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HIGHLIGHTS

•	 A safety-level-oriented framework is proposed to systematically classify polymer-based flexible health-monitoring devices from 
noninvasive to long-term implantable modalities.

•	 Material–safety relationships are elucidated by mapping hydrogels, elastomers, and conductive composites to modality-specific 
requirements in mechanical compliance, biochemical stability, electrical safety, and long-term biointegration.

•	 Time-scale-dependent design principles are summarized to guide future development of safe, adaptive, and clinically translatable 
polymer-based monitoring systems.

ABSTRACT  Health monitoring is becoming increasingly 
critical for disease prevention, early diagnosis, and high-
quality living. Polymeric materials, with their mechanical 
flexibility, biocompatibility, and tunable biochemical prop-
erties, offer unique advantages for creating next-generation 
personalized devices. In recent years, flexible polymer-based 
platforms have shown remarkable potential to capture diverse 
physiological signals in both daily and clinical contexts, 
including electrophysiological, biochemical, mechanical, and 
thermal indicators. In this review, we introduce a safety-level-
oriented framework to evaluate material and device strate-
gies for health monitoring, spanning the continuum from 
noninvasive wearables to deeply embedded implants. Physi-
ological signals are systematically classified by use case, and 
application-specific requirements such as stability, comfort, and long-term compatibility are highlighted as critical factors guiding the selection of 
polymers, interfacial designs, and device architectures. Special emphasis is placed on mapping material types—including hydrogels, elastomers, 
and conductive composites—to their most suitable applications. Finally, we propose design principles for developing safe, functional, and adaptive 
polymer-based systems, aiming at reliable integration with the human body and enabling personalized, preventive healthcare.
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1  Introduction

Health monitoring plays an increasingly vital role in mod-
ern disease prevention and the pursuit of high-quality liv-
ing [1–4]. The rising prevalence of chronic disease, coupled 
with global population aging, has created an urgent demand 
for continuous, personalized, and preventive medical strat-
egies [5–7]. In parallel, the rapid expansion of wearable 
technologies and digital healthcare platforms underscores 
the expectation that health‑monitoring devices operate reli-
ably in both clinical and everyday environments [8]. Beyond 
episodic diagnostics, there is a shift toward longitudinal 
tracking of digital biomarkers—capturing physiology dur-
ing sleep, exercise, and daily routines—to enable earlier 
intervention and more equitable access to care [9]. These 
societal and medical drivers set the stage for materials and 
device concepts that can bridge the gap between technologi-
cal performance and human adaptability [10].

Against this backdrop, polymeric materials have emerged 
as particularly promising candidates for health‑monitoring 
devices [11, 12]. Their inherent mechanical flexibility, low 
modulus, and tunable biochemical functionality enable 
platforms that integrate more naturally with the human 
body [13]. Over the past few years, flexible polymer‑based 
devices have demonstrated the ability to capture electro-
physiological [14] (e.g., electrocardiogram (ECG), electro-
encephalogram (EEG) and electromyogram (EMG), biome-
chanical (pressure, strain) [15], and biochemical (sweat or 
interstitial‑fluid analytes)) [16] signals across diverse sce-
narios. Unlike traditional rigid electronics, which often suf-
fer from mechanical mismatch with soft tissues—leading to 
discomfort, unstable signal acquisition, or even tissue irrita-
tion—polymer‑based platforms provide intimate, conform-
able interfaces with skin, mucosa, and internal organs [17]. 
Hydrogels [18], elastomers [19], and conductive polymers 
[20], for instance, each contribute unique properties that 
collectively allow soft, biocompatible, and multifunctional 
integration. Furthermore, advances in stretchable inter-
connects, soft encapsulants, and textile‑grade substrates 
have improved device robustness and enabled unobtrusive 
form factors compatible with daily use [21, 22]. These 
advances highlight not only the technical feasibility of pol-
ymer‑based systems but also their relevance to unmet needs 
in real‑world healthcare.

However, the translation of such promising platforms 
requires considerations beyond conventional performance 
metrics. While sensitivity, selectivity, and durability 
remain crucial, safety has emerged as a decisive factor for 
real-world (i.e., clinically and daily-life relevant) deploy-
ment [23]. Biological safety spans both acute and chronic 
dimensions, including cytotoxicity, irritation and sensi-
tization, fibrotic encapsulation, foreign-body responses, 
and long-term mechanical damage arising from modulus 
mismatch or interfacial friction [24, 25]. Chemical safety 
must be ensured by stable encapsulation, minimization 
of leachable species such as residual monomers, plasti-
cizers, or degradation by-products, and careful control of 
electrolyte and solvent exposure [26–28]. Electrical safety 
requires robust insulation, strict adherence to leakage-
current thresholds (as defined by IEC 60601‑1 standards), 
and fail-safe operation under physiologically relevant con-
ditions such as perspiration, repetitive motion, and laun-
dering [29, 30]. In addition, failure modes typical of soft 
materials—such as delamination at soft–hard interfaces 
[31], moisture-induced corrosion [32], ionic drift [33], 
and fatigue cracking under repeated strain [34]—directly 
impact safety, reliability, and data fidelity. Despite their 
importance, these concerns have often been treated as sec-
ondary to functional optimization in device development, 
creating a persistent gap between device capability and 
biological integration [35].

