34, 35]. Meanwhile, the 
LLZTO-PMA electrolyte also demonstrates an increased Li 
ion transference number (tLi+ = 0.632) (Fig. 2c) compared to 
PMA (tLi+ = 0.435) and bare LLZTO (tLi+ = 0.520) electro-
lytes (Fig. S10). This enhanced Li ion transference number 
should be attributed to the LLZTO phase, which is rich in 
Lewis acid sites. These sites interact with the anions from 
the Li salt, thus anchoring or slowing down anion mobility 
and consequently increasing the Li ion transference num-
ber. Due to the rapid Li ion transport kinetics and continu-
ous interfacial contact, LLZTO-PMA electrolyte attains an 
enhanced critical current density of 0.8 mA cm−2 at 20 °C, 
while the bare LLZTO and PMA electrolytes only operate 
at 0.25 and 0.35 mA cm−2, respectively (Fig. S11), demon-
strating an improved capability in suppression of Li den-
drite growth. Moreover, the LLZTO-PMA electrolyte also 
displays a broadened electrochemical stability window of 
4.76 V in comparison with 4.2 V of bare LLZTO and 4.26 V 
of PMA (Fig. S12). This enhanced voltage window may be 
attributed to the exposed amide functional groups in the 
LLZTO-PMA that may generate a stable cathode electrolyte 
interphase layer [36, 37].

The long-term cycling stability of electrolytes to Li anode 
is measured through the Li||Li symmetric cells at 20 °C. 
Li|LLZTO-PMA|Li cell delivers over 10,000 h with over-
potential of ~ 400 mV at the 0.1 mA cm−2/0.1 mAh cm−2 
(Fig. 2d), while Li|LLZTO|Li and Li|PMA|Li cells only 
work for 140 and 740 h with ~ 420 and ~ 680 mV overpoten-
tials, respectively. The detailed voltage profiles confirm the 
short-circuit state in both Li|LLZTO|Li and Li|PMA|Li cells, 
while demonstrating the stable and low-overpotential opera-
tion of Li|LLZTO-PMA|Li cell (insets in Fig. 2d). At a cur-
rent density of 0.2 mA cm−2, the bare Li|LLZTO|Li cell can 
hardly work and the Li|PMA|Li cell only survives ~ 630 h 
with ~ 750  mV overpotential. In contrast, Li|LLZTO-
PMA|Li cell operates stably over 4700 h with overpotential 
of ~ 400 mV (Fig. S13). Moreover, Li|PMA|Li cell can hardly 
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work at 0.3 mA  cm−2, but Li|LLZTO-PMA|Li operates 
over 3500 h with ~ 480 mV overpotential (Fig. 2e) and even 
maintains stable operations at both 0.4 and 0.5 mA cm−2 
(maintaining stable operation for over 750 h with voltage 
polarization of approximately 800 mV at 0.4 mA cm−2 and 
over 80 h at 0.5 mA cm−2, as shown in Figs. S14 and S15). 
The voltage fluctuations during cycling at different current 
density should be attributed to the dynamic changes at the 
electrode–electrolyte interface, the formation and dissolution 
of the SEI, localized inhomogeneities in ion transport, and 

sometimes the randomly changed test temperature. These 
fluctuations are reproducible and do not indicate instability 
of cells; rather, they reflect intrinsic material behavior and 
kinetic processes under dynamic cycling conditions. Over-
all, the LLZTO-PMA electrolyte shows an ultrastability to 
Li anode, which is superior to most similar previous works 
(Fig. 2f) [14, 33, 38–48].

To investigate the reasons for the ultra-stable LLZTO-
PMA-based cells operation, symmetric cells with vari-
ous electrolytes after different cycles at 0.1 mA cm−2 are 

