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HIGHLIGHTS

e High-entropy alloy fiber was fabricated via electrohydrodynamic direct writing and subsequently metallized at the nanoscale to form

uniform high-entropy alloy lattices within polymer nanofibers.

e The metallized temperature-immune strain sensor exhibits low temperature coefficient of resistance (45.59 ppm K'') and excellent

cyclic stability (6000 cycles), enabling reliable strain measurements across a wide temperature range.

® Wearable human joint monitoring and robotic grasping tests demonstrate the sensor’s high reliability and accurate response under

complex thermal environments.

ABSTRACT Temperature stability is essential for the precision of flex-
ible sensors. However, constrained by the composite principle of hetero-
geneous materials, the existing self-compensating methods encounter
substantial challenges. To tackle this, high-entropy alloy nanofibers were
utilized to construct a flexible strain sensor with inherent temperature
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stability. This approach leverages the electrohydrodynamic direct writ-
ing; a precursor conductive network was established through the elec-

trospinning of a high-entropy alloy acetate and polyvinylidene difluoride
solution blend. Subsequently, annealing treatment facilitated metalliza-
tion, resulting in the synergistic preservation of polymer stretchability
and the low temperature coefficient of resistance properties of high-entropy alloys inside the nanofibers. The test results demonstrate that
the high-entropy alloys flexible strain sensor exhibits a remarkably low temperature coefficient of resistance (45.59 ppm K™!) across the
range of — 10 to 70 °C, a sensitivity coefficient GF of 1.12 with a 50% strain range, and a response time of 310 ms. After 6000 stretching
cycles, no baseline drift or failure occurred, indicating excellent cyclic stability. Furthermore, the outstanding temperature stability of the
sensor was validated through wearable application and robotic hands strain sensing conducted under varied environment temperatures.

This work provides a viable design pathway for developing flexible sensors with an inherently low temperature coefficient of resistance.
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1 Introduction

Flexible sensors are essential in contemporary sensing
systems. With the swift progress of next-generation
technological devices [1-3], flexible sensors are extensively
utilized in various sensing contexts [4-9]. However,
unlike rigid devices equipped with robust encapsulations
and efficient temperature management, flexible sensors
feature compact dimensions and are fabricated on flexible
substrates [10—14]. These characteristics hinder the effective
isolation of external thermal disturbances, rendering flexible
sensors highly susceptible to temperature fluctuations in
the operating environment [15]. Such fluctuations pose
considerable challenges to signal accuracy and stability. This
deficiency is mostly ascribed to the performance variability
of flexible sensing devices induced by temperature
fluctuations [16—19]. Signal crosstalk between temperature
and the goal measurement, evident as baseline drift [20,
21], noise amplification [22], and dynamic measurement
errors [23], has emerged as a significant impediment to
the extensive deployment of multiple flexible sensors [24,
25]. Therefore, addressing temperature-induced signal
disruptions is crucial for maintaining the stable performance
of flexible sensors in variable thermal environments.

To address the performance challenges induced by tem-
perature fluctuations, materials exhibiting positive tempera-
ture coefficients (PTC) and negative temperature coefficients
(NTC) have been extensively researched to produce sensitive
components in flexible sensors [26, 27]. Zhu et al. com-
bined PTC carbon nanotubes (CNT) with NTC graphene and
carbon black (CB) to produce pressure- and strain-sensitive
layers with an overall temperature coefficient of resistance
(TCR) near zero [28]. Similar PTC-NTC hybrid architec-
tures have been reported to achieve near-zero or compen-
sated TCR through composition tuning and percolation
balancing [29-32]. Gao et al. achieved continuous tuning
of CNT materials’ TCR from negative to positive by adjust-
ing the annealing temperature, which is attributed to the
alteration of the ratio between physical contacts and cova-
lent bonds among CNTs [33, 34]. Moreover, metal nano-
particles not only exhibit exceptional electrical conductivity
but also reveal typical metallic PTC properties. Choi et al.
developed a thermally responsive complementary conduc-
tive network by integrating nano-metallic materials with
NTC constituents, wherein Ag nanoparticles (Ag NPs) and
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Ag nanowires (Ag NWs) are combined with negative tem-
perature coefficient materials to establish a complementary
pathway [35]. Such complementary conductive networks,
which utilize metallic PTC elements together with NTC
constituents, have been observed to exhibit extremely low
TCR across broad temperature ranges [36—40]. Based on the
material optimization strategy, researchers have commenced
exploring the concept of structural-material synergistic com-
pensation. Yuan et al. employed the elastic substrates with
thermal expansion properties, such as polydimethylsilox-
ane (PDMS), to mitigate the adverse temperature response
of NTC materials via multilayer composites [41-43]. This
approach results in flexible sensors with a low TCR and
self-compensating attributes. Although the previously pro-
posed strategies have shown efficacy in mitigating tempera-
ture-induced signal disturbances, composite compensation
systems still face significant limitations. The constituent
materials often exhibit inconsistent thermal responses, and
some are susceptible to oxidation or chemical degradation.
These factors may compromise the internal cooperative sta-
bility of the system. If the compensating function of a sin-
gle component fails, maintaining the overall compensation
effect becomes difficult, ultimately jeopardizing the system’s
long-term reliability.

