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Non-Invasive Brain-Computer Interfaces:
Converging Frontiers in Neural Signal Decoding
and Flexible Bioelectronics Integration

Sheng Wang' ™, Xiaobin Song?, Xiaopan Song® ", Yang Gu®, Zhuangzhuang Cong*,

e The latest advancements in neural signal decoding and the integration of flexible bioelectronics for non-invasive brain-computer

interfaces are reviewed.

e Multimodal data fusion, hardware-software co-optimization, and closed-loop control strategies are critical for enhancing the robust-

ness, adaptability, and real-time performance of brain-computer interface (BCI) systems.

® The robust real-world deployment of BCIs requires breakthroughs in cross-subject generalization, environmental adaptability, and

system reproducibility.

ABSTRACT The development of non-invasive brain-computer interfaces (BCls)
relies on multidisciplinary integration across neuroscience, artificial intelligence,
flexible electronics, and systems engineering. Recent advances in deep learning have
significantly improved the accuracy and robustness of neural signal decoding. Parallel
progress in electrode design—particularly through the use of flexible and stretch-
able materials like nanostructured conductors and novel fabrication strategies—has
enhanced wearability and operational stability. Nevertheless, key challenges persist,
including individual variability, biocompatibility limitations, and susceptibility to
interference in complex environments. Further validation and optimization are needed
to address gaps in generalization capability, long-term reliability, and real-world opera-
tional robustness. This review systematically examines the representative progress in
neural decoding algorithms and flexible bioelectronic platforms over the past decade,
highlighting key design principles, material innovations, and integration strategies
that are poised to advance non-invasive BCI capabilities. It also discusses the impor-
tance of multimodal data fusion, hardware-software co-optimization, and closed-loop
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control strategies. Furthermore, the review discusses the application potential and associated engineering challenges of this technology in clinical

rehabilitation and industrial translation, aiming to provide a reference for advancing non-invasive BClIs toward practical and scalable deployment.
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1 Introduction

The development of brain-computer interfaces (BCIs) rep-
resents a significant integration of neuroscience, artificial
intelligence (AI), and bioelectronics, establishing direct com-
munication pathways between neural activity and external
technological systems [1-6]. This integration enables effective
control of computer interfaces, assistive devices, and robotic
platforms, thereby enhancing human-technology interactions
[7-11]. Specifically, BCIs are broadly categorized into two
types: invasive and non-invasive. Invasive BClIs, which utilize
direct electrode-neural tissue contact, typically achieve high
signal-to-noise ratio (SNR), sensitivity, and resolution, mak-
ing them suitable for precision interventions requiring high
signal quality. However, their application is constrained by
surgical risks, biocompatibility issues, and long-term stabil-
ity challenges. At present, invasive BCIs are mainly used in
clinical settings for advanced cognitive research and motor
function restoration in paralyzed patients, which may limit
near-term direct translation to broader populations, including
healthy individuals [12-21]. In contrast, non-invasive BClIs,
which do not require surgery and offer high safety, have dem-
onstrated broad scalability and applicability in clinical prac-
tice. These systems are applied in various domains, such as
communication, rehabilitation, virtual reality (VR) and aug-
mented reality (AR), cognitive impairment, mental health,
fatigue and vigilance monitoring, chronic inflammation, and
autonomic nerve regulation [22-24]. Clinically, they serve
as valuable non-pharmacological interventions for conditions
like amyotrophic lateral sclerosis (ALS) and stroke rehabilita-
tion, contributing to improvements in patients’ quality of life
[5, 25, 26]. For instance, Sellers et al. [27] proposed a non-
invasive BCI system that restored essential communicative
functions in ALS patients, enabling reliable letter selection
and spontaneous communication in over two-thirds of trials.
Similarly, Biasiucci et al. [26] integrated a non-invasive BCI
with functional electrical stimulation, showing improvements
among chronic stroke patients. Beyond its medical applica-
tions, BCI technology is being increasingly applied in enter-
tainment and automotive safety domains, highlighting its
broad societal impact [28-31].

Electroencephalography (EEG) remains the primary signal
acquisition method for non-invasive BCls, valued for its non-
invasiveness, high temporal resolution, and clinical applicability
[32, 33]. However, EEG signals are susceptible to physiological
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artifacts and environmental electromagnetic interference, which
result in a low SNR in real-world environments, thereby low-
ering signal quality and affecting the reliability of subsequent
analysis [34]. Other non-invasive neuroimaging technologies
face similar challenges. For instance, functional near-infrared
spectroscopy (fNIRS) and functional magnetic resonance
imaging (fMRI) are constrained by low temporal resolution. In
contrast, magnetoencephalography (MEG), despite its higher
spatiotemporal resolution, requires strict environmental condi-
tions [35-38]. Furthermore, conventional decoding paradigms,
including motor imagery (MI), steady-state visual evoked
potentials (SSVEP), and P300 event-related potentials (ERP),
are constrained by factors such as dependence on user state
and individual variability. These limitations impede their abil-
ity to achieve high robustness in real-world scenarios [39—42].
Therefore, the development of non-invasive neural recording
technologies with millisecond-scale temporal resolution and
high SNR remains a key direction for advancing the practical
application of high-performance BClIs [43].

To support more reliable performance in real-world
applications, recent research is increasingly focused on two
directions: advancing neural signal decoding through Al
and integrating flexible bioelectronic platforms. The rapid
progress of deep learning architectures [44—46], especially
convolutional neural networks (CNNs), multimodal hybrid
networks, and Transformer models, has improved decoding
accuracy and system operational stability, with performance
surpassing that of traditional machine learning methods
[47-50]. Meanwhile, multimodal technological strategies
are continuously expanding the boundaries of non-invasive
neural monitoring, offering new insights for analyzing spa-
tiotemporal neural dynamics and their regulatory mecha-
nisms [51]. For instance, multimodal stimulation paradigms
that integrate visual and auditory cues have been shown to
improve the accuracy and robustness of neural signal decod-
ing. In summary, these technological trends indicate feasi-
ble pathways toward high-performance non-invasive BCls,
although related engineering implementation and clinical
translation challenges still need to be addressed [52].

Traditional rigid electrodes, due to their high mechanical
stiffness and limited ability to conform to the skin surface,
frequently cause discomfort and unstable contact. This can
lead to a degradation in neural signal quality over time, poten-
tially affecting the accuracy and reliability of BCIs [53-55].
Recent advances in flexible bioelectronics provide promising
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Fig. 1 Non-invasive BCI: converging frontiers in neural signal decoding and flexible bioelectronics integration

solutions for enhancing the electrode-skin interface [S6-63].
By employing flexible polymer substrates and stretchable
conductive materials, electrodes have shown notable improve-
ments in mechanical compliance, conductivity, and resistance
to deformation [53, 64—66], thereby enhancing wearing com-
fort and signal stability [62, 67, 68]. In particular, electrode
designs based on flexible conductive films, nanowire materials,
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or hydrogels hold promise for reducing electrode-skin inter-
face impedance, mitigating motion artifacts, and improving the
SNR [69-77]. Looking ahead, combining these flexible sens-
ing platforms with advanced deep learning decoding methods
is expected to further improve the performance of non-invasive
BClIs further. Specifically, the innovation in flexible electrodes
establishes the hardware foundation for high-performance
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BClIs. By improving interfacial contact and suppressing motion
artifacts, these electrodes provide more stable, high-SNR raw
signals, thereby supplying high-fidelity data for subsequent
decoding. Building on this platform, advanced algorithms,
such as deep learning, leverage their powerful feature learn-
ing capabilities not only to achieve significant improvements
in decoding performance compared to traditional methods but
also to actively compensate for inherent hardware limitations
such as residual noise and cross-subject variability. This syn-
ergistic paradigm, which embodies the principle of hardware
laying the foundation and algorithms driving advancement,
forms a positive feedback loop that collectively expands the
performance boundaries of non-invasive BCIs [78-80].

This review provides a comprehensive overview of the latest
advancements in neural signal decoding, flexible bioelectron-
ics, and their synergistic integration in the field of non-inva-
sive BCIs, highlighting their impact on clinical and industrial
applications. The article is structured as follows: Following
the introduction in Sects. 1 and 2 reviews pivotal advances in
neural signal decoding, including multimodal stimulation para-
digms, multimodal neural signal acquisition technologies, and
the significance of dynamic neural decoding and closed-loop
control strategies driven by deep learning. Section 3 critically
explores technological innovations in flexible bioelectronics,
including interface optimization mechanisms for conduc-
tive thin films, miniaturization strategies for nanowire-based
devices, multiphysics coupled design of wearable systems, and
hardware-software co-optimization with deep learning archi-
tectures. Section 4 addresses current technological challenges
and future opportunities, focusing on multimodal neural sens-
ing, the enhancement of robustness in adaptive closed-loop
systems, and the development of scalable clinical translation
pathways. Through a comprehensive analysis of interdisci-
plinary technological convergence, this review establishes a
tripartite framework (decoding-sensing-application) for next-
generation non-invasive BCIs and provides actionable insights
to support their integration into precision medicine and intel-
ligent human-machine interaction scenarios (Fig. 1).

2 Advancing Neural Signal Decoding
Methodologies

The core performance limitations of non-invasive BCIs
primarily originate from inherent biophysical constraints.
When cortical neural activity passes through multiple
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tissue layers (e.g., the skull and cerebrospinal fluid), it may
cause spatial blurring and amplitude attenuation of the sig-
nals [81-83]. Consequently, scalp-recorded EEG typically
exhibits low spatial resolution, low SNR, and high suscep-
tibility to physiological artifacts and environmental noise.
Additionally, individual variations in anatomical structure,
physiological states (e.g., fatigue, attention), and psychologi-
cal states (e.g., motivation, emotion) further exacerbate the
non-stationarity and time-varying nature of neural signals
[84-86]. These challenges not only undermine the generali-
zation of decoding algorithms but also hinder the stable and
reliable decoding of user intent [87, 88].

To address these challenges, a typical neural signal decod-
ing pipeline generally comprises three key stages: preproc-
essing, feature extraction, and classification. In recent years,
with the rapid advancement of deep learning technologies,
BClIs have shown improvements in overall performance
[89-91]. A notable trend in current research is the shift from
"open-loop, static" systems to "closed-loop, adaptive" para-
digms [92], with development direction focusing on enhanc-
ing real-time decoding capabilities, improving asynchronous
detection mechanisms, and optimizing shared control strate-
gies. The core driving force behind this transformation is Al-
driven closed-loop human-machine interaction architectures.
These architectures not only integrate multimodal sensing
and deep learning models but also enable dynamic coordi-
nation and bidirectional adaptation between the brain and
external devices through a "perceive-decode-applications"
closed-loop mechanism [88].

2.1 Multimodal Stimulation Paradigms for Enhanced
Neural Decoding

Research in non-invasive BClIs is increasingly focusing on the
integration of multimodal paradigms to significantly enhance
overall system performance. This performance improvement
is primarily achieved through advanced multimodal fusion
algorithms that effectively integrate information from dif-
ferent sensory channels such as visual, auditory, and tactile,
thereby optimizing the accuracy and robustness of neural sig-
nal decoding [93, 94]. Specifically, multimodal information
processing first requires the construction of efficient fusion
algorithms, such as signal analysis based on manifold geom-
etry, feature extraction using common spatial patterns (CSP),
and signal calibration leveraging source imaging priors

https://doi.org/10.1007/s40820-025-02042-2
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Fig. 2 Schematic illustration of multimodal stimulation paradigms for neural signal decoding. a Left: An example trial of the flash-beep para-
digm. Right: Across-participants’ mean illustrating absolute differences. Reproduced with permission [52]. Copyright 2019, Springer Nature.
b Left: Amplitude distribution of evoked EEG signals in response to the words "one" to "nine". Right: The language and frequency spectra
of the feedback EEG signals in MASSR-EEG. Reproduced with permission [98]. Copyright 2023, Wiley-VCH GmbH. ¢ System performance
under different stimulus conditions and pairwise classification accuracy. Reproduced with permission [99]. Copyright 2016, World Scientific
Publishing Company. d Stimulation interface for the P300 and SSVEP paradigms. Reproduced with permission [100]. Copyright 2015, IEEE. e
Framework of the hybrid EEG signal processing module combining SSVEP and P300. Reproduced with permission [41]. Copyright 2022, Else-
vier. f Experimental designs for the three BCI paradigms. Reproduced with permission [101]. Copyright 2019, Oxford University Press. g Mul-
tidimensional paradigm combining perception, sustained attention, selective attention, and episodic memory tasks, with transfer learning used to
predict memory performance. Reproduced with permission [102]. Copyright 2019, Springer Nature. h Visual representation of emotion-related
components across cortical visual areas. Reproduced with permission [103]. Copyright 2019, The American Association for the Advancement of

Science

[95-97]. These methods represent preliminary approaches
to multimodal integration and modestly improve decod-
ing accuracy. Rohe et al. [52] combined EEG with Bayes-
ian modeling to reveal the neural dynamics of hierarchical
Bayesian causal inference in multisensory perception. The
work revealed that the brain does not simply integrate sen-
sory signals, but dynamically arbitrates between integration
and segregation strategies based on intersensory conflict,
computing the final percept through "model averaging". It

| SHANGHAI JIAO TONG UNIVERSITY PRESS

was further demonstrated that pre-stimulus neural oscilla-
tions (such as alpha and gamma power) modulate the causal
"prior", thereby elucidating the neural basis of perceptual
decision-making with temporal precision. Methodologically,
the original authors employed rigorous statistical approaches,
including cluster-based multiple comparison correction and
bootstrapped confidence intervals, to substantiate their con-
clusions (Fig. 2a). Notably, Li et al. [98] developed a flexible

electrode, which combined SSVEP with multimodal auditory
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steady-state responses (MASSR). The bimodal paradigm sig-
nificantly outperformed the unimodal conditions, achieving
an average recognition accuracy of 89.6% in the occipital
channels (O1, Oz, O2), while the MASSR paradigm attained
only 36.7% in the temporal channels (FT9, FT10, TP9,
TP10). When the SSVEP-MASSR multimodal paradigm was
employed, Li et al. observed that the accuracy improved to
90.4% in the visual channels and 54.0% in the auditory chan-
nels. This work served as a proof of concept for the paradigm
using the nine words ("one" to "nine"). Extending its appli-
cability to more complex semantic scenarios is a key next
step for further development (Fig. 2b). Beyond audiovisual
integration, the incorporation of the tactile modality further
expands the potential of multimodal BCIs. Yin et al. pro-
posed an innovative auditory-tactile bimodal P300 BCI [99].
The results showed that the bimodal paradigm significantly
outperformed the unimodal conditions, achieving an online
information transfer rate (ITR) of 10.77 bits min~', which
represented an improvement of 45.43% (p <0.05) and 51.05%
(p<0.001) over the auditory-only and tactile-only paradigms,
respectively. It also achieved a higher average accuracy of
88.67% with fewer trials (average 2.92). Future work explor-
ing its application to more complex scenarios is a promising
and anticipated direction for development (Fig. 2¢).

Fan et al. [100] developed a hybrid BCI system based
on P300 and SSVEP for vehicle destination selection. The
system achieved an average accuracy of 98.93% +0.48% and
a mean selection time of 25.95+ 1.04 s under real driving
conditions. The study represents an important step forward
by validating the system’s performance in real driving envi-
ronments with fluctuations in illumination and noise. Future
work could systematically evaluate its performance under a
broader spectrum of complex and extreme conditions to fully
define its operational limits (Fig. 2d).

