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HIGHLIGHTS

•	 The latest advancements in neural signal decoding and the integration of flexible bioelectronics for non-invasive brain-computer 
interfaces are reviewed.

•	 Multimodal data fusion, hardware-software co-optimization, and closed-loop control strategies are critical for enhancing the robust-
ness, adaptability, and real-time performance of brain-computer interface (BCI) systems.

•	 The robust real-world deployment of BCIs requires breakthroughs in cross-subject generalization, environmental adaptability, and 
system reproducibility.

ABSTRACT  The development of non-invasive brain-computer interfaces (BCIs) 
relies on multidisciplinary integration across neuroscience, artificial intelligence, 
flexible electronics, and systems engineering. Recent advances in deep learning have 
significantly improved the accuracy and robustness of neural signal decoding. Parallel 
progress in electrode design—particularly through the use of flexible and stretch-
able materials like nanostructured conductors and novel fabrication strategies—has 
enhanced wearability and operational stability. Nevertheless, key challenges persist, 
including individual variability, biocompatibility limitations, and susceptibility to 
interference in complex environments. Further validation and optimization are needed 
to address gaps in generalization capability, long-term reliability, and real-world opera-
tional robustness. This review systematically examines the representative progress in 
neural decoding algorithms and flexible bioelectronic platforms over the past decade, 
highlighting key design principles, material innovations, and integration strategies 
that are poised to advance non-invasive BCI capabilities. It also discusses the impor-
tance of multimodal data fusion, hardware-software co-optimization, and closed-loop 
control strategies. Furthermore, the review discusses the application potential and associated engineering challenges of this technology in clinical 
rehabilitation and industrial translation, aiming to provide a reference for advancing non-invasive BCIs toward practical and scalable deployment.
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1  Introduction

The development of brain-computer interfaces (BCIs) rep-
resents a significant integration of neuroscience, artificial 
intelligence (AI), and bioelectronics, establishing direct com-
munication pathways between neural activity and external 
technological systems [1–6]. This integration enables effective 
control of computer interfaces, assistive devices, and robotic 
platforms, thereby enhancing human-technology interactions 
[7–11]. Specifically, BCIs are broadly categorized into two 
types: invasive and non-invasive. Invasive BCIs, which utilize 
direct electrode-neural tissue contact, typically achieve high 
signal-to-noise ratio (SNR), sensitivity, and resolution, mak-
ing them suitable for precision interventions requiring high 
signal quality. However, their application is constrained by 
surgical risks, biocompatibility issues, and long-term stabil-
ity challenges. At present, invasive BCIs are mainly used in 
clinical settings for advanced cognitive research and motor 
function restoration in paralyzed patients, which may limit 
near-term direct translation to broader populations, including 
healthy individuals [12–21]. In contrast, non-invasive BCIs, 
which do not require surgery and offer high safety, have dem-
onstrated broad scalability and applicability in clinical prac-
tice. These systems are applied in various domains, such as 
communication, rehabilitation, virtual reality (VR) and aug-
mented reality (AR), cognitive impairment, mental health, 
fatigue and vigilance monitoring, chronic inflammation, and 
autonomic nerve regulation [22–24]. Clinically, they serve 
as valuable non-pharmacological interventions for conditions 
like amyotrophic lateral sclerosis (ALS) and stroke rehabilita-
tion, contributing to improvements in patients’ quality of life 
[5, 25, 26]. For instance, Sellers et al. [27] proposed a non-
invasive BCI system that restored essential communicative 
functions in ALS patients, enabling reliable letter selection 
and spontaneous communication in over two-thirds of trials. 
Similarly, Biasiucci et al. [26] integrated a non-invasive BCI 
with functional electrical stimulation, showing improvements 
among chronic stroke patients. Beyond its medical applica-
tions, BCI technology is being increasingly applied in enter-
tainment and automotive safety domains, highlighting its 
broad societal impact [28–31].

Electroencephalography (EEG) remains the primary signal 
acquisition method for non-invasive BCIs, valued for its non-
invasiveness, high temporal resolution, and clinical applicability 
[32, 33]. However, EEG signals are susceptible to physiological 

artifacts and environmental electromagnetic interference, which 
result in a low SNR in real-world environments, thereby low-
ering signal quality and affecting the reliability of subsequent 
analysis [34]. Other non-invasive neuroimaging technologies 
face similar challenges. For instance, functional near-infrared 
spectroscopy (fNIRS) and functional magnetic resonance 
imaging (fMRI) are constrained by low temporal resolution. In 
contrast, magnetoencephalography (MEG), despite its higher 
spatiotemporal resolution, requires strict environmental condi-
tions [35–38]. Furthermore, conventional decoding paradigms, 
including motor imagery (MI), steady-state visual evoked 
potentials (SSVEP), and P300 event-related potentials (ERP), 
are constrained by factors such as dependence on user state 
and individual variability. These limitations impede their abil-
ity to achieve high robustness in real-world scenarios [39–42]. 
Therefore, the development of non-invasive neural recording 
technologies with millisecond-scale temporal resolution and 
high SNR remains a key direction for advancing the practical 
application of high-performance BCIs [43].

To support more reliable performance in real-world 
applications, recent research is increasingly focused on two 
directions: advancing neural signal decoding through AI 
and integrating flexible bioelectronic platforms. The rapid 
progress of deep learning architectures [44–46], especially 
convolutional neural networks (CNNs), multimodal hybrid 
networks, and Transformer models, has improved decoding 
accuracy and system operational stability, with performance 
surpassing that of traditional machine learning methods 
[47–50]. Meanwhile, multimodal technological strategies 
are continuously expanding the boundaries of non-invasive 
neural monitoring, offering new insights for analyzing spa-
tiotemporal neural dynamics and their regulatory mecha-
nisms [51]. For instance, multimodal stimulation paradigms 
that integrate visual and auditory cues have been shown to 
improve the accuracy and robustness of neural signal decod-
ing. In summary, these technological trends indicate feasi-
ble pathways toward high-performance non-invasive BCIs, 
although related engineering implementation and clinical 
translation challenges still need to be addressed [52].

Traditional rigid electrodes, due to their high mechanical 
stiffness and limited ability to conform to the skin surface, 
frequently cause discomfort and unstable contact. This can 
lead to a degradation in neural signal quality over time, poten-
tially affecting the accuracy and reliability of BCIs [53–55]. 
Recent advances in flexible bioelectronics provide promising 
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solutions for enhancing the electrode-skin interface [56–63]. 
By employing flexible polymer substrates and stretchable 
conductive materials, electrodes have shown notable improve-
ments in mechanical compliance, conductivity, and resistance 
to deformation [53, 64–66], thereby enhancing wearing com-
fort and signal stability [62, 67, 68]. In particular, electrode 
designs based on flexible conductive films, nanowire materials, 

or hydrogels hold promise for reducing electrode-skin inter-
face impedance, mitigating motion artifacts, and improving the 
SNR [69–77]. Looking ahead, combining these flexible sens-
ing platforms with advanced deep learning decoding methods 
is expected to further improve the performance of non-invasive 
BCIs further. Specifically, the innovation in flexible electrodes 
establishes the hardware foundation for high-performance 

Fig. 1   Non-invasive BCI: converging frontiers in neural signal decoding and flexible bioelectronics integration



	 Nano-Micro Lett.          (2026) 18:193   193   Page 4 of 49

https://doi.org/10.1007/s40820-025-02042-2© The authors

BCIs. By improving interfacial contact and suppressing motion 
artifacts, these electrodes provide more stable, high-SNR raw 
signals, thereby supplying high-fidelity data for subsequent 
decoding. Building on this platform, advanced algorithms, 
such as deep learning, leverage their powerful feature learn-
ing capabilities not only to achieve significant improvements 
in decoding performance compared to traditional methods but 
also to actively compensate for inherent hardware limitations 
such as residual noise and cross-subject variability. This syn-
ergistic paradigm, which embodies the principle of hardware 
laying the foundation and algorithms driving advancement, 
forms a positive feedback loop that collectively expands the 
performance boundaries of non-invasive BCIs [78–80].

This review provides a comprehensive overview of the latest 
advancements in neural signal decoding, flexible bioelectron-
ics, and their synergistic integration in the field of non-inva-
sive BCIs, highlighting their impact on clinical and industrial 
applications. The article is structured as follows: Following 
the introduction in Sects. 1 and 2 reviews pivotal advances in 
neural signal decoding, including multimodal stimulation para-
digms, multimodal neural signal acquisition technologies, and 
the significance of dynamic neural decoding and closed-loop 
control strategies driven by deep learning. Section 3 critically 
explores technological innovations in flexible bioelectronics, 
including interface optimization mechanisms for conduc-
tive thin films, miniaturization strategies for nanowire-based 
devices, multiphysics coupled design of wearable systems, and 
hardware-software co-optimization with deep learning archi-
tectures. Section 4 addresses current technological challenges 
and future opportunities, focusing on multimodal neural sens-
ing, the enhancement of robustness in adaptive closed-loop 
systems, and the development of scalable clinical translation 
pathways. Through a comprehensive analysis of interdisci-
plinary technological convergence, this review establishes a 
tripartite framework (decoding-sensing-application) for next-
generation non-invasive BCIs and provides actionable insights 
to support their integration into precision medicine and intel-
ligent human-machine interaction scenarios (Fig. 1).

2 � Advancing Neural Signal Decoding 
Methodologies

The core performance limitations of non-invasive BCIs 
primarily originate from inherent biophysical constraints. 
When cortical neural activity passes through multiple 

tissue layers (e.g., the skull and cerebrospinal fluid), it may 
cause spatial blurring and amplitude attenuation of the sig-
nals [81–83]. Consequently, scalp-recorded EEG typically 
exhibits low spatial resolution, low SNR, and high suscep-
tibility to physiological artifacts and environmental noise. 
Additionally, individual variations in anatomical structure, 
physiological states (e.g., fatigue, attention), and psychologi-
cal states (e.g., motivation, emotion) further exacerbate the 
non-stationarity and time-varying nature of neural signals 
[84–86]. These challenges not only undermine the generali-
zation of decoding algorithms but also hinder the stable and 
reliable decoding of user intent [87, 88].

To address these challenges, a typical neural signal decod-
ing pipeline generally comprises three key stages: preproc-
essing, feature extraction, and classification. In recent years, 
with the rapid advancement of deep learning technologies, 
BCIs have shown improvements in overall performance 
[89–91]. A notable trend in current research is the shift from 
"open-loop, static" systems to "closed-loop, adaptive" para-
digms [92], with development direction focusing on enhanc-
ing real-time decoding capabilities, improving asynchronous 
detection mechanisms, and optimizing shared control strate-
gies. The core driving force behind this transformation is AI-
driven closed-loop human-machine interaction architectures. 
These architectures not only integrate multimodal sensing 
and deep learning models but also enable dynamic coordi-
nation and bidirectional adaptation between the brain and 
external devices through a "perceive-decode-applications" 
closed-loop mechanism [88].

2.1 � Multimodal Stimulation Paradigms for Enhanced 
Neural Decoding

Research in non-invasive BCIs is increasingly focusing on the 
integration of multimodal paradigms to significantly enhance 
overall system performance. This performance improvement 
is primarily achieved through advanced multimodal fusion 
algorithms that effectively integrate information from dif-
ferent sensory channels such as visual, auditory, and tactile, 
thereby optimizing the accuracy and robustness of neural sig-
nal decoding [93, 94]. Specifically, multimodal information 
processing first requires the construction of efficient fusion 
algorithms, such as signal analysis based on manifold geom-
etry, feature extraction using common spatial patterns (CSP), 
and signal calibration leveraging source imaging priors 
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[95–97]. These methods represent preliminary approaches 
to multimodal integration and modestly improve decod-
ing accuracy. Rohe et al. [52] combined EEG with Bayes-
ian modeling to reveal the neural dynamics of hierarchical 
Bayesian causal inference in multisensory perception. The 
work revealed that the brain does not simply integrate sen-
sory signals, but dynamically arbitrates between integration 
and segregation strategies based on intersensory conflict, 
computing the final percept through "model averaging". It 

was further demonstrated that pre-stimulus neural oscilla-
tions (such as alpha and gamma power) modulate the causal 
"prior", thereby elucidating the neural basis of perceptual 
decision-making with temporal precision. Methodologically, 
the original authors employed rigorous statistical approaches, 
including cluster-based multiple comparison correction and 
bootstrapped confidence intervals, to substantiate their con-
clusions (Fig. 2a). Notably, Li et al. [98] developed a flexible 
electrode, which combined SSVEP with multimodal auditory 

Fig. 2   Schematic illustration of multimodal stimulation paradigms for neural signal decoding. a Left: An example trial of the flash-beep para-
digm. Right: Across-participants’ mean illustrating absolute differences. Reproduced with permission [52].  Copyright 2019, Springer Nature. 
b Left: Amplitude distribution of evoked EEG signals in response to the words "one" to "nine". Right: The language and frequency spectra 
of the feedback EEG signals in MASSR-EEG. Reproduced with permission [98]. Copyright 2023, Wiley-VCH GmbH. c System performance 
under different stimulus conditions and pairwise classification accuracy. Reproduced with permission [99]. Copyright 2016, World Scientific 
Publishing Company. d Stimulation interface for the P300 and SSVEP paradigms. Reproduced with permission [100]. Copyright 2015, IEEE. e 
Framework of the hybrid EEG signal processing module combining SSVEP and P300. Reproduced with permission [41]. Copyright 2022, Else-
vier. f Experimental designs for the three BCI paradigms. Reproduced with permission [101]. Copyright 2019, Oxford University Press. g Mul-
tidimensional paradigm combining perception, sustained attention, selective attention, and episodic memory tasks, with transfer learning used to 
predict memory performance. Reproduced with permission [102]. Copyright 2019, Springer Nature. h Visual representation of emotion-related 
components across cortical visual areas. Reproduced with permission [103]. Copyright 2019, The American Association for the Advancement of 
Science



	 Nano-Micro Lett.          (2026) 18:193   193   Page 6 of 49

https://doi.org/10.1007/s40820-025-02042-2© The authors

steady-state responses (MASSR). The bimodal paradigm sig-
nificantly outperformed the unimodal conditions, achieving 
an average recognition accuracy of 89.6% in the occipital 
channels (O1, Oz, O2), while the MASSR paradigm attained 
only 36.7% in the temporal channels (FT9, FT10, TP9, 
TP10). When the SSVEP-MASSR multimodal paradigm was 
employed, Li et al. observed that the accuracy improved to 
90.4% in the visual channels and 54.0% in the auditory chan-
nels. This work served as a proof of concept for the paradigm 
using the nine words ("one" to "nine"). Extending its appli-
cability to more complex semantic scenarios is a key next 
step for further development (Fig. 2b). Beyond audiovisual 
integration, the incorporation of the tactile modality further 
expands the potential of multimodal BCIs. Yin et al. pro-
posed an innovative auditory-tactile bimodal P300 BCI [99]. 
The results showed that the bimodal paradigm significantly 
outperformed the unimodal conditions, achieving an online 
information transfer rate (ITR) of 10.77 bits min−1, which 
represented an improvement of 45.43% (p < 0.05) and 51.05% 
(p < 0.001) over the auditory-only and tactile-only paradigms, 
respectively. It also achieved a higher average accuracy of 
88.67% with fewer trials (average 2.92). Future work explor-
ing its application to more complex scenarios is a promising 
and anticipated direction for development (Fig. 2c).

Fan et al. [100] developed a hybrid BCI system based 
on P300 and SSVEP for vehicle destination selection. The 
system achieved an average accuracy of 98.93% ± 0.48% and 
a mean selection time of 25.95 ± 1.04 s under real driving 
conditions. The study represents an important step forward 
by validating the system’s performance in real driving envi-
ronments with fluctuations in illumination and noise. Future 
work could systematically evaluate its performance under a 
broader spectrum of complex and extreme conditions to fully 
define its operational limits (Fig. 2d).

Tang et al. [41] developed a BCI painting system that 
employed a hybrid control approach, combining SSVEP and 
P300. The system achieved an average tool selection accu-
racy of 88.92% ± 3.94%, with an ITR of 74.20 ± 5.28 bpm 
in the copy-painting task and 71.80 ± 5.15 bpm in the 
free-painting task. The average tool selection accuracy 
was slightly higher than that of the traditional P300-only 
system (86.78% ± 4.56%), while the ITR was signifi-
cantly superior to the conventional system (copy-painting: 
60.86 ± 6.56 bpm; free-painting: 58.93 ± 6.11 bpm). Sub-
jective evaluations demonstrated significantly higher user 
satisfaction (4.10 ± 0.64 vs. 3.40 ± 0.75) and motivation 

scores (4.50 ± 0.51 vs. 2.85 ± 0.67), indicating enhanced 
operational efficiency and improved user experience. 
Although the means and standard deviations reported by 
the original authors provide preliminary evidence of the 
system’s advantages, more comprehensive statistical analy-
ses in future studies will be essential to rigorously validate 
these performance claims (Fig. 2e). Crucially, multimodal 
integration exhibits neuroplasticity across both spatial and 
temporal dimensions, further enhancing the robustness 
of neural decoding. Zhang et al. [39] designed a hybrid 
non-invasive BCI that integrates MI and high-frequency 
SSVEP (34/35 Hz) to control a wearable soft robotic glove 
designed for stroke rehabilitation. Methodologically, they 
employed the filter bank common spatial pattern (FBCSP) 
to process MI signals and the filter bank canonical cor-
relation analysis (FBCCA) to decode SSVEP signals, 
ultimately making decisions through a weighted fusion 
algorithm. Online experimental results demonstrated the 
system’s feasibility, achieving mean classification accu-
racies of 95.83% ± 6.83% in 12 healthy subjects and 
63.33% ± 10.38% in 9 stroke patients. This high-frequency 
SSVEP reduced visual fatigue, while decomposed action 
imagery improved task intuitiveness, forming a closed-loop 
"peripheral-central-peripheral" rehabilitation framework. 
Meanwhile, although the dataset study by Lee et al. pro-
vided a theoretical foundation for the necessity of multi-
modal BCIs [101]. The study revealed that the MI para-
digm had the highest rate of BCI illiteracy (53.7%), while 
the exogenous paradigms—ERP and SSVEP—exhibited 
much lower illiteracy rates of approximately 10%. More 
importantly, all participants were able to effectively con-
trol at least one paradigm, with no user being classified as 
universally illiterate. These results suggest that by devel-
oping adaptive systems that integrate multiple paradigms, 
it is possible to leverage the complementary strengths of 
different modalities, thereby extending control to a wider 
range of users (Fig. 2f).