Given the limitations of the material composite self-
compensation approach in maintaining thermal stability,
developing sensor components with intrinsic superior tem-
perature stability plays a pivotal role in ensuring the reliable
operation of flexible sensors in situations with fluctuating
temperatures. High-entropy alloys (HEAs) have attracted
considerable attention from researchers due to their unique
compositional complexity and severe lattice distortion
[44-46]. Shafeie et al. investigated the electron—phonon scat-
tering mechanisms in a class of HEA constituents exhibiting
exceptionally low TCR [47]. Subsequent studies have fur-
ther confirmed that such alloy materials can underscore their
potential in the development of thermally stable electronic
devices [48]. Subsequently, Benrazzouq et al. introduced
aluminum into an established HEA system, inducing pro-
nounced lattice distortion and modifying the internal scat-
tering mechanisms [49]. This structural modification sup-
pressed elastic electron—phonon scattering, thereby reducing
the sensitivity of electrical resistance to temperature fluc-
tuations [50]. As a result, the TCR of the HEA films could
be continuously tuned from negative to positive values at
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extremely low absolute levels, offering enhanced design flex-
ibility for thermally stable electronic materials. However, to
fully exploit the potential of this class of materials in flexible
sensors, challenges in achieving compositional homogeneity
and phase stability during fabrication must be addressed.
Existing studies have predominantly employed solid-state
routes involving powder compaction and sintering. Yet the
limited atomic diffusion efficiency of micron-scale particles
under solid-state conditions poses a challenge to achieving
sufficient multicomponent interdiffusion and compositional
uniformity between particles [51-53] (Fig. 1a). This leads to
elemental segregation and multiphase precipitation, thereby
constraining the formation of high-entropy alloy lattices [54,
55]. To overcome these limitations, electrospun nanofiber
fabrication has emerged as a promising strategy. Leveraging
the atomic-level homogeneity of solution precursors and the
confinement effects at the nanoscale, this approach mark-
edly enhances atomic diffusion efficiency and effectively
suppresses segregation tendencies [56—58]. During electro-
spinning, the applied electric field drives fiber formation
but also induces polarization alignment of ions and atoms
within the precursor system, thereby significantly promoting
uniform multi-component distribution and cooperative diffu-
sion at the nanoscale [56, 59, 60]. As a result, high-entropy
alloy lattices with uniform composition and stable phase
structures can be formed within the nanofibers, providing a
solid foundation for maintaining stable sensor performance
under thermal perturbations and ensuring consistent electri-
cal characteristics of the device (Fig. 1b, c).

Herein, to characterize the low TCR of high-entropy
alloys on flexible fibers and utilize them as the sensitive
layer in strain sensors. A FeCoNiMnZn/PVDF flexible
strain sensor was fabricated using electrohydrodynamic
direct-write technology. By metallization annealing of the
HEA components within the polymer nanofiber matrix,
the inherent atomic configurational disorder was exploited
to induce pronounced lattice distortion, thereby enhanc-
ing structural stability and establishing robust, continu-
ous electron transport pathways. The significant lattice
distortion and chemical disorder effectively weaken
electron—phonon coupling, reducing the dependence of
electron transport channels on temperature variations and
thus enabling nearly temperature-insensitive conduction.
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In addition, the nanoscale uniform metallization structure
achieved through electrohydrodynamic direct writing
ensures a highly homogeneous distribution of alloying ele-
ments within the fibers, forming a continuous and stable
conductive network. This microstructural optimization sta-
bilizes resistance against temperature-induced fluctuations,
resulting in a reduced TCR. It prevents resistance drift
caused by interfacial instability during thermal cycling,
ultimately enabling reliable temperature-insensitive strain
detection (Fig. 1d). Furthermore, the sensor was integrated
into wearable joint strain monitoring and robotic grasping
systems, underscoring its excellent thermal stability under
varying temperature conditions. Through metallization of
high-entropy alloy components within a nanofiber matrix,
a flexible strain sensor that combines intrinsic temperature
stability with high sensitivity, rapid response, and long-
term operational reliability is presented. This study pro-
vides an effective strategy for stable sensing in thermally
dynamic environments and expands the application bound-
aries of flexible electronics in complex thermal conditions.

2 Experimental Section
2.1 Materials

The materials used were polyvinylidene difluoride
(PVDF, Mw =600,000, Arkema S.A.), manganese
acetate tetrahydrate [(CH;COO),Mn, purity 99.0%,
Sinopharm Chemical Reagent Co., Ltd.], nickel acetate
tetrahydrate [(CH;COO),Ni, purity 98.0%, Sinopharm
Chemical Reagent Co., Ltd.], cobalt acetate tetrahydrate
[(CH;C00),Co, purity 98.0%, Sinopharm Chemical
Reagent Co., Ltd.], zinc acetate dihydrate [(CH;COO),Zn,
purity 99.0%, Xilong Scientific Co., Ltd.], iron acetate
tetrahydrate [(CH,COO),Fe(OH), purity 99.0%, Shanghai
Acmec Biochemical Technology Co., Ltd.], iso-propanol
amine (C;H¢NO, purity 99.0%, Shandong Yousuo
Chemical Technology Co., Ltd.), N,N-dimethylformamide
(DMF, purity 99.9%, Shanghai Acmec Biochemical
Technology Co., Ltd.), and polyurethane film (PU, Jiangsu
Hongsheng Bioengineering Co., Ltd.).

