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HIGHLIGHTS

e Messenger ribonucleic acid (mRNA) structural optimization and delivery systems were comprehensively summarized.
e Current mRNA applications were thoroughly introduced.

® The challenges and future prospects of mRNA-based therapeutics were critically analyzed and discussed.

ABSTRACT As the central template for protein p mRNA structure mRN(ﬁ;I;ased mRNA delivery mRNA application
expression, messenger ribonucleic acid (mRNA) 5Cap— - i 5-.;:" N ‘q\?f%
holds immense potential for novel therapeutic k00 AN ;‘%\(?
strategies. Over the past few decades, mMRNA-based o / Eoplidel Epidemic vaccine  Cancer vaccine
therapeutics have demonstrated remarkable efficacy Ipoly(a) \ )

in a range of applications, including epidemic vac- Polymer i Qﬁg )
cine, cancer vaccine, protein replacement therapy, NN i %@M’ e k".':,u
cytokine therapy, cell therapy and gene editing. Due | Sef-amelifying RNA e ) P ey "™ Cytokine therapy
to the inherent instability of mRNA, the rational .

design of mRNA structure is the prerequisite for — Erozome (3 Ao jﬁ:*L
therapeutic utility while effective delivery systems Vsl o ’ R
are also essential for in vivo applications. This | baiticle '}Q} cell t“herapy Gene editing

review focuses on the optimization of mRNA struc-

ture and highlights key delivery strategies. It also provides a comprehensive overview of the major applications of mRNA-based strategies. In
addition, it highlights the persistent challenges in mRNA therapeutics, particularly in terms of stability, immunogenicity, delivery efficiency and
safety. By examining recent advances in mRNA design, delivery and application, this review aims to support ongoing research and development
in the field of mRNA-based therapeutics.
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1 Introduction

Messenger ribonucleic acid (mRNA), first discovered in the
1960s, is characterized as an unstable intermediate carrying
information from genes to ribosomes for protein synthesis [1].
Although mRNA constitutes only 2%—5% of the total RNA
in cells, it can directly mediate the production of bioactive
proteins, which enables its development as an effective thera-
peutic through rational mRNA design and delivery (Fig. 1).
Therefore, researchers have long pursued the artificial synthe-
sis of mRNA for biomedical applications [1-26] (Fig. 2). In
1978 and 1990, the first intracellular delivery of mRNA and
its delivery in murine models were achieved, respectively [5,
6, 9]. However, in the subsequent decades, the immunostimu-
latory property of mRNA made it prone to recognition and
inactivation by the immune system, posing a formidable
obstacle to further research. The year 2005 marked a pivotal
breakthrough in mRINA therapeutics when Katalin Kariké and
Drew Weissman made the seminal discovery that nucleoside
modification critically modulates Toll-like receptor (TLR)-
mediated recognition of exogenous RNA [13]. This founda-
tional work established the biochemical basis for all clinically
viable mRNA platforms, which earned them the 2023 Nobel
Prize in Physiology or Medicine.

The efficacy of mRNA-based therapeutics is determined
by the stability and translational efficiency of mRNA, which
are closely associated with its structural features and delivery
systems. Building upon mRNA structure optimization and
delivery vector improvement, mRNA vaccines have dem-
onstrated significant clinical efficacy during the COVID-19
pandemic, highlighting hallmark advantages of this platform
including expedited manufacturing timelines, superior protec-
tive efficacy and eliminated genomic integration risks [20, 27].
The remarkable success of mMRNA-based COVID-19 vaccines
catalyzed the clinical applications of mRNA therapeutics. The
current applications have spanned epidemic vaccine [19, 20],
cancer vaccine [28-30], protein replacement therapy [24],
cytokine therapy [31, 32], cell therapy [33, 34] and gene edit-
ing [21, 35], serving as crucial complements for traditional
medical therapies. Therefore, summarizing recent advance-
ments is essential to provide a reference for researchers and
highlight future prospects of mRNA technology.

Herein, we provide a comprehensive and critical review
of the latest progress of mRNA-based innovative strategies,
potential challenges as well as the future development trends.

© The authors

We throw light on mRNA structure optimization, delivery sys-
tem advancement and medical applications to illustrate the
landscape of mRNA-based therapeutic strategies. We further
discuss the limitations and challenges of mRNA, aiming to
provide a comprehensive review for relevant research regions
in post-COVID-19 era.

2 Optimization of mRNA Structure

As anucleic acid drug, efficient protein production is essen-
tial for mRNA to intervene diseases effectively. However, the
single-stranded structure of mRNA renders mRNA-based
drugs inherently unstable while its intrinsic immunogenicity
can easily cause in vivo clearance by immune system, which
necessitates artificial optimization. Similar to naturally
occurring mRNA, synthetic mRNA is also comprised of
five parts: a 5°cap, a 5’untranslated region (UTR), an open
reading frame (ORF), a 3’UTR and a poly(A) tail (Fig. 3a)
[36]. To address above challenges, these components have
been optimized to enhance mRNA stability and translation
efficiency (Table 1).

2.1 5’cap of mRNA

The mRNA cap structure in eukaryotes is an N7-methyl-
ated guanosine located at the 5’ end of the mRNA, which
is linked with the first nucleotide via a reverse 5°-5’
triphosphate [37]. mRNA capping shields mRNA from
exonuclease degradation, labels them for subsequent mod-
ifications (such as splicing, polyadenylation) and trans-
locate it into the cytoplasm. The translation of mRNA
cannot proceed unless the eukaryotic translation initia-
tion factors recognize 5’cap [38]. Given the critical role
of the mRNA cap, multiple capping strategies have been
developed for in vitro mRNA capping. Capping enzymes,
such as vaccinia capping enzyme and 2’ O-methyltrans-
ferase [39, 40], enable in vitro capping with the addition
of substrates and have been widely commercialized. The
capping rate almost approaches 100% through continu-
ous enzymatic capping optimization, while the resulting
Capl structure represents the predominant cap form in
human and murine cells, conferring low immunogenic-
ity and high translation efficiency [41-43]. However, the
process remains complicated due to the introduction of
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Fig. 1 Schematic representation of mRNA structure optimization, delivery strategies and clinical/preclinical applications. Created with BioRen-

der.com.

excessive enzymes. In contrast, co-transcriptional cap-
ping is a simpler way to achieve one-step capping by add-
ing cap analogs such as m7GpppG to the reaction system
[44]. However, since both ends of m7GpppG (the m7G
and downstream G) can serve as initiation sites for mRNA
elongation, co-transcriptional capping produces one-third
to one-half of the mRNA which incorporated in the reverse
orientation, leading to the failure of translation to the tar-
get protein due to lack of the entire cap structure [45, 46].
To address the problem of reverse capping, the anti-reverse
cap analog (ARCA) methylates the 3’-OH group of m7G
in the cap structure to ensure exclusive forward orientation
incorporation into the mRNA chain. The advent of ARCA
eliminates the interference from non-functional cap,

SHANGHAI JIAO TONG UNIVERSITY PRESS

yielding mRNA with improved stability. ARCA-enhanced
co-transcriptional capping doubles translation in mature
dendritic cells (DCs) yet remains 30% less efficient than
enzymatic capping [47]. Moreover, ARCA fails to improve
the low capping rate (34%—77%) caused by the competi-
tion between cap analogs and GTP during transcription
initiation, prompting the development of CleanCap [48,
49]. The CleanCap achieves a capping efficiency exceed-
ing 90%. The resulting Capl structure enhances mRNA
stability and reduces immunogenicity, thereby improving
translational efficiency [50]. Masahito et al. showed that
CleanCap capping suppressed transfection-induced NF-kB
activation (2.2-fold vs negative control) more effectively
than ARCA (2.7-fold) [51]. Natural cap modifications,
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Fig. 2 Development history of mRNA-based therapeutics.

such as Cap0 and Capl, are dependent on RNA meth-
yltransferases, which are promiscuously active for ana-
logs of the natural co-substrate S-adenosyl-L-methionine
(AdoMet). Therefore, identifying co-substrate analogs
of AdoMet can realize the methylation at different sites
in the first nucleotide attached to the cap, which endows
mRNA with various biological functions [52, 53]. Wang
et.al synthesized the muti-capped mRNA, which enhanced
mRNA-elF4E-eIF4G binding and significantly increased
protein expression [54]. In addition to the function of regu-
lating mRNA stability and immunogenicity, 5’ cap modi-
fication can also take control of the initiation of mRNA
translation. Nils Klocker et al. reported 5’cap analogs with
photo-cleavable groups (FlashCaps) that enabled spatial
and temporal control of translation by light [55]. Different
from the normal translation process, FlashCaps blocked
the binding of 5’cap to eIF4E and prevented degradation
of the decapping enzymes. The translation could not begin
unless light-induced deprotection was acted and the ori-
gin Cap0 turned out. This innovation design facilitates
light-induced translation enhancement and also maintains
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acceptable stability and immunogenicity compared with
Cap0, which provides a novel approach for photochemical
control of mRNA translation (Fig. 3b).

2.2 3’ poly(A) Tail of mRNA

The majority of eukaryotic mRNA 3’poly(A) tail is gen-
erated by the addition of adenines after the splicing of
pre-mRNA [56]. The poly(A) tail binds to polyadenylate-
binding protein (PABP), which interacts with the translation
initiation factor eIF4G, and allows mRNA to form a close
loop, controlling translation initiation synergistically with
5’cap [57]. The binding of PABP to mRNA can cover a
length of 30 nt, which prevents mRNA from degradation by
nucleic acid exonucleases, so a poly(A) tail exceeding 30
adenosines is essential for mRNA stability and translation
[58]. Longer tails are generally considered to be associated
with enhanced mRNA stability and expression [59-61].
While deacetylation drives poly(A) tail shortening and
mRNA decay, Mroczek et al. identified that the mRNA-1273
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Table 1 The impact of mRNA component optimization on mRNA immunogenicity, stability and translation efficiency

mRNA component Strategy mRNA immunogenic- mRNA stability Trans-
ity lational
efficiency
5’cap Enzymatic capping Low High High
m7GpppG High Low Low
ARCA High Middle Middle
CleanCap Low High High
3’poly(A) tail A long poly(A) tail - High High
ORF Codon optimization - - High
UTR Selection of UTRs from highly expressed Low High High
genes/High-throughput screening
Nucleoside Nucleoside modification Low High High

vaccine extends mRNA half-life in macrophages through
TENT5A-mediated poly(A) tail elongation [62]. Poly(A)
tail elongation enhances mRNA stability, offering a novel
approach to enhance mRNA vaccine performance. Addi-
tionally, mRNA with multiple chemically modified poly(A)
tails was reported to maintain the translational activity of
mRNA more persistently due to increased stability [63].
Additionally, the modification of the poly(A) tail enabled
the tracing of the mRNA translation process. Anhéuser et al.
attached multiple azido-modified adenosine nucleotides to
the poly(A) tail of luciferase/eGFP mRNA through yeast
poly(A) polymerase [64]. After the transfection of modified
mRNA into the mammalian cell, click reaction happened
with the introduction of fluorescence label (sulforhodamine
B) at the 3’ poly(A) tail. The detection of fluorescence label
enabled the localization of mRNA at the subcellular level.
Such modification of poly(A) tail not only had no negative
influence on mRNA degradation with no alteration in UTRs
and coding regions, but also improved translation efficiency
(Fig. 3¢).

2.3 ORF and UTRs

Beyond the 5’cap and 3’poly(A) tail, mRNA optimiza-
tion primarily focuses on sequence design of the ORF and
UTRs. As the coding region of mRNA, the optimization of
codons in the ORF is closely related to protein yield [65, 66].
Current codon optimization is mainly based on the codon
adaptation index (CAI) as the basic optimization param-
eter, which reflects the degree of conformity between the
codons in heterologous mRNA and the optimal frequency of
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codon in the host cells [67]. Synonymous codons encoding
the same amino acid have different tRNA abundance, and
codons with higher tRNA abundance typically correspond
to better translation efficiency and are used more frequently,
a phenomenon known as codon usage bias. A common
approach is to use synonymous codons corresponding to
highly abundant tRNAs to enhance the translation rate [68].

Located flanking the ORF, UTRs harbor multiple regu-
latory elements that are indispensable for mRNA stability
and translation efficiency, despite lacking protein-coding
functions [69, 70]. On one hand, 5’UTR plays a crucial role
in ribosome recruitment, scanning and translation initia-
tion site selection. Specific 5’UTR sequences, such as the
adenovirus-derived tripartite leader sequence, demonstrate
superior translational efficiency compared to the 5’UTR of
mRNA-1273 [71]. A-rich unstructured elements in 5’UTR
have been reported to destabilize mRNA in the absence of
translation [72]. On the other hand, the functions of 3’UTR
are mainly determined by AU-rich elements, which are
associated with mRNA inability and gene silencing medi-
ated by miRNA [73, 74]. AU-rich elements (AREs) interact
with RNA-binding proteins to promote mRNA degradation
[75]. Extended AREs significantly promote mRNA degrada-
tion, whereas truncated or mutated AREs markedly enhance
mRNA half-life [76]. 3’ UTR harbors miRNA binding sites,
facilitating the interaction between miRNA and mRNA [77].
3’UTR lengthening increases miRNA binding sites, thereby
suppressing mRNA translation. Cairns et al. demonstrated
that 3’UTR extension generated 13,111 novel miRNA bind-
ing sites across 110 genes in neurons [78]. Currently, the pri-
mary means for UTR optimization includes direct selection

https://doi.org/10.1007/s40820-025-01906-x
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of UTRs from highly expressed genes in host cells, such as
the UTRs of human a-globin gene [79]. Another feasible
method is to construct UTR libraries by deep computational
modeling for high-throughput screening [80].