Tang et al. [41] developed a BCI painting system that
employed a hybrid control approach, combining SSVEP and
P300. The system achieved an average tool selection accu-
racy of 88.92% +3.94%, with an ITR of 74.20 +5.28 bpm
in the copy-painting task and 71.80 +5.15 bpm in the
free-painting task. The average tool selection accuracy
was slightly higher than that of the traditional P300-only
system (86.78% +4.56%), while the ITR was signifi-
cantly superior to the conventional system (copy-painting:
60.86 +6.56 bpm; free-painting: 58.93 +6.11 bpm). Sub-
jective evaluations demonstrated significantly higher user
satisfaction (4.10+0.64 vs. 3.40+0.75) and motivation
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scores (4.50 +£0.51 vs. 2.85+0.67), indicating enhanced
operational efficiency and improved user experience.
Although the means and standard deviations reported by
the original authors provide preliminary evidence of the
system’s advantages, more comprehensive statistical analy-
ses in future studies will be essential to rigorously validate
these performance claims (Fig. 2e). Crucially, multimodal
integration exhibits neuroplasticity across both spatial and
temporal dimensions, further enhancing the robustness
of neural decoding. Zhang et al. [39] designed a hybrid
non-invasive BCI that integrates MI and high-frequency
SSVEP (34/35 Hz) to control a wearable soft robotic glove
designed for stroke rehabilitation. Methodologically, they
employed the filter bank common spatial pattern (FBCSP)
to process MI signals and the filter bank canonical cor-
relation analysis (FBCCA) to decode SSVEP signals,
ultimately making decisions through a weighted fusion
algorithm. Online experimental results demonstrated the
system’s feasibility, achieving mean classification accu-
racies of 95.83% +6.83% in 12 healthy subjects and
63.33% +10.38% in 9 stroke patients. This high-frequency
SSVEP reduced visual fatigue, while decomposed action
imagery improved task intuitiveness, forming a closed-loop
"peripheral-central-peripheral” rehabilitation framework.
Meanwhile, although the dataset study by Lee et al. pro-
vided a theoretical foundation for the necessity of multi-
modal BClIs [101]. The study revealed that the MI para-
digm had the highest rate of BCI illiteracy (53.7%), while
the exogenous paradigms—ERP and SSVEP—exhibited
much lower illiteracy rates of approximately 10%. More
importantly, all participants were able to effectively con-
trol at least one paradigm, with no user being classified as
universally illiterate. These results suggest that by devel-
oping adaptive systems that integrate multiple paradigms,
it is possible to leverage the complementary strengths of
different modalities, thereby extending control to a wider
range of users (Fig. 2f).

In the domain of more complex passive BCIs and
advanced cognitive state decoding, multimodal integration
likewise demonstrates promise. Mirjalili and Duarte devel-
oped a transfer learning framework integrating EEG data
from sustained attention [102], selective attention, and visual
perception tasks to decode the encoding of episodic memory.
Their findings suggested that tracking multidimensional cog-
nitive states enhanced predictive validity through distributed
neural engagement patterns, improving memory encoding

https://doi.org/10.1007/s40820-025-02042-2
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prediction accuracy from 72% to 81.4% (p <0.001). A more
comprehensive understanding of the underlying neural
mechanisms may be pursued in future work by leveraging
complementary neuroimaging techniques (Fig. 2g). Kragel
et al. [103] expanded this framework by demonstrating how
affective states are spatially encoded across visual hierarchy
regions (V1-PH), enabling decoding of complex cognitive-
affective interactions (Fig. 2h). To address the challenges in
multimodal integration and further enhance the performance
of non-invasive BCIs, innovative deep learning networks
will be a crucial future direction. Particularly, Transformer
networks suitable for multimodal signal analysis, high-order
feature fusion techniques, and algorithms based on cross-
modal alignment will play a pivotal role.

o)
{\\ SHANGHALI JIAO TONG UNIVERSITY PRESS

2.2 Multimodal Signal Acquisition: Techniques
and System Design

EEG remains the foundational method for non-invasive
BCI signal acquisition because of its high temporal reso-
lution and non-invasive characteristics. However, EEG is
susceptible to artifacts and has limited spatial resolution,
which has led to growing interest in integrating multimodal
neuroimaging techniques. Recent approaches combine EEG
with complementary modalities: fNIRS provides hemody-
namic data, while MEG enhances spatiotemporal resolution.
This integration effectively addresses the inherent trade-off
between temporal and spatial resolution in non-invasive sys-
tems [104-106].
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Recent studies in the field of BCIs have demonstrated
that combining EEG and fNIRS can enhance system per-
formance. Jiang et al. [107] developed a unified EEG-fNIRS
bimodal signal processing framework to analyze single-trial
neural signals during robot-assisted bimanual cyclical tasks.
They employed the artifact subspace reconstruction algo-
rithm to remove large-amplitude artifacts from EEG, and
applied the temporal derivative distribution repair method
to correct motion artifacts and baseline drift in fNIRS signals.
The analysis time window was defined from 2 s before to
4 s after task execution, during which event-related desyn-
chronization/synchronization (ERD/ERS) and oxygenated
hemoglobin concentration changes (AHbO) were extracted
as features. In terms of statistical methods, Jiang et al. found
statistically significant differences in both ERD/ERS and
AHDO responses among the three bimanual tasks during
specific time intervals (p <0.001), with post hoc analyses
indicating that the anti-phase task elicited the strongest
activation using statistical analysis. For classification, they
used a support vector machine, which demonstrated that the
fused EEG-fNIRS features achieved an accuracy of 90.1%
in discriminating the three bimanual movement patterns—
significantly higher than the accuracy using single-modality
features (EEG: 74.8%; fNIRS: 82.2%) (Fig. 3a). FMRI offers
extremely high spatial resolution, enabling precise localiza-
tion of brain activity. However, its temporal resolution is con-
strained by the slow nature of the hemodynamic response.
Simultaneous EEG-fMRI acquisition and fusion can combine
the high temporal resolution of EEG with the high spatial
resolution of fMRI, providing comprehensive spatiotemporal
information about brain activity. This multimodal integration
has been successfully applied in various BCI applications,
including emotion recognition and MI. Pisauro et al. [108]
employed a snack choice task combined with simultane-
ous EEG-fMRI and computational modeling to investigate
the role of the posterior medial frontal cortex (pMFC) in
value-based decision-making. To mitigate artifacts inherent
to simultaneous recording, the study used twisted leads to
reduce electromagnetic interference and performed offline
removal of gradient artifacts. Results revealed that bold sig-
nal activity in the pMFC was significantly associated with
these EEG dynamics, suggesting its role as a neural sub-
strate for evidence accumulation during value-based choices
(Fig. 3b). Ji et al. [109] constructed a 16-command SDMA-
encoded MEG-EEG fusion modality BCI system. The study
implemented a synchronous triggering mechanism via a

© The authors

16-bit signal transmission link between visual stimuli and
MEG data acquisition, ensuring precise synchronization
between stimulus onset and data recording initiation. With-
out additional signal-domain preprocessing, the research
team directly fused the two modalities and decoded them
using the multiclass discriminative canonical pattern match-
ing algorithm. Under a 4-s data window, the fusion model
achieved an average classification accuracy of 91.71%,
markedly exceeding that of MEG alone (88.57%) and EEG
(60.76%), with corresponding p-values below 0.01 and 0.001.
This performance gain was attributed to MEG’s heightened
sensitivity to contralateral polarity reversal in the occipital
cortex, confirming the critical role of multimodal acquisition
in enhancing spatial decoding performance in SDMA-based
BCI systems (Fig. 3c). The Syntalos framework, developed
by Klumpp et al. [110], is designed to address the challenge
of precise synchronization in multimodal data acquisition,
particularly for long-duration recordings. The framework
established a globally shared master clock and continuously
performs statistical analysis and correction of timestamps
from various devices, ensuring precise alignment of all input
timestamps. Experimental validation demonstrated that Syn-
talos maintains stable synchronization across devices for over
24 h. In a simulated time-drift experiment (with a systematic
drift of 1 ms per second), they observed that the accuracy of
the behavioral classifier dropped from nearly 100% to near-
chance levels when the temporal misalignment between
neural spike signals and whisker-touch behavioral data accu-
mulated to 1 s. This demonstrated that Syntalos addressed
the challenge of precise synchronization in multimodal
data acquisition, particularly for long-duration recordings
(Fig. 3d). Liet al. [111] proposed the BrainFusion framework
to address challenges in reproducibility and deployment in
multimodal BCI research. The framework manages signal
temporal synchronization through standardized data con-
tainers and two alignment strategies (time-point alignment
and event-based alignment), and supports the BIDS format
to enhance data comparability. Case studies demonstrated
its efficacy: it achieved 95.5% accuracy in EEG-fNIRS MI
classification and deployed an EEG-ECG sleep staging
model (80.2% accuracy) as an executable end application.
The framework is primarily designed for offline analysis.
Extending it to real-time closed-loop control constitutes a
valuable direction for future research (Fig. 3e). The dual
capacity to resolve spatiotemporal dynamics and endogenous
modulation establishes multimodal approaches as critical for

https://doi.org/10.1007/s40820-025-02042-2
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clinically viable BCIs [112]. To address multimodal engi-
neering challenges, Bayesian frameworks and advanced algo-
rithms have been widely applied in EEG source imaging to
address source localization spatial priors [113]. To minimize
mutual electromagnetic interference between sensors of dif-
ferent modalities, in addition to electromagnetic shielding
techniques, signal processing filters tailored to specific noise
characteristics should be integrated [84]. Moreover, in online
or closed-loop systems, the phase lag inherent in signal trans-
mission, processing, and actuator response cannot be ignored,
as it directly determines the timeliness and effectiveness of
closed-loop interventions. To compensate for such delays,
advanced signal processing and predictive algorithms must
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be developed to optimize the efficiency of the processing
pipeline and reduce computational complexity [114]. Time
jitter and misalignment caused by systems with different
sampling rates require coordinated advances in both precise

hardware synchronization and software-level coordination
[115,116].

2.3 Single-Model Deep Learning Architectures
for Neural Dynamics Interpretation

Deep learning has become a key approach for decoding non-
invasive neural signals [117-119], effectively addressing
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challenges such as spectral-temporal complexity, individual
variability, and data scarcity. Although deep learning has
achieved significant progress in enhancing decoding per-
formance for non-invasive BClIs in recent years, its practi-
cal application still faces substantial challenges. These chal-
lenges represent the critical bottleneck in transitioning BCIs
from laboratory settings to real-world deployment. So, an
increasing number of recent studies have begun to actively
simulate realistic conditions, introducing controlled pertur-
bations to probe the performance limits of algorithms and
thereby to reveal their applicability boundaries in real-world
scenarios [120].

In terms of model architecture, researchers have explored
diverse approaches centered around the spatiotemporal
structure, manifold properties, and spectral patterns of EEG.
Forenzo et al. [121] constructed an EEG-based BCI dataset
comprising 28 subjects and 168 h of recordings, designed for
online continuous pursuit tasks. Results demonstrated that
deep learning (EEGNet, PointNet) decoders significantly
outperformed chance level across all sessions. Forenzo
et al. used a Holm-adjusted Wilcoxon signed-rank test to
statistically validate this performance (p <0.05), thereby
supporting the reliability of MI features in the dataset. To
systematically evaluate decoding stability under variations
in electrode configuration and physiological noise interfer-
ence, the authors removed five electrodes and introduced
ocular artifacts into the data. Results showed no significant
decline in decoding performance (p =0.463), indicating
the model’s robustness in device variation scenarios. The
model weights and code have been made publicly available
(Fig. 4a). Li et al. [122] developed the HR-SNN model to
investigate its robustness under noise interference and chan-
nel loss conditions. When subjected to Gaussian noise with
an amplitude of 10%, the model achieved an accuracy of
68.59% using subject-specific transfer learning (SSTL).
Under a more severe scenario with 16 out of 64 channels
randomly removed, the SSTL accuracy remained at 71.48%.

In addition, Li et al. [123] proposed a Riemannian convo-
lutional neural network (RMCNN) that integrates a spatial-
temporal convolutional layer with a Riemannian block. The
model was evaluated for cross-session generalization across
three public MI datasets. Experimental results demonstrated
that the model achieved an offline classification accuracy of
80.52% on the BCI Competition IV 2a dataset. To validate
its effectiveness, Li et al. conducted a systematic comparison
between RMCNN and baseline methods such as FBCSP and

© The authors

EEGNet using the Wilcoxon test, with statistical results con-
firming the significant advantages of their method. Further-
more, the study included an ablation experiment to assess
the functional contributions of different components of the
model. To promote research reproducibility, the authors have
made the relevant code publicly available (Fig. 4b). Ju and
Guan proposed Graph-CSPNet [96], which integrated graph
neural networks with SPD manifolds for MI classification
tasks. After establishing its excellent time-frequency feature
extraction capability and classification effectiveness, they
further enhanced model interpretability through spectral dis-
tribution visualization and graph Laplacian analysis. The
approach clearly demonstrated the model’s attention pat-
terns toward different frequency bands in the time-frequency
graph structure, including the 8, u, f, and y rhythms. The
research team specifically emphasized that the frequency
bands prioritized by their model show alignment with estab-
lished neurophysiological mechanisms of MI. Subsequently,
they introduced a geometric deep learning framework named
Tensor-CSPNet [97]. This model represented EEG spatial
covariance matrices on symmetric positive definite (SPD)
manifolds and extracted spatio-spectro-temporal features
of the signals by combining deep neural networks on SPD
manifolds with CNNs. Under cross-session non-stationary
scenarios, this model achieved an accuracy improvement of
approximately 0.3 compared to FBCSP for Subject No.28
on the MI-KU dataset. Furthermore, the authors conducted
a visualization analysis of the model’s features using Deep-
LIFT and t-SNE. The results showed that the activation pat-
terns captured by the model (such as contralateral activation
in the C3/C4 regions) were consistent with the neurophysi-
ological mechanisms of ERD/ERS during MI.

In addition to innovations in network architecture, train-
ing strategies and data augmentation methods also play a
key role in performance improvement. The FBCNN-TKS
model proposed by Huang et al. [124] demonstrated strong
performance in offline analysis. With a 0.4-s data length,
the model attained a classification accuracy of 83.10% and
an ITR of 251.54 bpm on the Benchmark dataset, while
achieving 72.98% accuracy and an ITR of 203.47 bpm on
the BETA dataset. Huang et al. used a paired t test to validate
the model’s efficacy, with results confirming that FBCNN-
TKS significantly outperformed traditional machine learning
models as well as deep learning methods such as eTRCA
and DNN (p <0.01 on Benchmark, p <0.001 on BETA).
The study systematically validated the effectiveness of each

https://doi.org/10.1007/s40820-025-02042-2
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model component through rigorous experiments: electrode
configuration tests identified 9 or 32 channels as the optimal
topology; ablation studies revealed that removing the fil-
ter bank, TKS module, or center loss consistently degraded
performance, especially under shorter data lengths; and a
hyperparameter sweep determined the optimal center loss
weight 4 to be 0.0005. These experiments collectively sup-
port the validity of the model architecture and the synergistic
interactions among its components (Fig. 4c).

Fahimi et al. [125] proposed a framework based on con-
ditional deep convolutional generative adversarial networks
(DCGAN:S) to enhance training data by generating artificial
EEG signals, addressing the challenge of degraded classifi-
cation performance in BCI systems under diverted attention
conditions. The work validated the diversity and realism of
the generated signals through quantitative metrics, such as
the closeness of the KL divergence between generated and
real samples, and visualization analyses, including t-SNE
embeddings and spectrogram comparisons. The adversarial
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training process demonstrated stability, with generator and
discriminator losses converging after approximately 300
iterations, and no mode collapse was observed. In model
evaluation, the method improved classification accuracy in
the diverted attention condition from a baseline of 73.04% to
80.36%. To further assess generalization, the research team
tested the model on the BCI Competition III Dataset IVa,
where classification accuracy for different MI tasks increased
from 67.57% to 71.14% (p <0.02). These results collectively
indicated that the proposed data augmentation strategy not
only effectively enhanced BCI classification performance
under diverted attention but also exhibited a degree of cross-
dataset generalization capability (Fig. 4d). Zhang et al. [126]
designed a multiple-source prototype-supervised adversarial
transfer learning approach (PSAT). By constructing a multi-
source fusion framework that weighted integrates different
source domains, PSAT reduced cross-subject discrepancies
and intra-subject non-stationarity. It also addressed the chal-
lenges of cross-subject EEG classification in BCI. To rig-
orously validate the effectiveness of their method, Zhang
et al. implemented a linear step-up procedure to control the
false discovery rate, thereby mitigating the risk of false posi-
tives in multiple comparisons. Experimental results on three
MI-EEG datasets demonstrated that PSAT achieved higher
classification accuracy than its variants, PSAT-c, PSAT-a,
and PSAT-v. Further ablation studies revealed that both the
prototype mapper and domain discriminator were indispen-
sable modules for enhancing system performance.