@ Springer
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Fig. 1 Schematic diagram of the temperature-immune high-entropy alloy strain sensor. a Insufficient particle fabrication and high-entropy alloy
synthesis. b Electrospinning to fabricate nanofibers of high-entropy alloys. ¢ Temperature stability and TCR balance mechanism of high-entropy

alloys. d Application of temperature-immune strain sensors
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2.2 Preparation of PVDF/DMF and HEA-Salt
Precursor Solution

A PVDF/DMF solution was prepared using 13 wt% PVDF
content. One gram of PVDF was dissolved in 6.7 g of DMF
solution; the mixture was sealed and stirred magnetically
at 25 °C for 48 h. A HEA-salt precursor solution contain-
ing 8.2 wt% metal salt, 8.3 wt% PVDF and 15 wt% iso-
propanol amine was prepared. One gram of PVDF was
dissolved in 8.2 g DMF solution; the mixture was sealed
and stirred magnetically at 25 °C for 48 h. After dissolv-
ing completely, 0.0008 mol manganese acetate, 0.0008 mol
nickel acetate, 0.0008 mol cobalt acetate, 0.0008 mol iron
acetate, 0.0009 mol zinc acetate and 1.8 g isopropanol amine
were added successively. The mixture was sealed and stirred
magnetically at 25 °C for 24 h. The schematic diagram of
the solution configuration can be found in Figs. S1 and S2.

2.3 Electrospinning and Electrohydrodynamic Direct
Writing System

The solution was stored in a 1-mL syringe (Jiangsu Zhiyu
Medical Equipment Co., Ltd., China) and delivered by a
precision syringe pump (Pump 11 Pico Plus Elite, Harvard
Instruments, USA) to a stainless-steel needle with an outer
diameter of 0.23 mm and an inner diameter of 0.08 mm.
The needle was connected to the positive terminal of a
high-voltage power supply (DW-SA403-1ACES, Tianjin
Dongwen High Voltage Power Supply Co., Ltd., China). An
electrospinning apparatus (QZNT-E01-01, Foshan Qingzi
Precision Measurement & Control Technology Co., Ltd.,
China) allowing the fibers to accumulate layer by layer on
the surface. The electrohydrodynamic direct writing was
driven by a motion platform (POT-G-MOT-F(09-06, Jiangxi
Liansheng Precision Optical Platform Co., Ltd., China) to
deposit nanofibers with a designed structure. The experi-
mental parameters for the electrospinning substrate and the
electrohydrodynamic direct writing of high-entropy alloy
nanofibers are summarized in Tables S1 and S2.

2.4 Microstructural and Property Measurements

The HEA/PVDF fiber morphology was determined by
field emission scanning electron microscopy (SUPRAS5S
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SAPPHIRE, Carl Zeiss AG, Germany). Raman spectra of
the samples were recorded by confocal Raman microscope
(IDSPeC ARCTIC, Beijing Pole Spectrometer Technology
Co., LTD., China). Selected area electron diffraction
(SEAD) was obtained by transmission electron microscopy
(FEI Company, USA). X-ray diffraction (XRD) spectra of
the samples were measured using an XRD-7000 instrument
(Shimadzu Corporation, Japan). Fourier transform
infrared (FTIR) spectra of the samples were recorded on a
MICOET iS10 instrument (Thermo Fisher Scientific, USA).
Mechanical tensile properties were measured using a tensile
testing machine (ZQ-990B, Dongguan Zhiqu Precision
Instrument Co., LTD., China). The LCR digital bridge
(TH2830, Changzhou Tonghui Electronics Co., Ltd., China)
tested the electrical performance of the sensor. The samples
were sintered by split-type micro-dust graphite heating
plate IEH54-1, Lichen Technology Co., Ltd., China). The
infrared thermal image was obtained using a Professional
Thermal Imager (UTi320E, Uni-Trend Technology Co.,
Ltd., China). The thermogravimetric analysis (TGA)
of the samples was obtained using a thermogravimetric
analyzer (Netzsch TGA 209 F1, NETZSCH, Germany). The
thermomechanical analysis (TMA) data of the samples were
obtained using a thermomechanical analyzer (Netzsch TMA
402 F3, NETZSCH, Germany).

3 Results and Discussion
3.1 Fabrication of Sensor

Electrospinning was employed to fabricate flexible strain
sensors. A homogeneous solution suitable for electrospin-
ning was first prepared by dissolving PVDF in DMF, fol-
lowed by continuous stirring for 48 h. To obtain the HEA-
containing precursor solution, metal acetates of the HEA
components and iso-propanol amine were added to the
PVDF/DMEF solution, and the mixture was stirred for an
additional 12 h. The change in viscosity of the high-entropy
alloy solution over time is shown in Fig. 2g. During elec-
trospinning, a high-voltage electric field between the nee-
dle and the collector generated a stable jet, leading to con-
tinuous fiber deposition on the substrate. Electrospinning
the PVDF/DMF solution yielded a shear-collected PVDF
nanofiber membrane that served as the flexible base layer.