Moreover, the optimization of mRNA secondary structures
to extend the half-life of mRNA is also a critical consideration.
Highly expressed mRNA exhibits fewer secondary structures
throughout the 5’UTR and the first 10 codons of the ORF
[81]. Conversely, increased secondary structures formed in the
remaining ORF and 3’UTR contribute to higher expression of
encoded proteins. However, the formation of RNA secondary
structures including double-stranded RNA (dsRNA) leads to
activation of pattern recognition receptors and induces innate
immune responses. One way to alter RNA secondary structure
is to alter the UTR and ORF sequences. Given the functional
constraints and limited flexibility in UTR design, changing the
OREF sequence is a preference to regulate the secondary struc-
ture of mRNA. However, this approach tends to confound the
influence of codons adjustment and mRNA structure change
on protein expression. Another way is to modify the nucleo-
sides without the change of sequences, which eliminates the
effects of codon changes, such as m6A, ¥, m1A and m5C.
Nucleoside modification influences the secondary structures
and interactions with proteins, which can either enhance or
reduce protein expression levels [82]. More importantly,
nucleoside modification affects the physicochemical proper-
ties of mRNA by inhibiting the mRNA recognition by TLRs
and reducing the immunogenicity [13]. Increasing the num-
ber of modified nucleosides significantly suppresses TNF-a
expression, protecting mRNA from degradation and preserv-
ing biological functions (Fig. 3d). Pseudouridine incorporation
protects mRNA from exonuclease cleavage, thereby preventing
the generation of short RNA fragments that activate TLR7 and
TLR8 by binding to their binding pockets [§3]. Meanwhile,
TLRS neglects pseudouridine as a ligand for its first binding
pocket, while TLR7 neglects pseudouridine-containing RNA
as a ligand for its second pocket.

2.4 Artificial Intelligence Design for Linear mRNA

As the options for mRNA structural optimization grow expo-
nentially with sequence extension, designing the optimal
mRNA sequences through traditional enumeration and experi-
mentation is impractical, leaving the vast majority of stable
and efficient sequence designs unexplored. With the rapid

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

advancement of Al technology, Huang et al. developed Lin-
earDesign, an algorithm that rapidly optimizes mRNA codons
and stability to identify the optimal mRNA sequence [84]. Lin-
earDesign adapted the classical concept of lattice parsing from
computational linguistics. Even in the absence of nucleoside
modification, mRNA sequences generated by LinearDesign
exhibited significant improvements in chemical stability and
translation efficiency. The exceptional efficiency and low cost
of LinearDesign position it as a critical tool for addressing
future pandemics (Fig. 3e).

2.5 Self-Amplifying RNA

Repeated infections with new coronaviruses and derived var-
iants are a thorny issue in the aftermath of global outbreaks,
while protein replacement therapy that requires multiple
administrations present an additional challenge for linear
non-replicating mRNA. Self-amplifying RNA (saRNA) is
regarded as a promising alternative strategy.

Notably, saRNA adds the sequence of the RNA-dependent
RNA polymerase (RdRp) of viral origin (such as a-viruses)
and can thus regard itself as the template to generate more
copies of saRNA [85]. The double-stranded structure formed
during saRNA replication mimics viral RNA replication and
activates pattern recognition receptors (e.g., RIG1), trigger-
ing innate immune responses and enhancing vaccine efficacy
[86]. Vogel et al. first compared the saRNA vaccine with an
nr-mRNA vaccine head to head and demonstrated that the
former achieved comparable efficacy at lower doses with
extended expression period [87]. Several influenza viruses,
including HIN1 and H3N2, were tested for the effectiveness
of the saRNA vaccine with satisfactory results. The authors
pioneered the development of a trivalent saRNA influ-
enza vaccine, establishing a robust foundation for saRNA
researches (Fig. 3f).

Lower dose and extended prevention period are prominent
advantages of saRNA, but the immune response triggered
by saRNA is a “double-edged sword” since the activation of
double-stranded RNA-dependent protein kinase lead to the
pause of cell translation, so precise modulation of saRNA
immunogenicity is essential to minimize side effects [88].
Viral non-structural proteins, namely RdRp, may unpredict-
ably affect cellular metabolism and disrupt normal signaling
pathways. Nucleoside modification has been established as
an effective strategy to attenuate saRNA immunogenicity.
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Compared to unmodified saRNA, 5-hydroxymethylcytosine
(hm>C)- or 5-methylcytosine (m°C)-modified saRNA exhib-
its enhanced cellular transfection efficiency by attenuating
IFN response-triggered innate immunity [89]. Moreover,
Remaut et al. identified co-delivery of immunosuppressive
agents and saRNA purification as two additional strate-
gies to reduce saRNA immunogenicity [90]. The authors
employed cellulose-based purification to remove dsRNA
byproducts, yielding high-purity saRNA preparations. The
innate immune suppressor B18R, a decoy receptor for type-I
IFNs, was co-delivered to inhibit interferon signaling path-
ways. Meanwhile, additional RdRp sequences (approxi-
mately 7000nt) increase the molecular weight of saRNA and
reduce delivery efficiency, which is related to the optimiza-
tion of the delivery method and carriers [91]. An alternative
strategy for saRNA preparation, trans-amplification, offers
a viable approach, which divides the sequence encoding the
RNA polymerase and the mRNA sequence encoding the
target protein into two parts and introduces them into the
same cell [92].

2.6 Circular RNA

Given the inherent instability of single-stranded mRNA,
circular RNA (circRNA) emerges as a promising alterna-
tive. Generated by a non-canonical splicing event called
backsplicing [93, 94], circRNA is endowed with remark-
able stability due to its ring-like conformation preventing
from degradation of exonuclease [95, 96]. Although natural
circRNA lacks cap-dependent translation initiation struc-
tures (e.g., 5’ cap and poly(A) tail), artificial addition of
a cap-independent translation initiation structure is a solu-
tion, such as internal ribosome entry sites (IRES) [97, 98].
Incorporation of a 5° cap structure enables cap-dependent
translation initiation in circRNA. Abe et al. engineered a
covalently linked N7-methylguanosine cap into circRNA via
a branching architecture, achieving a 2—3 orders of magni-
tude enhancement in protein expression compared to non-
capped counterparts [99]. The authors additionally achieved
a 50-fold enhancement in translation efficiency through non-
covalent incorporation of a cap-containing complementary
short oligoribonucleotide.

Current methods for circRNA synthesis primarily include
chemical ligation, enzymatic ligation or the group I intron-
based permuted intron—exon method [100, 101]. In circRNA
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preparation, incomplete RNA cyclization may occur. Opti-
mizing cyclization conditions can address low recovery
efficiency cyclization, including linear RNA precursor con-
centration and ligase reaction system design. Secondary
cyclization of primary ligation products enhances circulari-
zation efficiency [102]. Adding splint RNA assists cycliza-
tion by preventing intermolecular ligation and improving
accuracy [103]. Du et al. developed a trans-splicing-based
circRNA synthesis method [104]. The authors optimized
the Mg?* concentration and introduced an extended guide
sequence and internal loops, significantly improving the cir-
cularization efficiency. Post-cyclization byproduct removal is
critical for circRNA purification and recovery. The presence
of substantial byproducts including linear RNA, triphospho-
rylated RNA and dsRNA triggers innate immune responses,
making circRNA purification an enduring challenge. While
electrophoretic separation effectively purifies research-scale
products, it remains impractical for industrial manufactur-
ing. Xiao et al. developed a scalable solution through exo-
nuclease RNase R to selectively degrade linear RNA while
preserving structurally stable circRNA [105]. Phosphatases
eliminate triphosphorylated RNA residues from byproducts
[104]. Additionally, Cao et al. employed microcrystalline
cellulose chromatography to remove dsRNA contaminants
[106]. Synergistic purification strategies enable more com-
plete clearance of immunogenic byproducts. The combina-
tion of RNase R with high-performance liquid chromatog-
raphy has been demonstrated to yield circRNA with purity
exceeding 90% [97]. To improve the protein production of
cirRNA, Chen et al. created a circRNA modular cloning
platform to clarify the effect of each component on circRNA
translation efficiency [107]. The authors applied the m6A
modification in circRNA to lower the immunogenicity with-
out the decrease of translation rate. The optimization of vec-
tor topology, 5” and 3’UTRs, IRES and synthetic aptamers
recruiting translation initiation machinery contributed to the
prolonging translation period, durable function activity and
exponential-increasing protein expression. Compared with
linear mRNA, the integrity of IRES secondary structure is
critical for circRNA functionality, while the enhancement
of circRNA secondary structure can increase the stability.
Al technology also takes part in the design of circRNA.
Huang et al. further introduced circDesign, an algorithm
platform for circRNA structure prediction and sequence
design [108]. The ViennaRNA software predicted the IRES
folding structure to ensure its functionality and stability.
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Leveraging the screened IRES sequences and LinearDe-
sign-optimized ORFs, circRNA-designed rabies virus and
varicella-zoster virus vaccines exhibited enhanced sequence
stability and translational efficiency, validating the effective-
ness of circDesign platform in the optimization of circRNA
sequence design.

To provide protection against COVID-19 variants, Wei
et al. reported a circRNA vaccine delivered by LNP [109].
Selecting the spiking protein receptor binding domain
(RBD) trimers as the immunogen, the circRNA vaccine
not only provided more robust and broad-spectrum protec-
tion compared to the Im¥-modified mRNA vaccine, but
also showed better stability in mouse and rhesus monkey
models, which is a valuable complement to mRNA vaccines
(Fig. 3g). Beyond epidemic vaccine, circRNA has also been
designed for cancer vaccines to drive immune responses in
hard-to-treat malignancies such as immune exclusive tumors
and immune desert tumors [110].

3 Carriers for Efficient mRNA Delivery
in Vivo

Owing to its high molecular weight, negative charge, and
susceptibility to degradation, mRNA faces significant chal-
lenges in effectively entering target cells. As a result, naked
mRNA is no longer a suitable choice, which indicates the
importance of delivery vectors in mRNA transfection and
subsequent protein translation [111]. To protect mRNA from
degradation, delivery platforms focus on endosomal escape
and targeted delivery. The scientific community has devel-
oped diverse mRNA delivery systems including platforms
based on lipids, proteins/peptides, polymers and viruses,
accompanied with novel delivery strategies (Table 2).

3.1 Lipid-Based Carriers

As a derivative of lipids, liposomes were first synthesized
in 1965, which is a closed bilayer vesicle with a typical
spherical structure [3]. When amphiphilic phospholipids
are dispersed in the aqueous phase, the hydrophobic tail of
the molecule tends to cluster together, avoiding the aqueous
phase, while the hydrophilic head is exposed to the aqueous
phase. Hydrophobic drugs are encased in a lipophilic double
layer shell, while hydrophilic drugs are encapsulated in the
core (water phase). Liposomes have nanoscale particle size,
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which are considered to be the early version of LNPs. After
decades of development and the rigorous testing during the
COVID-19 pandemic, LNP has emerged as the most mature
and advanced carrier for mRNA delivery. The classical LNP
consists of four components, including ionizable cationic
lipid, cholesterol, PEGylated lipid and phospholipid, which
play crucial roles in safety, mRNA stability and transfection
efficiency [112].

Ionizable cationic lipids contain tertiary amine groups
that become positively charged at pH values below their acid
dissociation constant (pKa) [113]. The acidic environment
in LNP formulation ensures complete protonation of ioniz-
able lipids, facilitating the encapsulation of anionic mRNA
through charge-charge interactions. Following desorption of
PEGylated lipids from the LNP surface, apolipoprotein E
recognizes the exposed ionizable lipids and adsorbs onto the
LNP, ultimately enabling uptake by hepatocytes with high
expression of low-density lipoprotein (LDL) receptors [114].
Therefore, supplementing selective organ targeting nanopar-
ticles with distinct surface charges can alter the adsorbed
proteins, enabling tissue-specific mRNA delivery [115].
Subsequently, LNPs are encapsulated within endosomes.
During endosomal maturation, the progressively acidified
environment triggers extensive lipid protonation. A pro-
posed mechanism suggests that highly cationic LNPs bind
to anionic endosomal membranes, resulting in membrane
destabilization and mRNA cytoplasmic release for effective
transfection [116]. An alternative mechanism is the “Proton
Sponge Effect” [117]. Ionizable lipids become protonated in
endosomes, triggering proton pump activation. This drives
massive proton influx into the endosomal compartment. To
maintain charge balance, chloride ions concomitantly enter,
markedly increasing osmotic pressure. The resultant water
influx induces endosomal swelling and rupture, enabling
mRNA cytoplasmic release. Additionally, ionizable lipids
may serve as adjuvants to modulate the immunogenicity of
LNPs [118]. Therefore, the screening and design of ioniza-
ble cationic lipids is crucial to LNP optimization. Currently,
the primary method to select top-performed LNP is in vivo
and in vitro high-throughput screening. FDA-approved
ionizable cationic lipids, such as MC-3, SM-102 and ALC-
0315, are all obtained through this method [119]. A high-
throughput LNP screening system based on barcoded DNA
has been reported, which explored combinational cation-
degradable (CAD) lipid libraries and identified an optimal
LNP, LNP-CAD®, for lung-targeted mRNA delivery [120].
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Table 2 Comparative analysis of mRNA delivery systems