Importantly, these safety considerations have become 
increasingly prominent as the field has progressed from early 
noninvasive wearables to microinvasive platforms and, more 
recently, implantable bioelectronic systems. To contextual-
ize this evolution, Fig. 1 summarizes both the rising publi-
cation trend and the key technological milestones that have 
shaped flexible polymer-based electronics for human health 
monitoring. These milestones reveal a steady shift toward 
deeper tissue interfaces, higher biosafety demands, and more 
sophisticated polymer architectures.

Building on this historical and technological context, this 
review introduces a safety-level-oriented framework for eval-
uating polymer-based flexible electronics for health moni-
toring. Devices are categorized according to their degree of 
invasiveness and duration of contact with the human body, 
ranging from noninvasive, microinvasive, and short-term 
implantable to long-term implantable systems, with corre-
sponding biomarkers, within a closed-loop framework that 



Nano-Micro Lett.          (2026) 18:213 	 Page 3 of 24    213 

involves monitoring, assessment, and intervention (Fig. 2). 
While previous reviews have catalogued flexible polymer-
based wearables and implants primarily by material class 
or sensing function, none has provided an invasiveness- and 
contact-duration-based structure that links biosafety bur-
den directly to polymer design. By contrast, our framework 
offers a modality-integrated, safety-driven perspective that 
complements existing reviews and uniquely captures the 
challenges faced by emerging soft, transient, and multifunc-
tional devices. Each category imposes distinct functional 
and biosafety requirements—including mechanical compli-
ance, chemical stability, degradation behavior, and immune 
tolerance—which directly dictate material selection and 
device architecture.

By aligning material design with safety-level require-
ments across diverse application scenarios, this review 
aims to bridge the gap between device performance and 
biological integration. Ultimately, the goal is to promote 
safer, smarter, and more adaptable health-monitoring sys-
tems capable of seamless operation in both clinical and 
everyday contexts.

Fig. 1   Rising publication trend and representative development timeline of flexible polymer-based electronics for human health monitoring. 
Publication counts were extracted from the Web of Science database, with the dataset updated to November 2025. Reproduced with permission.  
Copyright 2004, National Academy of Sciences [36]; Copyright 2011, Springer Nature [37]; Copyright 2011, The American Association for the 
Advancement of Science [38]; Copyright 2011 Elsevier [39]; Copyright 2015, The American Association for the Advancement of Science [40]; 
Copyright 2015, Springer Nature [41]; Copyright 2016, Springer Nature [42]; Copyright 2016, Springer Nature [43]

Fig. 2   Illustration of safety-level-oriented electronics in human 
health monitoring
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2 � Safety‑Level of Polymer Flexible Electronics 
in Human Health Monitoring

2.1 � Noninvasive Modality

Noninvasive flexible electronic devices, typically worn on 
the skin surface, represent the least intrusive class of health-
monitoring technologies. Based on their working modality, 
these systems can be broadly divided into two categories 
[44, 45]. The first relies on direct physical contact with the 
epidermis [46]. Leveraging the intrinsic softness, stretch-
ability, and conformability of polymeric substrates, such 
devices achieve intimate coverage of complex skin surfaces, 
thereby enabling continuous and high-fidelity sensing with-
out breaching the skin barrier. For example, a 15-μm-thick 
skin-like health patch integrating a stretchable organic light-
emitting diode display with a stretchable organic photop-
lethysmography sensor enables real-time heart-rate measure-
ment and display [47] (Fig. 3a). Through robust skin–sensor 
coupling, these devices can capture both biophysical and 
biochemical signals [48]. Biophysical parameters are tem-
perature, motion, pressure, strain, and electrophysiological 
activity (e.g., ECG, EMG, EEG). Meanwhile, biochemical 
signals can be acquired through sweat analysis, covering 
metabolites (e.g., glucose, lactate, cortisol), electrolytes, 
and pH [49] (Fig. 3b). To meet the critical requirement of 
breathability for practical applications, a three-dimensional 
(3D) liquid diode strategy was developed, offering superior 
long-term stability and user comfort even under sweating 
conditions, thereby underscoring its potential for scalable 
and user-friendly wearable devices [50] (Fig. 3c). Compared 
with conventional fabrics, the hydrophilicity-gradient chan-
nel rapidly pumps out sweat as droplets and accelerates their 
detachment from the back side. Increasingly, multimodal 
sensing systems that integrate both categories are being 
developed to provide comprehensive physiological profil-
ing. Such noninvasive platforms show strong promise not 
only in fitness tracking, sleep quality assessment, hydration 
monitoring, and stress evaluation, but also in chronic disease 
management and telemedicine applications, where at-home 
continuous monitoring supports early diagnosis and remote 
clinical decision-making. For example, an individual’s 
behavioral responses can be accurately predicted through 
simultaneous monitoring of pulse waveform, tempera-
ture, and alcohol levels using machine learning-integrated 

electronic skins (e-skins) composed of multidimensional 
nanomaterials, polymers, and hydrogels. Such low-cytotox-
icity 3D-printed biochemical sensors conformally adhere 
to the skin and exhibit excellent selectivity and stable per-
formance under mechanical deformation [51] (Fig. 3d). By 
integrating multimodal flexible sensor patches with accel-
erometers, edge computing enables real-time detection of 
abnormalities such as arrhythmias, coughs, and falls [52]. 
Leveraging real-time detection of three key Parkinson’s dis-
ease biomarkers (levodopa, glucose, and ascorbic acid), a 
polyethylene terephthalate (PET)-based patch integrating 
Cu-oxidase hybrid nanoflowers can continuously monitor 
biomarkers, evaluate disease progression, and optimize 
medication management [53] (Fig. 3e).