@ Springer
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The working principle of the electrospinning platform is
illustrated in Fig. S3.

Using electrohydrodynamic direct writing, a reciprocat-
ing pattern was printed onto the PVDF nanofiber membrane
substrate (Fig. 2a). The collaborative effect of multiple com-
ponents of the electrohydrodynamic direct writing platform
is illustrated in Figs. S4 and S5. The details of the STEM
images of the substrate and the HEA fibers are shown in
Fig. 2c—f, which presents the fiber morphology of the sub-
strate and the grains within the fibers of the high-entropy

alloy. During the electrospinning of the HEA solution, the
electric field-induced polarization enhanced the diffusion
efficiency of metal atoms within the nanofibers and effec-
tively suppressed compositional segregation, thereby ensur-
ing overall compositional homogeneity and promoting the
subsequent formation of a stable high-entropy alloy lattice.
Compared with alloys prepared by the laser particle sin-
tering method in other studies (Fig. S6b), compositional
fluctuations were observed at the 5-pum scale. These alloys
also exhibit clearly defined grain boundaries, indicating the
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Fig. 2 Schematic diagram of the sensor preparation process. a Schematic diagram of high-entropy alloy fibers using electrohydrodynamic direct
writing and electrospinning for substrate preparation. b High-entropy alloy components form a lattice within the nanofibers. ¢, d STEM images
of high-entropy alloy fibers. e, f STEM images of the basal fibers. g Viscosity of the high-entropy alloy solution changes over time. h Strain—
stress diagrams of the electrospun substrate and the PU membrane. i Comparison of FTIR tests of high-entropy alloy fibers before and after sin-

tering. j Thermogravimetric analysis curve of high-entropy alloy fibers
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presence of segregation and agglomeration. In contrast, the
high-entropy alloy nanofibers fabricated in this work showed
a markedly different microstructural feature. As presented
in Fig. S6a, the compositional distribution was examined
at a finer 200-nm scale using EDS elemental mapping. The
analysis confirms that, after the electric-field-induced polari-
zation treatment, the five metallic elements were uniformly
distributed. No evidence of compositional segregation or
elemental clustering was detected.

The resulting double-sided structure was subjected
to thermal treatment at 300 °C for 1 h, which enabled
characterization of the HEA precursor fibers while
preserving their fibrous morphology. In Fig. 2b, during
the electrospinning process, the applied electric field drove
fiber formation and induced polarization of the metal atoms
in the precursors. Under the influence of the electric field,
different metal atoms in the high-entropy alloy underwent
electronic displacement polarization and dipole orientation
polarization, ultimately achieving uniform distribution
within the fibers. This nanoscale homogeneity within the
fibers provided favorable conditions for the migration
and bonding of metal atoms during subsequent sintering,
facilitating the formation of compositionally uniform and
structurally stable high-entropy alloy lattices. The lattice
fringes in local regions, together with measurements of
the interplanar spacing, are presented in Fig. S7. It can
be observed that within the continuous lattice of the high-
entropy alloy, multiple scales of interplanar spacing exist.
In certain areas, long-range ordered parallel lattice fringes
failed to form due to the pronounced lattice distortion
effect inherent to high-entropy alloys. This heterogeneity
and diversity at the lattice scale arose from the uniform
mixing of multiple principal-element atoms, which jointly
formed a solid-solution phase and induced strong lattice
distortion. The FTIR spectra and weight loss before and
after sintering of the HEA sample are shown in Fig. 2i, j.
The thermogravimetric analysis of the electrospun PVDF
membrane is shown in Fig. S8. As the sintering process
was completed, thermogravimetric analysis recorded the
changes in mass and the mass change rate. Additionally,
at wavelengths of 615 and 663 cm™!, FTIR revealed peaks
characteristic of the bonds between metal and oxygen
atoms. Finally, conductive silver paste was applied to
both ends of the sensor to connect external wires, and a
polyurethane (PU) film was laminated onto the outer
surface as a protective layer, completing the fabrication of
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the strain sensor device. The stress—strain diagrams of the
PU membrane and the electrospun substrate are shown in
Fig. 2h. The closely matched mechanical strength ensured
synergistic deformation during strain detection, thus
guaranteeing the accuracy and consistency of strain transfer.