In the domain of more complex passive BCIs and 
advanced cognitive state decoding, multimodal integration 
likewise demonstrates promise. Mirjalili and Duarte devel-
oped a transfer learning framework integrating EEG data 
from sustained attention [102], selective attention, and visual 
perception tasks to decode the encoding of episodic memory. 
Their findings suggested that tracking multidimensional cog-
nitive states enhanced predictive validity through distributed 
neural engagement patterns, improving memory encoding 
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prediction accuracy from 72% to 81.4% (p < 0.001). A more 
comprehensive understanding of the underlying neural 
mechanisms may be pursued in future work by leveraging 
complementary neuroimaging techniques (Fig. 2g). Kragel 
et al. [103] expanded this framework by demonstrating how 
affective states are spatially encoded across visual hierarchy 
regions (V1-PH), enabling decoding of complex cognitive-
affective interactions (Fig. 2h). To address the challenges in 
multimodal integration and further enhance the performance 
of non-invasive BCIs, innovative deep learning networks 
will be a crucial future direction. Particularly, Transformer 
networks suitable for multimodal signal analysis, high-order 
feature fusion techniques, and algorithms based on cross-
modal alignment will play a pivotal role.

2.2 � Multimodal Signal Acquisition: Techniques 
and System Design

EEG remains the foundational method for non-invasive 
BCI signal acquisition because of its high temporal reso-
lution and non-invasive characteristics. However, EEG is 
susceptible to artifacts and has limited spatial resolution, 
which has led to growing interest in integrating multimodal 
neuroimaging techniques. Recent approaches combine EEG 
with complementary modalities: fNIRS provides hemody-
namic data, while MEG enhances spatiotemporal resolution. 
This integration effectively addresses the inherent trade-off 
between temporal and spatial resolution in non-invasive sys-
tems [104–106].

Fig. 3   Schematic illustration of multimodal signal acquisition. a Left: EEG and fNIRS features calculated by TRCA. Right: EEG and fNIRS 
channels. Reproduced with permission [107].  Copyright 2022, IEEE. b EEG-informed fMRI and connectivity analyses in the value-based task. 
Reproduced with permission [108]. Copyright 2017, Springer Nature. c Left: 140 ms full-space event topography maps. Right: ITR and clas-
sification accuracy of single-modality EEG, single-modality MEG, and MEG-EEG fusion. Reproduced with permission [109]. Copyright 2024, 
IEEE. d Synchronization performance. Reproduced with permission [110]. Copyright 2017, Springer Nature. e Neurovascular coupling mod-
eling. Reproduced with permission [111]. Copyright 2025, John Wiley and Sons
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Recent studies in the field of BCIs have demonstrated 
that combining EEG and fNIRS can enhance system per-
formance. Jiang et al. [107] developed a unified EEG-fNIRS 
bimodal signal processing framework to analyze single-trial 
neural signals during robot-assisted bimanual cyclical tasks. 
They employed the artifact subspace reconstruction algo-
rithm to remove large-amplitude artifacts from EEG, and 
applied the temporal derivative distribution repair method 
to correct motion artifacts and baseline drift in fNIRS signals. 
The analysis time window was defined from 2 s before to 
4 s after task execution, during which event-related desyn-
chronization/synchronization (ERD/ERS) and oxygenated 
hemoglobin concentration changes (ΔHbO) were extracted 
as features. In terms of statistical methods, Jiang et al. found 
statistically significant differences in both ERD/ERS and 
ΔHbO responses among the three bimanual tasks during 
specific time intervals (p < 0.001), with post hoc analyses 
indicating that the anti-phase task elicited the strongest 
activation using statistical analysis. For classification, they 
used a support vector machine, which demonstrated that the 
fused EEG-fNIRS features achieved an accuracy of 90.1% 
in discriminating the three bimanual movement patterns—
significantly higher than the accuracy using single-modality 
features (EEG: 74.8%; fNIRS: 82.2%) (Fig. 3a). FMRI offers 
extremely high spatial resolution, enabling precise localiza-
tion of brain activity. However, its temporal resolution is con-
strained by the slow nature of the hemodynamic response. 
Simultaneous EEG-fMRI acquisition and fusion can combine 
the high temporal resolution of EEG with the high spatial 
resolution of fMRI, providing comprehensive spatiotemporal 
information about brain activity. This multimodal integration 
has been successfully applied in various BCI applications, 
including emotion recognition and MI. Pisauro et al. [108] 
employed a snack choice task combined with simultane-
ous EEG-fMRI and computational modeling to investigate 
the role of the posterior medial frontal cortex (pMFC) in 
value-based decision-making. To mitigate artifacts inherent 
to simultaneous recording, the study used twisted leads to 
reduce electromagnetic interference and performed offline 
removal of gradient artifacts. Results revealed that bold sig-
nal activity in the pMFC was significantly associated with 
these EEG dynamics, suggesting its role as a neural sub-
strate for evidence accumulation during value-based choices 
(Fig. 3b). Ji et al. [109] constructed a 16-command SDMA-
encoded MEG-EEG fusion modality BCI system. The study 
implemented a synchronous triggering mechanism via a 

16-bit signal transmission link between visual stimuli and 
MEG data acquisition, ensuring precise synchronization 
between stimulus onset and data recording initiation. With-
out additional signal-domain preprocessing, the research 
team directly fused the two modalities and decoded them 
using the multiclass discriminative canonical pattern match-
ing algorithm. Under a 4-s data window, the fusion model 
achieved an average classification accuracy of 91.71%, 
markedly exceeding that of MEG alone (88.57%) and EEG 
(60.76%), with corresponding p-values below 0.01 and 0.001. 
This performance gain was attributed to MEG’s heightened 
sensitivity to contralateral polarity reversal in the occipital 
cortex, confirming the critical role of multimodal acquisition 
in enhancing spatial decoding performance in SDMA-based 
BCI systems (Fig. 3c). The Syntalos framework, developed 
by Klumpp et al. [110], is designed to address the challenge 
of precise synchronization in multimodal data acquisition, 
particularly for long-duration recordings. The framework 
established a globally shared master clock and continuously 
performs statistical analysis and correction of timestamps 
from various devices, ensuring precise alignment of all input 
timestamps. Experimental validation demonstrated that Syn-
talos maintains stable synchronization across devices for over 
24 h. In a simulated time-drift experiment (with a systematic 
drift of 1 ms per second), they observed that the accuracy of 
the behavioral classifier dropped from nearly 100% to near-
chance levels when the temporal misalignment between 
neural spike signals and whisker-touch behavioral data accu-
mulated to 1 s. This demonstrated that Syntalos addressed 
the challenge of precise synchronization in multimodal 
data acquisition, particularly for long-duration recordings 
(Fig. 3d). Li et al. [111] proposed the BrainFusion framework 
to address challenges in reproducibility and deployment in 
multimodal BCI research. The framework manages signal 
temporal synchronization through standardized data con-
tainers and two alignment strategies (time-point alignment 
and event-based alignment), and supports the BIDS format 
to enhance data comparability. Case studies demonstrated 
its efficacy: it achieved 95.5% accuracy in EEG-fNIRS MI 
classification and deployed an EEG-ECG sleep staging 
model (80.2% accuracy) as an executable end application. 
The framework is primarily designed for offline analysis. 
Extending it to real-time closed-loop control constitutes a 
valuable direction for future research (Fig. 3e). The dual 
capacity to resolve spatiotemporal dynamics and endogenous 
modulation establishes multimodal approaches as critical for 
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clinically viable BCIs [112]. To address multimodal engi-
neering challenges, Bayesian frameworks and advanced algo-
rithms have been widely applied in EEG source imaging to 
address source localization spatial priors [113]. To minimize 
mutual electromagnetic interference between sensors of dif-
ferent modalities, in addition to electromagnetic shielding 
techniques, signal processing filters tailored to specific noise 
characteristics should be integrated [84]. Moreover, in online 
or closed-loop systems, the phase lag inherent in signal trans-
mission, processing, and actuator response cannot be ignored, 
as it directly determines the timeliness and effectiveness of 
closed-loop interventions. To compensate for such delays, 
advanced signal processing and predictive algorithms must 

be developed to optimize the efficiency of the processing 
pipeline and reduce computational complexity [114]. Time 
jitter and misalignment caused by systems with different 
sampling rates require coordinated advances in both precise 
hardware synchronization and software-level coordination 
[115, 116].

2.3 � Single‑Model Deep Learning Architectures 
for Neural Dynamics Interpretation

Deep learning has become a key approach for decoding non-
invasive neural signals [117–119], effectively addressing 

Fig. 4   Schematic illustration of single-model deep learning architectures. a Comparison of BCI Decoder Performance with Random Levels and 
Traditional AR Methods. Reproduced with permission [121].  Copyright 2024, Springer Nature. b Top: Classification performance comparison 
of ablation studies on two datasets. Bottom: Classification performance comparison of models using different convolutional layer filter blocks. 
Reproduced with permission [123]. Copyright 2022, Elsevier. c Top: Accuracy of five models on the benchmark dataset. Bottom: Classification 
accuracy of the model under human intervention. Reproduced with permission [124]. Copyright 2025, Elsevier. d Left: Training loss of the gen-
erator and discriminator, and schematic of the model algorithm. Right: t-SNE visualization. Reproduced with permission [125]. Copyright 2021, 
IEEE
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challenges such as spectral-temporal complexity, individual 
variability, and data scarcity. Although deep learning has 
achieved significant progress in enhancing decoding per-
formance for non-invasive BCIs in recent years, its practi-
cal application still faces substantial challenges. These chal-
lenges represent the critical bottleneck in transitioning BCIs 
from laboratory settings to real-world deployment. So, an 
increasing number of recent studies have begun to actively 
simulate realistic conditions, introducing controlled pertur-
bations to probe the performance limits of algorithms and 
thereby to reveal their applicability boundaries in real-world 
scenarios [120].

In terms of model architecture, researchers have explored 
diverse approaches centered around the spatiotemporal 
structure, manifold properties, and spectral patterns of EEG. 
Forenzo et al. [121] constructed an EEG-based BCI dataset 
comprising 28 subjects and 168 h of recordings, designed for 
online continuous pursuit tasks. Results demonstrated that 
deep learning (EEGNet, PointNet) decoders significantly 
outperformed chance level across all sessions. Forenzo 
et al. used a Holm-adjusted Wilcoxon signed-rank test to 
statistically validate this performance (p < 0.05), thereby 
supporting the reliability of MI features in the dataset. To 
systematically evaluate decoding stability under variations 
in electrode configuration and physiological noise interfer-
ence, the authors removed five electrodes and introduced 
ocular artifacts into the data. Results showed no significant 
decline in decoding performance (p = 0.463), indicating 
the model’s robustness in device variation scenarios. The 
model weights and code have been made publicly available 
(Fig. 4a). Li et al. [122] developed the HR-SNN model to 
investigate its robustness under noise interference and chan-
nel loss conditions. When subjected to Gaussian noise with 
an amplitude of 10%, the model achieved an accuracy of 
68.59% using subject-specific transfer learning (SSTL). 
Under a more severe scenario with 16 out of 64 channels 
randomly removed, the SSTL accuracy remained at 71.48%.

In addition, Li et al. [123] proposed a Riemannian convo-
lutional neural network (RMCNN) that integrates a spatial-
temporal convolutional layer with a Riemannian block. The 
model was evaluated for cross-session generalization across 
three public MI datasets. Experimental results demonstrated 
that the model achieved an offline classification accuracy of 
80.52% on the BCI Competition IV 2a dataset. To validate 
its effectiveness, Li et al. conducted a systematic comparison 
between RMCNN and baseline methods such as FBCSP and 

EEGNet using the Wilcoxon test, with statistical results con-
firming the significant advantages of their method. Further-
more, the study included an ablation experiment to assess 
the functional contributions of different components of the 
model. To promote research reproducibility, the authors have 
made the relevant code publicly available (Fig. 4b). Ju and 
Guan proposed Graph-CSPNet [96], which integrated graph 
neural networks with SPD manifolds for MI classification 
tasks. After establishing its excellent time-frequency feature 
extraction capability and classification effectiveness, they 
further enhanced model interpretability through spectral dis-
tribution visualization and graph Laplacian analysis. The 
approach clearly demonstrated the model’s attention pat-
terns toward different frequency bands in the time-frequency 
graph structure, including the θ, μ, β, and γ rhythms. The 
research team specifically emphasized that the frequency 
bands prioritized by their model show alignment with estab-
lished neurophysiological mechanisms of MI. Subsequently, 
they introduced a geometric deep learning framework named 
Tensor-CSPNet [97]. This model represented EEG spatial 
covariance matrices on symmetric positive definite (SPD) 
manifolds and extracted spatio-spectro-temporal features 
of the signals by combining deep neural networks on SPD 
manifolds with CNNs. Under cross-session non-stationary 
scenarios, this model achieved an accuracy improvement of 
approximately 0.3 compared to FBCSP for Subject No.28 
on the MI-KU dataset. Furthermore, the authors conducted 
a visualization analysis of the model’s features using Deep-
LIFT and t-SNE. The results showed that the activation pat-
terns captured by the model (such as contralateral activation 
in the C3/C4 regions) were consistent with the neurophysi-
ological mechanisms of ERD/ERS during MI.

In addition to innovations in network architecture, train-
ing strategies and data augmentation methods also play a 
key role in performance improvement. The FBCNN-TKS 
model proposed by Huang et al. [124] demonstrated strong 
performance in offline analysis. With a 0.4-s data length, 
the model attained a classification accuracy of 83.10% and 
an ITR of 251.54 bpm on the Benchmark dataset, while 
achieving 72.98% accuracy and an ITR of 203.47 bpm on 
the BETA dataset. Huang et al. used a paired t test to validate 
the model’s efficacy, with results confirming that FBCNN-
TKS significantly outperformed traditional machine learning 
models as well as deep learning methods such as eTRCA 
and DNN (p < 0.01 on Benchmark, p < 0.001 on BETA). 
The study systematically validated the effectiveness of each 



Nano-Micro Lett.          (2026) 18:193 	 Page 11 of 49    193 

model component through rigorous experiments: electrode 
configuration tests identified 9 or 32 channels as the optimal 
topology; ablation studies revealed that removing the fil-
ter bank, TKS module, or center loss consistently degraded 
performance, especially under shorter data lengths; and a 
hyperparameter sweep determined the optimal center loss 
weight λ to be 0.0005. These experiments collectively sup-
port the validity of the model architecture and the synergistic 
interactions among its components (Fig. 4c).

Fahimi et al. [125] proposed a framework based on con-
ditional deep convolutional generative adversarial networks 
(DCGANs) to enhance training data by generating artificial 
EEG signals, addressing the challenge of degraded classifi-
cation performance in BCI systems under diverted attention 
conditions. The work validated the diversity and realism of 
the generated signals through quantitative metrics, such as 
the closeness of the KL divergence between generated and 
real samples, and visualization analyses, including t-SNE 
embeddings and spectrogram comparisons. The adversarial 

Fig. 5   Schematic illustration of single-model deep learning architectures. a Robustness of deep PNNs against unpredictable external perturba-
tions. Reproduced with permission [127].  Copyright 2023, The American Association for the Advancement of Science. b Transfer learning 
algorithms on the EEG dataset. Reproduced with permission [128]. Copyright 2024, Springer Nature. c Left: Comparisons of the Spiking Jelly 
with other frameworks and applications. Right: Typical applications of Spiking Jelly. Reproduced with permission [129]. Copyright 2023, The 
American Association for the Advancement of Science. d Introducing biological SBP into SNNs. Reproduced with permission [130]. Copyright 
2021, The American Association for the Advancement of Science
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training process demonstrated stability, with generator and 
discriminator losses converging after approximately 300 
iterations, and no mode collapse was observed. In model 
evaluation, the method improved classification accuracy in 
the diverted attention condition from a baseline of 73.04% to 
80.36%. To further assess generalization, the research team 
tested the model on the BCI Competition III Dataset IVa, 
where classification accuracy for different MI tasks increased 
from 67.57% to 71.14% (p < 0.02). These results collectively 
indicated that the proposed data augmentation strategy not 
only effectively enhanced BCI classification performance 
under diverted attention but also exhibited a degree of cross-
dataset generalization capability (Fig. 4d). Zhang et al. [126] 
designed a multiple-source prototype-supervised adversarial 
transfer learning approach (PSAT). By constructing a multi-
source fusion framework that weighted integrates different 
source domains, PSAT reduced cross-subject discrepancies 
and intra-subject non-stationarity. It also addressed the chal-
lenges of cross-subject EEG classification in BCI. To rig-
orously validate the effectiveness of their method, Zhang 
et al. implemented a linear step-up procedure to control the 
false discovery rate, thereby mitigating the risk of false posi-
tives in multiple comparisons. Experimental results on three 
MI-EEG datasets demonstrated that PSAT achieved higher 
classification accuracy than its variants, PSAT-c, PSAT-a, 
and PSAT-v. Further ablation studies revealed that both the 
prototype mapper and domain discriminator were indispen-
sable modules for enhancing system performance.