In addition to the aforementioned models, Momeni et al.
[127] proposed the physical local learning (PhyLL) algorithm,
establishing a paradigm for training physical neural networks.
To evaluate the robustness of the system, the original authors
introduced Gaussian noise perturbations (mean ¢ =0.1-0.5,
standard deviation 6=0.25-0.50) into the optical system.
Under severe perturbations caused performance degradation,
PhyLL recovered high accuracy within just a few training
epochs. In contrast, the digital model-dependent physics-
aware backpropagation (PA-BP) method exhibited its accuracy
decline to approximately 55% even under mild perturbations
and failed to recover. After validation on multiple physical
platforms, this work demonstrated the adaptive capability
of physical neural networks in unstable environments and
laid the groundwork for future exploration of their potential
in BCIs to address challenges such as channel characteristic
variations and environmental interference (Fig. 5a). Yuen
et al. [128] designed a three-dimensional ray-traced biological

© The authors

neural network (Ray-BNN), demonstrating potential in transfer
learning for dimension-varying tasks. The model preserved
trained weights and supported architectural adaptation during
network expansion through dynamic 3D neuronal connectivity
and sparse matrix representations. On an EEG dataset com-
prising multiple paradigms, Ray-BNN achieved an accuracy
of 85.6% (p <1.7968 x 10-%) in 54-fold subject-independent
testing by integrating feature extractors from Deep4Net and
X-dawn, indicating robust cross-subject generalization. Dur-
ing transfer learning on the Alcala dataset, input dimensions
progressively increased from 6 to 162 access points. The
model reduced cumulative training time by approximately
85% compared to BiLSTM while maintaining sparsity below
40% in the weight matrix. The study provided publicly avail-
able code and data to support reproducibility. The foundation
for cross-subject generalization established by this study pro-
vides a clear direction for future work: verifying the stability
of transfer performance in scenarios with device heterogene-
ity will drive substantial advancements of the framework in
complex application environments (Fig. 5b). Spiking neural
networks (SNNs), as pivotal enablers of brain-inspired intel-
ligence, have recently seen significant advances in both soft-
ware tools and learning algorithms. At the framework level,
the Spiking Jelly framework introduced by Fang et al. [129]
has effectively bridged a critical gap in the dedicated software
toolchain for spiking deep learning. Spiking Jelly significantly
reduced the technical barrier to SNN research and promotes
the development of the software ecosystem for neuromorphic
computing (Fig. 5¢). At the algorithmic level, the biologically
inspired self-backpropagation (SBP) mechanism proposed by
Zhang et al. [130] facilitates coordinated weight adjustment
in both SNNs and ANNSs by allowing synaptic modifications
(potentiation or depression) at output neurons to backpropa-
gate across layers to upstream synapses (Fig. 5d). Current
research on deep learning-based decoding for non-invasive
BClIs is evolving from singular performance optimization
toward building multidimensional capabilities. Architectur-
ally, models are becoming more aligned with the spatiotem-
poral and geometric properties of neural signals. In training,
methods increasingly integrate data augmentation, transfer
learning, and alignment strategies to enhance generalization.
Nevertheless, there remains a notable absence of exploration
into performance boundaries under real-world conditions such
as channel loss, noise interference, and attentional fluctuations.
Most approaches remain focused on offline analysis, and the
generalization limits in dynamic environments and with device

https://doi.org/10.1007/s40820-025-02042-2
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heterogeneity require more systematic evaluation, which rep- In the area of motor decoding and electromyographic

resents a critical direction for future research. activity prediction, existing methods often struggle to cap-

ture the nonlinear relationship between EEG and EMG sig-
2.4 Hybrid Deep Learning Frameworks for Multiscale nals. Therefore, developing nonlinear models capable of

Signal Decoding integrating spatiotemporal features, such as the CNN-LSTM

model, is crucial for extracting muscle activity-related
Single-model decoding approaches, though prevalent, are information. Amiri and Shalchyan proposed a deep learn-

often limited by their generalizability, especially when faced ing model integrating CNN and LSTM networks to decode

with complex, real-world data. In contrast, hybrid architec- muscle activity from non-invasive EEG signals [131]. Dur-

tures have emerged as a promising solution by integrat- ing the grasp and lift (GAL) task, their model achieved an

ing spatial, temporal, and spectral representations. These
approaches effectively address key challenges such as cross-
trial variability and signal complexity, setting the stage for
robust decoding in both motor and linguistic domains.
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average correlation coefficient (CC) of 0.76 +0.10 and a
normalized root mean square error (nRMSE) of 0.21 +£0.05
between the actual and predicted muscle activities for two
muscles. They employed statistical tests with Bonferroni
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correction (adjusted p-value <0.016) confirmed that the
model significantly outperformed two comparative methods:
multivariate linear regression (mLR) and multilayer percep-
tron (MLP). Building on these promising results, several
aspects emerge as valuable avenues for further investigation.
For instance, while the current evaluation was conducted
offline, exploring real-time implementation represents a
natural and important next step, particularly considering the
computational profile of the model. The average decoding
time for the CNN-LSTM architecture was 339.76 +51.71 s.
This provided a useful baseline for future work aimed at
optimizing efficiency for real-time applications, especially
when compared to the faster mLR (3.93 +3.02 s) and MLP
(95.40+22.44 s) models (Fig. 6a). Although CNN-LSTM
can automatically extract spatiotemporal features, it requires
large amounts of data for training. To address the issue of
data scarcity, Khademi et al. [132] proposed a hybrid CNN-
LSTM deep learning model based on transfer learning and
data augmentation, aiming to enhance the classification per-
formance of MI-EEG signals. Their approach employed the
continuous wavelet transform (CWT) to convert EEG sig-
nals into time-frequency images. They expanded the dataset
fivefold (from 288 to 1440 trials per subject) using a non-
overlapping sliding window cropping strategy. Evaluated
on the BCI Competition IV dataset 2a, this model achieved
a mean classification accuracy of 86% and a mean Kappa
value of 81% (Fig. 6b).

In the direction of rehabilitation systems. An et al. [133]
developed a real-time classifier based on CNN-BiLSTM for
a patient-centered AR-SSVEP active rehabilitation exoskele-
ton system. The study achieved an offline classification accu-
racy of 98.5% and an ITR of 210 bits min~! within a 0.5-s
time window. In the online experiments, the subjects took an
average of 319 s to complete four non-repetitive trajectory
tasks, which was 20% longer than the standard reference
time. As an initial investigation involving six healthy young
participants, this study established a foundation for subse-
quent research aiming to expand subject diversity (Fig. 6¢).

In the field of neural language decoding and interactive
control. Jeong et al. [134] proposed a real-time, non-invasive
neural language decoding method based on deep neurolin-
guistic learning for multiuser BCI. This approach combined
a CNN and a gated recurrent unit (GRU) to decode speech
imagery from EEG signals. It then integrated the decoded
results into sentence-level neural commands via a rule-based
sentence generation model to control a neural prosthetic

© The authors

arm. The study designed multiuser collaborative scenarios,
allowing different users to control the prosthetic arm for
themselves or their partners. The decoded neural language
is used to perform high-level tasks such as object delivery
and emotional interaction. The overall average task success
rate was 72.36%, with an average latency of 4.450 s per word
and 8.645 s for sentence generation (Fig. 6d).

In the domain of multimodal fusion and electrophysiologi-
cal source imaging. Jiao et al. [135] proposed a multimodal
deep fusion framework using attention neural networks
(MMDF-ANN). This framework aimed to improve locali-
zation accuracy and stability under conditions of extended
sources and low SNR in electrophysiological source imag-
ing (ESI). The framework used dual-stream CNN modules
to process EEG and MEG signals separately and integrated
the features through a channel-wise attention mechanism.
On synthetic data, the model demonstrated strong perfor-
mance. For instance, in single-source localization tasks with
an SNR of 30 dB, it achieved an area under the precision-
recall curve (AUPRC) of 0.944 +0.104, outperforming tra-
ditional methods such as MNE and SLORETA, as well as the
unimodal deep learning model ConvDip. Ablation studies
confirmed that both multimodal fusion and dilated convolu-
tion contributed to the performance improvement. Notably,
as the number of sources increased, the model’s performance
exhibited a declining trend: in four-source tasks, the AUPRC
dropped to 0.827 +0.166. This phenomenon suggested that
the diversity of training data may affect the model’s adapt-
ability to complex activation patterns. In validation with
real data, MMDF-ANN successfully localized visual cortex
activity in a face perception dataset containing simultane-
ous EEG/MEG recordings. In an epilepsy dataset with only
EEG recordings, the model still achieved more focal source
localization compared to ConvDip. These findings establish
a solid foundation for multimodal fusion approaches, while
their broad applicability in diverse clinical environments rep-
resents a promising direction for future validation (Fig. 6e).

Future work could adopt domain adaptation methods to
improve device compatibility and establish comprehen-
sive performance degradation curves to better define the
algorithm’s operational boundaries. Together, these meth-
odological advances illustrate the considerable potential
of hybrid deep learning strategies that integrate multiscale
feature encoding and cross-modal alignment [136]. While
significant gains have been demonstrated across decoding
tasks and modalities, future work must address cross-subject

https://doi.org/10.1007/s40820-025-02042-2
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Copyright 2025, IEEE. b

Decoding based on EMG signals. Reproduced with permission [139]. Copyright 2025, Springer Nature. ¢ Left: ErrP decoding results. Right:
Schematic of the control architecture and experimental protocol. Reproduced with permission [140]. Copyright 2021, Springer Nature. d Left:
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shared BCI control. Reproduced with permission [142]. Copyright 2023, IEEE

generalizability and robustness in real-world environments
[85, 137].

2.5 Toward Real-Time, Asynchronous,
and Collaborative Non-Invasive BCIs

There is a growing focus in non-invasive BCI development
on real-time performance, shared control strategies, and
asynchronous detection capabilities. Wang et al. [138] con-
ducted a randomized cross-session online study to evaluate
the performance of the deep learning model IFNet in 15
BCl-naive subjects. Experimental results demonstrated that
IFNet significantly outperformed the traditional method,
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FBCSP, in both sessions. The model achieved improvements
in online task accuracy of 20% and 27%, respectively, and
the main effect of the model was significant (P <0.0001).
Methodologically, the original authors used Bonferroni cor-
rection for all statistical tests involving multiple compari-
sons, ensuring the rigor of statistical inference. Furthermore,
they adopted the CutMix data augmentation strategy, which
was confirmed to enhance model performance (P <0.05).
Ablation experiments further validated the effectiveness
of this strategy across multiple datasets. Additionally, the
authors made the complete model code publicly available
and reported an inference latency of approximately 5 ms,
demonstrating the potential of this method for practical
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deployment. Notably, the study also revealed key limita-
tions of the model: offline analysis showed that when the
model was transferred from calibration tasks to online feed-
back tasks, significant performance degradation occurred
in both cross-session and cross-mode scenarios; sensitiv-
ity analysis by the original authors further indicated that
when the decision window was shorter than 1 s, the model
decoding accuracy dropped sharply, even below the chance
level (Fig. 7a). In another study focusing on training effects,
Bhadra et al. [139] employed a rigorous experimental design
in a 5-day EEG-based imagined speech BCI study, reveal-
ing the mechanisms by which training enhances real-time
control capabilities. Results demonstrated that after receiv-
ing continuous feedback training, 15 healthy participants
significantly improved their BCI control accuracy from 55
to 70% (p=0.018), with online cross-validation accuracy
significantly surpassing the offline condition (7},=38.3,
p=8.8x% 107, d= 2.14). Pronounced individual differences
were also observed, as indicated by a significant positive
correlation between learning slopes and average perfor-
mance (r=0.55, p =0.034), corroborating the prevalence of
the "BCl illiteracy" phenomenon in imagined speech tasks.
At the neural mechanism level, the study identified power
enhancements in the frontal theta band and the left temporal
low-gamma band as key biomarkers of learning. Technically,
the system achieved an average feedback delay of 100 ms,
and the code and model weights were made publicly avail-
able. Notably, although EMG signals showed some contribu-
tion to offline decoding (EMG vs. EEG: T},=2.2, p=0.044,
d=0.57), online EEG decoding accuracy was significantly
higher (T,,=2.77, p=0.014, d=0.71) (Fig. 7b).

Regarding shared control paradigms, Batzianoulis et al.
[140] developed a BCI-based shared control architecture
that integrates the autonomous obstacle avoidance capa-
bility of a robot with users’ implicit neural feedback. In
this framework, the robot generated real-time trajectories
through a dynamical system, while users could exercise
a "veto" against trajectories that did not align with their
personal preferences by eliciting error-related potentials
(ErrPs). Batzianoulis et al. employed rigorous statistical test-
ing to validate this paradigm’s effectiveness: they adopted
repeated-measures ANOVA, which revealed a significant
difference in ErrP decoding accuracy between the time-
locked and continuous modes (F (1, 12)=27.1, p<0.001),
with online continuous decoding maintaining an accuracy of
70+ 13%. Building upon this, posterior probability-weighted
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inverse reinforcement learning significantly reduced the fre-
quency of user interventions after only 3—5 demonstrations
(p<0.001). The progress made in this shared control system,
particularly in trajectory distribution reporting, highlights
key areas for future breakthroughs. By precisely quantifying
trajectory errors and establishing clear human-machine deci-
sion boundaries, future work could substantially improve the
reliability and safety of shared control paradigms in prac-
tical applications (Fig. 7c). Similarly, focusing on shared
control, Deng et al. [141] proposed a self-adaptive shared
control method based on a brain state evaluation network
(BSE-NET) for human-wheelchair cooperation. This system
evaluated the user’s brain control ability online via quantized
attention-gated kernel reinforcement learning and generated
a confidence score to dynamically adjust the control weight
between robot autonomy and human operator. Experimental
results demonstrated that most subjects achieved a task suc-
cess rate of approximately 90% in dynamic environments,
and a significant correlation was observed between the con-
fidence score and EEG decoding accuracy in online experi-
ments. In a complementary approach, Lu et al. [89] proposed
a model predictive control (MPC)-based shared control
method. By explicitly setting safety constraints (such as lat-
eral and yaw angle error bounds) and introducing a penalty
term (weight a=1) for deviations from the driver’s com-
mand within its optimization framework, this method delin-
eated a quantifiable human-machine trade-off space at the
system design level. This approach significantly improved
task performance: in obstacle avoidance tests, direct brain-
controlled driving failed. However, with MPC assistance,
some participants achieved a 100% task success rate, while
others attained success rates between 85% and 95%. Future
work could focus on conducting multisession, long-term
experiments to systematically investigate the system’s adap-
tive capabilities in dynamic environments. This approach
would facilitate the evaluation of the framework’s perfor-
mance sustainability under realistic operational conditions.