3.2 Materials and Structural Characterization
of Strain Sensor

To explore the surface of high-entropy alloy fiber with dis-
torted lattice (Fig. 3a), the morphology and element dis-
tribution of single fibers were explored by HAADF-STEM
and STEM-EDS in Fig. 3b, which shows the homogeneous
distribution of elements Fe, Co, Ni, Mn, and Zn in a single
FeCoNiMnZn/PVDF fiber. X-ray photoelectron spectros-
copy (XPS) was applied to explore the electronic effects
and surface composition of the HEA fiber manufactured
by FeCoNiMnZn/PVDF. The XPS survey spectrum pre-
sented in Fig. 3c, d indicates the double peaks of Fe?* and
Fe3*. The binding energy (BE) at 709.6, 711.8, 723.0, and
724.9 eV is ascribed to Fe** 2p,,, Fe** 2p,,,, Fe’* 2p, ),
and Fe** 2p, 1, tespectively. Additionally, two satellite peaks
(marked as “Sat.”’) are observed at 715.9 eV and 732.3 eV.
The pre-peak before the main Fe** 2p,,, peak is attributed
to the Ni LM8 Auger lines, and the post-peak after the main
Fe’* 2p,, peak is attributed to the Auger lines of Ni LM4.
For the spectrum of Co 2p (Fig. 3e), the main peaks appear
in the BE of 781.6 and 791.4 eV, which, respectively, belong
to Co** 2ps,, and Co®* 2p, . Two satellite peaks are located
at 790.0 and 803.5 eV. The Ni LM8 Auger line appears as a
pre-peak before the Co>* 2p;,, main peak, and the Ni LM7
Auger line appears as a post-peak after the Co* 2ps;, main
peak. The Ni 2p spectrum (Fig. 3f) confirms the presence
of Ni**. The main peaks at 854.8 and 872.2 eV correspond
to Ni** 2p;,, and Ni** 2p, ,, respectively. The peaks with
a BE at 859.9 and 803.5 eV are attributed to the satellite
peaks. Additionally, the Co LM7 Auger line appears as a
pre-peak preceding the Ni** 2p,,, main peak, while the Co
LM6 Auger line acts as a post-peak following the Ni** 2p, ,
main peak. Additionally, the Mn LM1 Auger line serves as
a post-peak positioned after the Ni** 2p,, main peak. The
Mn 2p spectrum (Fig. 3g) indicates the presence of Mn?*
2p;, (644.2 €V) and Mn?* 2p, (655.8 eV). Two Ni LM2
Auger lines appear as a pre-peak and a post-peak, positioned
before and after the Mn>* 2p,, main peak, respectively. In
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Fig. 3h, the spectrum of Zn 2p shows the main peaks of Zn**
2p1;» and Zn* 25, at the BE of 1021.1 and 1044.2 eV. The
satellite peak is located at 1040.3 eV.

In typical metallic materials, increased temperatures aug-
ment electron—phonon elastic scattering, significantly reduc-
ing the mean free path of electrons and resulting in intricate
transport channels. This results in a significant elevation in

© The authors

resistivity with an increasing temperature [49, 61, 62]. In
comparison, HEAs, consisting of elements with significant
variations in atomic radius and chemical characteristics,
demonstrate pronounced lattice distortion resulting from
the disruption of optimal atomic arrangement [63—65]. The
XRD investigation of annealed FeCoNiMnZn/PVDF fib-
ers in Fig. 4a, which exhibits several face-centered cubic
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(FCC) phases, namely FeNi;, CoZn,;, and FeMnO; (PDF#
38-0419, 29-0523, and 76-0076), indicates diverse lattice
distortions. Furthermore, the selected area electron diffrac-
tion (SAED) patterns (Fig. 4c) exhibit distinct diffraction
rings that correspond to many FCC planes, including (111),
(220), (311), (110), and (511). These distortions induce
atoms to stray from their optimal lattice locations, dimin-
ishing the electron—phonon coupling constant [66, 67]. As
a result, the electron—phonon scattering process is dimin-
ished, reducing the temperature dependence of resistivity
and leading to a lower TCR. Raman spectroscopy results are
shown in Fig. 4b. In comparison with single-element sam-
ples, the HEA-doped samples exhibited a phonon redshift
of roughly 44.9 cm™! and a spectrum broadening of around
8.4%, signifying phonon softening and diminished phonon
lifespan [68]. The alterations in phonons further diminish
elastic scattering, hence reducing its impact on resistivity
[62, 69] and contributing to the observed decrease inTCR.

To capitalize on this feature, a rotational-structured flex-
ible strain sensor using electrohydrodynamic direct writing
was designed, with key geometric parameters including
the printing diameter D, width W, corner radius R, spacing
gap G, and number of turns N. This spiral architecture not
only enhances the extensibility of the conductive pathway
and its tolerance to deformation, but also effectively modu-
lates stress distribution and sensing performance (Fig. 4d).
As shown in Eqgs. 1 and 2, the total fiber length L and sen-
sor length L’ can be calculated. Moreover, smaller print-
ing diameter D and spacing gap G improve the spatial
resolution of the sensing region and boost strain sensitiv-
ity, while width W and the number of turns N together
determine the total conductive-path length and allowable
deformation range; variations in corner radius R markedly
influence strain-transfer efficiency and structural stabil-
ity. It is worth emphasizing that this design is not merely
intended to optimize mechanical response but is funda-
mentally aimed at achieving a low TCR, enabled by the
incorporation of additional high-entropy alloy fibers and
the uniform distribution of the conductive pathway.