In addition to the aforementioned models, Momeni et al. 
[127] proposed the physical local learning (PhyLL) algorithm, 
establishing a paradigm for training physical neural networks. 
To evaluate the robustness of the system, the original authors 
introduced Gaussian noise perturbations (mean μ = 0.1–0.5, 
standard deviation σ = 0.25–0.50) into the optical system. 
Under severe perturbations caused performance degradation, 
PhyLL recovered high accuracy within just a few training 
epochs. In contrast, the digital model-dependent physics-
aware backpropagation (PA-BP) method exhibited its accuracy 
decline to approximately 55% even under mild perturbations 
and failed to recover. After validation on multiple physical 
platforms, this work demonstrated the adaptive capability 
of physical neural networks in unstable environments and 
laid the groundwork for future exploration of their potential 
in BCIs to address challenges such as channel characteristic 
variations and environmental interference (Fig. 5a). Yuen 
et al. [128] designed a three-dimensional ray-traced biological 

neural network (Ray-BNN), demonstrating potential in transfer 
learning for dimension-varying tasks. The model preserved 
trained weights and supported architectural adaptation during 
network expansion through dynamic 3D neuronal connectivity 
and sparse matrix representations. On an EEG dataset com-
prising multiple paradigms, Ray-BNN achieved an accuracy 
of 85.6% (p ≤ 1.7968 × 10⁻3) in 54-fold subject-independent 
testing by integrating feature extractors from Deep4Net and 
X-dawn, indicating robust cross-subject generalization. Dur-
ing transfer learning on the Alcala dataset, input dimensions 
progressively increased from 6 to 162 access points. The 
model reduced cumulative training time by approximately 
85% compared to BiLSTM while maintaining sparsity below 
40% in the weight matrix. The study provided publicly avail-
able code and data to support reproducibility. The foundation 
for cross-subject generalization established by this study pro-
vides a clear direction for future work: verifying the stability 
of transfer performance in scenarios with device heterogene-
ity will drive substantial advancements of the framework in 
complex application environments (Fig. 5b). Spiking neural 
networks (SNNs), as pivotal enablers of brain-inspired intel-
ligence, have recently seen significant advances in both soft-
ware tools and learning algorithms. At the framework level, 
the Spiking Jelly framework introduced by Fang et al. [129] 
has effectively bridged a critical gap in the dedicated software 
toolchain for spiking deep learning. Spiking Jelly significantly 
reduced the technical barrier to SNN research and promotes 
the development of the software ecosystem for neuromorphic 
computing (Fig. 5c). At the algorithmic level, the biologically 
inspired self-backpropagation (SBP) mechanism proposed by 
Zhang et al. [130] facilitates coordinated weight adjustment 
in both SNNs and ANNs by allowing synaptic modifications 
(potentiation or depression) at output neurons to backpropa-
gate across layers to upstream synapses (Fig. 5d). Current 
research on deep learning-based decoding for non-invasive 
BCIs is evolving from singular performance optimization 
toward building multidimensional capabilities. Architectur-
ally, models are becoming more aligned with the spatiotem-
poral and geometric properties of neural signals. In training, 
methods increasingly integrate data augmentation, transfer 
learning, and alignment strategies to enhance generalization. 
Nevertheless, there remains a notable absence of exploration 
into performance boundaries under real-world conditions such 
as channel loss, noise interference, and attentional fluctuations. 
Most approaches remain focused on offline analysis, and the 
generalization limits in dynamic environments and with device 
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heterogeneity require more systematic evaluation, which rep-
resents a critical direction for future research.

2.4 � Hybrid Deep Learning Frameworks for Multiscale 
Signal Decoding

Single-model decoding approaches, though prevalent, are 
often limited by their generalizability, especially when faced 
with complex, real-world data. In contrast, hybrid architec-
tures have emerged as a promising solution by integrat-
ing spatial, temporal, and spectral representations. These 
approaches effectively address key challenges such as cross-
trial variability and signal complexity, setting the stage for 
robust decoding in both motor and linguistic domains.

In the area of motor decoding and electromyographic 
activity prediction, existing methods often struggle to cap-
ture the nonlinear relationship between EEG and EMG sig-
nals. Therefore, developing nonlinear models capable of 
integrating spatiotemporal features, such as the CNN-LSTM 
model, is crucial for extracting muscle activity-related 
information. Amiri and Shalchyan proposed a deep learn-
ing model integrating CNN and LSTM networks to decode 
muscle activity from non-invasive EEG signals [131]. Dur-
ing the grasp and lift (GAL) task, their model achieved an 
average correlation coefficient (CC) of 0.76 ± 0.10 and a 
normalized root mean square error (nRMSE) of 0.21 ± 0.05 
between the actual and predicted muscle activities for two 
muscles. They employed statistical tests with Bonferroni 

Fig. 6   Hybrid deep learning frameworks for multiscale signal decoding. a Architecture of the CNN-LSTM. Reproduced with permission [131].  
Copyright 2025, Elsevier. b Architecture of CNN-LSTM. Reproduced with permission [132]. Copyright 2022, Elsevier. c Architecture of CNN-
BiLSTM network and recognition accuracy for different methods. Reproduced with permission [133]. Copyright 2024, Elsevier. d Decoding 
process of deep neurolinguistic learning in real time. Reproduced with permission [134]. Copyright 2023, IEEE. e Multimodal deep fusion 
framework and hyperparameter tuning using Bayesian optimization. Reproduced with permission [135]. Copyright 2024, IEEE
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correction (adjusted p-value < 0.016) confirmed that the 
model significantly outperformed two comparative methods: 
multivariate linear regression (mLR) and multilayer percep-
tron (MLP). Building on these promising results, several 
aspects emerge as valuable avenues for further investigation. 
For instance, while the current evaluation was conducted 
offline, exploring real-time implementation represents a 
natural and important next step, particularly considering the 
computational profile of the model. The average decoding 
time for the CNN-LSTM architecture was 339.76 ± 51.71 s. 
This provided a useful baseline for future work aimed at 
optimizing efficiency for real-time applications, especially 
when compared to the faster mLR (3.93 ± 3.02 s) and MLP 
(95.40 ± 22.44 s) models (Fig. 6a). Although CNN-LSTM 
can automatically extract spatiotemporal features, it requires 
large amounts of data for training. To address the issue of 
data scarcity, Khademi et al. [132] proposed a hybrid CNN-
LSTM deep learning model based on transfer learning and 
data augmentation, aiming to enhance the classification per-
formance of MI-EEG signals. Their approach employed the 
continuous wavelet transform (CWT) to convert EEG sig-
nals into time-frequency images. They expanded the dataset 
fivefold (from 288 to 1440 trials per subject) using a non-
overlapping sliding window cropping strategy. Evaluated 
on the BCI Competition IV dataset 2a, this model achieved 
a mean classification accuracy of 86% and a mean Kappa 
value of 81% (Fig. 6b).

In the direction of rehabilitation systems. An et al. [133] 
developed a real-time classifier based on CNN-BiLSTM for 
a patient-centered AR-SSVEP active rehabilitation exoskele-
ton system. The study achieved an offline classification accu-
racy of 98.5% and an ITR of 210 bits min−1 within a 0.5-s 
time window. In the online experiments, the subjects took an 
average of 319 s to complete four non-repetitive trajectory 
tasks, which was 20% longer than the standard reference 
time. As an initial investigation involving six healthy young 
participants, this study established a foundation for subse-
quent research aiming to expand subject diversity (Fig. 6c).

In the field of neural language decoding and interactive 
control. Jeong et al. [134] proposed a real-time, non-invasive 
neural language decoding method based on deep neurolin-
guistic learning for multiuser BCI. This approach combined 
a CNN and a gated recurrent unit (GRU) to decode speech 
imagery from EEG signals. It then integrated the decoded 
results into sentence-level neural commands via a rule-based 
sentence generation model to control a neural prosthetic 

arm. The study designed multiuser collaborative scenarios, 
allowing different users to control the prosthetic arm for 
themselves or their partners. The decoded neural language 
is used to perform high-level tasks such as object delivery 
and emotional interaction. The overall average task success 
rate was 72.36%, with an average latency of 4.450 s per word 
and 8.645 s for sentence generation (Fig. 6d).

In the domain of multimodal fusion and electrophysiologi-
cal source imaging. Jiao et al. [135] proposed a multimodal 
deep fusion framework using attention neural networks 
(MMDF-ANN). This framework aimed to improve locali-
zation accuracy and stability under conditions of extended 
sources and low SNR in electrophysiological source imag-
ing (ESI). The framework used dual-stream CNN modules 
to process EEG and MEG signals separately and integrated 
the features through a channel-wise attention mechanism. 
On synthetic data, the model demonstrated strong perfor-
mance. For instance, in single-source localization tasks with 
an SNR of 30 dB, it achieved an area under the precision-
recall curve (AUPRC) of 0.944 ± 0.104, outperforming tra-
ditional methods such as MNE and sLORETA, as well as the 
unimodal deep learning model ConvDip. Ablation studies 
confirmed that both multimodal fusion and dilated convolu-
tion contributed to the performance improvement. Notably, 
as the number of sources increased, the model’s performance 
exhibited a declining trend: in four-source tasks, the AUPRC 
dropped to 0.827 ± 0.166. This phenomenon suggested that 
the diversity of training data may affect the model’s adapt-
ability to complex activation patterns. In validation with 
real data, MMDF-ANN successfully localized visual cortex 
activity in a face perception dataset containing simultane-
ous EEG/MEG recordings. In an epilepsy dataset with only 
EEG recordings, the model still achieved more focal source 
localization compared to ConvDip. These findings establish 
a solid foundation for multimodal fusion approaches, while 
their broad applicability in diverse clinical environments rep-
resents a promising direction for future validation (Fig. 6e).

Future work could adopt domain adaptation methods to 
improve device compatibility and establish comprehen-
sive performance degradation curves to better define the 
algorithm’s operational boundaries. Together, these meth-
odological advances illustrate the considerable potential 
of hybrid deep learning strategies that integrate multiscale 
feature encoding and cross-modal alignment [136]. While 
significant gains have been demonstrated across decoding 
tasks and modalities, future work must address cross-subject 
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generalizability and robustness in real-world environments 
[85, 137].

2.5 � Toward Real‑Time, Asynchronous, 
and Collaborative Non‑Invasive BCIs

There is a growing focus in non-invasive BCI development 
on real-time performance, shared control strategies, and 
asynchronous detection capabilities. Wang et al. [138] con-
ducted a randomized cross-session online study to evaluate 
the performance of the deep learning model IFNet in 15 
BCI-naive subjects. Experimental results demonstrated that 
IFNet significantly outperformed the traditional method, 

FBCSP, in both sessions. The model achieved improvements 
in online task accuracy of 20% and 27%, respectively, and 
the main effect of the model was significant (P < 0.0001). 
Methodologically, the original authors used Bonferroni cor-
rection for all statistical tests involving multiple compari-
sons, ensuring the rigor of statistical inference. Furthermore, 
they adopted the CutMix data augmentation strategy, which 
was confirmed to enhance model performance (P < 0.05). 
Ablation experiments further validated the effectiveness 
of this strategy across multiple datasets. Additionally, the 
authors made the complete model code publicly available 
and reported an inference latency of approximately 5 ms, 
demonstrating the potential of this method for practical 

Fig. 7   Schematic illustration of real-time, asynchronous, and collaborative non-invasive BCIs. a Top: Schematic illustration of MI-BCI exper-
imental paradigm. Bottom: Comparative performance of online BCI control. Reproduced with permission [138].  Copyright 2025, IEEE. b 
Decoding based on EMG signals. Reproduced with permission [139]. Copyright 2025, Springer Nature. c Left: ErrP decoding results. Right: 
Schematic of the control architecture and experimental protocol. Reproduced with permission [140]. Copyright 2021, Springer Nature. d Left: 
Schematic of the BCI robot control system and TE of the robot 3D reach task. Right: Comparison of the strategies of direct BCI control and 
shared BCI control. Reproduced with permission [142]. Copyright 2023, IEEE
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deployment. Notably, the study also revealed key limita-
tions of the model: offline analysis showed that when the 
model was transferred from calibration tasks to online feed-
back tasks, significant performance degradation occurred 
in both cross-session and cross-mode scenarios; sensitiv-
ity analysis by the original authors further indicated that 
when the decision window was shorter than 1 s, the model 
decoding accuracy dropped sharply, even below the chance 
level (Fig. 7a). In another study focusing on training effects, 
Bhadra et al. [139] employed a rigorous experimental design 
in a 5-day EEG-based imagined speech BCI study, reveal-
ing the mechanisms by which training enhances real-time 
control capabilities. Results demonstrated that after receiv-
ing continuous feedback training, 15 healthy participants 
significantly improved their BCI control accuracy from 55 
to 70% (p = 0.018), with online cross-validation accuracy 
significantly surpassing the offline condition (T14 = 8.3, 
p = 8.8 × 10-7, d = 2.14). Pronounced individual differences 
were also observed, as indicated by a significant positive 
correlation between learning slopes and average perfor-
mance (r = 0.55, p = 0.034), corroborating the prevalence of 
the "BCI illiteracy" phenomenon in imagined speech tasks. 
At the neural mechanism level, the study identified power 
enhancements in the frontal theta band and the left temporal 
low-gamma band as key biomarkers of learning. Technically, 
the system achieved an average feedback delay of 100 ms, 
and the code and model weights were made publicly avail-
able. Notably, although EMG signals showed some contribu-
tion to offline decoding (EMG vs. EEG: T14 = 2.2, p = 0.044, 
d = 0.57), online EEG decoding accuracy was significantly 
higher (T14 = 2.77, p = 0.014, d = 0.71) (Fig. 7b).

Regarding shared control paradigms, Batzianoulis et al. 
[140] developed a BCI-based shared control architecture 
that integrates the autonomous obstacle avoidance capa-
bility of a robot with users’ implicit neural feedback. In 
this framework, the robot generated real-time trajectories 
through a dynamical system, while users could exercise 
a "veto" against trajectories that did not align with their 
personal preferences by eliciting error-related potentials 
(ErrPs). Batzianoulis et al. employed rigorous statistical test-
ing to validate this paradigm’s effectiveness: they adopted 
repeated-measures ANOVA, which revealed a significant 
difference in ErrP decoding accuracy between the time-
locked and continuous modes (F (1, 12) = 27.1, p < 0.001), 
with online continuous decoding maintaining an accuracy of 
70 ± 13%. Building upon this, posterior probability-weighted 

inverse reinforcement learning significantly reduced the fre-
quency of user interventions after only 3–5 demonstrations 
(p < 0.001). The progress made in this shared control system, 
particularly in trajectory distribution reporting, highlights 
key areas for future breakthroughs. By precisely quantifying 
trajectory errors and establishing clear human-machine deci-
sion boundaries, future work could substantially improve the 
reliability and safety of shared control paradigms in prac-
tical applications (Fig. 7c). Similarly, focusing on shared 
control, Deng et al. [141] proposed a self-adaptive shared 
control method based on a brain state evaluation network 
(BSE-NET) for human-wheelchair cooperation. This system 
evaluated the user’s brain control ability online via quantized 
attention-gated kernel reinforcement learning and generated 
a confidence score to dynamically adjust the control weight 
between robot autonomy and human operator. Experimental 
results demonstrated that most subjects achieved a task suc-
cess rate of approximately 90% in dynamic environments, 
and a significant correlation was observed between the con-
fidence score and EEG decoding accuracy in online experi-
ments. In a complementary approach, Lu et al. [89] proposed 
a model predictive control (MPC)-based shared control 
method. By explicitly setting safety constraints (such as lat-
eral and yaw angle error bounds) and introducing a penalty 
term (weight α = 1) for deviations from the driver’s com-
mand within its optimization framework, this method delin-
eated a quantifiable human-machine trade-off space at the 
system design level. This approach significantly improved 
task performance: in obstacle avoidance tests, direct brain-
controlled driving failed. However, with MPC assistance, 
some participants achieved a 100% task success rate, while 
others attained success rates between 85% and 95%. Future 
work could focus on conducting multisession, long-term 
experiments to systematically investigate the system’s adap-
tive capabilities in dynamic environments. This approach 
would facilitate the evaluation of the framework’s perfor-
mance sustainability under realistic operational conditions.