Fig. 2   a Arrhenius plots and activation energies of LLZTO-PMA, PMA, and LLZTO electrolytes. b 7Li-NMR spectroscopies of LLZTO-
PMA and PMA electrolytes. c Chronoamperometry curve and AC impedance spectra before and after polarization of Li|LLZTO-
PMA|Li cell. Galvanostatic Li plating/stripping curves of Li||Li cells with LLZTO-PMA, PMA, and LLZTO electrolytes at 20  °C with d 
0.1 mA cm−2/0.1 mAh cm−2, and e 0.3 mA cm−2/0.3 mAh cm−2 (the insets are detailed voltage profile comparisons). f Comparisons with other 
previously reported works for LLZO-based composite electrolytes [14, 33, 38–48]
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disassembled for interfacial characterizations. In compari-
son with the severe interfacial delamination of LLZTO with 
Li anode after 50 cycles (Fig. S16c), cross-sectional SEM 
images reveal that both PMA and LLZTO-PMA electrolytes 
retain close contact with Li anodes after cycling (Figs. 3a–e, 
S16, and S17), demonstrating the superior performance of 
the PMA for adapting the volume changes of electrodes dur-
ing cell operations. However, LLZTO-PMA exhibits straight 
interfacial boundary with uniform Li deposition (Figs. 3a, 
S16a, and S17a), while PMA exhibits an arched interfacial 
boundary with Li anode (Figs. 3d, S16b, and S17b), imply-
ing a heterogeneous Li deposition. This obvious distinction 
demonstrates that LLZTO-PMA can effectively restrain Li 
dendrite growth but the bare PMA although enabling good 
interfacial contact with Li anode, its inability to suppress 
heterogeneous Li deposition governed by multiple factors. 
Furthermore, metallic Li penetrations are observed in the 
PMA bulk (Fig. 3e), where the highlight areas can hardly 
detect the characteristic elemental signals of PMA by 
energy-dispersive X-ray spectroscopy (EDX) (Fig. S18a), 
in comparison with the intact LLZO-PMA after 300 cycles 
(Figs. 3b and S18b). The observed Li permeation reveals 
that PMA lacks the mechanical robustness required to block 
dendrite piercing. Additionally, the Li anode surface images 
also verify the uniform Li deposition in Li|LLZTO-PMA|Li 
cell in comparison with mossy Li deposition in Li|PMA|Li 
cell (Fig. 3c, f).

The stable interphase between LLZTO-PMA electro-
lyte and Li anode after cycling is further verified by the 
electrochemical impedance spectra (EIS) characterizations. 
The calculated interfacial impedances based on equivalent 
circuit are shown in Table S1. Specifically, Li|LLZTO-
PMA|Li cell presents an interfacial impedance of 472 Ω 
after the first cycle, which decreases to 354 Ω (10 cycles) 
and increases to 365 Ω (100 cycles), followed with main-
taining at ~ 400 Ω after 200 and 300 cycles (Fig. 3g). The 
maintained interfacial impedance suggests a stable inter-
phase with homogeneous Li deposition [28, 49]. In com-
parison, Li|PMA|Li cell displays fluctuating interfacial 
impedances of 310 → 172 → 581 → 51 → 656 Ω after 1, 
10, 100, 200, and 300 cycles (Fig. 3h), where the suddenly 
decreased impedance reveals a soft short circuit like inac-
tive Li penetrations in PMA (Fig. 3e) [50] and the progres-
sively increased impedances indicate an interphase deg-
radation [28, 49]. This degradation is also discovered in 
Li|LLZTO|Li cell with the increased interfacial impedances 

of 883 → 616 → 748 → 1040 Ω after 1, 10, 30, and 50 cycles 
(Fig. 3i). These interfacial impedance variations are consist-
ent with the interphase evolutions observed by SEM.

To further explore the root causes for the stable interphase 
with dendritic-free Li deposition in LLZTO-PMA-based 
cells, the SEI layers on Li anodes after cycling are analyzed 
through X-ray photoelectron spectroscopy (XPS) (Fig. S19). 
The high-resolution Li 1s peak on PMA-based Li anode is 
assigned as LiF (55.9 eV) and Li (54.8 eV) (Fig. S20a) [51]. 
However, an additional peak at 55.4 eV, corresponding to 
Li3N [51], is observed on LLZTO-PMA-based Li anode 
(Fig. 4a). Furthermore, the N 1s peak on PMA-based Li 
anode is primarily from amide group (399.9 eV) (Fig. S20b), 
being attributed to the residual PMA electrolyte, while the N 
1s peak on LLZTO-PMA-based Li anode is assigned to both 
amide group and Li3N (398.3 eV) [21] (Fig. 4b). The forma-
tion of Li3N is attributed to the reactions between Li anode 
and free amide groups in LLZTO-PMA electrolyte. Mean-
while, both F 1s peaks (Figs. S20c and 4c) and Li 1s peaks 
(Figs. S20a and 4a) indicate that an increased LiF content 
on LLZTO-PMA-based Li anode, which may be ascribed to 
that the LLZTO induces the decomposition of FSI− anions 
in PMA matrixes. Additionally, XPS depth profiling further 
demonstrates the coexistence of both Li3N and LiF com-
ponents, where the Li3N content increases with the depth 
etching (Fig. 4d, e), while the LiF almost maintains constant 
(Fig. 4d, f). This Li3N enrichment in the inner SEI near the 
Li anode may originate from the preferential interfacial reac-
tions between exposed amide groups in LLZTO-PMA and 
metallic Li anode. Overall, the SEI layer on LLZTO-PMA-
based Li anode is rich in both Li3N and LiF, which have 
been demonstrated to restrain Li dendrite growth due to their 
inherent mechanical strength and ionic conductivity [20, 21].