N

L= Y [2R(x = 2)+2W]+ W (1
n=1
N

L= Z [2(D+G)|+D )
n=1
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To elucidate the correlation between the deforma-
tion mechanism and resistance variation, the strain and
stress distributions of the sensor under overall strains of
10%, 30%, and 50% were simulated by the finite element
method, as shown in Fig. 4g. When the overall structure is
stretched, stress and strain are highly concentrated at the
corner regions of the rotational-structured elements, while
the straight segments experience relatively low strain. This
non-uniform strain distribution is central to the deforma-
tion mechanism of the serpentine geometry. Such a spe-
cific strain pattern directly determines the resistance vari-
ation of the sensor.

According to the simulation results, the sensitive
material located at the corner regions, which undergoes
tensile strains far exceeding the average, initiated
microcrack formation and propagation first. This led to
the premature rupture of conductive pathways in these
regions and a significant increase in resistance. The local
microcracks induced by structural deformation were the
dominant factors causing resistance changes [70-72]. In
contrast, the straight segments, experiencing lower strain,
largely retained their conductivity. Therefore, the overall
resistance change of the sensor is primarily attributed to
contributions from these high-strain concentrated regions.
According to the indications from finite element analysis,
the corner radius R and the number of turns N in the
rotational structure of the strain sensor were adjusted,
and comparative experiments were conducted under 30%
strain. As shown in Fig. 4h, the gauge factor (GF) of the
sensor increased with the number of turns. In contrast,
enlarging the turning radius exerted an opposite effect on
the GF (Fig. 41). Considering their combined influence on
the overall sensor length, designers can select appropriate
turn numbers and turning radius to achieve tunable control
over the sensing performance.

The resistance measurements across the temperature
range from 260 to 360 K are illustrated in Fig. 4e. The
TCR a, calculated in Eq. 3, revealed a significantly lower
value of 45.59 ppm K~! for the HEA sample, in contrast to
2207.38 ppm K~! for the single-element variant. To further
investigate the peak shift induced by lattice distortion, XRD
patterns, thermogravimetric analysis, and thermomechani-
cal analysis were conducted for single-element Fe/PVDF,
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binary FeNi/PVDF, and HEA/PVDF samples, as shown in
Figs. S9-S11. The TCR of the sample was measured and
is compared in Fig. S12. The results validated that lattice
deformation and phonon softening significantly inhibit elec-
tron—phonon scattering. Consequently, the electron mean

© The authors

free path is less influenced by thermal heating, in contrast to
common metals. The abbreviated yet stable electron trans-
port channels contributed to resistivity stability during heat
fluctuations (Fig. 4f), facilitating the remarkably low TCR.

https://doi.org/10.1007/s40820-025-02033-3
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3.3 Performance Characterization of Strain Sensor

The fabricated sensor was tested under varying temperature
conditions using a universal tensile testing machine. The
sensor was stretched at a specified rate and displacement,
and the tensile performance is presented in Fig. 5.

The schematic of the sensor subjected to compression
testing is illustrated in Fig. 5a, where the change of resist-
ance is measured by applying different strains to the sensor
inside the fixture at varying and constant room temperatures.
To evaluate the thermal stability and TCR of the sensor, a
stationary sensor was tested under temperature variations
ranging from — 10 to 70 °C in 10 °C increments in Fig. 5b,
and no obvious baseline shift and significant changes in
resistance were observed throughout the process. The sur-
face temperature distribution of the sensor placed on the
heating stage under different set temperatures was obtained
using an infrared thermal imager. At the same time, the cor-
responding real-time resistance values were synchronously
recorded using an LCR digital bridge. These results are pro-
vided in Fig. S13 and Table S3. In dynamic stretching, 30%
strain tests were performed at 0, 20, 40, and 60 °C. The
resistivity changing rates at different temperatures exhibited
a high degree of consistency in the stretch-return curves and
the response test curves (Fig. 5c), which had imperceptible
deviations in magnitude and a stable 310 ms rising-edge
response time and 350 ms falling-edge response. Static
measurements at 0, 20, 40, and 60 °C in Fig. 5d revealed that
the sensor maintains nearly constant resistivity, underscoring
its outstanding temperature immunity. The fabricated strain
sensor exhibited excellent electrical and mechanical prop-
erties at room temperature. The gradient stability at each
strain stage is verified in Fig. 5e. The sensitivity and resolu-
tion in the low (5%—15%) and medium (20%—-50%) strain
ranges during loading and unloading are shown in Fig. 5f.
In Fig. 5g, during the 50% strain loading and unloading
processes at 0, 30, and 60 °C, the sensor exhibited consist-
ent resistance variation trends and amplitudes. This result
further confirmed the sensor’s thermal stability and intrin-
sic temperature immunity, which is a critical advantage for
applications requiring stable performance in environments
with temperature fluctuations. The gauge factor is defined
in Fig. 5i, which GF=0.41 at strain range from 0 to 6.5%,
GF=0.25 at strain range from 6.5% to 19.2% and GF=1.12
at strain range from 19.2% to 50%. The diagrams illustrat-
ing the mechanical properties of strain-tension and latent

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

strain—stress are presented in Figs. S14 and S15. The veri-
fication of cyclic stability is presented in Fig. 5h, and the
representative cyclic periods are shown in Fig. S16. After
6000 cycles of 30% continuous strain at 0, 30, and 60 °C, no
significant failure or deviation was observed, demonstrating
the sensor’s long-term stability and reliability.