Taking a step further, Zhou et al. [142] created a shared
control system for a 3D robotic arm that integrates a hybrid
asynchronous BCI (converging SSVEP and electroocu-
lography (EOG) signals) and computer vision. The sys-
tem adopted a 15-command asynchronous interface and a
3D vector synthesis strategy to enable flexible manipula-
tion of the robotic arm in unknown environments. Online
experiments demonstrated that in a free spelling task, the
system achieved an average classification accuracy of
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92.4% +5.5%, a false positive rate of 1.25% +0.71%, and
an ITR of 97.9 +12.8 bits min~!. In the 3D reach-grasp-
drink task, the shared control mode significantly reduced the
number of commands issued (9.40 +2.14 vs. 28.90 +6.83),
the BCI-guided phase completion time (0.99 +0.35 vs.
3.04 +1.42 min), and the number of error commands
(0.3540.59 vs. 2.25+2.02) compared to direct BCI control.
The average trajectory efficiency was 0.80+0.10. They used
the NASA Task Load Index (NASA-TLX) to assess user
cognitive load (scores for most dimensions < 30), though
mental demand and effort scores were relatively higher.
Future research could focus on quantifying the cumulative
risks of false positives and false negatives during extended
usage periods (ranging from several hours to multiple days).
Additionally, providing complete distribution data for trajec-
tory errors and task completion rates would offer valuable
insights for validating system stability and broadening its
practical applications (Fig. 7d). On the engineering imple-
mentation front of asynchronous BCIs, Hu et al. [143] devel-
oped a wearable asynchronous BCI system based on EEG
and EOG signals. The system utilized a self-developed com-
pact amplifier and required only three EEG channels (Cz,
P3, P4) and one EOG channel. It achieved asynchronous
control through the integration of P300 potential detection
and blink recognition. In a telephone dialing task, the system
attained an average online accuracy of 94.03% +4.65%, an
ITR of 31.42 +7.39 bits min~!, and a low false positive rate
of 1.78% +2.25% during a 10-min idle state. These promis-
ing results provide a solid foundation for future investiga-
tions into the system’s long-term performance characteris-
tics, particularly regarding the cumulative risk profiles of
false positives and false negatives during extended multiday
usage scenarios. In another asynchronous BCI study, Aloise
et al. [144] designed an asynchronous BCI system based on
ERPs. Online experimental results showed that the correct
classification rate of the asynchronous classifier (74.66%)
was slightly lower than that of the synchronous classifier
(87.96%), and the error rate (7.11%) was also lower than that
of the synchronous classifier (12.04%). However, neither dif-
ference was statistically significant (error rate: p=0.19). The
asynchronous classifier demonstrated good robustness dur-
ing the no-control state, with an average false positive rate of
0.16 per minute (i.e., fewer than one false positive every six
minutes). The asynchronous BCI based on SSVEPs designed
by Gernot R. [145]. The participants took 75.5 to 217.5 s
to complete the movement sequence. The number of false
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negative decisions varied from 0 to 10 (with a maximum
possible of 34 decisions).In the clinical application of BCIs,
Alcaide-Aguirre et al. [146] developed an asynchronous BCI
based on the P300 ERP to facilitate the administration of the
Peabody Picture Vocabulary Test (PPVT-1V) for cognitive
assessment in individuals with cerebral palsy. Results from
the NASA-TLX demonstrated that participants with CP per-
ceived the BClI-facilitated PPVT-IV as significantly higher
in mental demand, physical demand, and effort (p <0.05)
compared to their typically developing counterparts.

In summary, current research has made significant pro-
gress in enhancing BCI real-time performance, implement-
ing intelligent shared control, and constructing robust asyn-
chronous systems. However, a common, unresolved core
issue persists: the vast majority of systems lack an assess-
ment of their stability and reliability under conditions of
prolonged (several hours) and multiday continuous use. This
is specifically reflected in the failure to adequately quantify
the cumulative risk of false positives and false negatives,
the inability to strictly define the human-machine trade-off
boundaries in shared control based on complete data dis-
tributions (e.g., trajectory error, task completion rate), and
the lack of systematic analysis of the long-term impact of
control parameters (such as penalty weights in model predic-
tive control). Addressing these issues is crucial for advanc-
ing non-invasive BCIs from the laboratory to real-world
applications.

2.6 Al-Enabled Human-Machine Co-Adaptive Systems

Particularly crucially, current BCI research is undergoing a
shift from "open-loop, static" systems to "closed-loop, adap-
tive" paradigms [92], with its development direction focus-
ing on enhancing real-time decoding capabilities, improving
asynchronous detection mechanisms [37], and optimizing
shared control strategies [147]. Extending the principle of
co-adaptation to resource-constrained settings, Liu et al.
[148] developed a neuromorphic decoding SSVEP of BCls
based on a 128,000-cell memristor chip. Their approach fea-
tured an interactive update framework that enabled co-evolu-
tion between the memristor decoder and the user’s dynamic
brain signals. This architecture condensed the traditional
three-stage pipeline of preprocessing, feature extraction,
and classification into a hardware-friendly one-step opera-
tion, reducing computational complexity by approximately
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Fig. 8 Schematic illustration of Al-enabled human-machine co-adaptive systems. a Left: Schematic diagram depicting the human-machine joint
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[150]. Copyright 2025, Springer Nature

6.5 times while maintaining software-equivalent accuracy.
In a brain-controlled drone task with four degrees of free-
dom, the system demonstrated significant improvements in
energy efficiency and processing speed: decoding consumed
1,643,000 times less energy and achieved a 216-fold increase
in normalized throughput compared to a CPU-based sys-
tem. A closed-loop co-evolution framework driven by ErrPs
enhanced decoding accuracy by approximately 20% during a
six-hour online experiment involving 10 participants, estab-
lishing a foundational benchmark for low-power, long-term
adaptive BCI operation (Fig. 8a).

Building on this foundation, Lee et al. [149] proposed a
hybrid adaptive decoding approach and developed a shared
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autonomy-based BCI system that enhanced performance
by introducing an Al copilot. This framework used a CNN
to extract complex nonlinear features, which were then
passed into a Kalman filter (KF) to predict and correct the
user’s movement intent. Additionally, the system integrated
closed-loop decoder adaptation (CLDA), enabling dynamic
optimization of decoding parameters. Experimental results
demonstrated that the cursor control system significantly
improved task efficiency. The average target acquisition rate
increased by 2.1-fold in healthy participants and 3.9-fold in
a paralyzed participant, with optimized movement trajecto-
ries. In the robotic arm sequential pick-and-place task, the
paralyzed participant could not complete the task without
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the Al copilot but achieved a 93% success rate with its assis-
tance. Future research could focus on the following promis-
ing directions: developing adaptive decoding algorithms that
accommodate individual variability and EEG non-stationar-
ity, exploring autonomous perception and decision-making
mechanisms for environments with unknown targets or
dynamic conditions, and validating the system’s generaliza-
tion capabilities in more complex application settings. These
research avenues would facilitate the transition of BCIs from
controlled laboratory environments to practical real-world
applications (Fig. 8b). Ding et al. [150] proposed a deep
learning model based on the EEGNet architecture, combined
with a fine-tuning mechanism, facilitating non-invasive real-
time decoding of individual finger MI and motor execution
(ME) for robotic hand control. Among 21 able-bodied sub-
jects with BCI experience, the system achieved notable
results. Online decoding accuracies reached 80.56% for
two-finger MI tasks and 60.61% for three-finger MI tasks,
while the corresponding ME tasks achieved 81.10% and
60.11%, respectively, indicating highly comparable control
performance between the two paradigms. Ding et al. con-
firmed through cross-session analysis that the model’s online
accuracy significantly improved with training (two-finger
MI: F=7.127, p<0.001), and applied Bonferroni correc-
tion in subsequent post hoc analyses to confirm the statisti-
cal significance. The study also revealed clear performance
boundaries: four-finger classification accuracy remained
only approximately 46%, insufficient for practical applica-
tion, while the index and middle fingers exhibited the low-
est decoding performance due to highly overlapping neural
representations. In the model interpretability analysis, they
demonstrated through group-averaged saliency topological
maps that the brain regions prioritized by the models exhibit
spatial consistency across different subjects. This indicated
that the decision-making patterns were grounded in neural
activity features shared across the population. The estab-
lishment of an adaptive validation framework for complex
dynamic environments represents a critical breakthrough for
future research (Fig. 8c). To expand control granularity, in
the realm of semantic neural decoding, Tang et al. [37] pro-
posed a fMRI-based language reconstruction framework that
integrates a generative pre-trained transformer model with
beam search to decode continuous natural language. The sys-
tem bridges internally generated cognition, such as mental
imagery, with stimulus-driven conditions, including speech
or video perception, achieving a peak contextual semantic
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similarity score of 0.8116 (g <0.05) across diverse input
modalities. Despite its high performance, decoding accu-
racy significantly deteriorated when participants engaged
in distraction tasks. These empirical findings highlight the
decoder’s sensitivity to user attention and cognitive state,
underscoring the critical importance of behavioral context
in human-machine co-adaptive systems.

In summary, Al is driving BCIs toward human-machine
co-adaptive systems capable of dynamic, personalized
interaction [6, 151]. From hardware efficiency to semantic
decoding, recent advances demonstrate appreciable poten-
tial. Yet, challenges in individual variability, environmental
robustness, task dependency, and cognitive state awareness
continue to hinder scalability and real-world applicability.
Future progress will depend not only on better models, but
on building intelligent ecosystems that are context-aware,
continuously learning, and capable of seamless cross-plat-
form integration.

3 Integration of Flexible Bioelectronics
in Non-Invasive BCIs

In contrast to invasive BCIs, which insert probes directly into
target tissue, non-invasive BCIs monitor macroscopic electric
fields outside the cranium to acquire EEG signals. Although
this approach sacrifices spatial resolution and signal quality,
it avoids the tissue damage caused by invasive techniques
and potential long-term neuroinflammation. Furthermore,
it facilitates rapid and widespread application without the
need for complex surgical implantation. These advantages
have secured long-standing and broad interest in non-inva-
sive BCIs [12, 14]. However, their wearable nature presents
numerous challenges for EEG acquisition. Firstly, the contact
impedance between the electrode and the biointerface signifi-
cantly impacts signal quality. Reducing this impedance can
be approached from two angles: enhancing the electrode’s
intrinsic conductivity and ensuring conformal contact at the
biointerface. Consequently, compared to traditional rigid
electrodes, flexible electrodes not only improve signal quality
but also offer greater wearing comfort, facilitating long-term
monitoring. Flexible electrodes can be fabricated from intrin-
sically conductive thin-film materials, such as certain organic
semiconductors, or by integrating conductive nanomaterials
with a flexible substrate [152]. Particularly, driven by inno-
vations in materials science, nanomaterials are receiving
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growing interest and application in flexible electrodes. This
synergy between the distinctive electrical properties of nano-
materials and the favorable mechanical flexibility of sub-
strates provides a robust foundation for high-performance
flexible electrodes [151, 153, 154].

For instance, nanowires (NWs), as one-dimensional mate-
rials, possess a high aspect ratio. This structure endows
them with excellent mechanical flexibility, allowing them
to maintain structural stability when conforming to irregular
surfaces or under bending conditions [153, 155]. Concur-
rently, due to their efficient electrical transport capabilities,
they serve as conductive fillers that significantly enhance
the electrode’s conductivity [156]. This has been associated
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with reduced contact impedance and improved SNR in non-
invasive BCIs. Furthermore, mechanical stability plays a key
role in non-invasive BCIs. Superior mechanical properties
contribute to achieving conformal contact with the target
surface, promoting wearing comfort, and maintaining per-
formance stability during long-term monitoring while reduc-
ing the risk of degradation [152]. Due to their nanoscale
dimensions, nanomaterials exhibit excellent robustness.
They could maintain their performance under repeated
strain, unlike bulk materials that suffer from performance
decay due to mechanical fatigue. It is noteworthy that artifact
contamination in non-invasive BCI recordings, especially
during target movement, complicates EEG interpretation.

Flexible processing

ST T i

PZT
SRO &8

ot
ST0 W Clamped

PZT:

PDMS — >

JE— e Preoperative tongue
cancer localization

Ty
Csncerf
Conformal
tongue electrodes

/ S="S® Postoperative tongue
%:.‘5;9 = structure recovery monitoring

min
S max

Taste stimulation

> @ Postoperative taste
function decoding

Natural
| tongue

Fig. 9 Schematic illustration of the performance characteristics of flexible conductive films. a Schematic diagram of the preparation process
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These artifacts are generally attributable to two origins: bio-
logical signals and non-biological signals. Non-biological
artifacts are largely motion-induced, resulting from electrode
shift that compromises stable interfacial contact. This insta-
bility manifests as variable contact impedance and intro-
duces artifacts. The integration of nanomaterials into flexible
substrates presents a promising strategy for ameliorating this
challenge. In summary, innovations in materials science are
essential for achieving higher performance in non-invasive
BCls, and nanomaterials represent a promising candidate
for this pursuit.

3.1 Flexible Conductive Thin Films: Materials
Innovation and Interface Optimization

The development of non-invasive BCISs is closely linked to
advancements in flexible conductive materials that strike a
balance between electrical properties, mechanical durabil-
ity, and biocompatibility. Recent advances in materials sci-
ence indicate that conductive films offer viable pathways for
overcoming persistent challenges in signal fidelity, motion
artifact suppression, and long-term wearability [157, 158].
For instance, Zhang et al. [64] developed activated reduced
graphene oxide (aG-O) films exhibiting in-plane conductiv-
ity of 5,880 S m~!. These films exhibit exceptional charge
transport properties, which are crucial for preserving signal
fidelity in BCI applications (Fig. 9a). Piezoelectric films
represent a valuable class of materials for BCI applications,
offering the potential to harvest mechanical energy and
potentially power self-sustaining BCI systems. Ren et al.
[159] reported significant progress by developing free-
standing (111)-oriented PbZr 5,Ti, 4405 single-crystal thin
films, which combine exceptional mechanical flexibility with
notable piezoelectric performance. These films achieved
an effective piezoelectric coefficient of approximately
585 pm V™!, nearly six times higher than the coefficient
in their clamped state. The piezoelectric nanogenerators
(PENGsS) constructed from this material demonstrated an

3 maintain-

ultrahigh power density of about 63.5 mW cm™
ing excellent mechanical resilience with strains exceeding
3.4% and stable output performance after 60,000 continuous
bending cycles. This work not only sets a new benchmark
for flexible PENG performance but also offers a promising
self-powered solution for non-invasive BCIs (Fig. 9b). The

development of ultrathin silver films (UTAFs) represents
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another significant advance in flexible optoelectronics. Ma
et al. [160] developed 4.5 nm UTAFs, which exhibit 82%
average visible transmittance, less than 60 ppm haze, and a
sheet resistance of 7.6 Q sq~!. These films exhibited excel-
lent mechanical stability. The resistance increases by only
5% under static bending with a curvature radius of 3.5 mm,
and by less than 7% after 100,000 dynamic folding cycles,
outperforming commercial indium tin oxide electrodes.
When applied in foldable alternating current electrolumines-
cent devices, the UTAFs served as transparent bottom elec-
trodes to maintain stable luminance, further confirming their
mechanical and electrical stability. These characteristics
suggest that UTAFs may support trends toward improved
performance when implemented as transparent electrodes in
flexible optoelectronic devices and intelligent hardware sys-
tems (Fig. 9c). Wang et al. [161] designed a taste interface
that uses high-density, conformal tongue electrodes to cap-
ture electrical signals from the tongue. Combined with BCls,
the system enabled taste decoding of a reconstructed tongue
without taste buds, achieving an accuracy of 97.8%. This
approach provides a novel method for the clinical evalua-
tion and treatment of patients with tongue cancer (Fig. 9d).

Additionally, Kim et al. [162] presented a support-free
transfer method that facilitates the deposition of ultrathin
single-crystalline StRuO; membranes onto flexible poly-
ethylene terephthalate (PET) substrates, maintaining
exceptional structural integrity, optical transparency, and
electronic performance. These membranes, measuring
approximately 2.5 by 2.5 square millimeters in clean sur-
face area and with thicknesses as low as 15 nm, exhibited
a high optical transmittance of about 60% in the visible
spectrum. Their electrical resistivity at room temperature
ranged between 10~ and 107> Q cm accompanied by robust
ferromagnetic ordering that persists below 150 K. These
SrRuOs membranes combine flexibility with functional
performance, suggesting their possible value in develop-
ing flexible electronic and spintronic systems (Fig. 9e).
Jin et al. [163] introduced a spontaneous bifacial cap-
ping strategy by incorporating 4-(methoxy)benzylamine
hydrobromide (MeOBABr) into the perovskite precursor,
markedly enhancing the mechanical stability and charge
carrier transport properties of flexible perovskite solar
cells. The work demonstrated that the nanoscale bifacial
capping layers formed by MeOBABTr effectively planar-
ized grain boundary trenches, mitigated bending-induced
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stress, and improved charge extraction efficiency through
surface defect passivation and band alignment optimiza-
tion. The encapsulated target devices retained over 80% of
their initial power conversion efficiency following 10,000
bending cycles at a curvature radius of 3 mm. Although
primarily focused on photovoltaic applications, these find-
ings provide valuable insights for material design in flex-
ible electronics, such as long-term wearable BCIs (Fig. 9f).