Carrier for mRNA  Advantages Limitations Clinical translation status
delivery
Lipid High safety profile Immunogenicity risk Marketed
High transfection efficiency
Composition Tunability
Peptide Favorable biocompatibility Poor stability Early clinical trial stage
Enhanced designability Limited loading capacity
Low immunogenicity of endogenous proteins
Polymer High structural designability and controllability Elevated toxicity Preclinical trial stage

Viral vector Superior transfection efficiency

Elevated toxicity Early clinical trial stage
Limited packaging capacity
Strong immunogenicity

Inherent high adjuvant property

Unsaturation, mantissa, biodegradation bond and branch
chain structure are worthy of consideration in ionizable cati-
onic lipid design [121]. A degradable skeleton represents a
highly advantageous structural features in ionizable lipids,
and degradable branched lipids containing long chain alkyl
branches have been shown to increase mRNA delivery effi-
ciency by three orders of magnitude [122]. To confer addi-
tional physiological functions, Han et al. partially substituted
ionizable lipid with adjuvant lipidoid and endowed LNPs
with TLR 7/8 activity [123]. Through a ring-opening reac-
tion, the TLR7/8 agonist 1 was converted into C12-TLRa,
preserving the TLR-stimulating capacity and introducing
an ionizable amine for mRNA combination. The ionizable
lipidoid in the top-performed LNP C12-113 was substituted
with an increased content of C12-TLRa, while substitution
with 5 mol% of C12-TLRa was identified as the optimal for-
mulation without the change of physicochemical properties.
The synthesis of C12-113/TLRa LNP exemplifies a strategy
to enhance the innate immunity activation of vaccines. Com-
pared to C12-113 LNPs, C12-113/TLRa LNPs significantly
enhanced the proportion of mature DCs and elicited a more
robust cytokine response (including TNF-a and IL-12p70),
which consequently induced a stronger Thl-biased T cell
response, neutralizing antibody production, and long-lived
plasma cell responses (Fig. 4a). Rational ionizable lipid
engineering has achieved targeted mRNA delivery. Xue et al.
designed the siloxane-based ionizable lipid and developed
the siloxane-incorporated LNP, achieving organ-selective
mRNA delivery [124]. The adjustment of siloxane-based
amine head and alkyl chain structures induces fine-tuning of
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LNP structure, enabling mRNA selective mRNA delivery to
the liver, lungs, or spleen.

Cholesterol and phospholipids are two auxiliary lipids
in LNP. Intercalated within the lipid bilayer, cholesterol
modulates membrane fluidity and permeability, preventing
mRNA leakage from the LNP core. Patel et al. developed a
polymorphic eLNP with the introduction of polyhedral C-24
alkyl phytosterols through screening of natural cholesterol
analogues, demonstrating that the optimization of choles-
terol improved cellular uptake and endosomal escape ability
of LNP [125]. Meanwhile, phospholipids play a crucial role
in stabilizing LNP structure and facilitating mRNA encap-
sulation [126]. Modulation of phospholipid headgroups
enhances interactions between LNPs and cells, promoting
cellular uptake [127]. Furthermore, phospholipid design
can dictate LNP organ targeting ability. Liu et al. devel-
oped ionizable phospholipids (iPhos) consisting of one ter-
tiary amine, one phosphate group and three hydrophobic
tails through the combinatorial reaction between alkylated
dioxaphospholane oxide molecules and amines [128]. The
hydrocarbon tail length of iPhos governed delivery tropism.
Extending the carbon chain length from 9-12 to 13-16
shifted mRNA delivery from liver to spleen targeting. iPhos
maintained a negative charge at physiological pH, prevent-
ing membrane fusion. After entering acidic endosomes, the
tertiary amine group of iPhos undergoes protonation to form
a zwitterion, which combines with three hydrophobic tails to
create a conical structure. This structure induced the transi-
tion of endosomal membranes from a lamellar to a hexago-
nal phase preferentially, potentiating endosomal escape effi-
ciency (Fig. 4b). This demonstrates that tunability of LNP
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duced with permission [136]. Copyright 2025, Springer Nature. d Difference in delivery efficiency among 20-hydroxycholesterol conformers
demonstrated that the spatial configuration of LNP components influences mRNA delivery efficacy. Reproduced with permission [137]. Copy-

right 2023, Springer Nature.

components currently represents a pivotal enabling strategy
for organ-selective mRNA delivery.

Although PEGylated lipids constitute the smallest propor-
tion of lipid components in LNP, they significantly influence
key properties of LNP such as size, dispersity and stability.
During LNP formation, the PEG chains form a hydrophilic
steric barrier on the particle surface that prevents aggrega-
tion, promotes uniform self-assembly, and enables precise
control over LNP size and stability [129]. PEGylation con-
fers stealth properties to LNPs, which is a well-established

o)
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strategy to minimize opsonization and prolong systemic
circulation [130]. Both fluorinated PEG modification and
replacement of cleavable PEGylated lipids promoted cel-
lular internalization and endosomal escape of LNP [131,
132]. However, PEGylated lipids can trigger several adverse
reactions, including the induction of PEG antibodies and
complement activation-related pseudoallergy [133, 134].
The presence of PEG antibodies leads to rapid clearance
of the PEGylated-lipid-containing drugs upon repeated
administration, namely accelerated blood clearance, which
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compromises therapeutic effectiveness. PEGylated lipids
featuring short acyl chains exhibit accelerated dissociation
from LNPs, thereby mitigating anti-PEG immune responses
[135]. Additionally, identifying PEGylated lipid substitu-
tions, such as poly(glycerol), poly(oxazolines) and polysar-
cosine—lipids, is a feasible way to improve the effectiveness
and safety of LNP delivery. Poly(carboxybetaine)-conju-
gated lipid (PCB-lipid) has been validated as a function-
ally superior alternative to PEGylated lipid [136]. PCB, a
zwitterionic polymer derived from natural glycine betaine,
exhibits superhydrophilicity, minimal immunogenicity and
exceptional biocompatibility, which effectively addresses
the accelerated blood clearance associated with conven-
tional PEGylated systems. Following 24h co-incubation
with human PBMCs, PCB-LNPs demonstrated significantly
reduced secretion of proinflammatory cytokines (IL-6, TNF-
o) compared to PEG-modified counterparts. PCB-LNPs
maintained consistent luciferase expression profiles across
four intravenous administrations. Besides, PCB-LNPs dem-
onstrated superior endosomal escape efficiency compared to
PEG-LNPs, which may be attributed to their hydrophilicity
and structural characteristics (Fig. 4c).

The optimization of components is a considerable per-
spective while chemical conformation has emerged as
another significant factor. Hatit et al. reported that the effi-
cacy of LNP was closely associated with stereochemistry
[137]. cKK-E12 was selected for hypothesis validation,
which is a lipopeptide with six stereocentres in LNP. Dif-
ferent batches of cKK-E12, synthesized and purified by the
same method, showed varying efficiencies in mRNA deliv-
ery. Since the complicated spatial conformation of cKK-E12
hindered further exploration, 20-hydroxycholesterol, with
only two conformations (20a and 20p), was selected as an
alternative. The group 20mix, was prepared by combining
200 and 20p at the 2:1 molar ratio. When interference of
factors including polydispersity, pKa and morphology were
excluded, LNP containing 20a displayed a higher delivery
efficiency. The 20mix LNPs might be more entrapped in late
endosomes compared to the 20oc LNPs (Fig. 4d). Although
the applicability of this stereopure design to other carrier
types requires further validation, this work offers a novel
perspective for optimizing mRNA delivery vectors.

Surface modifications of LNPs can significantly enhance
their active targeting efficiency. Antibodies, with their high
specificity, are particularly well-suited for targeting strate-
gies. Drew Weissman et al. conjugated LNPs with antibodies
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targeting to PECAM-1, a vascular cell adhesion molecule,
achieving selective mRNA delivery to the lungs [138].
LNPs modified with CD3, CD4 and CD5 antibodies have
been developed for targeted delivery to T cells [139-141].
Additionally, short peptides [142], hyaluronic acid [143] and
mannose [144] are also considerable targeting alternatives.
Lei et al. incorporating a mannosylated ionizable lipid in
LNP for DC-targeted delivery [145]. DNA modification can
also augment the targeting capabilities of LNPs. Andrew
et al. demonstrated that LNPs modified with guanine-rich
sequences selectively delivered mRNA to the spleen, which
enhanced the uptake by class A scavenger receptors through
the formation of a G-quadruplex secondary structure [146].
Aptamers, often referred to as chemical antibodies, are
selected through Systematic Evolution of Ligands by Expo-
nential Enrichment and exhibit high specificity for target
ligands [147]. Lee et al. specifically deliver mRNA to tumor
cells by conjugating PDL1-targeting aptamers with LNPs
[148].

3.2 Protein/Peptide-Based Carriers

Peptides are celebrated for their biocompatibility, design-
ability and safety [149]. In protein/peptide-based mRNA
delivery systems, self-assembly is driven by the electro-
static interaction between oppositely charged peptides and
mRNA. Cell-penetrating peptides are a typical class of pro-
tein carriers for mRNA delivery. Protamine, a mixture of
natural cationic cell-penetrating peptides, is an early mate-
rial for mRNA delivery [15, 150]. The non-invasive cell
entry mechanism of protamine is a key advantage, which
avoids damage to the cell membrane [151]. Researches have
produced protamine nanoparticles with different sizes by
adjusting the quantity ratio of RNA and protamine [152].
Additionally, arginine-rich cell-penetrating peptides with
strong positive charge also enables the delivery of mRNA
[153]. Proteoid biodynamers, featuring smart strategies
based on amino acid derivatives, have been developed to
improve safety and transfection rate through pH-responsive
nanorods [154]. Biodynamers were composed of amino acid
derivatives and hexaethylene glycol-conjugated carbazole
dialdehydes, polymerized in aqueous solution via dynamic
covalent bonds, imines, and acylhydrazones. Positively-
charged amino acid derivatives combined with mRNA via
electrostatic interaction. Hexaethylene glycol-conjugated
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carbazole dialdehydes served as pH-responsive linkers.
Under endosomal acidic conditions, protonation of the nitro-
gen atom on the carbazole ring promoted endosomal escape
and dissociation of biodynamers, releasing mRNA into the
cytoplasm. Meanwhile, degradation of biodynamers reduced
the cellular accumulation, thereby mitigating potential bio-
toxicity. Dynaplexes were endowed with a 3-time transfec-
tion rate than conventional transfection agents, alongside
exceptional biocompatibility as a non-viral mRNA delivery
platform (Fig. 5a). However, the efficacy of Dynaplexes has
only been validated in cellular and zebrafish models, war-
ranting further investigation further evaluation of their effi-
ciency and safety in murine or large animal models.

The intrinsic adjuvant property of protamine, along with
the excessive binding to mRNA, has a detrimental effect
on mRNA expression [155], while endogenous proteins can
reduce the occurrence of heterogeneous cross-reactions.
Zhang et al. utilized ribosomal protein (RP) to design an
inhalation nanoparticle that co-delivered the mRNA of
matrix metalloproteinase 13 (mMMP13) and keratinocyte
growth factor (KGF) into fibrotic lung tissue to reverse pul-
monary fibrosis [156]. The delivery vector was composed of
RP-condensed mMMP13 cores, a bifunctional peptide-mod-
ified corona (AA-PLL-PEG-c (RGDfK)), and KGF with a
PEGylated shielding shell, assembled via electrostatic inter-
action and click reaction. The bifunctional peptide-modified
corona targeted myofibroblasts and injured alveolar epithe-
lial cells with high integrin expression via the RGD motif,
while also possessing pH-triggered charge reversal capabil-
ity to facilitate endosomal escape. KGF was responsively
released in fibrotic lesions with high MMP2 concentrations,
avoiding nonspecific effects on normal tissues. The com-
bined delivery of mMMP13 and KGF achieved fibrotic alve-
olar reconstruction, reversing pulmonary fibrosis (Fig. 5b).
While RP is an intracellular protein, its extracellular delivery
may trigger innate immune responses. Additionally, the mul-
tiple protective layers may hinder efficient mRNA release.

In addition to ribosomal proteins, numerous endogenous
proteins encoded in the human genome are viable candidates
for mRNA delivery. The Selective Endogenous eNcapsida-
tion for cellular Delivery (SEND) system is a successful
peptide-based modular platform to deliver specific mRNA,
comprising Pegl0, cargo RNA and a fusogen (virus enve-
lope protein) [157]. Pegl0, a long terminal repeat retro-
transposon homolog protein, binds UTR sequences of its
own mRNA to form virus-like particles (VLPs) and delivers
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them intercellularly via extracellular vesicles. Therefore, the
authors inserted the UTR sequence of Pegl0 mRNA into
the cargo mRNA, enabling the plasmid-translated Peg10 to
bind the cargo RNA and assemble into VLPs. The fuso-
genic protein facilitated VLPs to realize cell entry. As Peg10
is an endogenous protein in mammals, the SEND system
exhibits low immunogenicity, which is a potential tool for
gene treatment (Fig. 5¢). The low endogenous expression of
Peg10 necessitates exogenous overexpression via plasmids
for efficient mRNA delivery, which may lead to difficulties
in clinical translation. Human paraneoplastic antigen Ma2,
another endogenous protein, was also been identified as a
feasible vector for mRNA delivery with the formation of
icosahedral capsids [158].