To further investigate the fundamental mechanism for the 
Li3N-LiF SEI formation, the highest occupied molecular 
orbital (HOMO) and lowest unoccupied molecular orbital 
(LUMO) energy levels of NMMA, MMA, MAA mono-
mers, and FSI− anion with/without LLZTO are calculated 
systematically [52]. In the bare PMA, MAA exhibits the 
lowest LUMO energy (− 2.27 eV) (Fig. 4g). However, the 
hydrogen bonds between MAA and NMMA restrict the 
exposure of MAA functional groups, thus suppressing 
its preferential decomposition on Li anode. This inhibi-
tion enables FSI− anions with the second lowest LUMO 
(− 2.11 eV) to dominantly decompose into LiF component 
on Li anode [53, 54], which is consistent with the above 
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LiF-rich SEI on PMA-based Li anode. In comparison, the 
incorporation of LLZTO disrupts hydrogen-bond interac-
tions within the PMA matrixes, exposing reactive amide 
groups from NMMA and carboxyl groups from MAA, that 
actively participate in SEI formation. Furthermore, the den-
sity functional theory (DFT) calculations reveal an energy 
hierarchy inversion, where the LUMO energy of NMMA 
(decreasing from − 1.84 to − 3.33 eV) and MAA (decreas-
ing from − 2.27 to − 3.25 eV) is lower than FSI− (decreasing 
from − 2.11 to − 2.35 eV) (right side of Figs. 4g and S21), 
thus generating Li3N-rich phase as the primary reduction 
site through preferential amide groups decompositions [53, 
54]. Besides, the decomposition of MAA introduces organic 
components into the SEI, acting as a binding matrix, which 
enhances the structural integrity and cohesion of the SEI. 

Concurrently, the FSI− anions with reduced LUMO energy 
contribute complementary LiF formation, ultimately creat-
ing a hybrid SEI layer rich in both Li3N and LiF. Meanwhile, 
the enhanced FSI− anions decompositions also result in an 
increased LiF component on LLZTO-PMA-based Li anode. 
Furthermore, the HOMO analysis shows the highest HOMO 
energy of NMMA (− 5.32 eV) with LLZTO incorporation, 
which triggers a preferential oxidation at the cathode, form-
ing a stable cathode electrolyte interphase layer and expand-
ing the electrochemical stability window of LLZTO-PMA-
based batteries [53, 54].

Additionally, according to the DFT calculations, the diffusion 
barrier of Li ion is 0.78 eV and is 0.64 eV in the bulk phases 
of pure LiF and Li3N layer, which are higher than that in the 
Li3N-LiF hybrid bulk phase (0.58 eV) (Fig. 4h-j). The reduced 

Fig. 3   Cross-sectional SEM images of Li-electrolyte and surface SEM images of Li anode in symmetric cells with a–c LLZTO-PMA and d–f 
PMA electrolytes after 100 and 300 cycles with 0.1 mA cm−2 at 20 °C. Nyquist plots of symmetric cells with g LLZTO-PMA, h PMA, i LLZTO 
electrolytes at 20 °C after 1, 10, 100, 200, and 300 cycles with 0.1 mA cm−2 (the LLZTO electrolytes are only tested after 1, 10, 30, and 50 
cycles due to its limited cycling stability; the insets are equivalent circuit diagrams or magnified area)
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diffusion barrier is attributed to that the Li ions preferentially 
migrate through the grain boundaries between Li3N and LiF 
[55]. Therefore, compared to the PMA-based Li anode surface 
that only rich in LiF, the LLZO-PMA-based Li anode surface, 
enriched with Li3N-LiF, exhibits a lower Li ion diffusion barrier. 