To further investigate performance degradation during
fatigue testing, a full 6000-cycle experiment was conducted.
Using the mean strain extrema of the first 100 tensile cycles
as the baseline (Fig. Sh) and extracting quantified resistance
drift data every 1000 cycles. In Fig. 5j, the quantified resist-
ance drift increases with the number of cycles, confirming
the progressive degradation of performance. It is noteworthy
that the degradation rate was not constant. Specifically, the
resistance drift during the last 2000 cycles (1.54% per thou-
sand cycles) was significantly higher than that observed in
the first 4000 cycles (0.43% per thousand cycles), suggesting
that the material exhibits a certain degree of damage toler-
ance and stability in the later stages of cycling. These results
supported the conclusion in the main text that the material
demonstrates excellent durability under complex operating
conditions and provided critical evidence for quantifying
its long-term service lifetime. Additionally, the durability
tests exceeding 1200 h are shown in Fig. 5k, 1. The experi-
mental data indicated that the intrinsic resistance of the
sensor remained highly stable throughout the entire testing
period (Fig. 5k), with only a slight maximum increase of
9.6% observed at 1200 h. In Fig. 51, the TCR exhibited only
a minor variation of up to 12.74 ppm K~! (compared with
the initial value of 45.59 ppm K~!), which still represented
a relatively low TCR, demonstrating good thermal stability.
The minimal changes in these two key parameters clearly
confirm that even after 1200 h of continuous testing, the
HEA nanofibers did not show any significant degradation
in electrical performance.

A quantitative comparison with existing low-TCR flexible
strain sensors is provided in Table 1. The comparison of the
applicable temperature ranges for other sensors with low
resistance coefficient characteristics is presented in Fig. S17.
The performance of silver nanowires, graphene composites,
carbon nanotubes and metallic systems was summarized and
presented with respect to key parameters such as TCR, strain
range, GF, and stability.

Based on these comparative data, the detection of
large strains (>50%), the sensor developed in this study,
employing a high-entropy alloy as the sensing layer,
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maintains a relatively low TCR value. In contrast, sensors

designed for small-strain detection (< 1%) could achieve a

wider applicable temperature range and higher sensitivity,

but their strain detection range is extremely limited.

© The authors

This systematic comparison strongly highlighted the
novelty and advancement of our work, demonstrating an
outstanding balance between wide strain range and low
temperature sensitivity, and providing an effective solution

https://doi.org/10.1007/s40820-025-02033-3
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to the challenge of simultaneously addressing temperature
fluctuation interference and broad deformation monitoring
in practical applications.

3.4 Application of Wearable System

A flexible strain sensor was developed to demonstrate
excellent wearability and stable performance across vary-
ing temperature conditions. The sensor is lightweight,
soft, and highly conformable, adhering closely to human
skin and ensuring stable operation even at highly dynamic
regions such as joints. The low power consumption and
high sensitivity enable long-term monitoring, maintain-
ing signal stability in daily environments with fluctuating
temperatures. To evaluate its practical applicability, sen-
sors were installed on several human joints, including the
wrist, neck, shoulder, knee, elbow, ankle, and finger. The
installation method is shown in Fig. S18. Strain detection
experiments were conducted at ambient temperatures of
10 and 30 °C. As shown in Fig. 6a—g, the resistance of the
sensor increased with joint flexion due to the mechanical
strain. The magnitude of resistance change reflected the
sensor’s sensitivity to deformation. Optical and infrared
images of the wearable device mounted on human joints
are provided in Fig. 6h, further supporting the sensor’s
capability in practical scenarios.

The experimental results, together with the preced-
ing performance tests, confirmed that the sensor pos-
sessed sufficient resolution to distinguish different joint
motion angles, with clear differentiation observed both
across varying amplitudes of different joints and among
distinct motion angles of the same joint. Under varying
temperature conditions, sensors mounted on each body

part individually exhibited consistent signal trends and
comparable amplitude responses, without baseline drift,
thereby demonstrating high thermal stability and reliable
signal performance. In Fig. S19, by collecting and analyz-
ing the output signals, the system enabled stable and accu-
rate detection of joint motion in complex thermal environ-
ments. This capability supported real-time assessment of
movement and physical condition in practical wearable
applications.

3.5 Wide-Temperature-Range Manipulator Strain
Detection System

The designed flexible strain sensor was attached to the
finger joints of the robotic hand, as depicted in Fig. 7a, to
assess its strain stability for detecting grasping across vary-
ing environmental temperatures. The experiment was per-
formed at environmental temperatures of 10, 30, and 50 °C,
with the robotic finger grabbing the same object ten times
to replicate real operational settings (Fig. 7b). The box plots
indicate that the sensors positioned at various locations of
the robotic finger joints exhibit maximum severe errors of
0.59%, 0.7%, 0.59%, 0.66%, and 0.88%, with maximum
average value errors of 0.16%, 0.18%, 0.09%, 0.16%, and
0.21%, respectively. In addition, a dynamic temperature
variation experiment is conducted in Fig. 7c. The robotic
arm is equipped with fingertip-mounted sensors, grasped an
object in a low-temperature environment of 0 °C, and sub-
sequently transferred it to a room-temperature environment
of 20 °C for release. Throughout this transition, the strain
signals remained clear and stable, without any noticeable
baseline drift or signal distortion caused by the environmen-
tal temperature change. The resistance peaks corresponding