Taking a step further, Zhou et al. [142] created a shared 
control system for a 3D robotic arm that integrates a hybrid 
asynchronous BCI (converging SSVEP and electroocu-
lography (EOG) signals) and computer vision. The sys-
tem adopted a 15-command asynchronous interface and a 
3D vector synthesis strategy to enable flexible manipula-
tion of the robotic arm in unknown environments. Online 
experiments demonstrated that in a free spelling task, the 
system achieved an average classification accuracy of 
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92.4% ± 5.5%, a false positive rate of 1.25% ± 0.71%, and 
an ITR of 97.9 ± 12.8 bits min−1. In the 3D reach-grasp-
drink task, the shared control mode significantly reduced the 
number of commands issued (9.40 ± 2.14 vs. 28.90 ± 6.83), 
the BCI-guided phase completion time (0.99 ± 0.35 vs. 
3.04 ± 1.42  min), and the number of error commands 
(0.35 ± 0.59 vs. 2.25 ± 2.02) compared to direct BCI control. 
The average trajectory efficiency was 0.80 ± 0.10. They used 
the NASA Task Load Index (NASA-TLX) to assess user 
cognitive load (scores for most dimensions < 30), though 
mental demand and effort scores were relatively higher. 
Future research could focus on quantifying the cumulative 
risks of false positives and false negatives during extended 
usage periods (ranging from several hours to multiple days). 
Additionally, providing complete distribution data for trajec-
tory errors and task completion rates would offer valuable 
insights for validating system stability and broadening its 
practical applications (Fig. 7d). On the engineering imple-
mentation front of asynchronous BCIs, Hu et al. [143] devel-
oped a wearable asynchronous BCI system based on EEG 
and EOG signals. The system utilized a self-developed com-
pact amplifier and required only three EEG channels (Cz, 
P3, P4) and one EOG channel. It achieved asynchronous 
control through the integration of P300 potential detection 
and blink recognition. In a telephone dialing task, the system 
attained an average online accuracy of 94.03% ± 4.65%, an 
ITR of 31.42 ± 7.39 bits min−1, and a low false positive rate 
of 1.78% ± 2.25% during a 10-min idle state. These promis-
ing results provide a solid foundation for future investiga-
tions into the system’s long-term performance characteris-
tics, particularly regarding the cumulative risk profiles of 
false positives and false negatives during extended multiday 
usage scenarios. In another asynchronous BCI study, Aloise 
et al. [144] designed an asynchronous BCI system based on 
ERPs. Online experimental results showed that the correct 
classification rate of the asynchronous classifier (74.66%) 
was slightly lower than that of the synchronous classifier 
(87.96%), and the error rate (7.11%) was also lower than that 
of the synchronous classifier (12.04%). However, neither dif-
ference was statistically significant (error rate: p = 0.19). The 
asynchronous classifier demonstrated good robustness dur-
ing the no-control state, with an average false positive rate of 
0.16 per minute (i.e., fewer than one false positive every six 
minutes). The asynchronous BCI based on SSVEPs designed 
by Gernot R. [145]. The participants took 75.5 to 217.5 s 
to complete the movement sequence. The number of false 

negative decisions varied from 0 to 10 (with a maximum 
possible of 34 decisions).In the clinical application of BCIs, 
Alcaide-Aguirre et al. [146] developed an asynchronous BCI 
based on the P300 ERP to facilitate the administration of the 
Peabody Picture Vocabulary Test (PPVT-IV) for cognitive 
assessment in individuals with cerebral palsy. Results from 
the NASA-TLX demonstrated that participants with CP per-
ceived the BCI-facilitated PPVT-IV as significantly higher 
in mental demand, physical demand, and effort (p < 0.05) 
compared to their typically developing counterparts.

In summary, current research has made significant pro-
gress in enhancing BCI real-time performance, implement-
ing intelligent shared control, and constructing robust asyn-
chronous systems. However, a common, unresolved core 
issue persists: the vast majority of systems lack an assess-
ment of their stability and reliability under conditions of 
prolonged (several hours) and multiday continuous use. This 
is specifically reflected in the failure to adequately quantify 
the cumulative risk of false positives and false negatives, 
the inability to strictly define the human-machine trade-off 
boundaries in shared control based on complete data dis-
tributions (e.g., trajectory error, task completion rate), and 
the lack of systematic analysis of the long-term impact of 
control parameters (such as penalty weights in model predic-
tive control). Addressing these issues is crucial for advanc-
ing non-invasive BCIs from the laboratory to real-world 
applications.

2.6 � AI‑Enabled Human‑Machine Co‑Adaptive Systems

Particularly crucially, current BCI research is undergoing a 
shift from "open-loop, static" systems to "closed-loop, adap-
tive" paradigms [92], with its development direction focus-
ing on enhancing real-time decoding capabilities, improving 
asynchronous detection mechanisms [37], and optimizing 
shared control strategies [147]. Extending the principle of 
co-adaptation to resource-constrained settings, Liu et al. 
[148] developed a neuromorphic decoding SSVEP of BCIs 
based on a 128,000-cell memristor chip. Their approach fea-
tured an interactive update framework that enabled co-evolu-
tion between the memristor decoder and the user’s dynamic 
brain signals. This architecture condensed the traditional 
three-stage pipeline of preprocessing, feature extraction, 
and classification into a hardware-friendly one-step opera-
tion, reducing computational complexity by approximately 
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6.5 times while maintaining software-equivalent accuracy. 
In a brain-controlled drone task with four degrees of free-
dom, the system demonstrated significant improvements in 
energy efficiency and processing speed: decoding consumed 
1,643,000 times less energy and achieved a 216-fold increase 
in normalized throughput compared to a CPU-based sys-
tem. A closed-loop co-evolution framework driven by ErrPs 
enhanced decoding accuracy by approximately 20% during a 
six-hour online experiment involving 10 participants, estab-
lishing a foundational benchmark for low-power, long-term 
adaptive BCI operation (Fig. 8a).

Building on this foundation, Lee et al. [149] proposed a 
hybrid adaptive decoding approach and developed a shared 

autonomy-based BCI system that enhanced performance 
by introducing an AI copilot. This framework used a CNN 
to extract complex nonlinear features, which were then 
passed into a Kalman filter (KF) to predict and correct the 
user’s movement intent. Additionally, the system integrated 
closed-loop decoder adaptation (CLDA), enabling dynamic 
optimization of decoding parameters. Experimental results 
demonstrated that the cursor control system significantly 
improved task efficiency. The average target acquisition rate 
increased by 2.1-fold in healthy participants and 3.9-fold in 
a paralyzed participant, with optimized movement trajecto-
ries. In the robotic arm sequential pick-and-place task, the 
paralyzed participant could not complete the task without 

Fig. 8   Schematic illustration of AI-enabled human-machine co-adaptive systems. a Left: Schematic diagram depicting the human-machine joint 
learning process and the experimental paradigm. Right: Illustration of BCI training with different strategies. Reproduced with permission [148].  
Copyright 2025, Springer Nature. b Left: AI copilots use task information to improve BCI performance. Right: CNN-KF architecture. Repro-
duced with permission [149]. Copyright 2025, Springer Nature. c Left: Experimental paradigm. Middle: Effects of online training on MI and 
ME robotic finger control. Right: ME and MI tasks using EEG signals filtered with different bandpass settings. Reproduced with permission 
[150]. Copyright 2025, Springer Nature
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the AI copilot but achieved a 93% success rate with its assis-
tance. Future research could focus on the following promis-
ing directions: developing adaptive decoding algorithms that 
accommodate individual variability and EEG non-stationar-
ity, exploring autonomous perception and decision-making 
mechanisms for environments with unknown targets or 
dynamic conditions, and validating the system’s generaliza-
tion capabilities in more complex application settings. These 
research avenues would facilitate the transition of BCIs from 
controlled laboratory environments to practical real-world 
applications (Fig. 8b). Ding et al. [150] proposed a deep 
learning model based on the EEGNet architecture, combined 
with a fine-tuning mechanism, facilitating non-invasive real-
time decoding of individual finger MI and motor execution 
(ME) for robotic hand control. Among 21 able-bodied sub-
jects with BCI experience, the system achieved notable 
results. Online decoding accuracies reached 80.56% for 
two-finger MI tasks and 60.61% for three-finger MI tasks, 
while the corresponding ME tasks achieved 81.10% and 
60.11%, respectively, indicating highly comparable control 
performance between the two paradigms. Ding et al. con-
firmed through cross-session analysis that the model’s online 
accuracy significantly improved with training (two-finger 
MI: F = 7.127, p < 0.001), and applied Bonferroni correc-
tion in subsequent post hoc analyses to confirm the statisti-
cal significance. The study also revealed clear performance 
boundaries: four-finger classification accuracy remained 
only approximately 46%, insufficient for practical applica-
tion, while the index and middle fingers exhibited the low-
est decoding performance due to highly overlapping neural 
representations. In the model interpretability analysis, they 
demonstrated through group-averaged saliency topological 
maps that the brain regions prioritized by the models exhibit 
spatial consistency across different subjects. This indicated 
that the decision-making patterns were grounded in neural 
activity features shared across the population. The estab-
lishment of an adaptive validation framework for complex 
dynamic environments represents a critical breakthrough for 
future research (Fig. 8c). To expand control granularity, in 
the realm of semantic neural decoding, Tang et al. [37] pro-
posed a fMRI-based language reconstruction framework that 
integrates a generative pre-trained transformer model with 
beam search to decode continuous natural language. The sys-
tem bridges internally generated cognition, such as mental 
imagery, with stimulus-driven conditions, including speech 
or video perception, achieving a peak contextual semantic 

similarity score of 0.8116 (q < 0.05) across diverse input 
modalities. Despite its high performance, decoding accu-
racy significantly deteriorated when participants engaged 
in distraction tasks. These empirical findings highlight the 
decoder’s sensitivity to user attention and cognitive state, 
underscoring the critical importance of behavioral context 
in human-machine co-adaptive systems.

In summary, AI is driving BCIs toward human-machine 
co-adaptive systems capable of dynamic, personalized 
interaction [6, 151]. From hardware efficiency to semantic 
decoding, recent advances demonstrate appreciable poten-
tial. Yet, challenges in individual variability, environmental 
robustness, task dependency, and cognitive state awareness 
continue to hinder scalability and real-world applicability. 
Future progress will depend not only on better models, but 
on building intelligent ecosystems that are context-aware, 
continuously learning, and capable of seamless cross-plat-
form integration.

3 � Integration of Flexible Bioelectronics 
in Non‑Invasive BCIs

In contrast to invasive BCIs, which insert probes directly into 
target tissue, non-invasive BCIs monitor macroscopic electric 
fields outside the cranium to acquire EEG signals. Although 
this approach sacrifices spatial resolution and signal quality, 
it avoids the tissue damage caused by invasive techniques 
and potential long-term neuroinflammation. Furthermore, 
it facilitates rapid and widespread application without the 
need for complex surgical implantation. These advantages 
have secured long-standing and broad interest in non-inva-
sive BCIs [12, 14]. However, their wearable nature presents 
numerous challenges for EEG acquisition. Firstly, the contact 
impedance between the electrode and the biointerface signifi-
cantly impacts signal quality. Reducing this impedance can 
be approached from two angles: enhancing the electrode’s 
intrinsic conductivity and ensuring conformal contact at the 
biointerface. Consequently, compared to traditional rigid 
electrodes, flexible electrodes not only improve signal quality 
but also offer greater wearing comfort, facilitating long-term 
monitoring. Flexible electrodes can be fabricated from intrin-
sically conductive thin-film materials, such as certain organic 
semiconductors, or by integrating conductive nanomaterials 
with a flexible substrate [152]. Particularly, driven by inno-
vations in materials science, nanomaterials are receiving 
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growing interest and application in flexible electrodes. This 
synergy between the distinctive electrical properties of nano-
materials and the favorable mechanical flexibility of sub-
strates provides a robust foundation for high-performance 
flexible electrodes [151, 153, 154].

For instance, nanowires (NWs), as one-dimensional mate-
rials, possess a high aspect ratio. This structure endows 
them with excellent mechanical flexibility, allowing them 
to maintain structural stability when conforming to irregular 
surfaces or under bending conditions [153, 155]. Concur-
rently, due to their efficient electrical transport capabilities, 
they serve as conductive fillers that significantly enhance 
the electrode’s conductivity [156]. This has been associated 

with reduced contact impedance and improved SNR in non-
invasive BCIs. Furthermore, mechanical stability plays a key 
role in non-invasive BCIs. Superior mechanical properties 
contribute to achieving conformal contact with the target 
surface, promoting wearing comfort, and maintaining per-
formance stability during long-term monitoring while reduc-
ing the risk of degradation [152]. Due to their nanoscale 
dimensions, nanomaterials exhibit excellent robustness. 
They could maintain their performance under repeated 
strain, unlike bulk materials that suffer from performance 
decay due to mechanical fatigue. It is noteworthy that artifact 
contamination in non-invasive BCI recordings, especially 
during target movement, complicates EEG interpretation. 

Fig. 9   Schematic illustration of the performance characteristics of flexible conductive films. a Schematic diagram of the preparation process 
for aG-O films. Reproduced with permission [64].  Copyright 2012, American Chemical Society. b Detailed construction of the flexible PENG 
device. Reproduced with permission [159]. Copyright 2025, Springer Nature. c Left: A plot of luminance for a foldable ACEL device. Right: 
A plot of the luminance stability of it undergoing a cyclic folding test. Reproduced with permission [160]. Copyright 2024, Springer Nature. 
d Schematic overview of the gustatory interface. Reproduced with permission [161]. Copyright 2024, Springer Nature. e Left: Flexible sin-
gle-crystalline SRO membranes. Right: Stress relaxation of the film on a water droplet. Reproduced with permission [162]. Copyright 2022, 
Springer Nature. f Bending durability of flexible perovskite films. Reproduced with permission [163]. Copyright 2025, Springer Nature
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These artifacts are generally attributable to two origins: bio-
logical signals and non-biological signals. Non-biological 
artifacts are largely motion-induced, resulting from electrode 
shift that compromises stable interfacial contact. This insta-
bility manifests as variable contact impedance and intro-
duces artifacts. The integration of nanomaterials into flexible 
substrates presents a promising strategy for ameliorating this 
challenge. In summary, innovations in materials science are 
essential for achieving higher performance in non-invasive 
BCIs, and nanomaterials represent a promising candidate 
for this pursuit.

3.1 � Flexible Conductive Thin Films: Materials 
Innovation and Interface Optimization

The development of non-invasive BCIs is closely linked to 
advancements in flexible conductive materials that strike a 
balance between electrical properties, mechanical durabil-
ity, and biocompatibility. Recent advances in materials sci-
ence indicate that conductive films offer viable pathways for 
overcoming persistent challenges in signal fidelity, motion 
artifact suppression, and long-term wearability [157, 158]. 
For instance, Zhang et al. [64] developed activated reduced 
graphene oxide (aG-O) films exhibiting in-plane conductiv-
ity of 5,880 S m−1. These films exhibit exceptional charge 
transport properties, which are crucial for preserving signal 
fidelity in BCI applications (Fig. 9a). Piezoelectric films 
represent a valuable class of materials for BCI applications, 
offering the potential to harvest mechanical energy and 
potentially power self-sustaining BCI systems. Ren et al. 
[159] reported significant progress by developing free-
standing (111)-oriented PbZr0.52Ti0.48O3 single-crystal thin 
films, which combine exceptional mechanical flexibility with 
notable piezoelectric performance. These films achieved 
an effective piezoelectric coefficient of approximately 
585 pm V−1, nearly six times higher than the coefficient 
in their clamped state. The piezoelectric nanogenerators 
(PENGs) constructed from this material demonstrated an 
ultrahigh power density of about 63.5 mW cm−3, maintain-
ing excellent mechanical resilience with strains exceeding 
3.4% and stable output performance after 60,000 continuous 
bending cycles. This work not only sets a new benchmark 
for flexible PENG performance but also offers a promising 
self-powered solution for non-invasive BCIs (Fig. 9b). The 
development of ultrathin silver films (UTAFs) represents 

another significant advance in flexible optoelectronics. Ma 
et al. [160] developed 4.5 nm UTAFs, which exhibit 82% 
average visible transmittance, less than 60 ppm haze, and a 
sheet resistance of 7.6 Ω sq−1. These films exhibited excel-
lent mechanical stability. The resistance increases by only 
5% under static bending with a curvature radius of 3.5 mm, 
and by less than 7% after 100,000 dynamic folding cycles, 
outperforming commercial indium tin oxide electrodes. 
When applied in foldable alternating current electrolumines-
cent devices, the UTAFs served as transparent bottom elec-
trodes to maintain stable luminance, further confirming their 
mechanical and electrical stability. These characteristics 
suggest that UTAFs may support trends toward improved 
performance when implemented as transparent electrodes in 
flexible optoelectronic devices and intelligent hardware sys-
tems (Fig. 9c). Wang et al. [161] designed a taste interface 
that uses high-density, conformal tongue electrodes to cap-
ture electrical signals from the tongue. Combined with BCIs, 
the system enabled taste decoding of a reconstructed tongue 
without taste buds, achieving an accuracy of 97.8%. This 
approach provides a novel method for the clinical evalua-
tion and treatment of patients with tongue cancer (Fig. 9d).