This enhanced ion diffusion kinetics is consistent with the lower 
interfacial impedance observed in the LLZTO-PMA-based sym-
metric Li cells compared to bare PMA-based cells after cycling 
(Fig. 3g, h), which effectively facilitates rapid Li ion transport 
at the electrolyte–Li anode interphase, thereby suppressing 

Fig. 4   High-resolution XPS spectra and the different etching depths of a, d Li 1s, b, e N 1s, and c, f F 1s on Li surface within Li|LLZTO-
PMA|Li cell after 10 cycles at 0.1  mA  cm−2. g HOMO and LUMO energy levels of NMMA, MMA, MAA, and FSI− anion with/without 
LLZTO. Detailed diffusion barrier and pathways of Li adatom on h LiF, i Li3N, and j Li3N-LiF bulks
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dendrite growth induced by the space-charge layer while mini-
mizing interfacial electrochemical polarization [55–57]. Con-
sequently, compared to PMA, the LLZO-PMA-based Li anode 
demonstrates a more uniform and denser Li deposition, ulti-
mately improving the overall battery performance.

3.3 � Batteries Performance Characterizations

Based on the superior electrochemical performance, full bat-
teries with LiFePO4 (LFP) cathodes, Li foil anodes, and the 
corresponding electrolytes are assembled and tested at 20 °C. 
The Li|LLZTO-PMA|LFP battery exhibits enhanced rate capa-
bility and reversibility (Fig. 5a and 5b), which delivers 143.79, 
136.29, 125.38, 112.89, and 101.90 mAh g−1 discharge-specific 
capacity at the 0.1, 0.2, 0.5, 1.0, and 2.0 C, respectively (1.0 C 
is defined as a current density of 170 mA g−1, which is based 
on the theoretical specific capacity of LFP (170 mAh g−1)), 
and recovers to 140.39 mAh g−1 at the reversed 0.1 C with a 
recovery of 97.63%. In contrast, LLZTO- and PMA-based bat-
teries display lower capacities. Voltage profile comparisons 
reveal that the Li|LLZTO-PMA|LFP enables higher discharge 
plateaus and lower charge plateaus at all rates (Fig. S22), fur-
ther demonstrating a reduced electrochemical polarization 
(Fig. 5c) and contributing its enhanced rate capability. Moreo-
ver, Li|LLZTO-PMA|LFP battery delivers a discharge-specific 
capacity of 134.13 mAh g−1 at the initial cycle at 0.2 C, which 
attains 138.16 mAh g−1 after activation with a capacity reten-
tion ratio of 96.79% after 610 cycles (Fig. 5d). The average 
Coulombic efficiency is 99.89% of Li|LLZTO-PMA|LFP bat-
tery, while the nearly overlapped charge–discharge curves at 
different cycles further confirm its exceptional cycle stability 
(Fig. 5e). In comparison, the initial capacity of Li|PMA|LFP and 
Li|LLZTO|LFP is 114.09 and 110.22 mAh g−1, which sharply 
drops to 69.01 mAh g−1 after 114 cycles and is short-circuited 
after 227 cycles, respectively. The detailed charge–discharge 
curves also verify their capacity fading with cycling (Fig. S23). 
SEM characterizations reveal that the LLZTO-PMA-based Li 
anode displays uniform Li deposition with a close interfacial 
contact, in comparison with the mossy Li deposition with dis-
continuous or uneven interfacial contacts for LLZTO and PMA 
electrolytes after cycling (Figs. 5f and S24). As the results, the 
Li|LLZTO-PMA|LFP battery displays lowest interfacial imped-
ance (Fig. S25), which also verifies its stable interphase, thus 
contributing to the superior cycling performance. Meanwhile, 