3.3 Polymer-Based Carriers

Due to structural designability and controllability, plenti-
ful of polymer-based nanoparticles have been developed
for disease intervention in recent years, driving significant
advancements in polymer-based mRNA delivery platforms.
Although less safe and efficient than LNP, polymers offer
unique advantages in carrier design for special functions.
PEI, an organic branched or linear polyamine polymer
[159], is one of the common polymer carriers in mRNA
delivery. The large amount of positive charge endows PEI
with a strong endosomal escape ability, but leads to poor
biocompatibility inevitably. Many PEI-related optimization
focus on molecular weight, branching, buffer, oligonucleo-
tide structure and method of preparation [160]. Other effec-
tive modifications including deoxycholic acid-conjugated
PEI for enhanced hydrophilia [161], hydrogel consisting
of graphene oxide and PEI for increased drug-loading effi-
ciency [162], and cyclodextrin-PEI conjugate for more drug
permeation [163]. Additionally, Li et al. developed a novel
polymer called F-PEI for personalized mRNA cancer vac-
cines, which was synthesized by grafting fluoroalkanes to
PEI with low molecular weight and low cytotoxicity [164].
The fluorinated modification rendered F-PEI amphiphilic,
endowing F-PEI with a strong ability to penetrate the lipid
bilayer of cell membranes and endosomal membranes. The
authors utilized F-PEI to deliver mRNA encoding fluores-
cent proteins, demonstrating high delivery efficiency both
in vitro and in vivo. Simple mixing of F-PEI and mRNA
encoding neoantigens yielded F-PEI/mRNA”¢ which
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activated TLR4 and promoted the activation of antigen pre-
senting cells (APCs) without additional adjuvants, effec-
tively suppressing B16-OVA melanoma growth (Fig. 6a).
However, F-PEI/mRNA”¢ delivery lacks tumor-targeting
specificity, leading to off-target mRNA expression in non-
cancerous cells, which compromises therapeutic efficacy and
increases potential side effects.

Polyesters represent another class of mRNA polymeric
carriers. Incorporating labile chemical bonds, including
carbonate, ester, amide, and phosphate linkages signifi-
cantly enhances the biodegradability and biocompatibility
of polyesters. Among these, poly (lactic-co-glycolic acid)
(PLGA) is a FDA-approved polyester with excellent safety,
stability and delivery efficiency [165]. The electrically neu-
tral nature of PLGA necessitates cationic modifications for
effective mRNA delivery. Zhang et al. developed a virus-
mimicking cell membrane-coated nanoparticle to deliver
mRNA to the cytoplasm [166]. The hemagglutinin (HA)
protein on the surface of influenza A virus mediates viral
envelope fusion with surrounding membranes at endosomal
pH. Therefore, the authors induced high expression of HA
on the membrane of B16F10 cells through plasmid transfec-
tion. These cell membranes were then stripped and coated
onto PLGA nanoparticle cores, which loaded with mRNA
with the help of the cationic lipid-like molecule GO-C14.
This carrier utilized cell membrane coating technology and
genetic engineering to achieve efficient virus-mimicking
endosomal escape, yet its complex fabrication process poses
challenges for industrial-scale production (Fig. 6b). Poly(p-
amino ester) (PBAE) is another biodegradable mainstream
polyester for mRNA delivery [167, 168]. Li et al. devel-
oped a “Particle-in-Particle” carrier for mRNA COVID-19
vaccines [169]. mRNA was encapsulated in lipid-modified
PBAESs (L-PBAEs) through electrostatic interactions. The
lipid modification enhanced mRNA delivery efficiency by
facilitating nanoparticle-cell membrane fusion, while the
increased hydrophobicity of PBAE improved carrier stabil-
ity at the cost of elevated cytotoxicity. The self-assembly
between L-PBAEs and PLGA-PEGs generated a “Particle-
in-Particle” nanostructure that protected mRNA from deg-
radation and enabled sustained release. The vaccine could
maintain its remarkable property and function for at least
12 months of storage at —20 °C (Fig. 6¢). Robert Langer
et al. demonstrated that hyperbranched PBAE (hPBAE) was
particularly suitable for the nebulized pulmonary delivery of
mRNA [170]. The hyperbranched structure exhibited greater
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stability and lower dispersion compared to the linear struc-
ture. Repeat dosing of hPBAE-mRNA realized consistent
protein production without local or systemic toxicity.

In addition to PEI and polyesters for mRNA delivery, the
synthesis of PHTA addresses the inflammatory side effects
of mRNA vaccines [171]. PHTA was synthesized via one-
pot amino-epoxy ring-opening polymerization method,
forming a class of alternating copolymers containing ortho-
hydroxy tertiary amine (HTA) repeating units. The PEG
backbone and alkyl side chain in PHTA polymers could
condense mRNA, stabilize polymeric nanoparticles (PNPs)
and prolong circulation period. Neither intradermal, intra-
nasal nor intravenous delivery of PNP elicited significant
leukocyte infiltration, inducing only moderate upregulation
of serum cytokines sufficient for T-cell activation while
circumventing LNP-associated cardiomyocyte apoptosis.
The authors attributed this immunomodulation to hydroxyl
groups in PHTA repeating units chelating redox-active metal
ions (such as Fe?*), suppressing ROS generation. PNP suc-
cessfully confined inflammatory responses within the narrow
therapeutic window that balanced optimal T-cell activation
with minimal systemic inflammation, providing a safer alter-
native platform for mRNA vaccination (Fig. 6d).

In the pursuit of targeted mRNA delivery, Anderson et al.
co-formulated PBAE with PEG lipids to enhance its stabil-
ity in serum, developing the first biodegradable polymeric
nanoparticles for systemic mRNA delivery selectively to
the lung [172]. Leveraging the lung-targeting property of
PBAE, Kim et al. delivered mRNA encoding anti-VEGF
antibodies for the treatment of lung cancer [173]. Addition-
ally, Anderson et al. demonstrated that the modification
of PBAE side chains with caprolactone enabled mRNA
delivery to the spleen through intravenous administration
[174]. The incorporation of ligands enhances the targeting
capabilities of polymeric carriers, enabling active targeting.
Dong et al. modified the carriers with cyclic Arg-Gly-Asp
peptides, achieving targeted delivery to tumor cells with
high integrin receptor expression and enhancing tumor site
accumulation [175]. The modification of mannose and CD8
antibodies were also designed for DC and T cell targeting,
respectively [176, 177]. Moreover, pH-responsive polymeric
carriers have emerged as a promising strategy for tumor tar-
geting due to the unique acidic pH of tumors. Zhang et al.
developed a pH-responsive vector through the combination
of acetalated cyclic oligosaccharide (ACD) and PEI [178].
ACD hydrolyzed into water-soluble molecules under acidic
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conditions, enabling responsive mRNA release and tissue-
specific gene editing at the tumor sites.

In addition to pH-responsive delivery for targeting pur-
poses, glutathione (GSH)-responsive systems represent
another important class of stimuli-responsive mechanisms,
enabling mRNA release in the cytoplasm where GSH con-
centrations are elevated. The disulfide bonds incorporated
into the polymer undergo cleavage upon reaction with GSH,
thereby triggering the release of mRNA from the carrier into
the cytoplasm [179]. Furthermore, adenosine triphosphate
(ATP), as an energy carrier, exhibits higher intracellular
concentrations compared to the extracellular environment.
Kazunori et al. developed ATP-responsive polyplex micelles
by complexing mRNA with poly(ethylene glycol)-polycation
block copolymers derivatized with phenylboronic acid and
polyol groups [180]. The phenylboronate ester linkages
spontaneously formed within micelles underwent cleav-
age in high-ATP environments, enabling controlled mRNA
release.

3.4 Viral Vectors

As the core tool for gene editing, viral vectors can overcome
in vivo delivery barriers after natural evolution, exhibiting
remarkable nucleic acid delivery capabilities. Adenovirus,
a double-stranded DNA virus, is a commonly utilized viral
vector for SARS-CoV-2 vaccine development [181, 182], but
limited research utilized adenoviruses for mRNA delivery. In
contrast, lentiviruses have been engineered for mRNA deliv-
ery. Cai et al. co-delivered Cas9 mRNA and sgRNA (single
guide RNA) targeting vascular endothelial growth factor A
(VEGF-A) through lentiviral vectors, achieving the preven-
tion of wet age-related macular degeneration in mice (mLP-
CRISPR system) [183]. The MS2 coat (MS2C) protein
incorporated into lentivirus encapsulated mRNA specifically
by binding to the MS2 stem loop inserted into the mRNA
sequence. Since anti-VEGF agents, the first-line treatment
for age-related macular degeneration, required repeated inva-
sive injections, mLP-CRISPR system achieved a 44% knock-
out of the VEGF-A gene with one single subretinal injection.
Similarly, based on the MS2C-mediated mRNA encapsula-
tion strategy, Cai et al. also employed a lentivirus carry-
ing Cas9 mRNA and viral-gene-targeting sgRNA to cure
herpetic stromal keratitis in murine models (HELP system)
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[184]. The VSV-G envelope protein coating HELP enabled
infection of neurons with broad cellular tropism and facili-
tated retrograde axonal transport mediated by cytoplasmic
dynein. Consequently, herpes simplex virus type 1 (HSV-1)
infection in the cornea and neurons was blocked effectively
due to the inhibition of HSV-1 replication.

Since lentiviral vectors are ranked as biosafety level
(BSL) 2 or 2+ classification, the adeno-associated virus
(AAV) is regarded as a safer vector with its BSL-1 classifi-
cation. Given that AAV requires inverted terminal repeats
(ITRs) as the signal for DNA packaging, Yang et al. also
introduced the MS2C protein, which binds to the MS2
stem loop inserted into the mRNA sequence, serving as the
RNA-packaging signal [185]. This approach aligns with
the aforementioned mRNA assembly in lentiviral. AAV
was thus transformed into an RNA-packaging viral vector,
which successfully crossed the blood—brain barrier (BBB)
and achieved whole-brain mRNA delivery.

However, the strong immunogenicity and inherent high
adjuvant property of viral vectors lead to clearance by the
immune system and reduced delivery efficiency [186]. Addi-
tionally, the improvement in delivery efficiency results in
dose-limiting toxicity issues, so researches on viral vectors
is relatively limited in competition with mainstream delivery
systems.

3.5 Innovative Platforms for mRNA Delivery
3.5.1 Extracellular Vesicle

While traditional mRNA delivery carriers are flourishing,
novel delivery methods are springing up simultaneously.
For example, extracellular vesicle (EV) has been studied
as a promising mRNA delivery platform in recent years.
EVs are nanoscale vesicles secreted by cells, mediating
intercellular communication and facilitate the exchange
of proteins, lipids and genetic material [187-189]. Cell-
derived EVs exhibit remarkable biocompatibility and low
immunogenicity, while functional and activity variations of
EVs between different batches may influence the delivery
efficacy. EVs from different cells varies in properties and
functions. For instance, EVs from human embryonic kidney
(HEK293) cells are characterized by low immunogenicity
and high transfection efficiency [190]. Due to the small size
of EVs, loading siRNA and microRNA through EVs is a
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more common approach, while loading long mRNA into
EVs remains challenging. Cheng et al. developed an inhal-
able dry powder mRNA vaccine based on lung-derived EVs
[191]. Red fluorescent protein (RFP) mRNA was transferred
into EVs and liposomes through electroporation, generat-
ing RFP-Exos and RFP-Lipos, respectively. Compared to
RFP-Lipos, RFP-Exos exhibited superior cellular uptake and
parenchymal distribution in bronchioles and parenchyma,
which penetrated lung mucus efficiently. The authors uti-
lized EVs to deliver mRNA encoding SARS-CoV-2 spike
protein, which induced significantly stronger IgG and secre-
tory IgA antibody responses. Furthermore, lyophilized EV's
remained stable at room temperature and elicited effective
antibody protection for 28 days. Two years later, Cheng et al.
extended the EV-based mRNA delivery system to the treat-
ment of lung cancer [192]. Interleukin-12 (IL-12) mRNA
was loaded into human embryonic kidney cell-derived EVs
by electroporation and delivered through inhalation. Com-
pared with IL-12-Lipos, IL-12-Exos exhibited superior
lung accumulation and reduced off-target side effects. IL-
12-Exos delivered IL-12 mRNA to the lung tumor micro-
environment, inducing localized IFNy production while
avoiding systemic inflammation associated with elevated
serum IFNy levels. IL-12-Exos enhanced infiltration of
CD8+T cells, NK cells, and CD4 +T cells in the pulmonary
tumor microenvironment, potentially converting immuno-
logically cold tumors into hot tumors. However, the high
production cost of IL-12-Exos limits their scalability for
mass manufacturing, while their excellent biocompatibility
and non-invasive administration route demonstrate notable
translational potential (Fig. 7a). Additionally, EVs possess
unique capabilities to penetrate biological barriers, such as
crossing the blood-brain barrier (BBB), offering new ave-
nues for the treatment of central nervous system diseases.
Jiang et al. developed engineered leukocyte-derived EVs to
deliver mRNA into neurons [193]. During neuroinflamma-
tion, upregulated leukocyte adhesion molecules on brain
microvascular endothelial cells enhance BBB permeability,
facilitating the entry of circulating leukocyte-derived EVs
into the brain. Consistent with Peg10, the activity-regulated
cytoskeleton-associated protein (Arc) exhibits evolutionary
homology to retroviral capsid proteins. The addition of Arc
protein capsids to EVs and the insertion of Arc 5’UTR to the
cargo mRNA improved the stability of EVs and increased
mRNA loading capacity.
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3.5.2 Polyphenol

In addition to EVs, natural compounds such as polyphenols
have also been explored as mRNA carriers [194]. Polyphe-
nols, abundant in plants, not only show remarkable effects
in the treatment of bacteria [195], tumor [196, 197], virus
[198] and inflammatory [199-201], but also demonstrating
potential for mRNA delivery due to their excellent biocom-
patibility. Chen et al. reported an IL-10 mRNA delivery
system based on polyphenol for the treatment of ulcerative
colitis [202]. Polyphenol ellagic acid combined with mRNA
through supramolecular binding, providing nuclease protec-
tion. The addition of PEI conferred a positive charge to the
system, enabling subsequent modification with hyaluronic
acid and bilirubin. Hyaluronic acid selectively targeted
CD44-overexpressing colon epithelial cells and colonic
macrophages, while bilirubin protected hyaluronic acid from
enzymatic degradation. Although multiple modification pro-
tected mRNA effectively, challenges in mRNA release led to
lower protein expression efficiency than mainstream carriers.