Additionally, Kim et al. [162] presented a support-free 
transfer method that facilitates the deposition of ultrathin 
single-crystalline SrRuO3 membranes onto flexible poly-
ethylene terephthalate (PET) substrates, maintaining 
exceptional structural integrity, optical transparency, and 
electronic performance. These membranes, measuring 
approximately 2.5 by 2.5 square millimeters in clean sur-
face area and with thicknesses as low as 15 nm, exhibited 
a high optical transmittance of about 60% in the visible 
spectrum. Their electrical resistivity at room temperature 
ranged between 10–4 and 10–3 Ω cm accompanied by robust 
ferromagnetic ordering that persists below 150 K. These 
SrRuO₃ membranes combine flexibility with functional 
performance, suggesting their possible value in develop-
ing flexible electronic and spintronic systems (Fig. 9e). 
Jin et  al. [163] introduced a spontaneous bifacial cap-
ping strategy by incorporating 4-(methoxy)benzylamine 
hydrobromide (MeOBABr) into the perovskite precursor, 
markedly enhancing the mechanical stability and charge 
carrier transport properties of flexible perovskite solar 
cells. The work demonstrated that the nanoscale bifacial 
capping layers formed by MeOBABr effectively planar-
ized grain boundary trenches, mitigated bending-induced 
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stress, and improved charge extraction efficiency through 
surface defect passivation and band alignment optimiza-
tion. The encapsulated target devices retained over 80% of 
their initial power conversion efficiency following 10,000 
bending cycles at a curvature radius of 3 mm. Although 
primarily focused on photovoltaic applications, these find-
ings provide valuable insights for material design in flex-
ible electronics, such as long-term wearable BCIs (Fig. 9f). 

In summary, these materials demonstrate the diversity of 
approaches in developing flexible bioelectronics for non-
invasive BCIs. Although they use different methodologies, 
they may exhibit favorable characteristics, including high 
conductivity and mechanical compliance that align with 
the requirements of wearable BCI design. Future integra-
tion of these materials into BCI systems could contribute 
to enhanced performance of non-invasive neural interfaces.

Fig. 10   Schematic illustration of one-dimensional nanowire structures and properties. a Stability diagram of Ag@Pt AHNWs. Reproduced with 
permission [166].  Copyright 2018, American Chemical Society. b Left: Schematic of the structure of stretchable TeNW-TFTs before and after 
deformation. Right: Image of TeNW-TFTs under bending. Reproduced with permission [73]. Copyright 2024, The American Association for 
the Advancement of Science. c A cyclic bending test result of the flexible RCC electrode at a 15 mm bending radius. Reproduced with permis-
sion [167]. Copyright 2018, John Wiley and Sons. d Left: Band structure of Te illustrating its anisotropic electronic properties. Right: Side-view 
SEM image of vertically aligned TeNWs deposited on PI substrate. Reproduced with permission [168]. Copyright 2022, Springer Nature. e A 
Schematic of the fabricated fiber-based PD. Reproduced with permission [169]. Copyright 2025, Springer Nature. f Left: Schematic diagram of 
the device configuration of the representative self-powered PEC photodetectors based on PbSeNWs. Right: Normalized absorption spectra of 
PbSeNWs with different diameters. Reproduced with permission [170]. Copyright 2025, John Wiley and Sons
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3.2 � One‑Dimensional Nanowire Bioelectronic Systems 
for Signal Acquisition

Building on the flexibility and performance characteristics 
of conductive films, another emerging material strategy 
gaining attention in non-invasive BCI research involves 
the utilization of NWs [164]. NWs possess a unique one-
dimensional (1D) topology, high aspect ratio, and tunable 
surface chemistry. These characteristics demonstrate poten-
tial for achieving the mechanical flexibility, electrochemi-
cal stability, and multimodal sensing capabilities required 
by BCIs [165]. Moreover, the structural features of NWs 
are believed to facilitate neural signal acquisition: their 1D 
morphology could promote directional charge transport, 
potentially reducing signal attenuation at heterogeneous 
biological interfaces.

To overcome the instability of traditional silver nanow-
ire electrodes, Zhou et al. [166] developed silver-platinum 
alloy-walled hollow nanowires (Ag@Pt AHNWs) through 
electrochemical and galvanic replacement processes. The 
silver-platinum alloy enhanced corrosion resistance, while 
the electrode maintained high optical transparency of 82% 
at a wavelength of 550 nm and a low sheet resistance of 
28.73 Ω sq−1. The alloy structure exhibited excellent ther-
mal stability, sustaining operation at 400 °C for 11 h, and 
demonstrated robust electrochemical stability in acidic 
environments, enabling integration into functional devices 
that require long-term reliability. This work provides a scal-
able approach for preparing highly stable metal nanomate-
rial electrodes, which is crucial for flexible optoelectronic 
devices operating in harsh environments (Fig. 10a). Zhao 
et al. [73] utilized a biomimetic lock-and-shear assembly 
strategy to fabricate wafer-scale aligned arrays of tellurium 
nanowires (TeNWs). The thin-film transistors exhibited 
hole mobility exceeding 100 cm2  V−1  s−1 and an on/off 
current ratio approaching 104 on flexible PET substrates. 
Furthermore, devices fabricated on elastomeric substrates 
maintained stable electrical performance under uniaxial 
strains up to 40%, demonstrating excellent stretchability 
and mechanical robustness (Fig. 10b). Similarly, Kim et al. 
[167] demonstrated that copper nanowire electrodes encap-
sulated with polyurethane acrylate (PUA) exhibit significant 
environmental adaptability and mechanical stability. Spe-
cifically, after 1,500 bending cycles at a radius of 15 mm, 
the electrodes showed only approximately 3.5% increase 
in resistance under tensile testing and approximately 2.5% 

increase under compressive testing. Furthermore, under 
harsh conditions of 80 °C and 80% relative humidity, the 
PUA-coated electrodes maintained stable operation for up 
to 240 h, despite a twofold increase in resistance. This level 
of stability helps meet the need for reliable electrodes in 
applications that require long-term mechanical flexibility 
and environmental durability (Fig. 10c).

In addition to mechanical stability, NWs provide signifi-
cant advantages in multimodal integration and functional 
expandability. Li et al. [168] leveraged the intrinsic anisot-
ropy of tellurium NWs to create a bimodal tactile sensor 
(BTS) that achieves the decoupling of pressure and tem-
perature difference signals. The material exhibited a carrier 
mobility of 1,000 cm2 V−1 s−1. When the mechanical pres-
sure ranged from 0 to 5 kPa mechanical pressure, the sensor 
current increased from an initial 2.82–141.82 μA. Experi-
mental results demonstrated that the BTS-based smart glove 
facilitated somatosensory feedback interaction between VR 
and the real world. By integrating sensor signals with deep 
learning techniques, successful stimulation recognition 
and neural reflex modeling of the rabbit sciatic nerve were 
achieved. Furthermore, the sensor exhibited excellent bio-
compatibility, offering broad application prospects in the 
biomedical field (Fig. 10d). Karagiorgis et al. [169] engi-
neered a fully transparent and flexible photodetector by inte-
grating ZnO NWs with electrospun PEDOT/PSS/Ag NW-
based nanofibers on a biodegradable cellulose acetate (CA) 
substrate. The device demonstrated an ultraviolet responsiv-
ity of 1.10 × 106 A W−1 under a 5 V bias and 0.5 μW cm−2 
ultraviolet (UV) illumination intensity, alongside an optical 
transmittance of 70% at 550 nm wavelength. This combi-
nation of high performance and transparency was achieved 
while maintaining robust stability under dynamic UV 
exposure on flat and curved surfaces. Importantly, the CA 
substrate and PEDOT/PSS/Ag composite layers exhibited 
biodegradability within several months in buffer solutions, 
offering an eco-friendly solution to address electronic waste 
challenges. These results underscore the potential of this 
nanowire-based photodetector platform for next-generation 
wearable and transparent electronic applications (Fig. 10e). 
Li et al. [170] developed sub-1-nm PbSeNWs via a cation-
exchange strategy in N, N-dimethylformamide (DMF) sol-
vent, which exhibited a near-infrared (NIR) absorption peak 
centered at 940 nm. These self-powered photoelectrochemi-
cal photodetectors exhibited a responsivity of 113 mA W−1 
and a detectivity of 4.65 × 1011 Jones without external bias. 
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Embedded in flexible polyvinylidene fluoride (PVDF) com-
posite films, these NWs combined superior carrier transport 
properties with mechanical flexibility. The NIR absorption 
at 940 nm aligned with the safety window for human tissue, 
providing a foundation for potential biomedical applications 
(Fig. 10f).

Material innovation has contributed to recent progress in 
non-invasive BCIs, particularly through the development 

of nanomaterials that effectively combine electrical perfor-
mance, mechanical flexibility, and biocompatibility. Silicon 
nanowires (SiNWs) exhibit compatibility with semicon-
ductor processing, low-temperature fabrication capabili-
ties, and controllable sub-100 nm architectures, suggest-
ing their potential utility in neural interface applications 
[171–173]. These characteristics make SiNWs a potential 
platform for high-density flexible electrode arrays. Studies 

Fig. 11   Schematic illustration of one-dimensional SiNW structures and properties. a Top: Fin-gate structure with aligned SiNW channels. Bot-
tom: Ids-Vds output and transfer characteristics of SiNW TFTs. Reproduced with permission [175].  Copyright 2023, John Wiley and Sons. 
b Left: Pulling stretchable crystalline silicon (c-Si) nanowire springs out of running catalyst droplets. Right: SEM images of SiNWs. Repro-
duced with permission [176]. Copyright 2017, American Chemical Society. c Left: Fabrication of single-nanowire-morphed robotic grippers. 
Right: Elastic deformation, structural stability, and force gauging behavior of the nanowire gripper. Reproduced with permission [177]. Copy-
right 2023, Springer Nature. d Top: SEM images of SiNix nanospring arrays. Bottom: Microscopic images showing the geometric evolution of 
a SiNix-NS interconnection. Reproduced with permission [178]. Copyright 2021, John Wiley and Sons. e Left: Step-necking growth of ultrathin 
and short SiNW channels. Right: SEM image of SiNWs. Reproduced with permission [179]. Copyright 2025, Springer Nature. f Left: SEM 
images of SiNHs with forward- or reverse-line feeding growth symmetry. Right: Two distinct resonant frequencies corresponding to the swaging 
resonant modes of the SiNHs. Reproduced with permission [180]. Copyright 2020, American Chemical Society
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have highlighted their scalable fabrication and favorable 
electrical properties, which may support stable interfac-
ing with biological tissues over extended periods [174]. 
For example, Song et al. [175] fabricated ultrathin SiNW 
arrays with uniform diameters of approximately 52 nm using 
an in-plane solid-liquid-solid (IPSLS) growth technique 
conducted below 350 °C. The SiNW thin-film transistors 
(TFTs) demonstrated a high transparency up to 90% and 
achieved an on/off current ratio greater than 106. Notably, 
solution-based room-temperature passivation enhanced 
device stability. These advancements provide a foundation 
for high-fidelity neural signal recording in wearable elec-
tronics. Nevertheless, to facilitate widespread application 
in high-density neural interfaces, further improvements in 
the mechanical adaptability and environmental robustness of 
SiNW arrays are necessary (Fig. 11a). To address this, Xue 
et al. [176] demonstrated a method for deterministic struc-
tural programming of ultralong in-plane SiNWs. Utilizing 
the indium-droplet-guided IPSLS growth mechanism, they 
achieved the formation of highly stretchable c-Si springs 

or arbitrary two-dimensional patterns by directing catalyst 
droplets along predefined atomic step edges. In situ scanning 
electron microscopy (SEM), tensile testing, and electrical 
transport measurements revealed that the c-SiNWs main-
tained stable electrical connectivity under tensile strains 
exceeding 200%. This strategy represents a step toward the 
potential development of large-scale, wearable, and bio-
compliant electronic systems in future (Fig. 11b). Yan et al. 
[177] proposed an ultracompact Ω-shaped robotic gripper 
based on the deformation of a single nanowire and Lorentz 
force actuation. This gripper was capable of large-amplitude 
vibration and multidimensional operations, including grasp-
ing, lifting, and twisting. Additionally, it achieved precise 
payload release by overcoming van der Waals forces through 
high-frequency vibration. Paired grippers could collabora-
tively perform complex tasks such as microsphere transfer, 
demonstrating strong potential in high-sensitivity biosensing 
actuation. Looking ahead, such grippers could be explored 
as actuators in controlled neuromodulation platforms that 
interface with microscopic biological targets, where high 

Table 1   Comparative Analysis of Key Parameters and Impacts of Nanomaterials in Non-Invasive BCIs

Materials Conductivity Young’s Modulus Stretchability Stability Direct Link to Non-
Invasive BCI Perfor-
mance

References

AgNWs 2.8 Ω sq−1 / Up to 40% ∆Sheet Resistance 
≈ ± 50% @ 100 
cycles for 40%

Excellent signal qual-
ity; Middle mechani-
cal durability; Middle 
monitoring density

[181]

AgNWs 3.2–3.6 Ω sq−1 / / 0% increase in frac-
tional resistance dur-
ing fatigue testing up 
to 500,000 cycles

Excellent signal qual-
ity; Middle mechani-
cal durability; Middle 
monitoring density

[182]

Nickel silicide NWs 2 × 106 S m−1 170 GPa Up to 50% ∆R/R0 <  ± 1.7% @ 
10, 000 cycles for 
15%

Good signal quality; 
Middle mechani-
cal durability; High 
monitoring density

[178]

SiNWs Several uA under 
a bias voltage 
of ± 3 V

170 GPa Up to 45% stable ΔR/R0 @10, 000 
cycles for 10%

Good signal quality; 
Middle mechani-
cal durability; High 
monitoring density

[152]

PEDOT/PSS hydrogels 23.7 S m−1 8–374 kPa Up to 100% / Good signal quality; 
Good mechanical 
durability; Middle 
monitoring density

[183]

d-Sorbitol-PEDOT/
PSS hydrogels

 > 1,000 S m−1 1.87 MPa Up to 60% Strain-insensitive 
resistance after the 
initial stretch

Good signal quality; 
Good mechanical 
durability; Middle 
monitoring density

[184]
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precision and long-term biocompatibility would be key con-
siderations (Fig. 11c).

To overcome limitations, Yuan et al. [178] fabricated an 
ordered array of ultrathin, highly conductive Si-Ni alloy 
nanowire springs (SiNix-NS) with an average diameter 
of approximately 160 nm. This innovation allows precise 
spatial control of SiNWs and the programmable design 
of elastic interconnect geometries. This approach is com-
patible with existing silicon-based thin-film technologies 
and addresses key limitations of conventional stretchable 

interconnect strategies. After nickel alloying, the electrical 
conductivity of the SiNixNWs increased by four orders of 
magnitude. When integrated onto flexible polydimethylsi-
loxane (PDMS) substrates, these nanowire springs exhib-
ited excellent mechanical compliance, sustaining tensile 
strains exceeding 50% and maintaining stable electrical 
performance over 10,000 cycles at 15% strain. Owing to 
their ultracompact architecture and adaptable soft-inter-
face compatibility, these nanowire springs demonstrate 
strong potential for low-damage, conformable integration 

Fig. 12   The application of zero-dimensional materials in BCIs. a Left: Resistivity of sensors with different graphene content at 2%, 4%, 6%, 
8%, and 10%. Middle: Response tests of the film at different working voltages. Right: UV protection mechanism of the coating. Reproduced with 
permission [185].  Copyright 2021, John Wiley and Sons. b Left: The SEM images of printed AgNP and AgNP-Ga-In traces. Right: A circuit 
on a toy lemon and functioning as an electronic tattoo with an LED on a fingerprint. Reproduced with permission [186]. Copyright 2018, John 
Wiley and Sons. c Schematic of the Ag-Au-PtCore-Shell-Shell NWs, TEM images of the control nanocomposite, schematic illustration of the 
implantable electrode mounted on the rat’s heart, and comparison of electrogram quality and magnified view of a single cardiac electrogram 
peak between Ag NW nanocomposite-based electrode and Ag-Au-Pt NW/Pt NP nanocomposite-based electrode. Reproduced with permission 
[187]. Copyright 2023, American Chemical Society. d Schematic of the nanoparticle synthesis process, quantification of the fluorescence inten-
sity of RBITC, and representative confocal fluorescence images of brain slices of rats. Reproduced with permission [188]. Copyright 2022, Else-
vier. e Motion artifacts comparison between the P-P-PDA NP electrode and the standard wet Ag/AgCl electrode, and characterization of PDA 
NPs. Reproduced with permission [189]. Copyright 2023, John Wiley and Sons
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in non-invasive BCIs (Fig. 11d). Concurrently, Wu et al. 
[179] used a step-guided necking growth method to fabri-
cate ultrathin, short-necked SiNWs channels, which were 
designed for high-performance field-effect transistors 
(FETs). By tuning the size of indium (In) droplets and the 
height of the jumping steps, a thick-thin-thick short-chan-
nel structure could be formed. The necked region could 
be narrowed down to below 25 nm in diameter. These 
FETs exhibited a steep subthreshold swing of less than 
70 mV dec−1 and an on/off current ratio exceeding 107, 
significantly outperforming counterpart devices with uni-
form-diameter SiNW channels (Fig. 11e). Ma et al. [180] 
demonstrated a novel approach for the three-dimensional 
growth and integration of silicon nanohelices (SiNHs) on 
the sidewalls of bamboo-like cylindrical structures. In 
this method, periodic sidewall grooves were first formed 
via Bosch etching, and indium catalyst droplets were then 
employed to guide the helical growth of silicon along 
these grooves. By tuning growth parameters, the diameter, 
pitch, aspect ratio, and chiral/achiral symmetries of SiNHs 
could be precisely controlled. Furthermore, the SiNHs can 
be reliably released as individual units (Table 1). These 
SiNHs exhibit structural programmability and multifunc-
tionality that may be advantageous for flexible bioelec-
tronic systems, including non-invasive BCIs (Fig. 11f).