The second category involves indirect or non-conformal 
modalities, in which signal acquisition does not depend on 
adhesive skin contact but rather on integration into textiles, 
accessories, or soft exoskeletal components. A smart tex-
tile system composed of thermally sensitive and conductive 
graphene/Fe2(MoO4)3/TPU fibers and nylon monofilament 
enables simultaneous mapping of temperature and pressure 
distributions at the contact interface [54] (Fig. 3f). Flex-
ible photonic and thermal sensors embedded in garments or 
accessories can capture reflected or emitted signals without 
requiring close skin adhesion [55]. A dual-mechanism flex-
ible iontronic pressure sensor composed of polyurethane 
(PU) and iontronic fabric delivers a linear capacitance–pres-
sure response, enabling early fracture-risk prediction with 
only 1.8% error in ground-reaction-force estimation (vs. 
6.5% for nonlinear sensors) [56]. Similarly, soft wearable 
sleeves or gloves integrating a thread battery, thread sensor, 
and thread electroluminescent device provide a mechani-
cally coupled alternative to adhesive bonding for real-time 
biochemical monitoring and display. To address interfacial 
stability arising from highly curved textile surfaces in par-
ticle use, twisted fibers were employed, leveraging their 
intrinsic tensile tension to enhance contact robustness [57, 
58] (Fig. 3g). These approaches offer enhanced wearability, 
unobtrusiveness, scalability, and long-term durability, mak-
ing them particularly attractive for continuous monitoring in 
daily life. However, the lack of direct coupling introduces 
challenges such as motion-induced artifacts, baseline drift, 
and reduced sensitivity [59, 60]. Addressing these limita-
tions requires material-level optimization (e.g., low-noise 
conductive polymers, breathable substrates) and system-
level strategies [61].
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In both categories, polymeric materials are central to 
device performance. Mechanically, they provide tunable 
elasticity and conformability for secure interfacing with skin 
[63, 64]. Functionally, they serve as active sensing com-
ponents, including conductive polymers for electrophysiol-
ogy, ion-sensitive hydrogels for biochemical monitoring, and 
nanocomposite films for signal enhancement [65–67]. Com-
fort and wearability are further improved through porous 
substrates and hydrogel-based contact layers, which reduce 
irritation during prolonged use [68]. In addition, emerging 
efforts focus on biodegradable and recyclable polymers, sup-
porting both user safety and environmental sustainability 
[69]. Bioinspired adhesives, hydrogel-based interfaces, and 

microstructured elastomeric films are increasingly employed 
to enhance adhesion without sacrificing comfort [70, 71].

Although noninvasive devices are generally consid-
ered safe, long-term continuous wear may induce unin-
tended effects, including irritation, sweat accumulation, 
and microbial growth—particularly under occlusive 
patches. Occlusion leads to a rapid increase in the local 
relative humidity (RH) at the skin–device interface, typi-
cally reaching 80%–95% within hours, increased tran-
sepidermal water loss (TEWL) fluctuation, and sweat 
accumulation [72]. These moisture-driven changes sof-
ten the skin, increase frictional irritation, and destabi-
lize electrode–skin impedance, thereby reducing signal 
stability during long-term wear [73]. Microbiologically, 

Fig. 3   a Schematic of the skin-like health care patch attached to the forearm to measure the heart rate.  Copyright 2021, The American Associa-
tion for the Advancement of Science [47]; b Preparation of carbon-based conductive threads and sensing threads [49]; c Illustration of the three-
dimensional liquid diode. Reproduced with permission. Copyright 2024, Springer Nature [50]; d Design of the 3D-printed microfluidics for 
sweat induction, sampling, and multiplexed analysis [51]; e Schematic illustration of the integrated wearable sweat sensing patch. Reproduced 
with permission. Copyright 2025, John Wiley and Sons [53]; f Schematic illustration of the smart textile worn on the human body to simultane-
ously monitor temperature and pulse/touch with discriminability. Reproduced with permission. Copyright 2022, Elsevier [54]; g Photographs 
of the garment with the integrated textile system [58]. Scale bar, 10 cm. Reproduced with permission. Copyright 2024, Springer Nature; h Skin 
regeneration monitoring over a period of 2 weeks. “W/o e-skin” refers to naked skin without electronic skins, while “W/ e-skin” refers to skin 
covered by electronic skins. Scale bar, 5 mm. Copyright 2021, The American Association for the Advancement of Science [62]
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Gram-negative bacteria typically require RH > 90%–95%, 
conditions rarely encountered on uncovered skin but read-
ily achieved under occlusion. In contrast, Staphylococcus 
spp.—the dominant commensals in occluded environ-
ments—readily proliferate at RH as low as 81%–87% and 
develop enlarged cell size and thickened cell walls under 
low-water-activity conditions [74]. These shifts increase 
the likelihood of irritation and microbially driven discom-
fort. Therefore, vapor-permeable substrates, porous micro-
vented designs, and antimicrobial or biofouling-resistant 
coatings are essential to maintain a breathable interface 
that limits RH excursions, preserves user comfort, and 
stabilizes epidermal impedance and improves noninvasive 
signal fidelity.