3.5.3 Virus-like Particle

Virus-like particles (VLPs) are intermediates between viral
and non-viral vectors that contain viral vector components,
including the envelope and capsid, but lack the viral genome,
which eliminates the risk of infection and genome integra-
tion [186]. Under specific conditions, viral structural pro-
teins can self-assemble into VLPs. While VLPs lack tar-
geting capabilities inherently, they can be engineered for
targeted delivery through modifications of surface proteins,
namely “pseudotyping” [203]. The VLP with DC targeting
capability have been developed [204]. The MS2 stem-ring
structure inserted between the stop codon and the poly(A)
tail in mRNA could interact with the MS2C protein fused to
the lentivirus GagPol polyproteins, which enabled mRNA to
be internalized during the self-assembly of lentivirus GagPol
polyproteins into virus-like vectors. The authors engineered
Sindbis virus glycoprotein (SV-G) to replace vesicular sto-
matitis virus G protein with broad-spectrum affinity, which
endowed VLPs with DC targeting capability by recognizing
DC-specific intercellular adhesion molecule 3-grabbing non-
integrin. Preparatory work for antitumor clinical trials based
on this vaccine technology has commenced, positioning it
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as a promising next-generation platform for viral infection  cells, so the variability between batches poses a challenge
and tumor treatment (Fig. 7b). However, VLP production  for standardized manufacturing [205]. Additionally, VLPs
platforms primarily base on bacteria, yeast and mammalian  retain the three-dimensional structures and surface antigen

epitopes similar with those of natural viruses, enabling
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immune recognition as pathogens and triggering robust
immune responses, which compromises mRNA delivery
[206].

3.5.4 Inorganic Nanoparticle

Despite the lower maturity and narrower application breadth
compared with LNP and polymers, inorganic nanoparti-
cles are also promising for mRNA delivery since carbon
quantum dots (CQD) [207], gold nanoparticles [208] and
mesoporous silica nanoparticles [209] are all typical suc-
cessful examples. CQDs possess small sizes but large spe-
cific surface areas, which realizes rapid cellular uptake.
However, CQDs with large diameters cannot be cleared
by the kidneys [210]. The unique photoluminescent prop-
erty of CQDs enables in vivo observation and the tracking
of mRNA delivery [211]. Besides, gold nanoparticles can
realize the regulation of biosafety and targeting properties
through adjustments in size and surface modifications. The
unique optical characteristic allows them for photothermal
and photodynamic therapies simultaneously during mRNA
delivery [212]. Additionally, the classic spherical struc-
ture of mesoporous silica nanoparticles endows them with
exceptional loading capacity, while their stable mechani-
cal, thermal and chemical properties prevent the premature
release of mRNA during transport [213]. Moreover, Khalil
et al. developed mineral-coated microparticles (MCMs) to
deliver mRNA encoding basic fibroblast growth factor for
the improvement of wound healing in a murine diabetic
wound model [214]. Hydroxyapatite powder was incubated
in modified simulated body fluid for 5 days and MCMs were
formed with calcium phosphate coatings. The plate-like
coating nanostructure endowed MCMs with the ability of
sequestering and stabilizing large amounts of rapidly gener-
ated proteins, so the biological response was prolonged due
to the sustained protein release (Fig. 7c). MCMs were also
applied to promote hindlimb function in the treatment of
spinal cord injury [215]. The high expression of therapeutic
protein Chondroitinase ABC decreased the sedimentation
of chondroitin sulfate proteoglycan, which impeded spinal
cord injury recovery.

© The authors

3.5.5 RNA Origami

DNA origami is widely recognized for its ability to deliver
drugs and nucleic acids [216-218], while RNA can also be
engineered to deliver mRNA. Hu et al. utilized RNA origami
to fold RNA into a flexible lantern shape, so target mRNA
could be delivered to prohibit the deterioration of colorectal
cancer [219]. Circular staple RNAs (CS-RNAs) were syn-
thesized through the self-link of liner staple RNA via T4
RNA Ligase, modified with RGD (Arg-Gly-Asp) peptide to
target integrin aV3-overexpressing colorectal cancer cells.
Two CS-RNAs anchored the mRNA by complementary base
pairing at binding sites, extending its half-life by conferring
nuclease resistance. The rigid double-stranded architecture
of conventional RNA origami impedes mRNA dissociation
and translation, whereas the lantern-shaped flexible RNA
origami maintains predominantly single-stranded mRNA
regions, enabling direct ribosomal access and efficient
protein synthesis. While the RNA lantern design shows
conceptual promise, critical challenges remain in optimiz-
ing mRNA stability and relaxing the stringent binding site
requirements (Fig. 7d).

4 Applications of mRNA-Based Therapeutics

The core of mRNA therapeutics lies in the delivery of
mRNA encoding specific proteins via vectors, the translation
into proteins in ribosomes following endosomal escape, and
the subsequent functional execution. mRNA played a piv-
otal role in the global fight against COVID-19, highlighting
the remarkable advantages of mRINA-based therapeutics. In
terms of safety, mRNA vaccines eliminate the risk of exog-
enous gene insertion, as the translation process occurs in the
cytoplasm. In the development of vaccines, mRNA vaccines
only require delivery of the pathogen’s characteristic genetic
sequence, reducing infection-related side effects compared
with inactivated and live attenuated vaccines that deliver
inactivated or attenuated pathogens. Coupled with the flexi-
ble design and efficient production, mRNA therapeutics have
been widely applied in the fields of epidemic vaccine, cancer
vaccine, protein replacement therapy, cytokine therapy, cell
therapy and gene editing.

https://doi.org/10.1007/s40820-025-01906-x
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4.1 Epidemic Vaccine

The approval of mRNA vaccines against COVID-19 during
COVID-19 pandemic marked a quantum leap, which not
only alleviated the enormous pressure of virus transmission
but also accelerated the clinical application of mRNA epi-
demic vaccines. In 2020, BNT162b2 received emergency
authorization from the FDA, becoming the first mRNA-
based drug approved for human use [20]. In the phase III
clinical trial, BNT162b2 demonstrated an overall preventive
efficacy of 95%. Consistent with BNT162b2, mRNA-1273,
developed by Moderna to encode a SARS-CoV-2 spike pro-
tein that stabilizes in a prefusion conformation, was highly
successful in COVID-19, contributing to rapid advances in
mRNA technology [19]. Delivered by LNP, mRNA-1273
was injected intramuscularly. The serum of mice was col-
lected after 2 weeks and neutralizing antibodies induced by
SARS-CoV-2 pseudovirus were detected, showing a dose-
dependent response. Additionally, the immune reaction elic-
ited by mRNA-1273 was assessed to be a balanced Th1/Th2
response rather than the Th2-biased response, which avoided
the vaccine-enhanced respiratory disease caused by allergic
inflammation during the immune process (Fig. 8a). mRNA-
1273 demonstrated excellent preventive efficacy and safety,
with a 94.1% prevention rate after two 100 pg doses in the
phase III clinical trial [27]. However, CVnCoV, developed
by CureVac, one of the three leading mRNA technology
companies, did not achieve satisfactory results in clinical
trials, with an efficacy of only about 47% [220]. CVnCoV
employed unmodified nucleosides, which may trigger innate
immune activation and lead to mRNA degradation [221].
Moreover, CVnCoV utilized a 12 pg mRNA dose, signifi-
cantly lower than mRNA-1273 (100 pg) and BNT162b2
(30 pg).

Although mRNA-1273 and BNT162b2 showed favorable
overall safety profiles, certain adverse effects were observed
in specific populations. The FDA recently approved Mod-
erna’s next-generation COVID-19 vaccine mRNA-1283 for
targeted protection of high-risk populations, indicated for
all adults aged 65 and older, as well as individuals aged
12-64 with at least one underlying risk factor. mRNA-1283
was administered at a 10 pg dose, but demonstrated higher
relative vaccine efficacy compared to mRNA-1273 [222].
Notably, persistent viral mutations may compromise the
protective efficacy of existing vaccines, necessitating rapid
iterations of mRINA vaccine development.
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Compared with the intramuscular injection used for most
COVID-19 vaccines, intranasal delivery can deliver the drug
directly to the lungs without invasive side effects such as
local pain at the injection site. More importantly, intranasal
delivery activates mucosal immunity, the body’s first line
of immune defense against COVID-19 invasion. Bahl et al.
administered LNP-encapsulated mRNA intranasally to ham-
sters, conferring protection against SARS-CoV-2 infection
[223]. The vaccine mitigated severe pulmonary pathology
by reducing SARS-CoV-2 lung infection and induced a neu-
tralizing antibody response in serum comparable to that of
intramuscular injection controls (Fig. 8b). However, in non-
human primates, intranasal delivery of mRNA COVID-19
vaccines failed to enhance mucosal immunity, while ade-
novirus-based vaccine achieved robust immune response,
indicating formulation improvements are necessary for the
mucosal delivery of mRNA vaccines [224, 225]. In addition
to the active immunity generated by mRNA to activate the
immune system, mRNA vaccines can also encode antibodies
to neutralize viruses for passive immunity. Tai et al. targeted
the mRNA of the monoclonal antibody for SARS-CoV-2
to lungs, bypassing the process of antigen presentation and
killing the antigen directly [226].

Building on the success of COVID-19 mRNA vaccines,
researchers are continuously optimizing various components
of mRNA vaccines to enhance efficacy. ARCT-154 repre-
sents the first commercially approved saRNA COVID-19
vaccine, capable of inducing stronger and more durable
immune responses at lower doses [23]. At 1 month after
vaccination, ARCT-154 (5 pg) and BNT162b2 (30 pg)
induced geometric mean titers (GMT) of 2125 and 1624,
respectively, for surrogate virus neutralization against
Omicron BA.4/5 variants [227]. At 6 months, ARCT-154
maintained significantly higher GMT (1119) compared
to BNT162b2 (495). The phase III clinical trial displayed
favorable safety profiles for ARCT-154, though long-term
risk assessment requires continued monitoring. To boost
the immune activation effect of mRNA vaccines, Fan et al.
developed a Manganese (Mn)-coordinated mRNA vaccines
against SARS-CoV-2 variants [228]. Mn acted as an adju-
vant to activate the cGAS-STING pathway and facilitated
the maturation of APCs, inducing robust immune reaction
in mice. Meanwhile, Mn also increased the transfection
efficiency of mRNA by promoting endosomal escape. Cur-
rently, commercialized mRNA vaccines utilize LNP as the
delivery system, but the clinical application of LNP-mRNA
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vaccines has been associated with adverse reactions, which
partially results from the biotoxicity of LNP, such as ana-
phylaxis [229], myocarditis [230, 231], and optic neuritis
[232]. Mainstream mRNA vaccines including BNT162b2
and mRNA-1273 utilize PEGylated LNPs as the mRNA car-
rier, which may trigger complement activation and hypersen-
sitivity reactions [233, 234]. Li et al. reported an optimized
COVID-19 mRNA vaccine without PEG lipids, stimulating
robust immune responses in murine models [235]. Since

© The authors

the decrease of mice weight and cutaneous reactions were
not obvious, the safety profile was insured. Apart from the
replacement and adjustment of components, Hoffmann
et al. introduced a natural infection-mimicking technology
by encoding self-assembling enveloped virus-like particles
(eVLPs) to improve mRNA vaccines [236]. Compared with
conventional mRNA vaccines, the main distinction lies in
the extra insertion of the ESCRT- and ALIX-binding regions
(EABR). Following mRNA release, protein translation and
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cell surface expression, the EABR recruits ESCRT proteins
to realize the self-assembly of eVLPs budding from cells.
Consequently, S proteins were expressed on the surface of
host cells and budding eVLPs, which mimicked the natural
viral infection process and provided a more effective and
long-lasting prevention of SARS-COV-2 infection. The addi-
tion of endocytosis-preventing motif (EPM) prolonged the
residence time of S-protein at the cytoplasmic membrane,
resulting in a more sustainable ESCRT recruitment process
(Fig. 8c).

The mRNA vaccine is increasingly recognized as a bril-
liant tool to prevent epidemics like Zika virus [237], EB
virus [238] and herpes simplex virus [239]. Scientists in
Philadelphia developed a multivalent flu mRNA vaccine,
which could provide protection for all known influenza
subtypes [240]. Moreover, a malaria mRNA vaccine was
performed based on liver-resident memory T cells, show-
ing great potential in a preclinical study [241]. mRNA-1345
is the first FDA-approved mRNA-based respiratory syncy-
tial virus (RSV) vaccine [242]. At a median follow-up of
112 days, the vaccine efficacy against RSV-associated lower
respiratory tract disease with at least two signs or symptoms
was 83.7%. However, Moderna reported that mRNA-1345
demonstrated only 50% efficacy against RSV at 18-month
follow-up. Notably, the vaccine was associated with lower
respiratory tract infections in infants, which indicated poten-
tial safety concerns requiring further evaluation.