3.3 � Zero‑Dimensional Materials in BCIs: Innovation 
and Application

Zero-dimensional materials, such as nanocapsules and 
nanoparticles, often exhibit size-dependent properties dif-
ferent from those of their bulk counterparts, owing to their 
nanoscale dimensions. These distinctive characteristics are 
of significant importance for non-invasive BCIs. For non-
invasive BCIs intended for long-term monitoring, the deg-
radation of electrode materials significantly impacts signal 
acquisition quality. UV radiation is a critical factor in the 
aging process, particularly for certain organic flexible films. 
To address this issue, Zhou et al. [185] developed a multi-
functional self-healing hybrid film composed of titanium 
dioxide nanocapsules, graphene, and multibranched polyu-
rethane, exhibiting excellent mechanical flexibility and UV 
protection properties. Within an optimized graphene content 
range, the film maintained stable electrical properties, dem-
onstrated a sensitive piezoresistive response, and possessed 

robust environmental adaptability. Notably, the film 
retained its conductivity and self-healing capability even 
after repeated mechanical damage. These attributes suggest 
potential applications in durable wearable human-machine 
interfaces (Fig. 12a). Furthermore, metal nanoparticles serve 
as excellent conductive fillers. Their integration with flex-
ible substrates combines high electrical conductivity with 
mechanical flexibility. Such materials have been explored 
as electrode interfaces for non-invasive BCIs, where low 
impedance and stable skin contact are essential for reliable 
electrophysiological signal acquisition. Tavakoli et al. [186] 
introduced a room-temperature sintering technique using 
eutectic gallium-indium (EGaIn) to significantly enhance 
the electrical and mechanical properties of inkjet-printed 
silver nanoparticle (AgNP) traces for stretchable thin-film 
electronics. In this method, AgNPs with diameters around 
100 nm were printed onto temporary tattoo paper and sub-
sequently coated with a thin layer of liquid-phase EGaIn. 
This process induced the aggregation of AgNPs and filled 
microcracks, forming a continuous conductive Ag-Ga-In 
composite trace without requiring high-temperature treat-
ment. The incorporation of EGaIn increased the electrical 
conductivity of the printed traces by six orders of magni-
tude, reaching 4.85 × 106 S m−1, and improved the maximum 
failure strain from 4.5% to over 118%. The AgNPs played 
a critical role in forming conductive percolation networks 
and, upon interaction with EGaIn, contributed to the for-
mation of heterogeneous Ag-In-Ga clusters that enhanced 
both conductivity and mechanical stretchability. The result-
ing circuits exhibited stable performance under strains up 
to 80%, low electromechanical coupling (gauge factor ≈1), 
and compatibility with hydrographic transfer to complex 3D 
surfaces and human skin. This approach facilitates the fab-
rication of highly deformable and robust electronic tattoos 
and stretchable sensors, offering a practical route toward 
skin-conformal and shape-adaptive electronics (Fig. 12b). 
Similarly, Sunwoo et al. [187] designed a stretchable low-
impedance conductor based on Ag-Au-Pt core-shell-shell 
NWs and in situ synthesized platinum nanoparticles (Pt 
NPs) embedded in a styrene-ethylene-butadiene-styrene 
(SEBS) elastomer. The Ag-Au-Pt NWs feature a conduc-
tive Ag core, a biocompatible Au inner shell, and a low-
impedance Pt outer shell with a highly embossed structure 
that enhances the effective surface area and charge transfer 
efficiency. The in situ formed Pt NPs, uniformly dispersed 
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during composite fabrication, serve as critical conductive 
bridges between the NWs, reinforcing the percolation net-
work. This synergistic structure yields a nanocomposite with 
high conductivity (~ 11,000 S cm−1), exceptional stretch-
ability (~ 500%), low electrochemical impedance (166.5 Ω 
at 1 kHz), and significantly reduced cytotoxicity due to the 
effective suppression of Ag ion leaching. The incorporation 
of Pt NPs is essential for simultaneously enhancing electri-
cal, mechanical, and electrochemical properties, supporting 
their use in high-performance wearable biosignal monitoring 
systems (Fig. 12c).

Beyond their role as conductive fillers, nanoparticles of 
certain materials exhibit unique enhancements in electro-
magnetic fields. For instance, iron oxide nanoparticles dem-
onstrate superparamagnetism, which amplifies the electric 
field induced by the external field near the neuronal mem-
brane, thereby exciting neuronal activity more effectively. 
Hong et al. [188] developed a non-invasive strategy for 
enhancing transcranial magnetic stimulation (TMS) using 
tailored superparamagnetic iron oxide nanoparticles (SPI-
ONs) to improve functional recovery after ischemic stroke. 
They synthesized water-soluble Tat peptide-conjugated 
SPIONs (Tat-SPIONs) coated with chitosan and polyeth-
ylene glycol, which exhibit excellent colloidal stability and 
superparamagnetism. A combination of intranasal adminis-
tration and external magnetic guidance facilitates the effi-
cient, non-invasive delivery of these nanoparticles across 
the blood-brain barrier and into the brain parenchyma of 
rats. The delivered Tat-SPIONs significantly enhance the 
neurostimulatory effects of TMS, as evidenced by increased 
motor-evoked potential amplitudes, reduced motor thresh-
olds, elevated c-fos expression, and marked improvements 
in motor-sensory and cognitive functions in a stroke model. 
Mechanistic investigations revealed that the enhancement 
was primarily mediated by a highly localized magnetoelec-
tric effect from the plasma membrane-associated nanopar-
ticles, which amplified the TMS-induced electric field to 
trigger neuronal activation. This platform demonstrates a 
viable pathway for medical translation of nanomaterial-
enabled remote brain stimulation (Fig. 12d). What’s more, 
certain nanoparticles, due to their hydrophilic/hydrophobic 
properties, hold significant potential for application in the 
interface engineering of non-invasive BCIs. This can be 
leveraged to ensure more intimate contact between the elec-
trode and the skin. Han et al. [189] developed a flexible and 
self-adhesive hydrogel electrode for long-term wireless EEG 

recording and high-accuracy sustained attention evaluation. 
The hydrogel is constructed using biocompatible polyvinyl 
alcohol (PVA) and polyvinylpyrrolidone (PVP) via a ketali-
zation reaction, resulting in a soft network with tissue-like 
modulus, high transparency, and excellent flexibility. To 
enhance functionality, polydopamine nanoparticles (PDA 
NPs) are incorporated into the hydrogel matrix through 
an oxidative degradation process, which converts opaque, 
micron-sized PDA aggregates into transparent, nanosized 
particles. The introduction of PDA NPs improves the 
hydrogel’s self-adhesiveness, conductivity, and interfacial 
compatibility while maintaining high optical transparency 
and biocompatibility. The resulting multichannel electrode 
exhibits low interfacial impedance, high channel uniformity, 
low noise power, and robust performance under motion and 
sweating conditions. Moreover, the system demonstrated the 
ability to classify prefrontal EEG signals into seven levels 
of sustained attention with 91.5% accuracy using a linear 
support vector machine (LSVM) classifier. This nanoarchi-
tectonics strategy highlights the critical role of PDA NPs in 
enabling high-performance, multifunctional hydrogel elec-
trodes for personalized health monitoring and cognitive state 
assessment (Fig. 12e).

3.4 � Wearable Flexible Devices: Design Principles 
and Functional Integration

3.4.1 � Design Principles

As the development of non-invasive BCIs progresses, the 
integration of wearable flexible devices has become a key 
area of focus. These devices aim to bridge the gap between 
advanced bioelectronic systems and user-friendly, comforta-
ble applications [154]. To achieve this, the design of flexible 
electronics must strike a delicate balance between mechani-
cal flexibility, biocompatibility, and signal fidelity-ensuring 
that devices can comfortably interface with the human body 
while maintaining high performance over extended periods 
of use [190, 191]. The rapid evolution of flexible bioelec-
tronics is driving advances in the landscape of wearable 
BCIs, enabling opportunities for real-time monitoring and 
seamless interaction with dynamic biological systems. Sili-
con is the most mature and reliable semiconductor material 
in current manufacturing processes, and is widely used in 
electronics and sensing. However, integrating silicon with 
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flexible substrates to extend its applications into flexible 
electronics poses a significant challenge. As the fundamen-
tal building block of modern integrated circuits, transistors 
hold great potential in non-invasive BCIs due to their gating 
and current amplification capabilities. Yet, limited by the 
intrinsic brittleness of silicon, transistors on flexible films 
often suffer structural damage due to modulus mismatch. To 
address this, Song et al. [192] directly integrated transistors 
onto a flexible film using a strategy based on rigid-island 
protection. This design maintained functional integrity under 

50% tensile strain and supported 1,000 mechanical cycles at 
20% strain, proving the robustness and durability of these 
devices. These SiNWs FETs exhibited a hole mobility of 
70 cm2 V−1 s−1, an on/off current ratio exceeding 105, and 
subthreshold swing values ranging from 134 to 277 milli-
volts per decade. Notably, the devices demonstrated stable 
electrical operation over a period of 270 days under ambient 
conditions without any encapsulation or passivation layers. 
Optical and scanning electron microscopy images confirmed 
conformal skin adhesion during deformation, while finite 

Fig. 13   Wearable flexible devices: design principles. a Magnified photo of the hard island region at various strains on the PDMS film and the 
array attached to human skin. Reproduced with permission [192].  Copyright 2022, John Wiley and Sons. b Top: Optical image of a flexible 
SiNW strain sensor array attached to a human finger. Bottom: Normalized current maps of a sensor matrix under varied strains and its real-time 
response. Reproduced with permission [193]. Copyright 2025, American Chemical Society. c Schematic illustration of the pickup and printing 
process of PLMT. Reproduced with permission [194]. Copyright 2024, Springer Nature. d Left: 3D MMF with serpentine wires. Right: Simu-
lated 3D distributions of light and temperature on neural spheroids. Reproduced with permission [195]. Copyright 2021, The American Associa-
tion for the Advancement of Science
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element analysis revealed that the stress-optimized island 
layout effectively minimized interfacial strain, supporting 
long-term mechanical stability (Fig. 13a). Furthermore, 
integrating nanomaterials with flexible films to combine 
mechanical flexibility and electrical conductivity is a widely 
adopted strategy. This is often achieved by directly transfer-
ring nanomaterials onto flexible films using a post-transfer 
technique. However, this method faces challenges such as 
the difficulties in precise integration, potential device non-
uniformity, and low pixel density. Consequently, the chal-
lenge of fabricating high-density, precisely integrated chips, 
akin to those produced by top-down etching processes like 
photolithography, presents a significant hurdle for develop-
ing higher-density, higher-performance non-invasive BCIs. 
To address this, Song et al. [193] directly grew elastically 
deformable SiNWs on a flexible polyimide film and inte-
grated them into high-performance strain sensors. This 
architecture combines structural elasticity and conformabil-
ity, offering a robust platform for continuous biomechanical 
monitoring in soft-interface neuroelectronics (Fig. 13b).

Beyond the direct fabrication and integration of electronic 
devices on flexible films, transfer printing also serves as a rapid 
and effective strategy. However, when transferring exception-
ally thin electronic devices or electrodes onto flexible films or 
biological interfaces, issues such as structural fractures due to 
stress concentration or delamination caused by poor interfa-
cial adhesion may arise. To address this challenge, Shi et al. 
[194] developed a phase-transition-enabled gallium stamp 
that facilitates damage-free, three-dimensional transfer print-
ing of ultrathin functional membranes. This method achieved 
seamless integration onto complex curved surfaces, including 
fingernails and contact lenses, with an average displacement 
across the array of 21.9 µm. By harnessing gallium’s reversible 
solid-liquid-phase transition, the stamp applied an exceptionally 
gentle preload of 0.0053 MPa while achieving robust adhesion 
up to 0.15 MPa. Notably, the approach reduced interfacial shear 
strain by four orders of magnitude compared to conventional 
PDMS stamps, significantly mitigating mechanical mismatch 
and delamination risk. These capabilities highlight the technol-
ogy’s potential for integration into non-invasive EEG systems, 
where mechanical stretchability and long-term skin conform-
ance are essential for stable signal acquisition over irregular 
scalp geometries (Fig. 13c). Structural engineering, as one of 
the most widely adopted strategies in flexible electronics, also 
holds significant potential for non-invasive BCIs. It can partially 
compensate for the limitations of materials’ intrinsic properties. 

In non-invasive BCIs, modulus matching at the biointerface 
is crucial. Matched Young’s modulus tends toward achieving 
conformal contact with the epidermis, suggesting the potential 
to reduce contact impedance, improve the SNR, and mitigate 
motion-induced artifacts. Such mechanical compatibility could 
also contribute to improved comfort during extended wear. For 
instance, designs such as wavy, serpentine, and fractal struc-
tures facilitate better modulus matching with the biointerface 
and potentially enhance the mechanical stability of non-invasive 
BCIs under dynamic conditions. In scenarios requiring micro-
scale 3D neural monitoring, traditional thin-film electrodes 
often fall short. Therefore, structurally designing electrodes 
to achieve conformational matching with the target measure-
ment sites is of great importance for the advancing field of BCI 
technology. Park et al. [195] proposed a three-dimensional 
multifunctional neural interface platform designed for cortical 
spheroids and engineered neural assembloids. This platform 
leverages mechanically guided assembly techniques to trans-
form planar structures into 3D architectures, enabling multi-
functional interactions with neural spheroids. Utilizing ultrathin 
polyimide substrates and microscale gold electrodes, the sys-
tem achieved high-fidelity detection of action potentials, with 
an average signal duration of 0.5 ms and peak-to-peak ampli-
tudes reaching 15 microvolts. The platform exhibits favorable 
mechanical compliance, with relatively low bending stiffness 
that facilitates conformal contact with soft biological tissues. 
Its elastic interconnects remain functional under small applied 
strains, enabling stable and reasonably conformal integration 
near the cortical surface. This research also demonstrated the 
potential platform’s multifunctionality across electrical, optical, 
thermal, and chemical modalities, with experimental validation 
of its capabilities in monitoring neural activity and investigating 
neural injury and recovery (Fig. 13d).

3.4.2 � Functional Integration

Building on these advances in flexible electronics, the next 
step is applying them specifically to non-invasive BCIs. 
With the advancement of non-invasive BCI technology, 
EEG monitoring is no longer confined to short-term, static 
observations, as long-term dynamic monitoring is garner-
ing increasing attention. However, when BCIs monitor mov-
ing subjects, new challenges are posed to the mechanical 
durability of electrodes. Prolonged dynamic operation could 
introduce structural defects from mechanical fatigue within 
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the electrodes, leading to a degradation in their EEG sig-
nal detection capability. Consequently, materials capable of 
self-recovery hold significant potential for enabling stable, 
long-term monitoring with non-invasive BCIs. Ferrari et al. 
[196] fabricated ultrathin conductive polymer tattoo elec-
trodes (TTEs) using inkjet printing technology and validated 
their performance in clinical EEG as well as their compat-
ibility with MEG. TTEs were able to detect alpha waves 
with significantly higher signal amplitude around 20 Hz 
compared to Ag/AgCl electrodes, demonstrating greater 
sensitivity. Moreover, during auditory evoked potential 
recordings, TTEs exhibited a superior SNR (4.07 vs. 3.36) 

relative to conventional electrodes. TTEs also conformed 
closely to the skin surface and were less affected by hair, 
making them well-suited for long-term monitoring. There-
fore, this technology holds promise for potential applications 
in multimodal brain monitoring and diagnostics (Fig. 14a). 
Simultaneously, relative motion between a non-invasive 
BCI and the body interface can introduce artifacts during 
measurement, which severely compromise the quality of 
the acquired signals and complicate the extraction of target 
neural information. Therefore, maintaining stable contact 
between the non-invasive BCIs and the target interface is 
paramount. Bioadhesive materials, capable of conforming 