Beyond the development of new substrates—such as 
tunable polymeric materials including PET, polyethylene 
naphthalate (PEN), polyimide (PI), and elastomeric ther-
moplastic polyurethane (TPU)—even commercial prod-
ucts with high moisture vapor transmission rates and well-
matched elasticity do not necessarily achieve improved user 
perception or long-term durability [75]. Addressing these 
risks has motivated the development of moisture-permeable 
substrates, antimicrobial coatings, and controlled release 
of skin-soothing agents, along with disposable or reusable 
device architectures. As an example, a sweat-pore-inspired 
perforated e-skin enables reliable 2-week monitoring with-
out disturbing the skin’s recovery process [62] (Fig. 3h). 
While such strategies significantly improve comfort and 
safety, it remains challenging to ensure signal fidelity over 
extended timeframes, particularly in high-motion or high-
sweat environments. More importantly, signal distortion or 
drift during long-term use may induce adverse psychological 
effects or contribute to the onset and aggravation of mental 
disorders. Although machine learning strategies can mitigate 
these issues to some extent [76–80], potential psychologi-
cal implications remain underexplored in current literature, 
highlighting the need for interdisciplinary evaluation involv-
ing materials science, physiology, and mental health [81]. 
This bottleneck underscores the inherent trade-off of non-
invasive modalities: While biologically safe, their sensing 
sensitivity and selectivity remain constrained by the barrier 
function of skin. Consequently, noninvasive devices, despite 
their progress, face fundamental bottlenecks in detecting 
low-abundance biomarkers and achieving precise molecu-
lar readouts. These limitations have driven growing interest 
in microinvasive modalities, which extend sensing depth 

while still aiming to minimize discomfort and biological 
risk. Importantly, the boundary between noninvasive and 
microinvasive systems is not discrete; instead, they exhibit 
a partial overlap in characteristic operational depth due to 
inter-individual and anatomical variations in epidermal 
thickness [82], the distributed nature of device penetration 
[83], and the ability of both modalities to probe near-surface 
physiological signals [84].

2.2 � Microinvasive Modality

Microinvasive flexible electronic devices represent an 
intermediate class of health-monitoring systems, situated 
between surface-worn wearables and fully implantable 
platforms (Fig. 4a). These devices partially penetrate bio-
logical barriers such as the stratum corneum, oral mucosa, 
or superficial subcutaneous tissues to access richer and 
more immediate biological signals, while minimizing pain, 
bleeding, and long-term tissue disruption [85]. Compared 
with noninvasive modalities, microinvasive systems pro-
vide enhanced biochemical sensitivity, particularly for 
interstitial fluid (ISF) biomarkers such as glucose, lactate, 
and cytokines. Their closer interfacing enables faster ana-
lyte transport, reduced signal delay, and improved temporal 
resolution, thereby enhancing both sensitivity and sampling 
stability [86, 87].

Representative microinvasive modalities can be broadly 
divided into three categories. Mucosa-interfacing patches 
are designed to adhere to oral, buccal, or nasal mucosa [88]. 
Utilizing bioadhesive hydrogel matrices or mucoadhesive 
polymers (e.g., contact lens, silicone elastomer), these 
patches form stable interfaces with moist tissues, enabling 
monitoring of saliva-based analytes such as electrolytes, 
cortisol, and inflammatory proteins [89, 90]. The wearable 
mouthguard-type sensor, encapsulated with polyethylene 
terephthalate-glycol (PETG) and ethylene–vinyl acetate 
(EVA), enables continuous and unobtrusive measurement 
of salivary turbidity, showing strong potential for real-
time oral hygiene monitoring (Fig. 4b) [91]. This strategy 
also enables monitoring of salivary uric acid, a biomarker 
associated with various diseases. Specifically, an enzyme 
(uricase)-modified electrode system is integrated onto a 
flexible PET substrate via well-established screen-printing 
technology, resulting in a comfortable wearable device [92]. 
Flexible devices operating on the ocular surface mucosa can 
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quantitatively monitor glucose levels in basal tears while 
excluding the influence of reflex tears, which may other-
wise weaken the correlation with blood glucose (Fig. 4c). 
In this case, the lag time of glucose levels, captured by the 
electrochemical glucose biosensor, enables personalized 
assessment of an individual’s health status, benefiting from 
sub-minute resolution [93]. Soft bioelectronic threads or 
filaments, inserted subdermally through minimally invasive 
procedures, enable monitoring of temperature, electrophysi-
ological activity, pH, or metabolites [94]. Their thread-like 
geometry allows conformal placement along dynamic tissues 
while ensuring ease of removal after short-term monitor-
ing. Microinvasive probes have been developed to monitor 
electrical and chemical neural activity, consisting of metal 
rods and carbon fibers encapsulated with flexible parylene 
coatings to provide electrical insulation [95]. However, for 
monitoring electrical and chemical neural activity, it should 
be noted that to meet the requirements of primate record-
ing chambers and the tube insertion protocols that must 
pass through the stiff outer meningeal membranes, the flex-
ible portion had to be restricted to less than 15 μm. The 

remaining length was enclosed in a silicon tube to provide 
sufficient stiffness for manual handling (Fig. 4d). Conduc-
tive polymer coatings and polymer-based selective mem-
branes have also been utilized to develop a microinvasive 
microneedle-based potentiometric sensing system. Such a 
system, which consists of a stainless-steel hollow micronee-
dle housing a set of modified microneedle electrodes, exhib-
its rapid response, excellent reversibility and repeatability, 
and high selectivity for Na+ and K+ analysis in skin ISFs 
[96] (Fig. 4e). Microneedle arrays (MNAs) represent the 
most mature and widely adopted microinvasive approach 
[97, 98]. Constructed from swellable, degradable, or con-
ductive polymers (e.g., polyvinyl alcohol (PVA), polyvi-
nylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA), 
poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate 
(PEDOT:PSS) composites), microneedles enable passive 
ISF extraction, in situ biochemical sensing, and closed-loop 
integration with therapeutic delivery [99–103]. By avoiding 
contact with nerve endings and blood vessels, microneedles 
achieve minimal discomfort and high user compliance. For 
example, PI-based MNA (PI-MNA) electrodes exhibit high 