4.2 Cancer Vaccine

Cancer claims millions of lives annually, yet remains inad-
equately addressed by current therapeutic interventions.
Different from preventive epidemic vaccines, most mRNA
cancer vaccines are therapeutic, designed to activate the host
immune system for targeted tumor cell elimination. Trans-
lated from mRNA encoding tumor antigens at ribosomes,
proteins are mainly presented by major histocompatibility
complex class I (MHC I), which activate CD8" T molecules
and induce antitumor cellular immunity.

The key to mRNA cancer vaccines lies in tumor antigens,
including tumor-associated antigens (TAAs) and tumor-
specific antigens (TSAs) [243]. TAAs occur in both normal
and tumor cells, while the expression often increases when
cell carcinogenesis happens, such as HER?2 for breast cancer
[244], alpha-fetoprotein for primary hepatic carcinoma [245]
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and PSA for prostatic cancer [246]. Early in 2016, Sahin
et al. delivered RNA-liposomes (RNA-LPX) encoding four
TAAs (New York oesophageal squamous cell carcinoma 1,
melanoma-associated antigen A3, tyrosinase, and transmem-
brane phosphatase with tensin homology) into dendritic
cells as a cancer vaccine [247]. Through the adjustment of
charge, the negatively-charged particles targeted the spleen
unexpectedly and elicited a powerful immune response in
mouse subcutaneous tumor models. RNA-LPX induced
DC maturation and stimulated TLR7 in plasmacytoid DCs,
which recognized RNA and secreted cytokines, including
IFNa, to activate specific immunity. In melanoma patients,
the RNA-LPX vaccine elevated systemic IFNa levels, while
sensitized and amplified T cells targeting the vaccine anti-
gen (Fig. 9a). Four years later, clinical trial results showed
that FixVac, based on RNA-LPX, achieved remarkable
outcomes in combination with immune checkpoint block-
ing therapy, demonstrating its effectiveness as a melanoma
immunotherapy [28]. In the 100 pg dose cohort (n=10), 5
patients achieved partial responses, yielding a 50% response
rate. The duration of response extended up to 11 months.
Furthermore, vaccine-induced PD1 + T cells demonstrated
activatability by PD1 antibodies, suggesting potential syner-
gistic antitumor effects. TAA-based mRNA cancer vaccines
are required to solve the problem that immune cells regard
TAA as their own antigen and thus become tolerant without
immune activation [248]. Differently, TSAs are exclusively
produced and expressed in cancer rather than healthy tissues,
which are regarded as attractive and unique targets [249].
However, the heterogeneity of mutations among patients
complicates TSA prediction, making screening a central
challenge in cancer vaccine development. mRNA-4157 is
an individualized neoantigen therapy targeting up to 34
patient-specific tumor neoantigens, which enhances immune
checkpoint inhibitor efficacy by inducing endogenous T-cell
responses [29]. mRNA-4157 combined with pembrolizumab
significantly reduced the recurrence rate compared to pem-
brolizumab monotherapy. At the 18-month analysis, the
combination therapy group exhibited significantly improved
recurrence-free survival (RSF) (79 vs. 62%) and distant
metastasis-free survival (92 vs. 77%) compared to monother-
apy. Notably, mRNA-4157 induced no grade 4-5 treatment-
related adverse events. The compelling efficacy and favora-
ble safety profile enabled mRNA-4157 to become the first
mRNA cancer vaccine to advance to phase III clinical trials.
For the king of cancer—pancreatic carcinoma, Rojas et al.
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permission [254]. Copyright 2024, Elsevier.

developed autogene cevumeran, a personalized RNA neoan-
tigen vaccine for pancreatic ductal adenocarcinoma (PDAC)
[30]. Current immune checkpoint blockade for PDAC shows
little success, while the only cure method—surgery has a
high recurrence rate even with multidrug chemotherapy for
recurrence delay. Derived from surgically resected tumors,
autogene cevumeran comprised a panel containing 20
MHC I and MHC II restricted neoantigens. After surgery,
patients received atezolizumab (a PD-L1 antibody), cevu-
meran and mFOLFIRINOX (a four-agent chemotherapy)
in sequence. The combined therapy induced high-intensity
neoantigen-specific T cells in half of the vaccinated patients
with effective delay of tumor recurrence (Fig. 9b). Recent
clinical results based on autogene cevumeran showed that
RSF of responders with vaccine-induced T cells prolonged
significantly (RFS: median not reached) compared with non-
responders without vaccine-induced T cells (RSF: median
13.4 months), indicating effective activation of antigen-spe-
cific T cell responses by the vaccine. The vaccine-induced
CD8 + T-cell clones exhibited long-term persistence with a
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projected mean lifespan of 7.7 years, demonstrating durable
tumor-responsive capacity [250].

The mRNA therapeutics have been applied to melanoma,
prostatic cancer, non-small-cell lung cancer and breast
cancer [251]. Besides, Silva et al. reported a mRNA-LNP
vaccine designed to treat human papillomavirus infection
[252]. For ovarian cancer, Korzun et al. pioneered a mRNA
therapeutic addressing metastatic ovarian cancer and cancer-
associated cachexia [253]. To inhibit the tumor invasion and
metastasis mediated by TGF-p ligand such as ActA, LNPs
encapsulating follistatin mRNA were delivered to cancer
cell clusters in the peritoneal cavity, reducing ActA levels
and alleviating ActA-caused cachexia. For glioblastoma,
one of the most aggressive and lethal brain tumors, Elias
et al. developed a novel mRNA cancer vaccine based on
RNA-lipid particle aggregates (LPAs) [254]. The “onion-
like” multi-lamellar structure endowed LPAs with optimized
payload packaging, which realized collaborative therapy by
delivering multiple RNA drugs jointly. RNA-LPA localized
to fibroblastic reticular cells in the spleen and lymph nodes,

https://doi.org/10.1007/s40820-025-01906-x
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establishing direct cellular interactions with CD11b+ mye-
loid cells and APCs. The loop and hairpin secondary struc-
tures formed by single-stranded RNA through complemen-
tary base pairing enabled RNA-LPA to activate PRR (like
RIGI), which induced robust type-I interferon secretion and
cytokine/chemokine responses to activate systemic immu-
nity. The vaccine elicited rapid peripheral blood mononu-
clear cell mobilization to lymphoid organs and tumor sites,
which triggered DC activation and CD8+T cell priming.
The infiltrating immune cells mediated immunological con-
version from immunologically “cold” to “hot” tumor phe-
notypes within 48 h. In glioblastoma patients, RNA-LPA
similarly elicited robust activation of both innate and adap-
tive immune responses. Organ function tests of all patients
remained stable at acute time points, which demonstrated
favorable safety characteristics (Fig. 9c).

4.3 Protein Replacement Therapy

Compared with direct delivery of proteins to cells, mRNA-
based protein replacement therapy achieves intracellular
protein expression by delivering mRNA encoding a spe-
cific protein to target cells, which is equipped with better
delivery effects, longer duration of action and relatively
lower delivery doses. However, different from the immune-
amplifying mechanism of mRNA vaccines in vivo, mRNA
protein replacement therapy necessitates higher protein
levels to reach the therapeutic threshold, posing significant
challenges for mRNA persistence and safety. Table 3 sum-
marizes the dosage ranges of mRNA therapeutics across
clinical applications.

Protein replacement therapy is especially appropriate
for metabolic disorders. For instance, propionic acidemia/
aciduria (PA) is a rare and fatal genetic disease. Since the
deficiency of propionyl-CoA carboxylase (PCC), a mito-
chondrial enzyme, leads to the accumulation of harmful
metabolites and thus causes PA, Lin et al. delivered two
mRNAs encoding a and f subunits of human PCC through
LNP to for PCC expression [255]. In a Phase 1/2 clinical
trial of mRNA-3927 for PA, the proportion of patients
experiencing metabolic decompensation events (a pathog-
nomonic feature of PA) decreased from 50% pretreatment to
12.5% post-treatment. mMRNA-3927 exhibited dose-depend-
ent pharmacokinetics. The 0.90 mg/kg cohort demonstrated
an extended terminal half-life of approximately 53 h. The
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reduction of disease-related propionic acid metabolic bio-
markers indicated functional restoration PCC activity [24]
(Fig. 10a). This represented the first clinical trial utilizing
mRNA to express intracellular proteins as a protein replace-
ment therapy in patients with rare diseases. Additionally,
Huang et al. successfully delivered mRNA encoding urate
oxidase (Uox) for hyperuricemia treatment [256]. Most
mammals utilize functional Uox to metabolize insoluble uric
acid and maintain physiological serum urate levels, whereas
in humans, UOX has evolutionarily pseudogenized through
nonsense mutations, representing an atavistic strategy.

Autoimmune diseases represent another promising
application for mRNA-based protein replacement therapy.
Stein et al. utilized LNPs to deliver mRNA encoding the
indoleamine-2,3-dioxygenase 1 (IDO1) variant and inhibited
T cell-mediated autoimmunity [257]. IDO1 degrades tryp-
tophan into metabolites of the kynurenine pathway, thereby
modulating immune responses. The IDO1 variant incorpo-
rated the myristoylation site of Src, anchoring the protein
to the inner plasma membrane and prolonging its expres-
sion. The delivery of mRNA mediated the overexpression of
IDO1 and provided protection in experimental autoimmune
encephalomyelitis, rat collagen-induced arthritis, and acute
graft-versus-host disease models (Fig. 10b).

In the anti-aging field, You et al. established the EVs
encapsulating mRNA encoding extracellular-matrix ol type-
I collagen (COL1AL1), which contributed to the decrease of
dermal wrinkles [258]. According to a cellular nanoporation
method reported before, the authors induced nanochannels
by transient electrical pulses to transfect plasmid DNA into
cells, followed by transient electrical stimulation to release
exosomes loaded with transcribed mRNA [259]. Acute
photoaging mouse models were employed to simulate the
pathophysiological characters of aging-damaged human
skin. Dermal wrinkles were reduced markedly as the trans-
lated COL1A1 induced the formation of collagen-protein
grafts, demonstrating its efficacy in the recovery of photo-
aged dermis and the clinical potential of mRNA delivery for
anti-aging and collagen replacement. Furthermore, the appli-
cation of a microneedle array extended the collagen—protein
replacement period and enabled more uniform EV delivery
in tissues (Fig. 10c). Since EV secretion is a natural property
of cells, Nawaz et al. aimed to observe the extended mRNA
transportation via EVs among cells [260]. The mRNA
encoding VEGF-A, an angiogenic molecule, was delivered
by LNP to targeted ischemic tissues for production of new
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Table 3 Results of dose escalation in phase I clinical trials

Name Delivery platform  Application Clinical trials Minimum effective dose Maximum tolerated dose
register identifier
BNT162b2 LNP COVID-19 vaccine NCT05541861  5pg 30 pug
mRNA-1273 LNP COVID-19 vaccine NCT04283461 25 pg 250 pg
FixVac (BNT111) Liposome Melanoma vaccine NCT02410733 7.2 pg 200 pg
mRNA-4157 LNP Melanoma vaccine NCT03313778  0.04 mg 1 mg (No dose-limiting
toxicity occurred)
RO7198457 Lipoplex Pancreatic cancer vaccine ~ NCT03289962 25 g 100 pg
CV9103 Protamine Prostate cancer vaccine 2008-003967-37 256 pg 1280 pg (No dose-limiting
toxicity occurred)
RNA-LP RNA-lipid Particle Vaccine for newly diag- NCT04573140  Not yet. (Recruiting) Not yet. (Recruiting)
nosed pediatric high-
grade gliomas and adult
glioblastoma
MEDI1191 LNP Cytokine therapy NCT03946800 0.1 pg 12.0 pg (No dose-limiting
toxicity occurred)
mRNA-3927 LNP Protein replacement therapy NCT04159103 0.3 mg kg™’ 0.9 mg kg~! (No dose-lim-
for propionic acidaemia iting toxicity occurred)
NTLA-2001 LNP Gene editing for transthyre- NCT04601051 0.1 mg/kg 0.3 mg/kg
tin amyloidosis
NTLA-2002 LNP Gene editing for hereditary NCTO05120830 25 mg 50 mg (No dose-limiting

angioedema

toxicity occurred)

blood vessels. After the successful delivery of VEGF-A
mRNA, LNP was taken into cells through endocytosis. EVs
were then secreted out and the copy of VEGF-A mRNA
could be detected in the supernatants where large amount of
EVs accumulated, displaying an extended function to dis-
tribute therapeutic mRNA among cells.

The advantages of saRNA over mRNA in protein
replacement therapy are significant, including higher pro-
tein expression levels and prolonged half-life. Du et al.
developed a range of cholesterol-amino-phosphate (CAP)
LNPs to deliver mRNA or saRNA encoding DNA Meiotic
Recombinase 1 (Dmcl) to spermatocytes and thus treat
male infertility caused by the Dmc1 gene mutation [261].
The integrated CAP LNPs were designed to promote phase
transformation, endosome escape and RNA release, which
were microinjected into seminiferous tubules in Dmcl-
gene knockout mice. Dmc1 protein expressed by exogenous
saRNA restored the recombination of chromosome and
spermatogenesis with longer protein expression than mRNA
group. The application of saRNA in infertile mice sets a
precedent in treating genetic diseases other than immuno-
therapy, showing potential as an effective pathway to cure
male infertility (Fig. 10d).