In summary, these materials demonstrate the diversity of
approaches in developing flexible bioelectronics for non-
invasive BCIs. Although they use different methodologies,
they may exhibit favorable characteristics, including high
conductivity and mechanical compliance that align with
the requirements of wearable BCI design. Future integra-
tion of these materials into BCI systems could contribute
to enhanced performance of non-invasive neural interfaces.
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3.2 One-Dimensional Nanowire Bioelectronic Systems
for Signal Acquisition

Building on the flexibility and performance characteristics
of conductive films, another emerging material strategy
gaining attention in non-invasive BCI research involves
the utilization of NWs [164]. NWs possess a unique one-
dimensional (1D) topology, high aspect ratio, and tunable
surface chemistry. These characteristics demonstrate poten-
tial for achieving the mechanical flexibility, electrochemi-
cal stability, and multimodal sensing capabilities required
by BClIs [165]. Moreover, the structural features of NWs
are believed to facilitate neural signal acquisition: their 1D
morphology could promote directional charge transport,
potentially reducing signal attenuation at heterogeneous
biological interfaces.

To overcome the instability of traditional silver nanow-
ire electrodes, Zhou et al. [166] developed silver-platinum
alloy-walled hollow nanowires (Ag@Pt AHNWs) through
electrochemical and galvanic replacement processes. The
silver-platinum alloy enhanced corrosion resistance, while
the electrode maintained high optical transparency of 82%
at a wavelength of 550 nm and a low sheet resistance of
28.73 Q sq™'. The alloy structure exhibited excellent ther-
mal stability, sustaining operation at 400 °C for 11 h, and
demonstrated robust electrochemical stability in acidic
environments, enabling integration into functional devices
that require long-term reliability. This work provides a scal-
able approach for preparing highly stable metal nanomate-
rial electrodes, which is crucial for flexible optoelectronic
devices operating in harsh environments (Fig. 10a). Zhao
et al. [73] utilized a biomimetic lock-and-shear assembly
strategy to fabricate wafer-scale aligned arrays of tellurium
nanowires (TeNWs). The thin-film transistors exhibited
hole mobility exceeding 100 cm? V~! s~ and an on/off
current ratio approaching 10* on flexible PET substrates.
Furthermore, devices fabricated on elastomeric substrates
maintained stable electrical performance under uniaxial
strains up to 40%, demonstrating excellent stretchability
and mechanical robustness (Fig. 10b). Similarly, Kim et al.
[167] demonstrated that copper nanowire electrodes encap-
sulated with polyurethane acrylate (PUA) exhibit significant
environmental adaptability and mechanical stability. Spe-
cifically, after 1,500 bending cycles at a radius of 15 mm,
the electrodes showed only approximately 3.5% increase
in resistance under tensile testing and approximately 2.5%
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increase under compressive testing. Furthermore, under
harsh conditions of 80 °C and 80% relative humidity, the
PUA-coated electrodes maintained stable operation for up
to 240 h, despite a twofold increase in resistance. This level
of stability helps meet the need for reliable electrodes in
applications that require long-term mechanical flexibility
and environmental durability (Fig. 10c).

In addition to mechanical stability, NWs provide signifi-
cant advantages in multimodal integration and functional
expandability. Li et al. [168] leveraged the intrinsic anisot-
ropy of tellurium NWs to create a bimodal tactile sensor
(BTS) that achieves the decoupling of pressure and tem-
perature difference signals. The material exhibited a carrier
mobility of 1,000 cm? V™! s=!. When the mechanical pres-
sure ranged from O to 5 kPa mechanical pressure, the sensor
current increased from an initial 2.82-141.82 pA. Experi-
mental results demonstrated that the BTS-based smart glove
facilitated somatosensory feedback interaction between VR
and the real world. By integrating sensor signals with deep
learning techniques, successful stimulation recognition
and neural reflex modeling of the rabbit sciatic nerve were
achieved. Furthermore, the sensor exhibited excellent bio-
compatibility, offering broad application prospects in the
biomedical field (Fig. 10d). Karagiorgis et al. [169] engi-
neered a fully transparent and flexible photodetector by inte-
grating ZnO NWs with electrospun PEDOT/PSS/Ag NW-
based nanofibers on a biodegradable cellulose acetate (CA)
substrate. The device demonstrated an ultraviolet responsiv-
ity of 1.10x 10° A W~! under a 5 V bias and 0.5 yW cm™>
ultraviolet (UV) illumination intensity, alongside an optical
transmittance of 70% at 550 nm wavelength. This combi-
nation of high performance and transparency was achieved
while maintaining robust stability under dynamic UV
exposure on flat and curved surfaces. Importantly, the CA
substrate and PEDOT/PSS/Ag composite layers exhibited
biodegradability within several months in buffer solutions,
offering an eco-friendly solution to address electronic waste
challenges. These results underscore the potential of this
nanowire-based photodetector platform for next-generation
wearable and transparent electronic applications (Fig. 10e).
Li et al. [170] developed sub-1-nm PbSeNWs via a cation-
exchange strategy in N, N-dimethylformamide (DMF) sol-
vent, which exhibited a near-infrared (NIR) absorption peak
centered at 940 nm. These self-powered photoelectrochemi-
cal photodetectors exhibited a responsivity of 113 mA W~!
and a detectivity of 4.65x 10'! Jones without external bias.

@ Springer



193 Page 24 of 49

Nano-Micro Lett. (2026) 18:193

Fin-gate
a #Drain . < b

e High-K

. Substrate

sx107 [ Tnitial
After one cycle treatment /
~— After two cycles m:lmen},’ ,/

6x107]
4x107)
= 207,
g™
= 2x107)
-4x10”

-6x107 — Initial Ay
axio? ~— After one cycle treatméiit”
o — After two cycln treatment

V.. W

N
Led St r\\

w

;me( Aip G

Gripping & stretching a SINW
spring force gauge

s Ag spu\\enng

e Thicker

Guided SiNW
growth

Doeck < Do

Top

Thinner & short
SiNW channel

Thicker

Step-necking catalytic growth

R,
D, ~Dh /(1 + - cos6)
Ry

L

o ‘ h-’Rccose

Z substrate coated with a-Si layer57

Pulling stretchable c-Si nanowire springs out of running droplets

Anti-clockwise
under -0.6 mA

With jumping steps

Growth in
vacuum at
only 350 °C

Terrace /|

~160 n

\3um
A

o
Von Mises Stress(x10% N/im?)

f

Bottom

Fig. 11 Schematic illustration of one-dimensional SINW structures and properties. a Top: Fin-gate structure with aligned SiINW channels. Bot-
tom: Ids-Vds output and transfer characteristics of SINW TFTs. Reproduced with permission [175]. Copyright 2023, John Wiley and Sons.
b Left: Pulling stretchable crystalline silicon (c-Si) nanowire springs out of running catalyst droplets. Right: SEM images of SiNWs. Repro-
duced with permission [176]. Copyright 2017, American Chemical Society. ¢ Left: Fabrication of single-nanowire-morphed robotic grippers.
Right: Elastic deformation, structural stability, and force gauging behavior of the nanowire gripper. Reproduced with permission [177]. Copy-
right 2023, Springer Nature. d Top: SEM images of SiNix nanospring arrays. Bottom: Microscopic images showing the geometric evolution of
a SiNix-NS interconnection. Reproduced with permission [178]. Copyright 2021, John Wiley and Sons. e Left: Step-necking growth of ultrathin
and short SINW channels. Right: SEM image of SiNWs. Reproduced with permission [179]. Copyright 2025, Springer Nature. f Left: SEM
images of SiNHs with forward- or reverse-line feeding growth symmetry. Right: Two distinct resonant frequencies corresponding to the swaging

resonant modes of the SiNHs. Reproduced with permission [180]. Copyright 2020, American Chemical Society

Embedded in flexible polyvinylidene fluoride (PVDF) com-
posite films, these NWs combined superior carrier transport
properties with mechanical flexibility. The NIR absorption
at 940 nm aligned with the safety window for human tissue,
providing a foundation for potential biomedical applications
(Fig. 10f).

Material innovation has contributed to recent progress in
non-invasive BClIs, particularly through the development
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of nanomaterials that effectively combine electrical perfor-
mance, mechanical flexibility, and biocompatibility. Silicon
nanowires (SiNWs) exhibit compatibility with semicon-
ductor processing, low-temperature fabrication capabili-
ties, and controllable sub-100 nm architectures, suggest-
ing their potential utility in neural interface applications
[171-173]. These characteristics make SiNWs a potential
platform for high-density flexible electrode arrays. Studies
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have highlighted their scalable fabrication and favorable
electrical properties, which may support stable interfac-
ing with biological tissues over extended periods [174].
For example, Song et al. [175] fabricated ultrathin SINW
arrays with uniform diameters of approximately 52 nm using
an in-plane solid-liquid-solid (IPSLS) growth technique
conducted below 350 °C. The SiNW thin-film transistors
(TFTs) demonstrated a high transparency up to 90% and
achieved an on/off current ratio greater than 10°. Notably,
solution-based room-temperature passivation enhanced
device stability. These advancements provide a foundation
for high-fidelity neural signal recording in wearable elec-
tronics. Nevertheless, to facilitate widespread application
in high-density neural interfaces, further improvements in
the mechanical adaptability and environmental robustness of
SiNW arrays are necessary (Fig. 11a). To address this, Xue
et al. [176] demonstrated a method for deterministic struc-
tural programming of ultralong in-plane SiNWs. Utilizing
the indium-droplet-guided IPSLS growth mechanism, they
achieved the formation of highly stretchable c-Si springs

or arbitrary two-dimensional patterns by directing catalyst
droplets along predefined atomic step edges. In situ scanning
electron microscopy (SEM), tensile testing, and electrical
transport measurements revealed that the c-SiNWs main-
tained stable electrical connectivity under tensile strains
exceeding 200%. This strategy represents a step toward the
potential development of large-scale, wearable, and bio-
compliant electronic systems in future (Fig. 11b). Yan et al.
[177] proposed an ultracompact Q-shaped robotic gripper
based on the deformation of a single nanowire and Lorentz
force actuation. This gripper was capable of large-amplitude
vibration and multidimensional operations, including grasp-
ing, lifting, and twisting. Additionally, it achieved precise
payload release by overcoming van der Waals forces through
high-frequency vibration. Paired grippers could collabora-
tively perform complex tasks such as microsphere transfer,
demonstrating strong potential in high-sensitivity biosensing
actuation. Looking ahead, such grippers could be explored
as actuators in controlled neuromodulation platforms that
interface with microscopic biological targets, where high

Table 1 Comparative Analysis of Key Parameters and Impacts of Nanomaterials in Non-Invasive BClIs

Materials Conductivity Young’s Modulus Stretchability Stability Direct Link to Non- References
Invasive BCI Perfor-
mance
AgNWs 2.8Qsq! / Up to 40% ASheet Resistance Excellent signal qual- ~ [181]
~+50% @ 100 ity; Middle mechani-
cycles for 40% cal durability; Middle
monitoring density
AgNWs 3.2-3.6 Qsq ! / / 0% increase in frac- Excellent signal qual-  [182]
tional resistance dur- ity; Middle mechani-
ing fatigue testing up  cal durability; Middle
to 500,000 cycles monitoring density
Nickel silicide NWs 2x105S m™! 170 GPa Up to 50% AR/Ry< +1.7% @ Good signal quality; [178]
10, 000 cycles for Middle mechani-
15% cal durability; High
monitoring density
SiNWs Several uA under 170 GPa Up to 45% stable AR/RO @10, 000 Good signal quality; [152]
a bias voltage cycles for 10% Middle mechani-
of +3V cal durability; High
monitoring density
PEDOT/PSS hydrogels 23.7 S m™! 8-374 kPa Upto 100% / Good signal quality; [183]
Good mechanical
durability; Middle
monitoring density
d-Sorbitol-PEDOT/ >1,000S m™! 1.87 MPa Up to 60% Strain-insensitive Good signal quality; [184]

PSS hydrogels

resistance after the
initial stretch

Good mechanical
durability; Middle
monitoring density
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permission [185]. Copyright 2021, John Wiley and Sons. b Left: The SEM images of printed AgNP and AgNP-Ga-In traces. Right: A circuit
on a toy lemon and functioning as an electronic tattoo with an LED on a fingerprint. Reproduced with permission [186]. Copyright 2018, John
Wiley and Sons. ¢ Schematic of the Ag-Au-PtCore-Shell-Shell NWs, TEM images of the control nanocomposite, schematic illustration of the
implantable electrode mounted on the rat’s heart, and comparison of electrogram quality and magnified view of a single cardiac electrogram
peak between Ag NW nanocomposite-based electrode and Ag-Au-Pt NW/Pt NP nanocomposite-based electrode. Reproduced with permission
[187]. Copyright 2023, American Chemical Society. d Schematic of the nanoparticle synthesis process, quantification of the fluorescence inten-
sity of RBITC, and representative confocal fluorescence images of brain slices of rats. Reproduced with permission [188]. Copyright 2022, Else-
vier. e Motion artifacts comparison between the P-P-PDA NP electrode and the standard wet Ag/AgCl electrode, and characterization of PDA
NPs. Reproduced with permission [189]. Copyright 2023, John Wiley and Sons

precision and long-term biocompatibility would be key con-
siderations (Fig. 11c).

To overcome limitations, Yuan et al. [178] fabricated an
ordered array of ultrathin, highly conductive Si-Ni alloy
nanowire springs (SiNix-NS) with an average diameter
of approximately 160 nm. This innovation allows precise
spatial control of SINWs and the programmable design
of elastic interconnect geometries. This approach is com-
patible with existing silicon-based thin-film technologies
and addresses key limitations of conventional stretchable
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interconnect strategies. After nickel alloying, the electrical
conductivity of the SiNixXNWs increased by four orders of
magnitude. When integrated onto flexible polydimethylsi-
loxane (PDMS) substrates, these nanowire springs exhib-
ited excellent mechanical compliance, sustaining tensile
strains exceeding 50% and maintaining stable electrical
performance over 10,000 cycles at 15% strain. Owing to
their ultracompact architecture and adaptable soft-inter-
face compatibility, these nanowire springs demonstrate
strong potential for low-damage, conformable integration
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in non-invasive BCIs (Fig. 11d). Concurrently, Wu et al.
[179] used a step-guided necking growth method to fabri-
cate ultrathin, short-necked SINWs channels, which were
designed for high-performance field-effect transistors
(FETs). By tuning the size of indium (In) droplets and the
height of the jumping steps, a thick-thin-thick short-chan-
nel structure could be formed. The necked region could
be narrowed down to below 25 nm in diameter. These
FETs exhibited a steep subthreshold swing of less than
70 mV dec™! and an on/off current ratio exceeding 107,
significantly outperforming counterpart devices with uni-
form-diameter SINW channels (Fig. 11e). Ma et al. [180]
demonstrated a novel approach for the three-dimensional
growth and integration of silicon nanohelices (SiNHs) on
the sidewalls of bamboo-like cylindrical structures. In
this method, periodic sidewall grooves were first formed
via Bosch etching, and indium catalyst droplets were then
employed to guide the helical growth of silicon along
these grooves. By tuning growth parameters, the diameter,
pitch, aspect ratio, and chiral/achiral symmetries of SiNHs
could be precisely controlled. Furthermore, the SiNHs can
be reliably released as individual units (Table 1). These
SiNHs exhibit structural programmability and multifunc-
tionality that may be advantageous for flexible bioelec-
tronic systems, including non-invasive BCIs (Fig. 11f).