Fig. 4   a A cross-sectional view of the microneedles piercing the skin to reach the epidermis. The penetration depth is approximately 1 mm. 
Reproduced with permission.  Copyright 2024, Elsevier [108]; b Schematics and photograph of mouthguard-type salivary turbidity sensor [91]; 
c Schematic illustration of the tear glucose monitoring system using the smart contact lens and smart phone [93]; d Overview of the shaft-
assisted microinvasive probes [95]; e An integrated potentiometric sensing system. Reproduced with permission. Copyright 2021, American 
Chemical Society [96]; f Microinvasive biopotential acquisition by a flexible MNA electrode. Reproduced with permission. Copyright 2024, 
Springer Nature [104]; g Illustration of the microneedle array inserted into the dermis and the optical image of the pierced skin [105]
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electrical (the electrode–skin contact impedance is roughly 
1/250 that of standard electrodes) and mechanical perfor-
mance while remaining compatible with wearable wireless 
recording systems [104]. The combination of comfort and 
stability enables clinical long-term continuous monitoring 
for polysomnography (Fig. 4f). For prevalent chronic meta-
bolic diseases such as diabetes, MNA biosensing devices 
enable continuous glucose monitoring with performance 
comparable to commercial blood glucose meters. With a 
penetration depth limited to only 0.5 mm, these devices offer 
a minimally invasive alternative that may open new avenues 
for diabetes monitoring and management [105] (Fig. 4g).

Within these modalities, polymeric materials underpin 
critical design trade-offs. Mechanically, tips must be stiff 
enough to penetrate skin yet compliant enough to avoid irri-
tation. Composite strategies such as core–shell structures 
and shape-memory polymers are commonly used to balance 
these requirements [106]. Biocompatibility is addressed 
through degradable polymers such as PLGA, gelatin meth-
acrylate, and silk fibroin, which enable benign degradation 
or safe removal [107]. Functionally, conductive polymers 
facilitate electrophysiological recording and electrochemical 
readouts, while hydrophilic networks enhance ISF absorp-
tion and ionic transport. Increasingly, anti-biofouling or 
hemocompatible coatings are applied to mitigate protein 
adsorption and infection risk, while stimuli-responsive pol-
ymers provide on-demand insertion, dissolution, or signal 
transduction.

Compared with noninvasive devices that often suffer 
from motion-induced artifacts and delayed analyte trans-
port, microinvasive modalities inherently provide improved 
temporal fidelity and reduced baseline drift, albeit at the cost 
of introducing new biocompatibility challenges and unique 
safety concerns. Repeated applications may cause localized 
erythema or inflammation, and mucosal deployment carries 
elevated infection risk. Moreover, incomplete dissolution 
or material retention presents additional hazards if device 
degradation is not tightly controlled. Strategies to address 
these challenges include antimicrobial coatings, swellable 
insertion–retrieval mechanisms, and fully bioresorbable 
architectures [109]. However, achieving consistent safety 
across diverse users and environments remains challenging, 
and current regulatory frameworks for microinvasive sys-
tems are less established compared with fully implantable 
devices [110].

Overall, microinvasive polymer-based devices offer a 
valuable compromise between safety and signal richness, 
providing direct access to biomarkers that remain inacces-
sible to surface wearables. They show particular promise 
for real-time glucose monitoring, point-of-care diagnos-
tics, and temporally resolved stress biomarker tracking. 
Yet, their long-term reliability and standardization remain 
open challenges. Future progress will likely emphasize 
closed-loop therapeutic integration, wireless communica-
tion modules, and adaptive polymeric platforms capable 
of dynamically responding to physiological environments, 
alongside the development of regulatory guidelines to 
accelerate clinical translation.

2.3 � Short‑term Implantable Modality

Short-term implantable devices are designed for acute 
and time-limited clinical needs, operating within hours to 
several weeks and targeting postoperative states, transient 
dysfunction, and early-phase physiological changes. Func-
tionally, their purpose is to provide high-fidelity access 
to local biological environments during short therapeutic 
windows, after which the device is safely removed or fully 
bioresorbed.

Short-term implants are typically deployed in subcuta-
neous, intra-organ, or mucosal sites for postoperative mon-
itoring, acute disease detection, or temporally localized 
therapeutic feedback [111]. Representative applications 
can be broadly grouped into four categories: (a) monitor-
ing wound healing or inflammation after surgery [112]; (b) 
acquiring short-term electrophysiological signals in neural 
or cardiac tissue; (c) mapping pressure, temperature, pH or 
other biomarkers within localized internal regions of the 
body; and (d) assessing drug response in localized can-
cer therapy [113]. Each category corresponds to a distinct 
short-term clinical need and leverages polymeric materials 
in different ways.