© The authors

4.4 Cytokine Therapy

Cytokines are considered as either cancer targets or treat-
ing means during the past decades [262]. The delivery of
cytokines can reverse the tumor immunosuppressive micro-
environment on one hand and enhance antitumor immu-
nity on the other. However, the pleiotropic characteristic of
cytokines and the widespread presence of cytokine recep-
tors in various tissues lead to systemic toxicity if cytokines
are delivered systemically, so in situ delivery of cytokines
to tumors is necessary. Cytokines leak into the circulation
quickly after direct intratumoral injection, leading to a short
retention time at the tumor sites, while mRNA is able to
achieve long-lasting cytokine expression. IL-12 exhibits var-
ious biological activities, including enhancing the activity of
NK cells and cytotoxic T cells, stimulating the proliferation
of activated NK cells or T cells, and inducing the release of
IFN-y [263], so it is a popular cytokine for mRNA encoding.
Luheshi et al. achieved localized production of IL.-12 at the
tumor sites through intratumoral delivery of IL-12 mRNA,
which induced IFN-y expression and promoted TH1 trans-
formation of the tumor microenvironment [31]. MEDI1191
derived from this research has already entered Phase 1 clini-
cal trial, displaying favorable safety and antitumor activity.

https://doi.org/10.1007/s40820-025-01906-x
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Fig. 10 Functional protein expression through mRNA delivery in certain diseases. a Dual mRNA encoding PCCA and PCCB was delivered by
LNP to express PCC as a treatment of PA. Reproduced under the terms of the CC-BY license [24]. Copyright 2024, The Authors, published by
Springer Nature. b Modified IDO1 was anchored to the plasma membrane, which increased protein stability and expression. Reproduced with
permission [257]. Copyright 2024, Elsevier. ¢ EVs loaded with COL1Al-encoding mRNA achieved the decrease of dermal wrinkles in cute
photoaging mouse models. Reproduced with permission [258]. Copyright 2023, Springer Nature. d CAP LNP with saRNA encoding Dmc1 was
microinjected in seminiferous tubules and restored the recombination of chromosome and spermatogenesis in mouse infertility models. Com-
pared with traditional mRNA, saRNA prolonged the protein expression period. Reproduced under the terms of the CC-BY license [261]. Copy-
right 2023, The Authors, published by John Wiley and Sons.

Hunter et al. extended the application of IL-12 mRNA  vaccine-induced CD8 T cell expansion and promoted mem-
from cancer treatment to vaccine optimization, regarding  ory T cell differentiation, providing a solution to the decline
IL-12 as a vaccine adjuvant [264]. IL-12 enhanced mRNA  in antibody titers observed with mRNA vaccines.
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IL-2 plays a crucial role in the expansion and differentia-
tion of immune cells, which is another cytokine commonly
used in cytokine therapy [265]. To prolong the short serum
half-life of IL-2, Sahin et al. designed a lipid-based nano-
particle complex encoding albumin-fused IL-2, enabling
specific delivery to the liver [266]. In a tumor model of
MHC I-deficient mice, IL-2 transformed tumor-associated
macrophages into M1 macrophages, which promoted cross-
presentation of antigens to CD8* T cells and thus restored
immune cell infiltration (Fig. 11a). IL-2 promotes immune
responses at high concentrations, while it preferentially
activates Tregs at lower concentrations [267]. mRNA-6231
encoded a modified human interleukin 2 mutein fused to
human serum albumin (HSA-IL2m), which holds significant
potential for autoimmune diseases [32].

Compared with delivering mRNA encoding one sin-
gle cytokine, the co-delivery of mRNA encoding multi-
ple cytokines can elicit a more extensive tumor immune

a
MHC class I-deficient tumor

CD8* T cell Q Immune desert tumor microenvironment
Q Q Comprehensive therapeutic resistance
M2-like
macrophage
M1-like
macrophage

o .
©0,0  Chemokines

No attraction
of T cells

°e%e IFNy

Fey receptor

A Tumor-targeting
antibody

@  Tumor antigen

MHC class I-deficient tumor

Activation/expansion of
tumor antigen-specific
CD8* T cells

Treatment with tumor-targeting antibody and IL-2 mRNA
Restored responsiveness to different therapies

and antigen presentation .

000° 0%
) Attraction of © 02000 °
Albumin-IL-2 T cells and other ~°°°8 R
immune cells Soos
into the tumor

Lo

RNA translation

in liver

Albumin-IL-2 mRNA
Liver-targeting formulation

o

@‘ S0

Q — %0 Mi-like re-polarization; Fmor
A e : Biats
$00° 004 pi of Fey

response. Liu et al. reported an LNP-loaded mRNA cancer
vaccine encoding IL-12 and IL-27 [268]. The intratumoral
delivery of mRNA encoding IL-12/IL-27 not only restrained
the growth and deterioration of the tumor, but also resulted
in the strong infiltration of immune effector cells in the
tumor, which reversed the tumor immunosuppressive micro-
environment and created favorable conditions for cytotoxic
T lymphocytes (Fig. 11b). Other combinations included a
mixture of mRNAs encoding IL-23, IL-36, and OX40L, as
well as mRNAs encoding GM-CSF, IFNa, IL-15-sushi and
scIL-12 [269, 270].

4.5 Cell Therapy

CAR-T therapy represents a revolutionary cell therapy and
has achieved significant breakthroughs in hematologic
malignancies (targeting CD19), which collects T cells from
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Fig. 11 mRNA-based cell therapy and cytokine therapy. a Albimin-IL-2 mRNA facilitated the M1 polarization of macrophages and enhanced
antigen presentation by CD8" T cells, thereby restoring immune cell infiltration and ameliorating the tumor microenvironment. Reproduced
with permission [266]. Copyright 2022, Elsevier. b mRNA encoding IL-12 and IL-27 displayed strongest tumor inhibitive effect compared with
mRNA encoding one cytokine. Reproduced with permission [268]. Copyright 2022, Elsevier. ¢ CD5-targeted LNP-mRNA was delivered to T
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the peripheral blood of patients or donors and modified the
cells genetically ex vivo for the expression of CARs [271].
CAR contains an antigen-recognition domain, a CD3( acti-
vation domain and a costimulatory domain, which can rec-
ognize specific surface antigens on tumor cells independent
of antigen presentation [272]. mRNA encoding CD19-
targeted CAR-T has already entered the clinical trial [33,
34]. mRNA-based CAR-T technology often employs elec-
troporation to transfect mRNA into T cells ex vivo for the
generation of CAR-T cells, which demands high costs and
extensive preparation time [273]. Epstein et al. developed an
mRNA-based CART cell heart injury therapy that could pro-
duce CAR-T cells in vivo [141]. CD5-targeted LNP deliv-
ered mRNA to T cells without the influence of T cell effector
function. mRNA encoded a CAR that targeted at fibroblast
activating protein (FAP), a marker for activated fibroblasts,
which allowed T cells to eliminate activated fibroblasts in
the heart to treat heart failure caused by fibrosis. The short
half-life of mRNA meant that this CAR-T cell production
was transient, thus avoiding the toxic effects of long-term
inhibition on fibroblasts (Fig. 11c). Three years later, the
authors applied this mRNA-based in vivo CAR-T technology
to B cell-mediated autoimmune diseases [274]. To prevent
adverse effects and cytokine release syndrome from CD4 +T
cells, the LNP was modified with CD8 antibodies for spe-
cific targeting of CD8 + T cells. The mRNA encoding anti-
CD19 CAR (or anti-CD20 CAR in cynomolgus monkeys)
enabled the generated CAR-T cells to eliminate pathogenic
B cells precisely. The reconstituted B cells after depletion
were predominantly of a naive phenotype (85%), achieving
an “immune reset”.

In the CAR-NK cell therapy, CD19 is also one of the
popular targeted antigens. NK cells are enabled to target
and kill cancerous B cells expressing CD19 after mRNA
electroporation [275]. CD20 (a B cell differentiation anti-
gen), natural killer group 2 member D ligand (NKG2DL)
and B cell maturation antigen have also been employed as
targets for CAR-NK [276].

Macrophages can infiltrate solid tumor tissues and over-
come target antigen heterogeneity, so CAR-M therapy is
regarded as a promising approach for solid tumors, which
aims to enhance immune responses by converting M2 mac-
rophages into the M1 phenotype [277]. Liu et al. achieved
in situ construction of CAR-M cells by modifying LNPs
with phosphatidylserine for macrophage-specific uptake
[278]. Meanwhile, the authors analyzed various CAR
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constructs containing different intracellular domains (Phago-
cytosis: CD3C and Dectinl; proinflammatory: CD40 and
TLR4; and possible effector: CD46 and CFS2R) to achieve
optimal CAR-M efficacy.

4.6 Gene Editing

The field of gene editing develops rapidly in recent years,
while Cas protein delivery still lacks an economic and effi-
cient system. Therefore, nucleic acid delivery shows great
potential for application. Compared with the unavoidable
risk of exogenous gene insertion of DNA, mRNA can
express proteins required for gene editing safely and directly
in cells, which is a promising alterative.

The Cyclization Recombination Enzyme—Ilocus of
X-over P1 (Cre-Loxp) system is an important gene editing
platform. Cre is a recombinase that specifically recognizes
Loxp sequences and induces recombination of DNA located
between these two Loxp sequences, which can be encoded
by mRNA and thus function after translation in vivo. Li
et al. designed a three-component reaction system and built
a combinatorial library of ionizable lipids to construct nano-
particles for pulmonary mRNA delivery, which consisted of
ricinoleic acrylate linker, aliphatic alcohols (lipid tails) and
amine headgroups [279]. The ionizable lipids in the library
contained abundant ester and carbonate groups, endowing
them with excellent biodegradability suitable for repeated
administration. Cre mRNA was delivered by LNP to air-
way epithelium in the Lox-3xSTOP-Lox(LSL)-tdTomato
reporter mice (Ai9), and translated into Cre recombinase,
which recognized the two LoxP sequences and removed the
LSL cassette, resulting in downstream tdTomato transcrip-
tion. After Ai9 mice were treated with one (LNP-Cre x 1)
or three (LNP-Cre X 3) doses, obvious red fluorescence of
tdTomato signal was detected in lung by flow cytometry,
indicating the effect of gene editing was dose-dependent.
Compared with DNA-Cas9 delivery system, the relatively
short existing time of mRNA avoids the influence caused by
off-target effect, while LNP can be repeatedly dosed and thus
solve the difficulty in achieving therapeutic editing levels,
which is a significant advantage over viral vectors (Fig. 12a).
In the treatment of blood diseases, Laura et al. modified
LNP with CD-117 antibodies and developed a gene editing
platform targeting hematopoietic stem cells (HSCs), where
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CD-117 are overexpressed [280]. In murine models, intra-
venous injection of CD117/LNP-Cre achieved gene edit-
ing within 24 h, with sustained expression persisting over
the subsequent 4 months. The long-term HSC editing rate
reached 55%, achieving efficient and durable gene editing of
HSCs. Compared with current gene therapies predicated on
chemotherapy and stem cell transplants, this study offers a
once-for-all treatment for blood disorders such as sickle cell
disease and beta-thalassemia (Fig. 12b).

CRISPR-Cas9, consisting of Cas9 and sgRNA, is another
efficient genome editing tool available [281]. Cas9 mRNA
and sgRNA are complexed with vectors and delivered to
cells to realize gene editing in treatment of various diseases,
such as hemophilia A and B therapy [282], cervical cancer
[178], acute myeloid leukemia [283] and liver diseases [284].
An early report on the treatment of Transthyretin amyloi-
dosis by LNP encapsulating Cas9 mRNA and transthyretin

(TTR)-targeted sgRNA has already entered the third clinical
phase (NTLA-2001), which was the first in vivo CRISPR
gene editing therapy approved for advanced clinical devel-
opment [21]. After intravenous administration, the LNPs in
NTLA-2001 bound to plasma apolipoprotein E and were
endocytosed by hepatocytes via the LDL receptors, enabling
efficient liver-targeted delivery. Since the liver produces the
majority of TTR, this strategy effectively reduced systemic
toxicity. After cell entrance, expressed Cas9 protein edited
DNA at TTR gene sequence coordinating with sgRNA and
blocked the misfolded TTR production. On day 28 after
NTLA-2001 treatment, the 0.1 and 0.3 mg kg~ dose groups
exhibited mean TTR reductions of 52% and 87%, respec-
tively, demonstrating a dose-dependent effect. Similar with
NTLA-2001, NTLA-2002 is also based on CRISPR-Cas9
system for the treatment of hereditary angioedema [35].
Inhibitors of the plasma kallikrein activity is considered
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suitable for long-term prophylaxis but lifelong administra-
tion is inevitable. NTLA-2002 can permanently edit the
gene responsible for the production of plasma prekallikrein
(KLKB1). LNP delivered mRNA encoding the Cas9 endo-
nuclease and sgRNA targeting KLKB1 to the liver, which
disrupted the production of plasma prekallikrein and thus
reduced the total plasma kallikrein protein level. In the 25,
50, and 75 mg groups, the mean percentage changes in total
plasma kallikrein protein levels were — 67, — 84, and — 95%,
respectively. Plasma kallikrein activity also showed dose-
dependent reduction, closely correlating with the decrease in
total plasma kallikrein protein levels. Recently, mRNA gene
editing systems have also been employed for inherited retinal
diseases, with successful gene editing in retinal epithelium
and Miiller glia [285]. Additionally, Zhao et al. developed
a treatment for hyperlipidemia amelioration by disrupting
PCSKO9 gene [286]. The ester bonds introduced into the car-
rier were hydrolyzed by hepatic carboxylesterase 1, enabling
controlled mRNA release in the liver. The expression of
PCSKO9 was decreased and LDL receptors were upregulated,
increasing the uptake of LDL to liver. Compared with non-
treatment group, serum total cholesterol decreased by 20%,
with no significant changes in alanine aminotransferase or
aspartate aminotransferase levels, demonstrating favorable
biosafety (Fig. 12c¢).