the enhanced interfacial impedance of Li|PMA|LFP than 
Li|LLZTO|LFP after cycling is ascribed to the accumulations 
of side reaction products and inactive Li at PMA-Li interface, 
both of which hinder the transport of Li ions. Additionally, 
Li|LLZTO-PMA|LFP battery also exhibits a better cycling 
performance at 1.0 C, which delivers 119.19 mAh g−1 after 
activation and maintains 112.02 mAh g−1 after 400 cycles, 
with a capacity retention ratio of 93.98% (Fig. 5g). However, 
the Li|PMA|LFP and Li|LLZTO|LFP batteries display lower 
capacities and rapid capacity decays. The detailed Coulombic 
efficiency and voltage profiles comparisons further confirm 
the enhanced performance of Li|LLZTO-PMA|LFP battery 
(Figs. S26 and S27). Over a comprehensive comparison, the 
electrochemical performance of LLZTO-PMA, including ionic 
conductivity, rate capability, full battery performance, remains 
commendable and positions among the leading systems reported 
(Table S2).

Moreover, high-voltage NCM811 cathodes are further assem-
bled with Li anodes and LLZTO-PMA, PMA, and LLZTO elec-
trolytes for full batteries testing at 0.5 C and 20 °C (Fig. S28), 
where the LLZTO-PMA electrolyte also exhibits superior per-
formance. Specifically, the LLZTO-PMA-based battery displays 
150 mAh g−1 at the initial after activation, which retains approx-
imately 70% of its capacity after 300 cycles at 0.5 C, while both 
PMA- and LLZTO-based batteries suffers from rapid capacity 
fade under the same conditions. This enhanced performance is 
consistent with the higher oxidation potential of LLZTO-PMA 
electrolyte revealed by LSV measurements (Fig. S12), confirm-
ing its compatibility with high-voltage cathodes. Furthermore, 
Li|LLZTO-PMA|LFP pouch cell is assembled and powers a 
commercial light-emitting diode (Fig. 5h), which maintains 
operation after battery abuse tests of folding, penetration, and 
cutting. It is worth noting that a dimming of the LED light after 
the cutting tests occurs because the removed portion of the bat-
tery (including active materials and electrolyte) no longer con-
tributes to the energy supply, resulting in a reduction in total 
capacity and energy output. These abuse tests demonstrate the 
feasibility of LLZTO-PMA electrolyte for the practical applica-
tions in high safety, high energy density, and flexible batteries.

4 � Conclusions

In summary, we have developed a molecularly engineered com-
posite electrolyte by integrating LLZTO particles into a PMA 
SPE, where the polar carbonyl groups in PMA and the additional 
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interfacial ionic transport pathways between LLZTO and PMA 
matrixes synergistically enable LLZTO-PMA a high ionic con-
ductivity of 0.266 mS cm−1 at 20 °C. The internal hydrogen-
bonding network within the PMA enhances mechanical robust-
ness and interfacial adaptability, effectively accommodating 

volume changes during cycling. More importantly, we demon-
strate that the incorporation of LLZTO disrupts the hydrogen-
bonding structure of PMA, exposing functional groups that 
preferentially participate in the formation of a hybrid LiF-Li3N-
rich SEI. Theoretical calculations confirm that this unique SEI 

Fig. 5   a Rate capabilities and b the corresponding charge–discharge curves of Li|LLZTO-PMA|LFP at different rates, c voltage gap between 
charge and discharge plateaus at different rates, d cycling performance at 0.2 C and e their voltage profiles at different cycles, f SEM images of 
Li anode after 100 cycles at 0.2 C, and g cycling performance at 1.0 C for Li||LFP batteries with LZLTO, PMA, and LLZTO-PMA electrolytes. 
h Optical images of Li|LLZTO-PMA|LFP pouch cell lighting up light-emitting diode at the abuse conditions
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exhibits a low Li⁺ diffusion barrier, thus facilitating uniform Li⁺ 
flux and suppressing dendrite growth. As a result, the LLZTO-
PMA-based Li anode exhibits ultra-stable and homogeneous Li 
deposition and the corresponding symmetric cells deliver over 
10,000 h at 0.1 mA cm−2. Moreover, the corresponding Li||LFP 
battery maintains 133.73 mAh g−1 capacity after 610 cycles with 
a capacity retention over 96% at 0.2 C. This strategic approach of 
designing composite solid electrolytes through molecular-level 
interfacial engineering effectively addresses key challenges in 
ionic conductivity, interfacial stability, and Li deposition behav-
ior, offering new insights into the rational construction of high-
performance solid-state Li metal batteries.
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