In the first category, a biodegradable and restorative 
neural interface has been designed to enable concurrent 
monitoring and facilitation of long-gap nerve repair within 
a defined timeframe aligned with the critical initial phase 
of nerve recovery (Fig. 5a). The use of flexible, biode-
gradable polymer substrates and shape-memory polymer 
films (poly(l-lactic acid) (PLLA) and poly(trimethylene 
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carbonate) (PTMC)) facilitates surgical placement of the 
device onto injured nerves [114]. Beyond relying on costly 
imaging modalities or invasive biopsies, arrays of small 
bioresorbable metal disks embedded within hydrogels 
enable real-time monitoring of deep-tissue homeostasis 
using conventional ultrasound instruments [115]. Col-
lections of small bioresorbable metal disks embedded in 
thin, pH-responsive hydrogels enable ultrasound-based 
monitoring of spatiotemporal pH changes for early detec-
tion of anastomotic leaks after gastrointestinal surgery. 
Importantly, although the hydrogel–metal constructs may 
require up to several weeks for complete bioresorption, 
the operational sensing window remains confined to the 
early postoperative period, eliminating the need for surgi-
cal removal (Fig. 5b).

In the second category, short-term electrophysiological 
monitoring is achieved using biodegradable sensor arrays. 
For instance, a biodegradable sensor array fabricated from 
PLLA (approximately 1-year degradation time in simulated 
body fluid, SBF) with biodegradable magnesium (degra-
dation within 24 h in SBF) and nanoparticles (two-month 
degradation in SBF), enabling detection of multiple cardiac-
related biomarkers, including pressure, lactic acid, pH, and 
volatile organic compounds [116] (Fig. 5c). Here, the active 
monitoring duration remains within days to weeks, despite 
the slower degradation of certain structural components. 
To address the challenge of real-time evaluation of motor 
function recovery following nerve injury, an implantable 
piezoelectric sensor fabricated from degradable PLLA has 
been developed (Fig. 5d). By doping with barium titanate 

Fig. 5   a Biodegradable, restorative, and self-morphing neural interface. Accelerated dissolution was performed in PBS at pH 7.4 and 60 °C 
[114]; b Bioresorbable shape-adaptive ultrasound-readable material structures for real-time monitoring of homeostasis in deep tissues. Repro-
duced with permission.  Copyright 2025, Springer Nature [115]; c Biodegradable multiplex nanosensor platform for cardiac monitoring [116]; d 
Evaluation of the motion function in vivo and the photographs of the degradable condition of PCL films and PLLA/BTO. Reproduced with per-
mission. Copyright 2024, John Wiley and Sons [117]; e Materials and designs for flexible and transient NO sensors [118]; f Diagram showing 
metagels as wireless intracranial physiology sensors using ultrasound reflection. Reproduced with permission. Copyright 2024, Springer Nature 
[119]; g Concept of in vivo monitoring of doxorubicin in tissue using a bioresorbable sensor coupled with a wearable readout patch. Reproduced 
with permission. Copyright 2025, The American Association for the Advancement of Science [120]
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(BTO), the platform converts biochemical signals into elec-
trical outputs that correlate with EMG signals and motor 
function [117].

In the third category, short-term implants map local bio-
chemical and physicochemical environments. Precisely 
capturing nitric oxide (NO)—an essential mediator in neu-
rotransmission, immune responses, cardiovascular regula-
tion—in physiological environments is highly challenging 
due to its short half-life, low concentration, high chemical 
reactivity, and interference from other biomolecules (e.g., 
glucose, nitrites, and uric acid) [118]. To address this, a 
flexible and degradable platform has been developed, offer-
ing a low detection limit (3.97 nmol), high temporal resolu-
tion, and wide sensing range (0.01–100 μM) over a period 
exceeding 5 days. Equipped with a wireless module, the 
device enables real-time monitoring of NO evolution in 
cultured cells and organs, providing critical information for 
health assessment, treatment optimization, and postsurgical 
monitoring (Fig. 5e). A bioresorbable and wireless metas-
tructured hydrogel (metagel) sensor for ultrasonic monitor-
ing of intracranial signals has been fabricated using bio-
degradable, stimulus-responsive hydrogels combined with 
periodically aligned air columns [119]. This metagel sensor 
enables independent detection of intracranial pressure, tem-
perature, pH, and flow rate and achieves a detection depth of 
up to 10 cm, while the construct undergoes complete deg-
radation after ~ 18 weeks. Importantly, the sensing function 
is restricted to the acute-to-subacute postoperative period 
(Fig. 5f).

In the fourth category, short-term implants assess local 
drug response in cancer therapy. Such systems provide a 
route to balancing therapeutic efficacy and toxicity through 
precise, real-time drug monitoring at the target site, thereby 
enabling clinicians to optimize dosing during cancer treat-
ment and reduce the risk of locoregional recurrence after 
tumor resection [120]. Take the pharmacokinetics of doxo-
rubicin (chemotherapy medication used to treat cancer) as an 
example, the biodegradable sensor based on bioreceptor and 
PLGA foil achieves a limit of detection of 3 ng mL−1 and 
no signs of systemic toxicity, histological, or biochemical 
alterations over a 3-month period. Despite the long evalua-
tion timeframe, the device’s active sensing window remains 
confined to the early therapeutic phase (Fig. 5g).