Fig. 14   Wearable flexible devices: functional integration. a Compatibility of TTE with MEG. Reproduced with permission [196].  Copyright 
2020, Springer Nature. b Left: Schematic diagram of EEG signal monitoring. Right: EEG signals recorded with corresponding spectrogram in 
the eyes-closed state. Reproduced with permission [197]. Copyright 2024, John Wiley and Sons. c Top: Impedance map at 1 kHz for all elec-
trodes on the subject’s head. Bottom: a 3-T clinical scanner. Reproduced with permission [198]. Copyright 2021, The American Association 
for the Advancement of Science. d Left: Contact analysis and EEG signal recording. Right: The SEM images of the AgPMS. Reproduced with 
permission [199]. Copyright 2019, American Chemical Society. e Top: Design of in-ear bioelectronics. Bottom: Schematic diagram of the cock-
tail effect experiment based on SpiralE. Reproduced with permission [9]. Copyright 2023, Springer Nature. f Left: Experimental setup for EEG 
acquisition and drowsiness labeling. Right: Earpiece assembly and fit. Reproduced with permission [28]. Copyright 2024, Springer Nature
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intimately to biological surfaces, offer low interfacial imped-
ance and favorable mechanical flexibility. This presents an 
effective strategy for achieving high SNR and stable moni-
toring with non-invasive BCIs. Wang et al. [197] designed 
an epidermal sensor based on bioadhesive MXene hydrogel, 
in which a dynamic cross-linked network provided excel-
lent conductivity retention under 200% tensile strain and 
rapid mechanical self-healing. These properties contribute 
to maintaining stable performance in scenarios involving 
complex skin deformations. By synergistically integrating 
conductive MXene nanosheets with bioadhesive functional 
groups, the hydrogel interface achieved tunable adhesion 
strength ranging from 10.17 to 38.75 kPa, maintaining 
stable electrode-skin impedance during motion and sup-
porting high-fidelity EEG signal acquisition. The three-
dimensional porous architecture offered not only ultraviolet 
shielding but also antibacterial properties, with inhibition 
rates of 89.61% and 93.15% against Escherichia coli and 
Staphylococcus aureus, respectively, ensuring long-term 
wearability. Integrated with a machine learning algorithm, 
the system achieved an accuracy of 98.1% in EMG-based 
sign language recognition. This multifunctional platform 
holds great potential for advancing next-generation wearable 
electronics and machine learning-assisted human-machine 
interaction (Fig. 14b). The electrodes used in non-invasive 
BCIs can be simply classified according to material proper-
ties into three types: wet, semi-dry, and dry. Wet electrodes 
have been extensively applied in clinical practice. A key 
advantage lies in their use of an electrolyte medium that fills 
interfacial gaps on the skin, enabling effective contact. This 
mechanism facilitates low interface impedance and allows 
for stable signal acquisition with a high SNR. However, the 
intrinsic properties of wet electrodes render them unsuit-
able for long-term monitoring. On the one hand, the con-
ductive gel applied at the biointerface to facilitate contact 
can dry out over extended periods, leading to a significant 
degradation of signal acquisition capability. On the other 
hand, wet electrodes can cause subject discomfort, and pro-
longed skin contact with the moisture may induce irritation 
or inflammation. Hence, dry electrodes are regarded as well-
suited for long-term non-invasive BCI monitoring applica-
tions. Driscoll et al. [198] developed MXtrodes, a gel-free, 
MXene-based bioelectronic platform for high-resolution 
electrophysiological recordings in neural and neuromuscular 
systems. In non-invasive EEG applications, 3D pillar-shaped 
MXtrodes achieved precise acquisition of alpha rhythms and 

motor-related mu suppression signals, with signal quality 
comparable to clinical-grade gelled electrodes. The devices 
exhibited excellent mechanical compliance, scalable laser-
based fabrication, and strong compatibility with MRI and 
CT imaging, collectively contributing to the mitigation of 
several key challenges in wearable neurotechnology. This 
work establishes MXene composites as a key materials plat-
form capable of advancing adaptive, multimodal bioelec-
tronic systems that bridge clinical-grade and consumer-grade 
BCIs (Fig. 14c). Among the numerous parameters influenc-
ing BCIs, hair and sweat are notably significant sources of 
interference. Hair could impede intimate contact between 
the electrode and the scalp, increasing contact impedance, 
reducing the SNR, and amplifying motion-induced artifacts. 
Sweat, due to its ionic content, alters the direct interfacial 
impedance, leading to DC drift and slow-wave artifacts. To 
mitigate the interference from hair, strategies can be devised 
from the perspectives of electrode structure and material. 
For instance, replacing planar film electrodes with spike-
shaped electrodes can effectively bypass hair and establish 
stable contact directly with the scalp. Alternatively, employ-
ing porous materials like a sponge as the electrode substrate 
allows it to compress around hair follicles under application 
pressure, maintaining consistent contact with the scalp. Lin 
et al. [199] developed a flexible, gel-free silver nanowire-
based sponge electrode (AgPMS), which exhibits high con-
ductivity and excellent mechanical and chemical stability, 
allowing for effective contact with the skin, bypassing hair. 
In SSVEP experiments, AgPMS achieved a classification 
accuracy of 86% on hairless skin and 82% on hairy skin, 
a performance closely approaching the 88% accuracy of 
standard gel electrodes. These results demonstrated that 
this electrode can significantly improve the performance of 
gel-free, non-invasive BCIs, providing a superior option for 
EEG recordings in applications such as assistive devices for 
individuals with disabilities and mental state monitoring. 
It holds significant clinical and practical value, particularly 
for real-world, hair-covered non-invasive BCI applications 
(Fig. 14d).

Emerging ear-centric neural interfaces capitalize on the 
ear’s unique anatomical advantages, such as hairless regions 
for stable electrode contact, inherent mechanical stability 
that helps mitigate motion artifacts, and compact form fac-
tors compatible with wear. These combined features indi-
cate long-term neural monitoring. Wang et al. [9] developed 
SpiralE, an in-ear bioelectronic platform that conforms to 
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the shape of the ear canal. It autonomously expands and 
spirals along the ear canal under electrothermal actuation, 
ensuring optimal contact with the ear canal for reliable EEG 
sensing. This makes it suitable for the construction of both 
visual and auditory BCIs. In a 9-target SSVEP BCI classifi-
cation, offline accuracy reached 95%, and online accuracy in 
a calibration-free 40-target SSVEP speller experiment was 
75%. For auditory attention decoding in cocktail party sce-
narios, natural speech classification accuracy achieved 84% 
(Fig. 14e). Complementing this, Kaveh et al. [28] developed 
a wireless dry-electrode in-ear EEG monitoring system for 
drowsiness detection. During 35 h of drowsiness monitoring 
across nine participants, the support vector machine model 
achieved an average drowsiness event detection accuracy 
of 93.2% for old users and 93.3% for new users (Fig. 14f). 
These results validate the feasibility of wireless dry user-
generic earpieces for drowsiness classification and lay the 
groundwork for population-trained classification in future 
electrophysiological applications.

3.5 � Integration of Flexible Electronics and Deep 
Learning for Advanced Non‑Invasive BCIs

Recent performance gains in non-invasive BCIs have been 
enabled by the co-design of flexible bioelectronics and deep 
learning-based decoding algorithms. This synergistic para-
digm establishes a positive feedback loop: advanced materi-
als and interface engineering provide a high-fidelity signal 
foundation for algorithms, while intelligent algorithms, in 
turn, compensate for the inherent physical limitations of 
hardware and guide the design direction of future hardware, 
collectively pushing the boundaries of system performance.

Building upon material innovations, Yang et al. [200] 
developed a biosensor based on an adhesive-hydrophobic 
bilayer hydrogel (AHBH), which was integrated into a port-
able head-mounted device for high-fidelity EEG-based emo-
tion classification. Serving as the core interface, the AHBH 
material leverages a mussel-barnacle-inspired bioadhesion 
mechanism combined with a hydrophobic surface reorgani-
zation strategy. This design achieves a dry-state adhesion 
strength of 59.7 N m⁻1 and a water contact angle of 133.87°, 
effectively blocking sweat penetration, suppressing motion 
artifacts, and maintaining an adhesion strength of 40.8 N 
m⁻1 after 20 peeling cycles, thereby demonstrating excellent 
skin adhesion stability. The material’s low elastic modulus 

(≈6.9 kPa) and high stretchability (≈690%) ensure confor-
mal contact with the skin during deformation, significantly 
reducing contact impedance compared to commercial Ag/
AgCl electrodes and Ecoflex-ECC electrodes, along with 
minimizing signal drift and noise. Consequently, the AHBH-
ECC electrode exhibits exceptional electrical stability in 
dynamic environments such as vibration and sweating condi-
tions, with its noise RMS value measuring only 9.5 ± 1.6 μV. 
This performance is substantially superior to that of Ag/
AgCl electrodes (46.3 ± 4.6 μV) and Ecoflex-ECC electrodes 
(93.0 ± 7.8 μV), indicating enhanced resistance to motion 
artifacts. The high-quality raw signals facilitate the imple-
mentation of more complex algorithms: the study introduced 
a combination of differential entropy and power spectral 
density features to enhance emotional state differentiation 
and employed a domain adaptation neural network to com-
pensate for residual hardware noise and cross-subject vari-
ability. This approach ultimately increased the average emo-
tion classification accuracy from approximately 85% with 
traditional neural networks to 90%. An important direction 
for future research is to quantify the marginal improvement 
in final classification accuracy attributable to the hydrogel 
interface through direct comparison with conventional elec-
trodes (Fig. 14a).

Extending the co-design concept to system-level inte-
gration, Mahmood et al. [201] developed a wireless soft 
bioelectronic BCI platform that integrates dry microneedle 
electrodes, stretchable interconnects, and a VR headset. 
The interconnect structure demonstrates negligible resist-
ance change after 100 cycles at 50% strain, ensuring signal 
stability during dynamic movement. At the signal level, 
this architecture effectively suppresses motion artifacts 
and electrostatic interference, thereby enhancing both the 
SNR and recognition performance of SSVEP. For fea-
ture extraction and algorithm implementation, the study 
introduced a split-eye asynchronous stimulation (SEAS) 
paradigm that expands the number of distinguishable fre-
quency combinations to 32, subsequently employing a spa-
tial convolutional neural network (Spatial-CNN) to achieve 
high-resolution classification within a short 0.8 s time 
window. Under a configuration of 33-class stimuli and 
4-channel acquisition, the system achieved a classification 
accuracy of 78.93% ± 2.36% and an ITR of 243.6 ± 12.5 
bits min−1, significantly outperforming the traditional Ag/
AgCl electrode system, which achieved an accuracy of 
74.72% ± 3.03% and an ITR of 222.4 ± 15.0 bits min−1. 
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The system was demonstrated in real-time applications, 
including VR text spelling and virtual environment naviga-
tion. None of the nine subjects reported discomfort during 
one hour of continuous use, indicating satisfactory wear-
ability and user experience. Future studies building on 
this work could expand participant diversity to include 
individuals with motor disabilities and evaluate long-term 
wearing comfort through extended-use trials (Fig. 14b).

Further advancing the hardware-algorithm closed-loop 
integration, the same research team reported the SKIN-
TRONICS system [10]. This system utilizes flexible cir-
cuits and dry electrodes composed of ultrathin aerosol-jet 
printed skin electrodes and flexible conductive polymer, 
with a mechanical modulus highly matched to scalp tis-
sue to achieve conformal contact. This configuration 
effectively reduces electrode-skin contact impedance to 

below 20 kΩ, thereby significantly suppressing signal 
artifacts and electromagnetic interference caused by rela-
tive interfacial motion. The system enables high-quality, 
stable EEG signal acquisition, providing reliable input for 
subsequent deep neural network processing. Quantitative 
experiments demonstrated that the system achieves an 
SNR of 46.6 ± 2.16 dB in SSVEP detection, performing 
significantly better than traditional gel electrode systems 
(16.94 ± 4.60 dB) and existing portable wireless systems 
(28.89 ± 2.28 dB). Concurrent reliability tests confirm 
excellent long-term stability: the flexible circuit exhib-
its resistance changes of less than 0.09 Ω after repeated 
180° bending around a radius as small as 1.3 mm, while 
maintaining stable wireless signal strength within a 15-m 
range. Additionally, the elastomer hairy electrode shows 
less than 10% change in contact impedance after 1,000 

Fig. 15   Integration of flexible electronics and deep learning for advanced non-invasive BCIs. a Schematic illustration and performance of the 
AHBH skin-interfaced biosensor for human emotion classification. Reproduced with permission [200].  Copyright 2022, John Wiley and Sons. 
b Schematic of VR-enabled portable BCIs. Reproduced with permission [201]. Copyright 2022, Elsevier. c Schematic of the system architecture 
featuring fully portable and wireless scalp electronics. Reproduced with permission [10]. Copyright 2019, Springer Nature
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compression cycles. On the algorithmic side, a grid-search 
optimized dual-layer CNN enables automatic extraction 
of robust features directly from two-channel time-domain 
SSVEP signals, effectively overcoming the performance 
limitations of traditional methods with limited channels. 
The cross-subject generalization capability of the dual-
layer CNN was validated through a six-fold cross-subject 
validation, where models trained on 5 subjects were tested 
on an independent subject. Benefiting from this hardware-
software co-optimization, the system achieved an offline 
classification accuracy of 94.54% ± 0.9% and an ITR of 
122.1 ± 3.53 bits min−1 using only two EEG channels. The 
system successfully translates decoded features into con-
trol commands, enabling real-time, precise control of an 
electric wheelchair, a wireless vehicle, and demonstration 
software (Fig. 14c).

In summary, these innovative approaches collectively 
outline a clear trajectory for synergistic development in 
non-invasive BCIs. Advancements in flexible electrodes 
establish the hardware foundation by optimizing interfacial 
contact and suppressing motion artifacts, thereby consist-
ently providing more stable, high-SNR raw signals that sup-
ply high-quality, high-fidelity data for subsequent decoding. 
Building upon this foundation, advanced algorithms such 
as deep learning leverage their powerful feature extraction 
capabilities to not only achieve significant improvements 
in decoding performance compared to traditional methods 
but also actively compensate for inherent hardware limita-
tions, including residual noise and cross-subject variabil-
ity. This synergistic paradigm, embodying the principle of 
hardware establishing the foundation and algorithms driving 
advancement, creates a positive feedback loop that collec-
tively expands the performance boundaries of non-invasive 
BCIs (Fig. 15).

Looking ahead, advancing beyond current performance 
limitations requires the development of specialized hard-
ware designed for new computing paradigms. The traditional 
von Neumann architecture encounters energy efficiency 
bottlenecks when processing neural signals, whereas neu-
romorphic computing approaches, such as those utilizing 
memristor-based in-memory computing chips combined 
with event-driven spiking neural networks, offer a promis-
ing solution for ultra-low-power edge computing [151]. This 
calls for hardware-software co-design, involving cross-level 
optimization from materials and devices to algorithms. Such 
co-design ensures deep integration of hardware physical 

characteristics and algorithmic computational requirements 
from the initial design stages, while avoiding latency and 
privacy risks associated with cloud transmission. Ultimately, 
translating these laboratory innovations into reliable user 
assistive tools demands rigorous validation in real-world 
environments. The principal future challenge involves sys-
tematically evaluating the decoding robustness, long-term 
wear comfort, and biocompatibility of these co-designed 
systems across diverse populations during continuous multi-
day monitoring, while simultaneously addressing accom-
panying system-level engineering issues to complete the 
crucial transition from technological prototype to practical 
product.

3.6 � Systems‑Engineering for Non‑Invasive BCIs

In multisubject collaborative non-invasive BCI systems, pre-
cise clock management poses a critical challenge for ensur-
ing data timeliness and comparability. The core issue stems 
from inherent discrepancies in the internal clock sources 
of independent acquisition devices. Due to manufacturing 
tolerances of crystal oscillators and of environmental influ-
ences such as temperature and voltage fluctuations, these 
clocks exhibit varying degrees of drift and offset. Conse-
quently, temporal misalignment gradually develops across 
devices, making it difficult to reliably synchronize neural 
responses to the same stimulus from different subjects. This 
synchronization problem is especially pronounced in medi-
cal applications where communication firmware in clinical-
grade devices is often closed and restricted by regulatory 
requirements, preventing access to precise timestamps at 
the hardware level; timestamps can only be recorded at the 
application layer, introducing substantial indeterministic and 
variable software and communication delays, which signifi-
cantly increase synchronization complexity. A representa-
tive collaborative solution combines dedicated hardware 
modules with synchronization software protocols. A syn-
chronization hub is deployed within the network alongside 
multiple distributed synchronization plugins. Through peri-
odic reference message broadcasting, timestamp exchange 
among nodes, and dynamic reference node election, each 
node applies linear regression to continuously estimate and 
compensate for its own clock offset relative to the reference 
node. This allows the system to maintain network-wide 
temporal consistency even under unstable communication 
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latency conditions [202]. When hardware-level alignment is 
infeasible, software frameworks, such as the lab streaming 
layer, could achieve network-based timestamp calibration 
[87, 88], while dynamic time warping and event resampling 
could correct residual drift during post-processing. Future 
systems will require synchronization mechanisms that com-
bine millisecond-level real-time performance, cross-device 
stability, and cross-session reproducibility to support high-
precision applications such as clinical diagnostics, collabo-
rative BCIs, and large-scale hyperscanning studies.

In non-invasive BCIs such as EEG, power consumption 
and thermal management represent major challenges [203]. 
Although such systems do not require surgical implantation, 
their power dissipation may still lead to localized tempera-
ture increases, affecting user comfort and long-term safety 
[204]. Because EEG electrodes are in direct contact with the 
scalp—where blood perfusion is relatively low and thermal 
conductivity is poor—heat generated by signal acquisition, 
amplification, or wireless transmission modules is difficult 
to dissipate efficiently. This may result in local tempera-
ture elevation that approaches or exceeds biological safety 
thresholds. Furthermore, non-invasive devices are typically 
portable and battery-powered [63]. Therefore, power effi-
ciency not only affects battery life but also directly impacts 
wearability and biocompatibility. As such, low-power circuit 
design, efficient thermal dissipation structures, and proper 
material selection must be thoroughly considered during 
the hardware design stage. Thermal simulation tools should 
be used to evaluate temperature distribution under various 
physiological and environmental conditions to ensure that 
devices meet functional requirements while complying with 
thermal safety standards and enhancing user experience. 
Integrated design is considered a key strategy for improving 
power efficiency. For example, microchip-based integration 
of EEG and fNIRS sensors on a single platform reduces 
device size and weight, lowers power consumption, and 
enhances signal quality and synchronization.