3.3 Zero-Dimensional Materials in BClIs: Innovation
and Application

Zero-dimensional materials, such as nanocapsules and
nanoparticles, often exhibit size-dependent properties dif-
ferent from those of their bulk counterparts, owing to their
nanoscale dimensions. These distinctive characteristics are
of significant importance for non-invasive BCIs. For non-
invasive BClIs intended for long-term monitoring, the deg-
radation of electrode materials significantly impacts signal
acquisition quality. UV radiation is a critical factor in the
aging process, particularly for certain organic flexible films.
To address this issue, Zhou et al. [185] developed a multi-
functional self-healing hybrid film composed of titanium
dioxide nanocapsules, graphene, and multibranched polyu-
rethane, exhibiting excellent mechanical flexibility and UV
protection properties. Within an optimized graphene content
range, the film maintained stable electrical properties, dem-
onstrated a sensitive piezoresistive response, and possessed
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robust environmental adaptability. Notably, the film
retained its conductivity and self-healing capability even
after repeated mechanical damage. These attributes suggest
potential applications in durable wearable human-machine
interfaces (Fig. 12a). Furthermore, metal nanoparticles serve
as excellent conductive fillers. Their integration with flex-
ible substrates combines high electrical conductivity with
mechanical flexibility. Such materials have been explored
as electrode interfaces for non-invasive BCIs, where low
impedance and stable skin contact are essential for reliable
electrophysiological signal acquisition. Tavakoli et al. [186]
introduced a room-temperature sintering technique using
eutectic gallium-indium (EGaln) to significantly enhance
the electrical and mechanical properties of inkjet-printed
silver nanoparticle (AgNP) traces for stretchable thin-film
electronics. In this method, AgNPs with diameters around
100 nm were printed onto temporary tattoo paper and sub-
sequently coated with a thin layer of liquid-phase EGaln.
This process induced the aggregation of AgNPs and filled
microcracks, forming a continuous conductive Ag-Ga-In
composite trace without requiring high-temperature treat-
ment. The incorporation of EGaln increased the electrical
conductivity of the printed traces by six orders of magni-
tude, reaching 4.85 x 10°S m~!, and improved the maximum
failure strain from 4.5% to over 118%. The AgNPs played
a critical role in forming conductive percolation networks
and, upon interaction with EGaln, contributed to the for-
mation of heterogeneous Ag-In-Ga clusters that enhanced
both conductivity and mechanical stretchability. The result-
ing circuits exhibited stable performance under strains up
to 80%, low electromechanical coupling (gauge factor 1),
and compatibility with hydrographic transfer to complex 3D
surfaces and human skin. This approach facilitates the fab-
rication of highly deformable and robust electronic tattoos
and stretchable sensors, offering a practical route toward
skin-conformal and shape-adaptive electronics (Fig. 12b).
Similarly, Sunwoo et al. [187] designed a stretchable low-
impedance conductor based on Ag-Au-Pt core-shell-shell
NWs and in situ synthesized platinum nanoparticles (Pt
NPs) embedded in a styrene-ethylene-butadiene-styrene
(SEBS) elastomer. The Ag-Au-Pt NWs feature a conduc-
tive Ag core, a biocompatible Au inner shell, and a low-
impedance Pt outer shell with a highly embossed structure
that enhances the effective surface area and charge transfer
efficiency. The in situ formed Pt NPs, uniformly dispersed
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during composite fabrication, serve as critical conductive
bridges between the NWs, reinforcing the percolation net-
work. This synergistic structure yields a nanocomposite with
high conductivity (~ 11,000 S cm™!), exceptional stretch-
ability (~500%), low electrochemical impedance (166.5 Q
at 1 kHz), and significantly reduced cytotoxicity due to the
effective suppression of Ag ion leaching. The incorporation
of Pt NPs is essential for simultaneously enhancing electri-
cal, mechanical, and electrochemical properties, supporting
their use in high-performance wearable biosignal monitoring
systems (Fig. 12c¢).

Beyond their role as conductive fillers, nanoparticles of
certain materials exhibit unique enhancements in electro-
magnetic fields. For instance, iron oxide nanoparticles dem-
onstrate superparamagnetism, which amplifies the electric
field induced by the external field near the neuronal mem-
brane, thereby exciting neuronal activity more effectively.
Hong et al. [188] developed a non-invasive strategy for
enhancing transcranial magnetic stimulation (TMS) using
tailored superparamagnetic iron oxide nanoparticles (SPI-
ONs) to improve functional recovery after ischemic stroke.
They synthesized water-soluble Tat peptide-conjugated
SPIONSs (Tat-SPIONSs) coated with chitosan and polyeth-
ylene glycol, which exhibit excellent colloidal stability and
superparamagnetism. A combination of intranasal adminis-
tration and external magnetic guidance facilitates the effi-
cient, non-invasive delivery of these nanoparticles across
the blood-brain barrier and into the brain parenchyma of
rats. The delivered Tat-SPIONSs significantly enhance the
neurostimulatory effects of TMS, as evidenced by increased
motor-evoked potential amplitudes, reduced motor thresh-
olds, elevated c-fos expression, and marked improvements
in motor-sensory and cognitive functions in a stroke model.
Mechanistic investigations revealed that the enhancement
was primarily mediated by a highly localized magnetoelec-
tric effect from the plasma membrane-associated nanopar-
ticles, which amplified the TMS-induced electric field to
trigger neuronal activation. This platform demonstrates a
viable pathway for medical translation of nanomaterial-
enabled remote brain stimulation (Fig. 12d). What’s more,
certain nanoparticles, due to their hydrophilic/hydrophobic
properties, hold significant potential for application in the
interface engineering of non-invasive BCIs. This can be
leveraged to ensure more intimate contact between the elec-
trode and the skin. Han et al. [189] developed a flexible and
self-adhesive hydrogel electrode for long-term wireless EEG
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recording and high-accuracy sustained attention evaluation.
The hydrogel is constructed using biocompatible polyvinyl
alcohol (PVA) and polyvinylpyrrolidone (PVP) via a ketali-
zation reaction, resulting in a soft network with tissue-like
modulus, high transparency, and excellent flexibility. To
enhance functionality, polydopamine nanoparticles (PDA
NPs) are incorporated into the hydrogel matrix through
an oxidative degradation process, which converts opaque,
micron-sized PDA aggregates into transparent, nanosized
particles. The introduction of PDA NPs improves the
hydrogel’s self-adhesiveness, conductivity, and interfacial
compatibility while maintaining high optical transparency
and biocompatibility. The resulting multichannel electrode
exhibits low interfacial impedance, high channel uniformity,
low noise power, and robust performance under motion and
sweating conditions. Moreover, the system demonstrated the
ability to classify prefrontal EEG signals into seven levels
of sustained attention with 91.5% accuracy using a linear
support vector machine (LSVM) classifier. This nanoarchi-
tectonics strategy highlights the critical role of PDA NPs in
enabling high-performance, multifunctional hydrogel elec-
trodes for personalized health monitoring and cognitive state
assessment (Fig. 12e).

3.4 Wearable Flexible Devices: Design Principles
and Functional Integration

3.4.1 Design Principles

As the development of non-invasive BCIs progresses, the
integration of wearable flexible devices has become a key
area of focus. These devices aim to bridge the gap between
advanced bioelectronic systems and user-friendly, comforta-
ble applications [154]. To achieve this, the design of flexible
electronics must strike a delicate balance between mechani-
cal flexibility, biocompatibility, and signal fidelity-ensuring
that devices can comfortably interface with the human body
while maintaining high performance over extended periods
of use [190, 191]. The rapid evolution of flexible bioelec-
tronics is driving advances in the landscape of wearable
BClIs, enabling opportunities for real-time monitoring and
seamless interaction with dynamic biological systems. Sili-
con is the most mature and reliable semiconductor material
in current manufacturing processes, and is widely used in
electronics and sensing. However, integrating silicon with
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flexible substrates to extend its applications into flexible
electronics poses a significant challenge. As the fundamen-
tal building block of modern integrated circuits, transistors
hold great potential in non-invasive BCIs due to their gating
and current amplification capabilities. Yet, limited by the
intrinsic brittleness of silicon, transistors on flexible films
often suffer structural damage due to modulus mismatch. To
address this, Song et al. [192] directly integrated transistors
onto a flexible film using a strategy based on rigid-island
protection. This design maintained functional integrity under
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50% tensile strain and supported 1,000 mechanical cycles at
20% strain, proving the robustness and durability of these
devices. These SiNWs FETs exhibited a hole mobility of
70 cm? V!
subthreshold swing values ranging from 134 to 277 milli-
volts per decade. Notably, the devices demonstrated stable
electrical operation over a period of 270 days under ambient

, an on/off current ratio exceeding 103, and

conditions without any encapsulation or passivation layers.
Optical and scanning electron microscopy images confirmed
conformal skin adhesion during deformation, while finite
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element analysis revealed that the stress-optimized island
layout effectively minimized interfacial strain, supporting
long-term mechanical stability (Fig. 13a). Furthermore,
integrating nanomaterials with flexible films to combine
mechanical flexibility and electrical conductivity is a widely
adopted strategy. This is often achieved by directly transfer-
ring nanomaterials onto flexible films using a post-transfer
technique. However, this method faces challenges such as
the difficulties in precise integration, potential device non-
uniformity, and low pixel density. Consequently, the chal-
lenge of fabricating high-density, precisely integrated chips,
akin to those produced by top-down etching processes like
photolithography, presents a significant hurdle for develop-
ing higher-density, higher-performance non-invasive BCls.
To address this, Song et al. [193] directly grew elastically
deformable SiNWs on a flexible polyimide film and inte-
grated them into high-performance strain sensors. This
architecture combines structural elasticity and conformabil-
ity, offering a robust platform for continuous biomechanical
monitoring in soft-interface neuroelectronics (Fig. 13b).
Beyond the direct fabrication and integration of electronic
devices on flexible films, transfer printing also serves as a rapid
and effective strategy. However, when transferring exception-
ally thin electronic devices or electrodes onto flexible films or
biological interfaces, issues such as structural fractures due to
stress concentration or delamination caused by poor interfa-
cial adhesion may arise. To address this challenge, Shi et al.
[194] developed a phase-transition-enabled gallium stamp
that facilitates damage-free, three-dimensional transfer print-
ing of ultrathin functional membranes. This method achieved
seamless integration onto complex curved surfaces, including
fingernails and contact lenses, with an average displacement
across the array of 21.9 um. By harnessing gallium’s reversible
solid-liquid-phase transition, the stamp applied an exceptionally
gentle preload of 0.0053 MPa while achieving robust adhesion
up to 0.15 MPa. Notably, the approach reduced interfacial shear
strain by four orders of magnitude compared to conventional
PDMS stamps, significantly mitigating mechanical mismatch
and delamination risk. These capabilities highlight the technol-
ogy’s potential for integration into non-invasive EEG systems,
where mechanical stretchability and long-term skin conform-
ance are essential for stable signal acquisition over irregular
scalp geometries (Fig. 13c). Structural engineering, as one of
the most widely adopted strategies in flexible electronics, also
holds significant potential for non-invasive BCIs. It can partially
compensate for the limitations of materials’ intrinsic properties.

© The authors

In non-invasive BCIs, modulus matching at the biointerface
is crucial. Matched Young’s modulus tends toward achieving
conformal contact with the epidermis, suggesting the potential
to reduce contact impedance, improve the SNR, and mitigate
motion-induced artifacts. Such mechanical compatibility could
also contribute to improved comfort during extended wear. For
instance, designs such as wavy, serpentine, and fractal struc-
tures facilitate better modulus matching with the biointerface
and potentially enhance the mechanical stability of non-invasive
BCls under dynamic conditions. In scenarios requiring micro-
scale 3D neural monitoring, traditional thin-film electrodes
often fall short. Therefore, structurally designing electrodes
to achieve conformational matching with the target measure-
ment sites is of great importance for the advancing field of BCI
technology. Park et al. [195] proposed a three-dimensional
multifunctional neural interface platform designed for cortical
spheroids and engineered neural assembloids. This platform
leverages mechanically guided assembly techniques to trans-
form planar structures into 3D architectures, enabling multi-
functional interactions with neural spheroids. Utilizing ultrathin
polyimide substrates and microscale gold electrodes, the sys-
tem achieved high-fidelity detection of action potentials, with
an average signal duration of 0.5 ms and peak-to-peak ampli-
tudes reaching 15 microvolts. The platform exhibits favorable
mechanical compliance, with relatively low bending stiffness
that facilitates conformal contact with soft biological tissues.
Its elastic interconnects remain functional under small applied
strains, enabling stable and reasonably conformal integration
near the cortical surface. This research also demonstrated the
potential platform’s multifunctionality across electrical, optical,
thermal, and chemical modalities, with experimental validation
of its capabilities in monitoring neural activity and investigating
neural injury and recovery (Fig. 13d).

3.4.2 Functional Integration

Building on these advances in flexible electronics, the next
step is applying them specifically to non-invasive BClIs.
With the advancement of non-invasive BCI technology,
EEG monitoring is no longer confined to short-term, static
observations, as long-term dynamic monitoring is garner-
ing increasing attention. However, when BCIs monitor mov-
ing subjects, new challenges are posed to the mechanical
durability of electrodes. Prolonged dynamic operation could
introduce structural defects from mechanical fatigue within
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Fig. 14 Wearable flexible devices: functional integration. a Compatibility of TTE with MEG. Reproduced with permission [196]. Copyright
2020, Springer Nature. b Left: Schematic diagram of EEG signal monitoring. Right: EEG signals recorded with corresponding spectrogram in
the eyes-closed state. Reproduced with permission [197]. Copyright 2024, John Wiley and Sons. ¢ Top: Impedance map at 1 kHz for all elec-
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tail effect experiment based on SpiralE. Reproduced with permission [9]. Copyright 2023, Springer Nature. f Left: Experimental setup for EEG

acquisition and drowsiness labeling. Right: Earpiece assembly and fit. Reproduced with permission [28]. Copyright 2024, Springer Nature