Together, these representative applications high-
light the versatility of short-term implantable devices 
across structural, electrophysiological, biochemical, and 

pharmacological domains. Across these diverse use cases, 
devices must remain biocompatible and non-inflamma-
tory during the operational window, while permitting safe 
removal or complete bioresorption after use. Relative to 
microinvasive strategies, short-term implants offer higher 
signal fidelity due to their stable embedding in tissue and 
direct access to less-diluted biofluids such as blood, lymph, 
or organ-specific exudates. Additionally, mechanical isola-
tion from surface motion artifacts improves stability of sig-
nal acquisition [121].

Polymers used in short-term implants must offer a finely 
tuned balance between mechanical robustness and tem-
porary biostability. The defining requirement is that their 
functional integrity matches the clinically relevant win-
dow of hours to several weeks, irrespective of the total 
degradation duration. Bioresorbable polymers, such as 
PLLA, PLGA, polycaprolactone (PCL), and citrate-based 
elastomers, are particularly attractive due to their ability 
to degrade within hours to days or even weeks depend-
ing on molecular weight, crystallinity, and pH [122–124]. 
For temporary electrophysiological monitoring, transient 
conductive materials are embedded in degradable matrices 
or silk–metal hybrids. Hydrogel-based sensors also play a 
prominent role in vivo, where ionic or enzymatic sensing 
elements can be embedded within cross-linked hydrogel 
scaffolds for detecting metabolites, cytokines, or drug con-
centrations. Meanwhile, thin polymer encapsulation lay-
ers such as polyimide or polyurethane enable temporary 
isolation of wireless modules, which can be retrieved or 
dissolved following operation.

Degradation kinetics critically shape the short-term safety 
of transient implants. Bulk-eroding polymers such as PLGA 
and citrate-based elastomers (e.g., poly(octamethylene 
maleate (anhydride) citrate), POC) absorb water throughout 
the matrix and undergo autocatalytic hydrolysis, producing 
localized acidic microenvironments that accelerate modu-
lus loss and may trigger transient inflammation [125, 126]. 
In contrast, surface-eroding systems such as poly(glycerol 
sebacate) (PGS) and polyanhydride (PAH) degrade in a 
layer-by-layer manner, offering linear and geometry-pre-
serving mass loss with minimal pH drift [127, 128]. These 
differences highlight the need to report mass loss curves, 
modulus retention, and local pH trajectories under physio-
logically relevant conditions and to employ buffering fillers, 
hydrophilic comonomers, or porosity control to moderate 
erosion-induced safety risks.
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Although transient implants circumvent many chronic 
risks inherent to permanent systems, the acute responses 
arising within hours to days demand equally rigorous mate-
rial safety considerations [129]. Local immune responses 
triggered by device insertion, toxic degradation by-products, 
or early device failure due to unstable barrier layers remain 
important concerns. Tissue encapsulation or adhesion during 
the monitoring period can also complicate device removal. 
These risks highlight the importance of designing polymers 
with predictable degradation kinetics, non-toxic metabolites, 
and reliable mechanical integrity within the intended opera-
tional window [130, 131].

Future directions for short-term implants will likely 
emphasize fully biodegradable wireless systems, eliminating 
the need for surgical retrieval. Self-powered devices using 
enzymatic biofuel cells or thermoelectric harvesters may 
further enhance practicality. Modular device architectures 
that allow controlled breakdown, on-demand retrieval, and 
multimodal sensing–therapy integration are also promis-
ing. However, a key challenge remains in balancing device 
robustness with safe degradation: Excessive stability risks 
tissue encapsulation, while premature breakdown compro-
mises data reliability. Addressing this trade-off will be cru-
cial for clinical adoption, and bridging this gap will require 
close alignment of degradation kinetics with clinically rel-
evant monitoring windows, as well as standardized in vivo 
models for preclinical validation.

2.4 � Long‑term Implantable Modality

By contrast, long-term implantable devices in this review 
refer to platforms designed for chronic and progressive med-
ical conditions, requiring continuous and stable operation 
for periods exceeding approximately three months. Their 
purpose is to support sustained physiological monitoring or 
closed-loop therapy in dynamic biochemical and mechanical 
in vivo environments, where durable biostability, immune 
modulation, and long-term mechanical and electrochemical 
reliability are essential.

Long-term implantable devices target fundamentally dif-
ferent clinical objectives from short-term systems, enabling 
persistent monitoring in chronic disease management [132], 
neural and cardiovascular monitoring [133], and closed-loop 
therapeutic systems [134]. Unlike transient or microinvasive 
platforms, these devices must withstand prolonged exposure 

to chemically aggressive biofluids, cyclic mechanical load-
ing, and evolving immune activity, while maintaining sta-
ble signal coupling and functional integrity—often without 
the possibility of device retrieval. Representative platforms 
include chronic brain–computer interfaces, long-term glu-
cose or ion-homeostasis monitors, soft tissue strain sen-
sors for ligament reconstruction, and implantable vascular 
sensors capable of multi-month hemodynamic assessment. 
Collectively, these applications require reliable performance 
over multi-month to multi-year timescales, well beyond 
the acute therapeutic windows addressed by short-term 
implants.