Mutated from Cas9, dCas9 is deprived of the endonucle-
ase activity so it is applied in studies of endogenous gene
expression regulation [287]. Beyersdorf et al. reported that
the successful and lasting activation of transcriptional and
epigenetic gene activation through delivery of LNP with
mRNA and sgRNA [288]. The mRNA encoded fusion pro-
teins of dCas9 and a transcription activating domain, which
activated the B4galnt2 gene to induce up to 1000-fold
mRNA overexpression. The cell activation rate reached 90%,
while the kinetics of gene activation showed a high copy
level lasting for 9 days. The mRNA encoding AcrlIA4 pro-
tein was to prevent the combination of dCas9 activator and
genomic DNA, which inhibited the sustained gene activa-
tion to improve the safety profile. Besides, the erythropoietin
gene demonstrated the feasibility of the approach in other
target genes. Splenomegaly indicated the increase of blood
circulation because of the rise of erythrocytes, proving the
success of gene activation. Compared with protein replace-
ment therapy, this dCas9 mRNA delivery system displays a
broader pharmacokinetic curve of therapeutic protein with
one single dose.
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S Challenges and Potential Solutions

With the deepening of research on mRNA structural opti-
mization and delivery strategies, mRNA therapeutics are
maturing, but the clinical applications still face significant
challenges.

A pressing issue is the inability of protein replacement
therapy to provide sustained protection, raising the criti-
cal question of how to prolong mRNA functionality. While
existing structure optimization tools, such as LinearDesign,
have significantly extended the half-life of mRNA, maintain-
ing protein expression for more than a week remains difficult
due to the single-stranded nature of mRNA. In addition, the
instability of mRNA is compounded by its immunogenic
nature, as exogenous mRNA is recognized as a pathogen-
associated molecular pattern by TLRs in vivo. Nucleoside
modification to reduce mRNA immunogenicity is an essen-
tial and crucial approach. However, certain modifications,
such as N1-methylpseudouridylation, have been shown
to induce ribosomal frameshifting, leading to the produc-
tion of unintended proteins [289]. This unpredictability
is a potential safety concern for mRNA-based therapeutic
strategies. To overcome limitations of linear mRNA, alter-
native mRNA variants such as circRNA and saRNA have
been developed to achieve sustained expression. circRNA
has a 2.5-fold longer half-life than linear mRNA, though
challenges remain in designing an effective IRES sequence
[109]. saRNA, on the other hand, requires 30-1000 times
less dosage to achieve the same protein expression levels as
linear mRNA [85], making it a promising option for protein
replacement therapies that require large amounts of pro-
tein with long-term expression. Importantly, the inclusion
of viral-derived sequences in saRNA confers self-adjuvant
properties, prompting a reconsideration of its relationship
with immune response intensity.

Apart from the optimization of mRNA structure, deliv-
ery vehicles represent another major determining factor
for mRNA therapeutics. The toxicity of polymeric vehicles
limits their clinical translation, while the delivery efficiency
of peptides/proteins, exosomes and polyphenols remain
limited. Contributing to the remarkable success of mRNA
vaccines, LNP represents the most widely used and mature
mRNA delivery vehicle. Commercialized mRNA vaccines
such as mRNA-1273 and BNT162b2 have been associated
with unpredictable side effects that are likely related to LNP
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components. Optimization of LNP composition, such as
screening lipid types and ratios, can reduce the immuno-
genicity and toxicity of delivery systems. As an alternative
to PEGylated lipids, the PCB-lipid addresses the issues of
non-degradability and repeated administration, undoubtedly
representing an exemplary case. The design of hybrid nan-
oparticles is a feasible compensatory approach combining
the advantages of different materials. Furthermore, targeted
delivery is a feasible pathway to enhance delivery efficiency
and reduce off-target toxicity. Alterations of physicochemi-
cal properties through LNP component adjustment offers
a promising solution to improve organ-targeted delivery.
Moreover, modification with specific targeting moieties
endows delivery vehicles with cell-specific targeting capa-
bility, achieving more precise mRNA delivery.

The success of COVID-19 vaccines has accelerated the
spread of mRNA technology across various medical fields.
Personalized cancer vaccines represent a promising area,
while neoantigen screening is a key challenge. Although
whole-exome sequencing and bioinformatics tools can iden-
tify tumor mutations, high false-positive and false-negative
rates persist in neoantigen prediction [290]. Tumor heteroge-
neity and unpredictable mutations, such as single nucleotide
polymorphisms, often lead to the failure of neoantigen-based
cancer vaccines. Moreover, a substantial proportion of neo-
antigens in vaccines fail to elicit T cell responses, neces-
sitating additional strategies to enhance APC functionality
and T cell priming in lymph nodes. Costimulatory receptor
agonists and TLR agonists represent potentially effective
strategies. The efficacy of cancer vaccines can also be sig-
nificantly enhanced by modulating cytokines to improve the
tumor immunosuppressive microenvironment.

Personalized cancer vaccines may also provide insights
into tailoring epidemic vaccines for different populations.
Variations in immune function across populations indicate
that mRNA-based products, such as the COVID-19 vac-
cines, are not equally suitable for all individuals. Individu-
als with underlying diseases often experience more severe
side effects such as fatigue, inflammation, and exacerbation
of underlying diseases, which can be fatal in some cases.
Older adults are more susceptible to complications such as
myocardial infarction and Guillain-Barré syndrome, while
younger individuals are more susceptible to myocarditis
and anaphylaxis [291, 292]. Therefore, the development of
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mRNA vaccines tailored to specific groups, such as those
with or without underlying health conditions or for differ-
ent age groups, may be a viable strategy to reduce adverse
effects and improve vaccine efficacy.

In the manufacture of mRNA-based therapeutics, the
safety and purity of raw materials are critical factors that
directly affect the quality of the final product. The selection
of raw materials, such as plasmid DNA (pDNA) serving as
the template for mRNA production, must comply with phar-
maceutical regulatory guidelines. However, due to intense
market competition, it is particularly challenging for new
companies to obtain high-quality pDNA, which has a sig-
nificant impact on subsequent production processes. In the
purification of mRNA, rigorous removal of impurities such
as dsRNA through high-performance liquid chromatogra-
phy can significantly reduce the immunogenicity of the final
products, since dsRNA is a potent innate immune activa-
tor. In addition, the inherent instability of mRNA is a major
barrier to its storage. For example, mRNA-1273 requires
storage at—20 °C, while BNT162b2 must be transported
and stored at temperatures ranging from — 80 to —60 °C
[293]. Once thawed, BNT162b2 is only functional for 2 h
at room temperature. The stringent storage conditions sig-
nificantly increase costs and pose significant barriers to
the widespread use of mRNA vaccines in underdeveloped
regions. Lyophilized mRNA-LNP vaccines have been pro-
posed as a potential solution [294, 295], but whether the
efficacy is compromised remains to be verified. As mRNA
technology continues to advance rapidly, the establishment
of standardized regulations for production, storage, and
institutional practices will be essential for the maturation
and wider adoption of mRNA-based therapeutics. Regula-
tory agencies worldwide should enhance communication
and collaboration to promote the international harmoniza-
tion of regulatory standards for mRNA therapeutics. Given
that mRNA remains an emerging technology, the long-term
effects of mRNA therapeutics on human cell physiology
remain unknown. As mRNA vaccines such as mRNA-1273
have been approved by regulatory agencies such as the FDA
at an unprecedented pace, some steps in the review process
may have been overlooked. Therefore, it is critical to con-
duct long-term follow-up studies to assess potential disease
risks and changes in disease spectra especially among spe-
cific populations.
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6 Future Perspectives

As an emerging therapeutic approach with immense poten-
tial, mRNA holds broad development prospects for the
future. Compared with traditional manual design, LinearD-
esign and circDesign demonstrate unparalleled advantages
and efficiency in the design and optimization of mRNA
structures, indicating that rapidly advancing artificial intelli-
gence (Al) will play an increasingly indispensable role in the
field of mRNA. In delivery vehicle optimization, Al offers
a crucial supplementary approach to current experimen-
tal screening. Regarding LNP, the most advanced mRNA
delivery carrier, researches have utilized Al deep learning
to predict key properties of ionizable lipids, which accel-
erates the screening process, optimizes lipid performance
and reduces the cost associated with traditional experimen-
tal screening significantly [296]. In addition to efficient
optimization of one individual component, adjusting the
proportions of LNP components and optimizing physico-
chemical properties can realize the preparation of optimal
LNPs and endow LNP with specific functionalities, such
as targeted delivery. When it comes to mRNA application,
Al can also predict the affinity between antigens of mRNA
infectious disease vaccines and immune receptors, deter-
mining whether they can elicit sufficient immune responses
to generate immunological memory [297]. In the develop-
ment of mRNA cancer vaccine, AlphaFold can accurately
predict protein structures, which enables the tailored design
of mRNA sequences encoding neoantigens [298]. Therefore,
Al is poised to progressively transform the entire process of
lifecycle of mRNA therapeutic development. Notably, Al-
driven design also faces numerous challenges. High-quality
and large-scale datasets are essential for training Al models,
while data acquisition remains a significant obstacle, which
entails substantial computational resources and prolonged
training periods concomitantly. The gap between in silico
models and real-world implementation may exist, given the
inherent challenges in modeling intricate biological net-
works. While models demonstrate robust performance on
specific training datasets, their efficacy may significantly
decline in real-world applications due to distributional
shifts between training and deployment environments. For
instance, structurally optimized mRNA constructs may trig-
ger unintended immune responses [84]. Moreover, current
models exhibit limited generalizability, raising concerns
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about whether training on specific population cohorts and
datasets can ensure robust extrapolation to broader applica-
tions. Population diversity contributes to aberrant immu-
nogenicity and efficacy profiles of mRNA therapeutics in
specific subpopulations. Developing more efficient AI mod-
els presents a viable strategy to address current bottlenecks.
Establishing privacy-preserving data-sharing platforms will
enhance training data diversity for AI models. Integrating
multi-omics data (such as proteomics, immunopeptidomics)
will further improve predictive capabilities.

mRNA delivery technologies will continue to advance
through iterative innovation. LNPs remain the predomi-
nant delivery vehicles in clinical-stage development,
with ongoing optimizations targeting their immunogenic-
ity and toxicity profiles. Meanwhile, endogenous carri-
ers demonstrate inherent advantages in biocompatibility.
Natural occurring human proteins like Peg10 can elicit
fewer immune responses and side effects, which ensure
the safety and therapeutic effect of repeated administra-
tions [157]. Exploring strategies to enhance the delivery
efficiency of Peg10 like the modification with endogenous
cell-penetrating peptides may offer new alternatives for
mRNA delivery.

The high programmability of mRNA and the functional
diversity of proteins will extend and deepen its applica-
tions to a wide range of areas. Active and passive immunity
remain core mechanisms of mRNA-based therapeutics, pro-
viding preventive and therapeutic strategies for a broader
spectrum of diseases. mRNA vaccines targeting bacteria
have been reported, showing promising efficacy in the pre-
vention of tuberculosis and Clostridioides difficile infection
[26, 299]. Further development of therapeutic bacterial vac-
cines will undoubtedly provide an essential complementary
treatment for the increasingly severe issue of bacterial drug
resistance. Additionally, mRNA vaccines encoding parasitic
antigens, such as malaria antigens, offer potential interven-
tions for a wide range of parasitic infections [300]. mRNA
encoding disease-related autoantigens have been shown to
stimulate antigen-specific regulatory T cells and mediate
immune tolerance [301]. mRNA will enable targeted expres-
sion of functional proteins across expanding therapeutic
domains. In regenerative medicine, in addition to deliver-
ing mRNA encoding regeneration-related factors directly
to induce tissue regeneration [302], reprogramming mature
somatic cells into pluripotent stem cells through in vitro
mRNA transfection may be another attractive strategy.
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7 Conclusions

Decades of research have culminated in the rapid develop-
ment of mRNA-based therapeutics. The success of mRNA
COVID-19 vaccines has highlighted the significant advan-
tages of this approach, including promising preventive and
therapeutic efficacy, safety with respect to genetic mutations,
relatively low production costs and rapid manufacturing.
These attributes have captured the attention of the scientific
community and spurred extensive research into the funda-
mental components of mRNA.

While the path forward for mRNA-based therapeutics
may not be straightforward with challenges remaining,
the immense potential of this technology is undeniable.
Undoubtedly, mRNA-based therapeutics are poised to revo-
lutionize current drug development paradigms. This trans-
formative technology not only enables pharmaceutical man-
ufacturers to rapidly adapt production pipelines to emergent
needs, but also accelerates the industry transition toward
personalized and precision medicine, which delivers more
comprehensive and timely responses to medical demands
and provides patients with significantly improved therapeu-
tic precision. Real-time medicine, which integrates rapid
response and precision medicine, will be enabled by mRNA
therapeutics. Further breakthroughs in mRNA structural
modifications and delivery systems are on the horizon, pav-
ing the way for more mature and innovative mRNA-based
therapeutic strategies that can benefit humanity profoundly.
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