Table 1 Comparison with low TCR strain sensors in the latest research

Materials of Sensitive Layer TCR (ppm K1) Strain range (%) GF Temperature range (°C) Stability (cycles) References
AgNWs, SWCNTs 221 80 3.39 —20-130 20000 [73]

Gold, SWCNTs, FLG 160 80 2415.76 0-60 2000 [74]

CNT, GNP, GCE 114 100 14550.2 0-100 10000 [28]
A-POSS, GO-CNT 16.67 0.04 25000 —20-100 100 [75]
Pb,Ru,04, TiB, 281 +0.03 19.8 100-700 - [76]
AgNPs, SiO, 30 0.3 16.4 10-60 3600 [35]

Mo, W, Nb Alloy > 500 0.45 448.5 —150-1100 1200 [77]

This work 45.59 50 1.12 —10-70 6000 -

@ Springer

SHANGHAI JIAO TONG UNIVERSITY PRESS




191 Page 14 of 19 Nano-Micro Lett. (2026) 18:191

‘a Wrist pronation and supination : b Neck extend and retract \I ( C Shoulder abduction and lower ‘I
" oaof 30°C] | 30°C| | 0af 30°C] |
| & 1 I go2f |
008, 1 1 I
I 1 Soaf
P . . . I 1, . . I
I oof 10°C : 10°C : 103 10°C :
) I go.
| 5 0.05} 1 I g :i 1
I Iy Sha I
| 000p ‘ . i 1 [ X ) 1
1 0 5 10 15 20 | 201 0 10 15 20 |
.- Time(s) | _ ______ Tme® P Time(@) 0 Dn I
__________________ 7 —— e ——
I( d  Knee bend and straighten e |( e Elbow fold and unfold \I
03 30°C 4 I
I |
1 2 02f 3 | 1
= I !
Y ! I
I : : : J : : : =i
103l 10°C _-1 o3} 10°C| !
I gozf o I go2 :
A NNANAN s |
| 0.0 | 0.0 1
| 0 5 10 15 20 1 0 5 10 15 20 |
N _Ti'_ﬂef) _______ \ Time (s) )
l( f Ankle flexion and extension {g Finger grasp and release :
, 010p 30°C : 0.10 30°C| 1
1€ N 2 1
z 0.05 N 2 0.05 1
< N I 4
I 0.00 S N I 0.00 W :
1 : : : J : : :
I ool 10°C I ot0p 10°C| |
I I S
: 0.00 . . ; : 0.00 |
| 0 5 10 15 20 1 0 & 10 15 201
Time (s) Time (s) )

Fig. 6 Application of strain sensors in wearable devices. The collection of strain signals by sensors mounted on the a wrist, b neck, ¢ shoulder,
d knee, e elbow, f ankle, and g finger joints of the human body. h Optical and infrared thermal images of the sensor worn on human joints

to the grasping and releasing events were accurately pre-  signal stability and reproducibility across varying tempera-
served. This dynamic thermal scenario verified the sensor’s ~ ture environments, rendering them appropriate for strain
outstanding environmental adaptability under realistic and  monitoring of robotic fingers in intricate thermal situations.
complex operating conditions. The results demonstrate that ~ This offers dependable technical assistance for attaining
the engineered flexible strain sensors possessed exceptional ~ high-precision, low-power flexible electronic systems.
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4 Conclusions

This study presents a temperature-immune flexible strain
sensor fabricated by electrohydrodynamic direct writing
of FeCoNiMnZn high-entropy alloy fibers and subsequent
annealing-induced metallization within the PVDF fiber
matrix. The sensor exhibited a gauge factor of 1.12 at
50% strain, a rapid response time of 310 ms, and excellent

SHANGHAI JIAO TONG UNIVERSITY PRESS

cycling stability over 6000 loading—unloading operations
without baseline drift. Owing to the intrinsic lattice dis-
tortion and phonon softening effects of the high-entropy
alloy, the device achieved a low TCR of 45.59 ppm K~!
across — 10 to 70 °C, ensuring signal stability under fluc-
tuating thermal environments. The temperature-immune
characteristics and flexibility of the device enabled reliable
strain monitoring in multiple scenarios, including human

@ Springer
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joint motion detection, wearable health monitoring, and
robotic manipulation, underscoring its adaptability in com-
plex conditions. The strategy of employing high-entropy
alloys as thermally stable conductive frameworks provides
a viable route to overcome the limitations of conventional
composite compensation methods. Moreover, as a direct-
writing technique, this approach is highly compatible with
mature industrial processes such as inkjet printing and roll-
to-roll manufacturing, allowing seamless integration into
existing flexible electronics production lines for patterned
circuit fabrication without complex transfer steps. Overall,
this study not only advances the development of intrinsi-
cally stable flexible sensors but also lays a solid foundation
for next-generation wearable electronics and flexible sen-
sor systems capable of long-term operation in thermally
dynamic environments.
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