the electrodes, leading to a degradation in their EEG sig-
nal detection capability. Consequently, materials capable of
self-recovery hold significant potential for enabling stable,
long-term monitoring with non-invasive BClIs. Ferrari et al.
[196] fabricated ultrathin conductive polymer tattoo elec-
trodes (TTEs) using inkjet printing technology and validated
their performance in clinical EEG as well as their compat-
ibility with MEG. TTEs were able to detect alpha waves
with significantly higher signal amplitude around 20 Hz
compared to Ag/AgCl electrodes, demonstrating greater
sensitivity. Moreover, during auditory evoked potential
recordings, TTEs exhibited a superior SNR (4.07 vs. 3.36)
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relative to conventional electrodes. TTEs also conformed
closely to the skin surface and were less affected by hair,
making them well-suited for long-term monitoring. There-
fore, this technology holds promise for potential applications
in multimodal brain monitoring and diagnostics (Fig. 14a).
Simultaneously, relative motion between a non-invasive
BCI and the body interface can introduce artifacts during
measurement, which severely compromise the quality of
the acquired signals and complicate the extraction of target
neural information. Therefore, maintaining stable contact
between the non-invasive BCIs and the target interface is
paramount. Bioadhesive materials, capable of conforming
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intimately to biological surfaces, offer low interfacial imped-
ance and favorable mechanical flexibility. This presents an
effective strategy for achieving high SNR and stable moni-
toring with non-invasive BCIs. Wang et al. [197] designed
an epidermal sensor based on bioadhesive MXene hydrogel,
in which a dynamic cross-linked network provided excel-
lent conductivity retention under 200% tensile strain and
rapid mechanical self-healing. These properties contribute
to maintaining stable performance in scenarios involving
complex skin deformations. By synergistically integrating
conductive MXene nanosheets with bioadhesive functional
groups, the hydrogel interface achieved tunable adhesion
strength ranging from 10.17 to 38.75 kPa, maintaining
stable electrode-skin impedance during motion and sup-
porting high-fidelity EEG signal acquisition. The three-
dimensional porous architecture offered not only ultraviolet
shielding but also antibacterial properties, with inhibition
rates of 89.61% and 93.15% against Escherichia coli and
Staphylococcus aureus, respectively, ensuring long-term
wearability. Integrated with a machine learning algorithm,
the system achieved an accuracy of 98.1% in EMG-based
sign language recognition. This multifunctional platform
holds great potential for advancing next-generation wearable
electronics and machine learning-assisted human-machine
interaction (Fig. 14b). The electrodes used in non-invasive
BClIs can be simply classified according to material proper-
ties into three types: wet, semi-dry, and dry. Wet electrodes
have been extensively applied in clinical practice. A key
advantage lies in their use of an electrolyte medium that fills
interfacial gaps on the skin, enabling effective contact. This
mechanism facilitates low interface impedance and allows
for stable signal acquisition with a high SNR. However, the
intrinsic properties of wet electrodes render them unsuit-
able for long-term monitoring. On the one hand, the con-
ductive gel applied at the biointerface to facilitate contact
can dry out over extended periods, leading to a significant
degradation of signal acquisition capability. On the other
hand, wet electrodes can cause subject discomfort, and pro-
longed skin contact with the moisture may induce irritation
or inflammation. Hence, dry electrodes are regarded as well-
suited for long-term non-invasive BCI monitoring applica-
tions. Driscoll et al. [198] developed MXtrodes, a gel-free,
MXene-based bioelectronic platform for high-resolution
electrophysiological recordings in neural and neuromuscular
systems. In non-invasive EEG applications, 3D pillar-shaped
MXtrodes achieved precise acquisition of alpha rhythms and
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motor-related mu suppression signals, with signal quality
comparable to clinical-grade gelled electrodes. The devices
exhibited excellent mechanical compliance, scalable laser-
based fabrication, and strong compatibility with MRI and
CT imaging, collectively contributing to the mitigation of
several key challenges in wearable neurotechnology. This
work establishes MXene composites as a key materials plat-
form capable of advancing adaptive, multimodal bioelec-
tronic systems that bridge clinical-grade and consumer-grade
BCIs (Fig. 14c). Among the numerous parameters influenc-
ing BClIs, hair and sweat are notably significant sources of
interference. Hair could impede intimate contact between
the electrode and the scalp, increasing contact impedance,
reducing the SNR, and amplifying motion-induced artifacts.
Sweat, due to its ionic content, alters the direct interfacial
impedance, leading to DC drift and slow-wave artifacts. To
mitigate the interference from hair, strategies can be devised
from the perspectives of electrode structure and material.
For instance, replacing planar film electrodes with spike-
shaped electrodes can effectively bypass hair and establish
stable contact directly with the scalp. Alternatively, employ-
ing porous materials like a sponge as the electrode substrate
allows it to compress around hair follicles under application
pressure, maintaining consistent contact with the scalp. Lin
et al. [199] developed a flexible, gel-free silver nanowire-
based sponge electrode (AgPMS), which exhibits high con-
ductivity and excellent mechanical and chemical stability,
allowing for effective contact with the skin, bypassing hair.
In SSVEP experiments, AgPMS achieved a classification
accuracy of 86% on hairless skin and 82% on hairy skin,
a performance closely approaching the 88% accuracy of
standard gel electrodes. These results demonstrated that
this electrode can significantly improve the performance of
gel-free, non-invasive BClIs, providing a superior option for
EEG recordings in applications such as assistive devices for
individuals with disabilities and mental state monitoring.
It holds significant clinical and practical value, particularly
for real-world, hair-covered non-invasive BCI applications
(Fig. 14d).

Emerging ear-centric neural interfaces capitalize on the
ear’s unique anatomical advantages, such as hairless regions
for stable electrode contact, inherent mechanical stability
that helps mitigate motion artifacts, and compact form fac-
tors compatible with wear. These combined features indi-
cate long-term neural monitoring. Wang et al. [9] developed
SpiralE, an in-ear bioelectronic platform that conforms to
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the shape of the ear canal. It autonomously expands and
spirals along the ear canal under electrothermal actuation,
ensuring optimal contact with the ear canal for reliable EEG
sensing. This makes it suitable for the construction of both
visual and auditory BCls. In a 9-target SSVEP BCI classifi-
cation, offline accuracy reached 95%, and online accuracy in
a calibration-free 40-target SSVEP speller experiment was
75%. For auditory attention decoding in cocktail party sce-
narios, natural speech classification accuracy achieved 84%
(Fig. 14e). Complementing this, Kaveh et al. [28] developed
a wireless dry-electrode in-ear EEG monitoring system for
drowsiness detection. During 35 h of drowsiness monitoring
across nine participants, the support vector machine model
achieved an average drowsiness event detection accuracy
of 93.2% for old users and 93.3% for new users (Fig. 14f).
These results validate the feasibility of wireless dry user-
generic earpieces for drowsiness classification and lay the
groundwork for population-trained classification in future
electrophysiological applications.

3.5 Integration of Flexible Electronics and Deep
Learning for Advanced Non-Invasive BCIs

Recent performance gains in non-invasive BCIs have been
enabled by the co-design of flexible bioelectronics and deep
learning-based decoding algorithms. This synergistic para-
digm establishes a positive feedback loop: advanced materi-
als and interface engineering provide a high-fidelity signal
foundation for algorithms, while intelligent algorithms, in
turn, compensate for the inherent physical limitations of
hardware and guide the design direction of future hardware,
collectively pushing the boundaries of system performance.

Building upon material innovations, Yang et al. [200]
developed a biosensor based on an adhesive-hydrophobic
bilayer hydrogel (AHBH), which was integrated into a port-
able head-mounted device for high-fidelity EEG-based emo-
tion classification. Serving as the core interface, the AHBH
material leverages a mussel-barnacle-inspired bioadhesion
mechanism combined with a hydrophobic surface reorgani-
zation strategy. This design achieves a dry-state adhesion
strength of 59.7 N m™! and a water contact angle of 133.87°,
effectively blocking sweat penetration, suppressing motion
artifacts, and maintaining an adhesion strength of 40.8 N
m! after 20 peeling cycles, thereby demonstrating excellent
skin adhesion stability. The material’s low elastic modulus
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(6.9 kPa) and high stretchability (%690%) ensure confor-
mal contact with the skin during deformation, significantly
reducing contact impedance compared to commercial Ag/
AgCl electrodes and Ecoflex-ECC electrodes, along with
minimizing signal drift and noise. Consequently, the AHBH-
ECC electrode exhibits exceptional electrical stability in
dynamic environments such as vibration and sweating condi-
tions, with its noise RMS value measuring only 9.5+ 1.6 pV.
This performance is substantially superior to that of Ag/
AgCl electrodes (46.3 +£4.6 pV) and Ecoflex-ECC electrodes
(93.0+7.8 pV), indicating enhanced resistance to motion
artifacts. The high-quality raw signals facilitate the imple-
mentation of more complex algorithms: the study introduced
a combination of differential entropy and power spectral
density features to enhance emotional state differentiation
and employed a domain adaptation neural network to com-
pensate for residual hardware noise and cross-subject vari-
ability. This approach ultimately increased the average emo-
tion classification accuracy from approximately 85% with
traditional neural networks to 90%. An important direction
for future research is to quantify the marginal improvement
in final classification accuracy attributable to the hydrogel
interface through direct comparison with conventional elec-
trodes (Fig. 14a).

Extending the co-design concept to system-level inte-
gration, Mahmood et al. [201] developed a wireless soft
bioelectronic BCI platform that integrates dry microneedle
electrodes, stretchable interconnects, and a VR headset.
The interconnect structure demonstrates negligible resist-
ance change after 100 cycles at 50% strain, ensuring signal
stability during dynamic movement. At the signal level,
this architecture effectively suppresses motion artifacts
and electrostatic interference, thereby enhancing both the
SNR and recognition performance of SSVEP. For fea-
ture extraction and algorithm implementation, the study
introduced a split-eye asynchronous stimulation (SEAS)
paradigm that expands the number of distinguishable fre-
quency combinations to 32, subsequently employing a spa-
tial convolutional neural network (Spatial-CNN) to achieve
high-resolution classification within a short 0.8 s time
window. Under a configuration of 33-class stimuli and
4-channel acquisition, the system achieved a classification
accuracy of 78.93% +2.36% and an ITR of 243.6 + 12.5
bits min~!, significantly outperforming the traditional Ag/
AgCl electrode system, which achieved an accuracy of
74.72% +3.03% and an ITR of 222.4 + 15.0 bits min~".
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The system was demonstrated in real-time applications,
including VR text spelling and virtual environment naviga-
tion. None of the nine subjects reported discomfort during
one hour of continuous use, indicating satisfactory wear-
ability and user experience. Future studies building on
this work could expand participant diversity to include
individuals with motor disabilities and evaluate long-term
wearing comfort through extended-use trials (Fig. 14b).
Further advancing the hardware-algorithm closed-loop
integration, the same research team reported the SKIN-
TRONICS system [10]. This system utilizes flexible cir-
cuits and dry electrodes composed of ultrathin aerosol-jet
printed skin electrodes and flexible conductive polymer,
with a mechanical modulus highly matched to scalp tis-
sue to achieve conformal contact. This configuration
effectively reduces electrode-skin contact impedance to
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below 20 kQ, thereby significantly suppressing signal
artifacts and electromagnetic interference caused by rela-
tive interfacial motion. The system enables high-quality,
stable EEG signal acquisition, providing reliable input for
subsequent deep neural network processing. Quantitative
experiments demonstrated that the system achieves an
SNR of 46.6 +2.16 dB in SSVEP detection, performing
significantly better than traditional gel electrode systems
(16.94 +4.60 dB) and existing portable wireless systems
(28.89 +£2.28 dB). Concurrent reliability tests confirm
excellent long-term stability: the flexible circuit exhib-
its resistance changes of less than 0.09 Q after repeated
180° bending around a radius as small as 1.3 mm, while
maintaining stable wireless signal strength within a 15-m
range. Additionally, the elastomer hairy electrode shows
less than 10% change in contact impedance after 1,000
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compression cycles. On the algorithmic side, a grid-search
optimized dual-layer CNN enables automatic extraction
of robust features directly from two-channel time-domain
SSVEP signals, effectively overcoming the performance
limitations of traditional methods with limited channels.
The cross-subject generalization capability of the dual-
layer CNN was validated through a six-fold cross-subject
validation, where models trained on 5 subjects were tested
on an independent subject. Benefiting from this hardware-
software co-optimization, the system achieved an offline
classification accuracy of 94.54% +0.9% and an ITR of
122.1 +3.53 bits min~! using only two EEG channels. The
system successfully translates decoded features into con-
trol commands, enabling real-time, precise control of an
electric wheelchair, a wireless vehicle, and demonstration
software (Fig. 14c).

In summary, these innovative approaches collectively
outline a clear trajectory for synergistic development in
non-invasive BCIs. Advancements in flexible electrodes
establish the hardware foundation by optimizing interfacial
contact and suppressing motion artifacts, thereby consist-
ently providing more stable, high-SNR raw signals that sup-
ply high-quality, high-fidelity data for subsequent decoding.
Building upon this foundation, advanced algorithms such
as deep learning leverage their powerful feature extraction
capabilities to not only achieve significant improvements
in decoding performance compared to traditional methods
but also actively compensate for inherent hardware limita-
tions, including residual noise and cross-subject variabil-
ity. This synergistic paradigm, embodying the principle of
hardware establishing the foundation and algorithms driving
advancement, creates a positive feedback loop that collec-
tively expands the performance boundaries of non-invasive
BClIs (Fig. 15).

Looking ahead, advancing beyond current performance
limitations requires the development of specialized hard-
ware designed for new computing paradigms. The traditional
von Neumann architecture encounters energy efficiency
bottlenecks when processing neural signals, whereas neu-
romorphic computing approaches, such as those utilizing
memristor-based in-memory computing chips combined
with event-driven spiking neural networks, offer a promis-
ing solution for ultra-low-power edge computing [151]. This
calls for hardware-software co-design, involving cross-level
optimization from materials and devices to algorithms. Such
co-design ensures deep integration of hardware physical
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characteristics and algorithmic computational requirements
from the initial design stages, while avoiding latency and
privacy risks associated with cloud transmission. Ultimately,
translating these laboratory innovations into reliable user
assistive tools demands rigorous validation in real-world
environments. The principal future challenge involves sys-
tematically evaluating the decoding robustness, long-term
wear comfort, and biocompatibility of these co-designed
systems across diverse populations during continuous multi-
day monitoring, while simultaneously addressing accom-
panying system-level engineering issues to complete the
crucial transition from technological prototype to practical
product.

3.6 Systems-Engineering for Non-Invasive BCIs

In multisubject collaborative non-invasive BCI systems, pre-
cise clock management poses a critical challenge for ensur-
ing data timeliness and comparability. The core issue stems
from inherent discrepancies in the internal clock sources
of independent acquisition devices. Due to manufacturing
tolerances of crystal oscillators and of environmental influ-
ences such as temperature and voltage fluctuations, these
clocks exhibit varying degrees of drift and offset. Conse-
quently, temporal misalignment gradually develops across
devices, making it difficult to reliably synchronize neural
responses to the same stimulus from different subjects. This
synchronization problem is especially pronounced in medi-
cal applications where communication firmware in clinical-
grade devices is often closed and restricted by regulatory
requirements, preventing access to precise timestamps at
the hardware level; timestamps can only be recorded at the
application layer, introducing substantial indeterministic and
variable software and communication delays, which signifi-
cantly increase synchronization complexity. A representa-
tive collaborative solution combines dedicated hardware
modules with synchronization software protocols. A syn-
chronization hub is deployed within the network alongside
multiple distributed synchronization plugins. Through peri-
odic reference message broadcasting, timestamp exchange
among nodes, and dynamic reference node election, each
node applies linear regression to continuously estimate and
compensate for its own clock offset relative to the reference
node. This allows the system to maintain network-wide
temporal consistency even under unstable communication
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latency conditions [202]. When hardware-level alignment is
infeasible, software frameworks, such as the lab streaming
layer, could achieve network-based timestamp calibration
[87, 88], while dynamic time warping and event resampling
could correct residual drift during post-processing. Future
systems will require synchronization mechanisms that com-
bine millisecond-level real-time performance, cross-device
stability, and cross-session reproducibility to support high-
precision applications such as clinical diagnostics, collabo-
rative BCIs, and large-scale hyperscanning studies.

In non-invasive BClIs such as EEG, power consumption
and thermal management represent major challenges [203].
Although such systems do not require surgical implantation,
their power dissipation may still lead to localized tempera-
ture increases, affecting user comfort and long-term safety
[204]. Because EEG electrodes are in direct contact with the
scalp—where blood perfusion is relatively low and thermal
conductivity is poor—heat generated by signal acquisition,
amplification, or wireless transmission modules is difficult
to dissipate efficiently. This may result in local tempera-
ture elevation that approaches or exceeds biological safety
thresholds. Furthermore, non-invasive devices are typically
portable and battery-powered [63]. Therefore, power effi-
ciency not only affects battery life but also directly impacts
wearability and biocompatibility. As such, low-power circuit
design, efficient thermal dissipation structures, and proper
material selection must be thoroughly considered during
the hardware design stage. Thermal simulation tools should
be used to evaluate temperature distribution under various
physiological and environmental conditions to ensure that
devices meet functional requirements while complying with
thermal safety standards and enhancing user experience.
Integrated design is considered a key strategy for improving
power efficiency. For example, microchip-based integration
of EEG and fNIRS sensors on a single platform reduces
device size and weight, lowers power consumption, and
enhances signal quality and synchronization.