Electromagnetic compatibility (EMC) presents a signifi-
cant challenge throughout the signal acquisition, transmis-
sion, and processing pipeline of non-invasive BCIs. The 
issue arises from a fundamental contradiction: BCIs are 
designed to detect extremely weak neural electrophysiologi-
cal signals (e.g., EEG) on the order of microvolts, while 
operating in environments that inevitably contain strong 
internal and external electromagnetic interference. This 
interference includes power line radiation at 50/60 Hz and its 

harmonics, as well as noise from consumer electronics such 
as Wi-Fi and Bluetooth devices. Additionally, physiological 
artifacts generated by the user—such as EOG or EMG—can 
have amplitudes much larger than EEG signals. These dis-
turbances can be introduced into the system through elec-
trodes or leads acting as "antennas", which deteriorate signal 
quality, distort data, and may result in misclassification or 
system malfunction. This presents direct risks to the reli-
ability and safety of BCI systems in applications such as 
monitoring, diagnosis, or neuro-assistive tasks. To address 
this complex issue and ensure stable system performance in 
real electromagnetic environments, a comprehensive engi-
neering strategy is required. This strategy must integrate 
hardware design, signal processing, and preliminary evalu-
ation [205]. On the hardware side, shielded cables, driven 
right-leg circuits, and other active shielding techniques are 
used to minimize electromagnetic penetration, while ampli-
fiers with high input impedance and high common-mode 
rejection ratios are employed to enhance the detection of 
weak differential signals. On the algorithmic side, residual 
noise persists despite hardware optimization, necessitating 
advanced signal processing techniques such as blind source 
separation, adaptive filtering, and deep learning models to 
extract meaningful neural data from contaminated signals 
[136]. During the device development phase, combining 
EMC analysis with numerical simulations of virtual human 
models has become an essential step in verifying compatibil-
ity and safety in realistic tissue environments. Collectively, 
these layered EMC strategies are essential for improving 
system SNR and facilitating the transition of non-invasive 
BCIs from controlled laboratory settings to practical real-
world applications.

In non-invasive BCI systems, firmware update and roll-
back mechanisms are critical for ensuring long-term safety 
and reliability. However, these mechanisms remain under-
explored. Given that BCI devices operate in close and 
sustained contact with the human body, firmware updates 
affect not only algorithm performance but also user safety 
and ethical accountability. Without integrity verification 
and rollback pathways, faulty updates may disrupt signal 
acquisition, render devices inoperative, or introduce risks 
to users [206]. Recent studies emphasize the need for digi-
tally signed updates, redundant A/B partition storage, and 
version-controlled rollback to establish a resilient firmware 
lifecycle [207]. Real-world industry cases demonstrate that 
when manufacturers discontinue software support or when 
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an update fails, users may be left with "orphaned" or non-
maintainable neuro-devices. Therefore, firmware systems for 
BCIs must simultaneously address security, reversibility, and 
long-term maintainability.

In non-invasive BCIs, safety failure and protection mecha-
nisms primarily address the risk of unintended operations 
caused by signal distortion, abnormal user states, or external 
disturbances. Typical strategies include real-time monitoring 
of user cognitive states (e.g., fatigue, distraction) and trig-
gering system-level interventions (e.g., halting device oper-
ation, switching to manual mode, or activating emergency 
shutdown) when potentially unsafe conditions are detected. 
Additionally, multimodal physiological signal fusion (e.g., 
combining EEG and EOG) or robust control algorithms 
can enhance system fault tolerance and reduce reliance on 
a single signal source, allowing basic safety functions to 
be maintained even when partial component failures occur. 
Regarding safety thresholds and recovery mechanisms during 
online learning, systems generally require predefined behav-
ioral boundaries or risk thresholds to constrain algorithmic 
outputs, preventing learning models or adaptive control strat-
egies from entering hazardous or uncontrollable states. For 
example, in brain-controlled robots or vehicles, physical or 
logical limits may be imposed on movement speed, steer-
ing angle, or distance to obstacles. When the system detects 
that its internal state or user commands are approaching or 
exceeding these limits, recovery procedures are activated, 
such as aborting current commands, reverting to the last 
verified safe state, or using error-related neural signals (e.g., 
error-related negativity) to trigger immediate system reset 
and behavioral correction. This hybrid strategy—combining 
proactive threshold protection and reactive error-triggered 
recovery—ensures that interactions remain within safe opera-
tional bounds during dynamic learning [208].

In non-invasive BCIs, online learning effectively 
addresses the non-stationarity of EEG signals over time, but 
it introduces key challenges related to safety thresholds and 
recovery mechanisms. Because EEG signals drift over time, 
adaptive updates of classifiers are necessary but must avoid 
performance degradation or user confusion due to improper 
adaptation. A common approach is to set a confidence 
threshold: classifier parameters are updated only when the 
confidence of the current prediction exceeds this thresh-
old, which reduces the likelihood of learning from noisy or 
uncertain data. Meanwhile, the system must retain recovery 
capability. For instance, when error-related brain potentials 

are detected, the system can interrupt current commands 
and roll back the classifier to a previously validated stable 
state. This combination of active threshold defense and pas-
sive error-triggered rollback aims to balance performance, 
adaptability, and operational safety [209].

4 � Conclusions and Perspectives

As non-invasive BCI technology advances from labora-
tory research toward real-world applications in clinical 
rehabilitation, neural modulation, and daily life assis-
tance, its evolution underscores a deepening convergence 
of neuroscience, AI, and flexible bioelectronics. Through 
systematic advancements in neural decoding algorithms 
and innovative flexible materials, we are progressively 
integrating high-precision neural monitoring and decod-
ing technologies seamlessly into daily life, clinical diag-
nostics, and therapeutic interventions. However, achiev-
ing truly sustainable, accessible, and clinically valuable 
applications still faces a series of challenges rooted in the 
intrinsic properties of neural signals, the constraints of 
dynamic human-computer interaction, and the complexity 
of long-term usage environments. To address these chal-
lenges, a systematic and multidimensional breakthrough is 
required across signal acquisition, algorithmic modeling, 
hardware architecture, closed-loop control strategies, and 
evaluation frameworks.

The core performance bottleneck of non-invasive BCIs 
primarily stems from inherent biophysical constraints. 
When cortical neural activity passes through multiple 
tissue layers (e.g., the skull and cerebrospinal fluid), it 
may cause spatial blurring and amplitude attenuation of 
the signals. Consequently, scalp-recorded EEG typically 
exhibits low spatial resolution, low SNR, and high suscep-
tibility to physiological artifacts and environmental noise. 
Moreover, individual variations in anatomical structure, 
physiological states (e.g., fatigue, attention), and psycho-
logical states (e.g., motivation, emotion) further exacer-
bate the non-stationarity and time-varying nature of neu-
ral signals. Meanwhile, practical challenges at the user 
level also demand considerable attention. Firstly, there 
are significant individual differences in neural accessi-
bility. Approximately 15%–30% of users struggle to pro-
duce consistently decodable signals, a condition termed 
"BCI illiteracy." These challenges not only undermine the 
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generalization of decoding algorithms but also hinder the 
stable and reliable decoding of user intent.

Despite significant advances in neural decoding and sys-
tem architecture, the large-scale translation of non-invasive 
BCIs into clinical and everyday settings continues to face 
substantial challenges. In mobile or real-world usage sce-
narios, BCI systems confront critical issues related to the 
stability of the biological interface, which directly impacts 
long-term reliability and signal quality. Two primary bot-
tlenecks are physical degradation and relative motion at 
the electrode-scalp interface. Firstly, interface degrada-
tion becomes particularly pronounced during prolonged 
wear. Dry electrodes eliminate the need for conductive 
gel, thereby reducing the risk of skin irritation or aller-
gic reactions; however, their rigid structures may cause 
pressure points, skin discomfort, or even micro-abrasions 
during extended use. Wet electrodes, while offering supe-
rior signal fidelity, carry risks of skin sensitization and 
infection. Moreover, as the conductive gel dries over time, 
contact impedance increases, leading to progressive signal 
instability. Semi-dry electrodes represent a compromise 
solution, slowly releasing minimal electrolytes to maintain 
conductivity while minimizing skin irritation. However, 
their design requires careful consideration of material per-
meability and mechanical configuration to prevent uneven 
pressure distribution and residue accumulation. To ensure 
biocompatibility, electrode materials should be selected 
for low allergenicity, high flexibility, and smooth surface 
topography. These material properties must be combined 
with breathable designs, regular cleaning protocols, and 
personalized fitting procedures to minimize adverse skin 
reactions and enhance both user comfort and system 
reliability.

Secondly, dynamic artifacts present another major chal-
lenge. Relative movement between the electrode and scalp 
during user motion not only induces mechanical fatigue 
and potential structural damage but also introduces motion-
related artifacts. Additionally, electrolytes in sweat alter the 
electrochemical characteristics of the interface, causing drift 
and interference that further degrade signal quality. Hair 
acts as a physical barrier, impeding direct contact between 
the electrode and scalp, increasing contact impedance, and 
exacerbating artifact magnitude. Collectively, these factors 
indirectly contribute to feature representation drift and dete-
rioration in decoding performance.

In contrast to conventional rigid electrodes, advancements 
in flexible bioelectronics are significantly influencing the 
design principles of neural signal acquisition interfaces. 
Driven by innovations in materials science, nanomaterials 
are gaining increasing attention in the development of flex-
ible electrodes. The combination of the unique electrical 
properties of nanomaterials and the excellent mechanical 
compliance of flexible substrates provides a solid foundation 
for high-performance flexible electrodes. The mechanical 
impedance matching between highly conductive flexible 
films and biological tissues enables low interfacial imped-
ance and high-fidelity neural signal recording. The con-
formal contact afforded by such materials helps suppress 
motion-induced artifacts and maintains more consistent 
contact impedance. Evidence indicates that this leads to 
improvements in the SNR and stability of raw EEG signals. 
Compared to traditional rigid electrodes, flexible electrodes 
not only enhance signal quality but also offer greater comfort 
during extended wear, facilitating long-term monitoring.

Nevertheless, even with significant advancements in mate-
rials, achieving robust performance across diverse popula-
tions still demands fundamental algorithmic breakthroughs. 
At the preprocessing stage, advanced multimodal fusion 
algorithms integrate cross-modal sensory information (e.g., 
visual, auditory, and tactile) to enhance signal robustness 
and discriminability. During feature extraction, methods 
based on SPD manifold geometry, CSP and its variants, and 
spatiotemporal filtering incorporating source imaging priors 
have improved feature separability and neurophysiological 
plausibility. In classification, end-to-end deep learning mod-
els (e.g., CNNs, Transformer architectures, and multimodal 
fusion networks) enable high-performance automatic fea-
ture learning and pattern recognition, significantly boost-
ing decoding accuracy and generalization. Despite these 
advances, the efficacy of such models is largely validated 
under idealized experimental conditions. Their transferabil-
ity, noise resilience, and long-term stability in real-world 
deployments remain insufficiently demonstrated.

Concurrently, as BCI technologies develop, ethical, soci-
etal, and safety concerns are becoming increasingly promi-
nent. Ultimately, translating advanced laboratory prototypes 
into clinically validated and commercially viable products 
requires rigorous scientific validation, comprehensive bio-
compatibility testing, regulatory approval, and long-term 
efficacy assessment. Non-invasive BCIs face dual chal-
lenges in regulatory clearance and cost modeling for both 
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disposable and reusable components. From an economic 
perspective, cost models suggest that disposable electrodes 
increase direct expenditure but may reduce risks of cross-
contamination and labor costs associated with cleaning. 
Reusable systems exhibit lower per-use costs but require 
investment in sterilization equipment, personnel, and main-
tenance. An optimized framework should therefore quantify 
trade-offs among regulatory compliance, clinical safety, and 
lifecycle cost.

In the development and deployment of non-invasive BCIs, 
whether as medical devices or consumer-grade products, a 
systematic checklist encompassing electrical safety, electro-
magnetic compatibility (EMC), biocompatibility, software 
lifecycle management, and cybersecurity must be strictly 
adhered to. For medical devices, patient safety and clini-
cal reliability are paramount, necessitating compliance with 
IEC 60601 (electrical safety and EMC), ISO 10993 (bio-
compatibility of electrode patches or wearable materials), 
IEC 62304 (medical device software lifecycle), and ISO 
14971 (risk management). Furthermore, registration with 
regulatory bodies such as the FDA or under the EU’s Medi-
cal Device Regulation (MDR) is mandatory, supported by 
traceable technical documentation and clinical or perfor-
mance validation data to ensure consistent signal quality, 
algorithmic stability, and reproducibility across diverse 
user populations. For consumer-grade products, while full 
medical device regulations do not apply, essential require-
ments still hold. These include compliance with electrical 
safety standards (e.g., IEC 62368 or IEC 61010), EMC and 
wireless regulations (e.g., FCC/CE RED), and basic safety 
assessments of skin contact materials (referencing low-risk 
pathways in ISO 10993). Adherence to data protection laws 
(e.g., GDPR) and cybersecurity regulations governing data 
encryption, privacy, and cloud transmission is equally criti-
cal. Additionally, commercial products must avoid using 
diagnostic or therapeutic terminology, instead positioning 
their functionality as cognitive state monitoring, wellness 
support, or entertainment, to mitigate the risk of being clas-
sified as medical devices. Moreover, non-invasive BCIs must 
adhere to strict disinfection and sterilization protocols in 
clinical and research settings to ensure participant safety, 
health, and ethical protection.

Particularly crucial is that current BCI research is 
undergoing a fundamental shift from "open-loop, static" 
systems to "closed-loop, adaptive" paradigms, with a focus 
on enhancing real-time decoding capabilities, improving 

asynchronous detection mechanisms, and optimizing 
shared control strategies. However, a key engineering 
constraint persists: phase lag. This lag, which includes 
the cumulative time delay arising from signal acquisi-
tion, wireless transmission, feature extraction, decod-
ing decisions, and actuator response, causes the system 
output to trail behind the user’s neural intention. This 
temporal misalignment disrupts control timing, reduces 
trajectory smoothness and target acquisition accuracy, 
and significantly diminishes the user’s sense of agency, 
thereby undermining trust and sustained engagement. In 
high-speed motor control or high-risk tasks, even minor 
delays can lead to serious consequences. Moreover, an 
inherent trade-off exists between latency and reliability: 
complex models improve classification accuracy but often 
incur higher computational overhead and longer response 
times, whereas simplified algorithms reduce latency at the 
expense of decoding robustness. Of equal concern is the 
nonlinear accumulation of false positives (false triggers) 
and false negatives (missed detections) during extended 
use, which increases cognitive load and may even lead to 
user frustration or abandonment. Meanwhile, the balance 
of control authority in shared control paradigms remains 
lacking in standardized definitions. To address these chal-
lenges, forward models and predictive state filters should 
be incorporated to model user intent, generate preemptive 
control commands, actively compensate for cumulative 
processing delays, and thereby enhance the proactivity and 
responsiveness of closed-loop systems. Using preregistra-
tion or at minimum a constrained analysis plan will help 
limit post hoc selection.

Looking ahead, open research benchmarks should be 
established to promote reproducible, comparable, and veri-
fiable progress. Pre-registered or constrained analysis plans 
are recommended to limit post hoc selection bias. In addi-
tion, the biological interpretability of BCI systems should be 
rigorously assessed by evaluating the stability of channel or 
regional weights across repeated sessions and across differ-
ent subjects. Furthermore, comprehensive, endpoint-aligned 
evaluation systems should be developed, integrating tech-
nical metrics with task completion time, false alarm rates, 
subjective measures such as the NASA-TLX cognitive load 
scale, and long-term usage rates, thereby establishing user-
centered evaluation criteria.

At the system architecture level, advancing beyond cur-
rent performance limitations requires the development of 
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specialized hardware designed for emerging computing 
paradigms. The traditional von Neumann architecture faces 
energy efficiency bottlenecks when processing neural signals, 
whereas neuromorphic computing approaches, such as those 
utilizing memristor-based in-memory computing chips com-
bined with event-driven spiking neural networks, provide a 
promising solution for ultra-low-power edge computing. This 
necessitates hardware-software co-design, involving cross-
level optimization from materials and devices to algorithms. 
Such co-design ensures integrated consideration of hard-
ware physical characteristics and algorithmic computational 
requirements from the initial design stages, while minimizing 
latency and privacy risks associated with cloud transmission.

In summary, the advancement of non-invasive BCIs relies 
not only on innovations in signal processing and algorithm 
design but also on close integration with cutting-edge flex-
ible bioelectronics and hardware architecture. Achieving 
practical, robust, personalized, and trustworthy BCI systems 
capable of transitioning from the lab to real-world deploy-
ment requires multidisciplinary collaboration and holistic 
co-optimization. This process involves not only techno-
logical innovation but also strict regulatory compliance, 
cost-benefit analysis, and user experience improvement 
to ensure safety, reliability, and widespread accessibility. 
Simultaneously, establishing comprehensive end-to-end 
evaluation systems that span from signal acquisition to final 
user feedback is essential for validating the effectiveness 
and reliability of diverse hardware-software configurations 
and will serve as a key focus for the future development of 
BCI technologies.
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