Electromagnetic compatibility (EMC) presents a signifi-
cant challenge throughout the signal acquisition, transmis-
sion, and processing pipeline of non-invasive BCIs. The
issue arises from a fundamental contradiction: BCIs are
designed to detect extremely weak neural electrophysiologi-
cal signals (e.g., EEG) on the order of microvolts, while
operating in environments that inevitably contain strong
internal and external electromagnetic interference. This
interference includes power line radiation at 50/60 Hz and its
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harmonics, as well as noise from consumer electronics such
as Wi-Fi and Bluetooth devices. Additionally, physiological
artifacts generated by the user—such as EOG or EMG—can
have amplitudes much larger than EEG signals. These dis-
turbances can be introduced into the system through elec-
trodes or leads acting as "antennas", which deteriorate signal
quality, distort data, and may result in misclassification or
system malfunction. This presents direct risks to the reli-
ability and safety of BCI systems in applications such as
monitoring, diagnosis, or neuro-assistive tasks. To address
this complex issue and ensure stable system performance in
real electromagnetic environments, a comprehensive engi-
neering strategy is required. This strategy must integrate
hardware design, signal processing, and preliminary evalu-
ation [205]. On the hardware side, shielded cables, driven
right-leg circuits, and other active shielding techniques are
used to minimize electromagnetic penetration, while ampli-
fiers with high input impedance and high common-mode
rejection ratios are employed to enhance the detection of
weak differential signals. On the algorithmic side, residual
noise persists despite hardware optimization, necessitating
advanced signal processing techniques such as blind source
separation, adaptive filtering, and deep learning models to
extract meaningful neural data from contaminated signals
[136]. During the device development phase, combining
EMC analysis with numerical simulations of virtual human
models has become an essential step in verifying compatibil-
ity and safety in realistic tissue environments. Collectively,
these layered EMC strategies are essential for improving
system SNR and facilitating the transition of non-invasive
BClIs from controlled laboratory settings to practical real-
world applications.

In non-invasive BCI systems, firmware update and roll-
back mechanisms are critical for ensuring long-term safety
and reliability. However, these mechanisms remain under-
explored. Given that BCI devices operate in close and
sustained contact with the human body, firmware updates
affect not only algorithm performance but also user safety
and ethical accountability. Without integrity verification
and rollback pathways, faulty updates may disrupt signal
acquisition, render devices inoperative, or introduce risks
to users [206]. Recent studies emphasize the need for digi-
tally signed updates, redundant A/B partition storage, and
version-controlled rollback to establish a resilient firmware
lifecycle [207]. Real-world industry cases demonstrate that
when manufacturers discontinue software support or when
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an update fails, users may be left with "orphaned" or non-
maintainable neuro-devices. Therefore, firmware systems for
BCIs must simultaneously address security, reversibility, and
long-term maintainability.

In non-invasive BCls, safety failure and protection mecha-
nisms primarily address the risk of unintended operations
caused by signal distortion, abnormal user states, or external
disturbances. Typical strategies include real-time monitoring
of user cognitive states (e.g., fatigue, distraction) and trig-
gering system-level interventions (e.g., halting device oper-
ation, switching to manual mode, or activating emergency
shutdown) when potentially unsafe conditions are detected.
Additionally, multimodal physiological signal fusion (e.g.,
combining EEG and EOG) or robust control algorithms
can enhance system fault tolerance and reduce reliance on
a single signal source, allowing basic safety functions to
be maintained even when partial component failures occur.
Regarding safety thresholds and recovery mechanisms during
online learning, systems generally require predefined behav-
ioral boundaries or risk thresholds to constrain algorithmic
outputs, preventing learning models or adaptive control strat-
egies from entering hazardous or uncontrollable states. For
example, in brain-controlled robots or vehicles, physical or
logical limits may be imposed on movement speed, steer-
ing angle, or distance to obstacles. When the system detects
that its internal state or user commands are approaching or
exceeding these limits, recovery procedures are activated,
such as aborting current commands, reverting to the last
verified safe state, or using error-related neural signals (e.g.,
error-related negativity) to trigger immediate system reset
and behavioral correction. This hybrid strategy—combining
proactive threshold protection and reactive error-triggered
recovery—ensures that interactions remain within safe opera-
tional bounds during dynamic learning [208].

In non-invasive BClIs, online learning effectively
addresses the non-stationarity of EEG signals over time, but
it introduces key challenges related to safety thresholds and
recovery mechanisms. Because EEG signals drift over time,
adaptive updates of classifiers are necessary but must avoid
performance degradation or user confusion due to improper
adaptation. A common approach is to set a confidence
threshold: classifier parameters are updated only when the
confidence of the current prediction exceeds this thresh-
old, which reduces the likelihood of learning from noisy or
uncertain data. Meanwhile, the system must retain recovery
capability. For instance, when error-related brain potentials
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are detected, the system can interrupt current commands
and roll back the classifier to a previously validated stable
state. This combination of active threshold defense and pas-
sive error-triggered rollback aims to balance performance,
adaptability, and operational safety [209].

4 Conclusions and Perspectives

As non-invasive BCI technology advances from labora-
tory research toward real-world applications in clinical
rehabilitation, neural modulation, and daily life assis-
tance, its evolution underscores a deepening convergence
of neuroscience, Al, and flexible bioelectronics. Through
systematic advancements in neural decoding algorithms
and innovative flexible materials, we are progressively
integrating high-precision neural monitoring and decod-
ing technologies seamlessly into daily life, clinical diag-
nostics, and therapeutic interventions. However, achiev-
ing truly sustainable, accessible, and clinically valuable
applications still faces a series of challenges rooted in the
intrinsic properties of neural signals, the constraints of
dynamic human-computer interaction, and the complexity
of long-term usage environments. To address these chal-
lenges, a systematic and multidimensional breakthrough is
required across signal acquisition, algorithmic modeling,
hardware architecture, closed-loop control strategies, and
evaluation frameworks.

The core performance bottleneck of non-invasive BCIs
primarily stems from inherent biophysical constraints.
When cortical neural activity passes through multiple
tissue layers (e.g., the skull and cerebrospinal fluid), it
may cause spatial blurring and amplitude attenuation of
the signals. Consequently, scalp-recorded EEG typically
exhibits low spatial resolution, low SNR, and high suscep-
tibility to physiological artifacts and environmental noise.
Moreover, individual variations in anatomical structure,
physiological states (e.g., fatigue, attention), and psycho-
logical states (e.g., motivation, emotion) further exacer-
bate the non-stationarity and time-varying nature of neu-
ral signals. Meanwhile, practical challenges at the user
level also demand considerable attention. Firstly, there
are significant individual differences in neural accessi-
bility. Approximately 15%-30% of users struggle to pro-
duce consistently decodable signals, a condition termed
"BCl illiteracy." These challenges not only undermine the
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generalization of decoding algorithms but also hinder the
stable and reliable decoding of user intent.

Despite significant advances in neural decoding and sys-
tem architecture, the large-scale translation of non-invasive
BClIs into clinical and everyday settings continues to face
substantial challenges. In mobile or real-world usage sce-
narios, BCI systems confront critical issues related to the
stability of the biological interface, which directly impacts
long-term reliability and signal quality. Two primary bot-
tlenecks are physical degradation and relative motion at
the electrode-scalp interface. Firstly, interface degrada-
tion becomes particularly pronounced during prolonged
wear. Dry electrodes eliminate the need for conductive
gel, thereby reducing the risk of skin irritation or aller-
gic reactions; however, their rigid structures may cause
pressure points, skin discomfort, or even micro-abrasions
during extended use. Wet electrodes, while offering supe-
rior signal fidelity, carry risks of skin sensitization and
infection. Moreover, as the conductive gel dries over time,
contact impedance increases, leading to progressive signal
instability. Semi-dry electrodes represent a compromise
solution, slowly releasing minimal electrolytes to maintain
conductivity while minimizing skin irritation. However,
their design requires careful consideration of material per-
meability and mechanical configuration to prevent uneven
pressure distribution and residue accumulation. To ensure
biocompatibility, electrode materials should be selected
for low allergenicity, high flexibility, and smooth surface
topography. These material properties must be combined
with breathable designs, regular cleaning protocols, and
personalized fitting procedures to minimize adverse skin
reactions and enhance both user comfort and system
reliability.

Secondly, dynamic artifacts present another major chal-
lenge. Relative movement between the electrode and scalp
during user motion not only induces mechanical fatigue
and potential structural damage but also introduces motion-
related artifacts. Additionally, electrolytes in sweat alter the
electrochemical characteristics of the interface, causing drift
and interference that further degrade signal quality. Hair
acts as a physical barrier, impeding direct contact between
the electrode and scalp, increasing contact impedance, and
exacerbating artifact magnitude. Collectively, these factors
indirectly contribute to feature representation drift and dete-
rioration in decoding performance.

© The authors

In contrast to conventional rigid electrodes, advancements
in flexible bioelectronics are significantly influencing the
design principles of neural signal acquisition interfaces.
Driven by innovations in materials science, nanomaterials
are gaining increasing attention in the development of flex-
ible electrodes. The combination of the unique electrical
properties of nanomaterials and the excellent mechanical
compliance of flexible substrates provides a solid foundation
for high-performance flexible electrodes. The mechanical
impedance matching between highly conductive flexible
films and biological tissues enables low interfacial imped-
ance and high-fidelity neural signal recording. The con-
formal contact afforded by such materials helps suppress
motion-induced artifacts and maintains more consistent
contact impedance. Evidence indicates that this leads to
improvements in the SNR and stability of raw EEG signals.
Compared to traditional rigid electrodes, flexible electrodes
not only enhance signal quality but also offer greater comfort
during extended wear, facilitating long-term monitoring.

Nevertheless, even with significant advancements in mate-
rials, achieving robust performance across diverse popula-
tions still demands fundamental algorithmic breakthroughs.
At the preprocessing stage, advanced multimodal fusion
algorithms integrate cross-modal sensory information (e.g.,
visual, auditory, and tactile) to enhance signal robustness
and discriminability. During feature extraction, methods
based on SPD manifold geometry, CSP and its variants, and
spatiotemporal filtering incorporating source imaging priors
have improved feature separability and neurophysiological
plausibility. In classification, end-to-end deep learning mod-
els (e.g., CNNs, Transformer architectures, and multimodal
fusion networks) enable high-performance automatic fea-
ture learning and pattern recognition, significantly boost-
ing decoding accuracy and generalization. Despite these
advances, the efficacy of such models is largely validated
under idealized experimental conditions. Their transferabil-
ity, noise resilience, and long-term stability in real-world
deployments remain insufficiently demonstrated.

Concurrently, as BCI technologies develop, ethical, soci-
etal, and safety concerns are becoming increasingly promi-
nent. Ultimately, translating advanced laboratory prototypes
into clinically validated and commercially viable products
requires rigorous scientific validation, comprehensive bio-
compatibility testing, regulatory approval, and long-term
efficacy assessment. Non-invasive BCIs face dual chal-
lenges in regulatory clearance and cost modeling for both
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disposable and reusable components. From an economic
perspective, cost models suggest that disposable electrodes
increase direct expenditure but may reduce risks of cross-
contamination and labor costs associated with cleaning.
Reusable systems exhibit lower per-use costs but require
investment in sterilization equipment, personnel, and main-
tenance. An optimized framework should therefore quantify
trade-offs among regulatory compliance, clinical safety, and
lifecycle cost.

In the development and deployment of non-invasive BClIs,
whether as medical devices or consumer-grade products, a
systematic checklist encompassing electrical safety, electro-
magnetic compatibility (EMC), biocompatibility, software
lifecycle management, and cybersecurity must be strictly
adhered to. For medical devices, patient safety and clini-
cal reliability are paramount, necessitating compliance with
IEC 60601 (electrical safety and EMC), ISO 10993 (bio-
compatibility of electrode patches or wearable materials),
IEC 62304 (medical device software lifecycle), and ISO
14971 (risk management). Furthermore, registration with
regulatory bodies such as the FDA or under the EU’s Medi-
cal Device Regulation (MDR) is mandatory, supported by
traceable technical documentation and clinical or perfor-
mance validation data to ensure consistent signal quality,
algorithmic stability, and reproducibility across diverse
user populations. For consumer-grade products, while full
medical device regulations do not apply, essential require-
ments still hold. These include compliance with electrical
safety standards (e.g., IEC 62368 or IEC 61010), EMC and
wireless regulations (e.g., FCC/CE RED), and basic safety
assessments of skin contact materials (referencing low-risk
pathways in ISO 10993). Adherence to data protection laws
(e.g., GDPR) and cybersecurity regulations governing data
encryption, privacy, and cloud transmission is equally criti-
cal. Additionally, commercial products must avoid using
diagnostic or therapeutic terminology, instead positioning
their functionality as cognitive state monitoring, wellness
support, or entertainment, to mitigate the risk of being clas-
sified as medical devices. Moreover, non-invasive BCIs must
adhere to strict disinfection and sterilization protocols in
clinical and research settings to ensure participant safety,
health, and ethical protection.

Particularly crucial is that current BCI research is
undergoing a fundamental shift from "open-loop, static"
systems to "closed-loop, adaptive" paradigms, with a focus
on enhancing real-time decoding capabilities, improving
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asynchronous detection mechanisms, and optimizing
shared control strategies. However, a key engineering
constraint persists: phase lag. This lag, which includes
the cumulative time delay arising from signal acquisi-
tion, wireless transmission, feature extraction, decod-
ing decisions, and actuator response, causes the system
output to trail behind the user’s neural intention. This
temporal misalignment disrupts control timing, reduces
trajectory smoothness and target acquisition accuracy,
and significantly diminishes the user’s sense of agency,
thereby undermining trust and sustained engagement. In
high-speed motor control or high-risk tasks, even minor
delays can lead to serious consequences. Moreover, an
inherent trade-off exists between latency and reliability:
complex models improve classification accuracy but often
incur higher computational overhead and longer response
times, whereas simplified algorithms reduce latency at the
expense of decoding robustness. Of equal concern is the
nonlinear accumulation of false positives (false triggers)
and false negatives (missed detections) during extended
use, which increases cognitive load and may even lead to
user frustration or abandonment. Meanwhile, the balance
of control authority in shared control paradigms remains
lacking in standardized definitions. To address these chal-
lenges, forward models and predictive state filters should
be incorporated to model user intent, generate preemptive
control commands, actively compensate for cumulative
processing delays, and thereby enhance the proactivity and
responsiveness of closed-loop systems. Using preregistra-
tion or at minimum a constrained analysis plan will help
limit post hoc selection.

Looking ahead, open research benchmarks should be
established to promote reproducible, comparable, and veri-
fiable progress. Pre-registered or constrained analysis plans
are recommended to limit post hoc selection bias. In addi-
tion, the biological interpretability of BCI systems should be
rigorously assessed by evaluating the stability of channel or
regional weights across repeated sessions and across differ-
ent subjects. Furthermore, comprehensive, endpoint-aligned
evaluation systems should be developed, integrating tech-
nical metrics with task completion time, false alarm rates,
subjective measures such as the NASA-TLX cognitive load
scale, and long-term usage rates, thereby establishing user-
centered evaluation criteria.

At the system architecture level, advancing beyond cur-
rent performance limitations requires the development of
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specialized hardware designed for emerging computing
paradigms. The traditional von Neumann architecture faces
energy efficiency bottlenecks when processing neural signals,
whereas neuromorphic computing approaches, such as those
utilizing memristor-based in-memory computing chips com-
bined with event-driven spiking neural networks, provide a
promising solution for ultra-low-power edge computing. This
necessitates hardware-software co-design, involving cross-
level optimization from materials and devices to algorithms.
Such co-design ensures integrated consideration of hard-
ware physical characteristics and algorithmic computational
requirements from the initial design stages, while minimizing
latency and privacy risks associated with cloud transmission.

In summary, the advancement of non-invasive BCIs relies
not only on innovations in signal processing and algorithm
design but also on close integration with cutting-edge flex-
ible bioelectronics and hardware architecture. Achieving
practical, robust, personalized, and trustworthy BCI systems
capable of transitioning from the lab to real-world deploy-
ment requires multidisciplinary collaboration and holistic
co-optimization. This process involves not only techno-
logical innovation but also strict regulatory compliance,
cost-benefit analysis, and user experience improvement
to ensure safety, reliability, and widespread accessibility.
Simultaneously, establishing comprehensive end-to-end
evaluation systems that span from signal acquisition to final
user feedback is essential for validating the effectiveness
and reliability of diverse hardware-software configurations
and will serve as a key focus for the future development of
BCI technologies.
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