To illustrate, an implantable hydrogel platform embedded 
with luminescent polymer dots has been developed for sen-
sitive, long-term glucose monitoring, exhibiting no migra-
tion and maintaining intrinsic sensing properties with excel-
lent stability for up to one month [135]. The extraordinary 
brightness of the polymer dot transducers enables real-time 
in vivo glucose monitoring through transdermal optical sig-
nal detection (Fig. 6a). For vascular diseases, a hemody-
namic monitoring system has been constructed based on a 
wireless stent platform integrated with PI, silver nanopar-
ticles, and polydimethylsiloxane (PDMS) to form stretch-
able, soft pressure sensors (Fig. 6b). In an arterial model, 
the wireless system monitors changes in systemic pressure, 
flow rate, and pulse rate, as well as sudden abnormal fluc-
tuations [136]. To address the monitoring of postoperative 
complications from severe sports injuries, a strain sensor 
with a double-helix configuration—based on PEDOT:PSS 
and encapsulated with poly(chloro-para-xylylene) (parylene-
C)—has been developed, demonstrating accurate monitoring 
capability and stable performance within the 0–10% strain 
range with a minimum detection threshold of 0.25% [137]. 
As illustrated in Fig. 6c, the wireless sensor can be inte-
grated into complex surgical constructs for lateral collateral 
ligament repair or anterior cruciate ligament reconstruction, 
enabling distinct responses to graft stretching, reinjury, and 
loosening. Despite their distinct clinical contexts, all three 
systems exemplify the demand for durable, stable sensing 
across extended recovery periods and long-term disease 
management windows.

However, long-term use inevitably introduces complica-
tions such as chronic immune response, fibrotic encapsula-
tion, biofouling, signal drift, and material fatigue. At the 
micro- and nanoscale, long-term biocompatibility is largely 
determined by the earliest interfacial events. Zwitterionic 
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hydrogels suppress nonspecific protein adsorption and mac-
rophage recruitment, enabling fibrosis-free implantation 
in vivo [138]. PEG–phosphorylcholine hydrogels further 
show that soft, tissue-like moduli yield significantly thinner 
capsules than stiffer networks [139]. Surface micro/nano-
topography also regulates macrophage behavior: engineered 
patterns that induce elongated morphology bias cells toward 
anti-inflammatory M2 phenotypes and reduce collagen dep-
osition and FBR severity [140–142]. Mechanically robust 
zwitterionic hydrogels integrate these chemical and struc-
tural cues, mitigating chronic inflammation and maintaining 
long-term interface stability [143]. In addition, compliant 
ultrathin polymer substrates help preserve tissue–device 
mechanical coupling and suppress strain-transfer instability, 
a major precursor of chronic impedance drift and long-term 

signal degradation in dynamic organs [40]. Together, these 
findings highlight that surface chemistry, wettability, and 
topography at the first tens to hundreds of nanometers criti-
cally determine capsule thickness, impedance drift, and 
long-term signal fidelity.

Polymeric materials provide a wide toolbox to address 
these challenges. Encapsulation polymers such as parylene-
C offer excellent barrier properties, preventing fluid ingress 
while maintaining flexibility [144]. PI provides robust ther-
mal and mechanical stability, and medical-grade silicone 
elastomers are valued for elasticity and oxygen permeability, 
though they are less effective barriers against small mol-
ecules [145]. The encapsulation of the stretchable electrode 
layer, piezoelectric transducer, and sensor within a PDMS 
layer enables reconstruction of physiological signals by 

Fig. 6   a Implantable hydrogel platform embedded with luminescent polymer dots for sensitive and long-term glucose monitoring. Reproduced 
with permission.  Copyright 2022, American Chemical Society [135]; b Illustration of the wireless design and sensing scheme to simultane-
ously monitor pressure, heart rate, and flow. Reproduced with permission. Copyright 2022, The American Association for the Advancement of 
Science [136]; c Implantable wireless sensor for tendon and ligament strain monitoring through in situ suturing. Reproduced with permission. 
Copyright 2025, The American Association for the Advancement of Science [137]; d Schematic of monitoring physiological pressure signals 
inside the human body via the circuit-free ultrasonic system (CUS) [145]; e Cross-linking mechanism and adhesive chemistry of silicone-based 
bioadhesive for bonding silicone devices to biological tissues. TEVS, triethoxy vinyl silane; TEPI, triethoxy(3-isocyanatopropyl)silane [159]; f 
Fibrosis-resistant implants allow infusion catheters to be used long term and enable faster insulin absorption. Reproduced with permission. Cop-
yright 2024, Elsevier [148]; g Schematic diagram of flexible and rigid probe implanted in brain tissue. Reproduced with permission. Copyright 
2024, American Chemical Society [151]; h Illustration of conductive coatings during the stability test. Reproduced with permission. Copyright 
2024, John Wiley and Sons [156]; i Design principles of long-term implantable devices for health monitoring
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analyzing the characteristics of reflected ultrasound pulses. 
Because ultrasound exhibits much lower attenuation in the 
human body (− 1 dB cm−1) compared with electromagnetic 
waves (− 3 dB cm−1), the system supports a communication 
depth of up to 14 mm in living organisms (Fig. 6d). While 
inert encapsulation remains a dominant strategy, there is a 
growing recognition that complete biological isolation is 
insufficient [146]. Instead, controlled tissue integration—for 
example, porous elastomers enabling partial cellular infiltra-
tion—has been shown to reduce fibrotic encapsulation and 
improve long-term signal coupling. As shown in Fig. 6e, a 
silicone-based bioadhesive has been formulated to provide 
robust adhesion between hydrophobic silicone devices and 
hydrophilic tissues by mixing soft silicone oligomers with 
siloxane coupling agents and absorbents. The incorporation 
of biodegradable and water-absorbent additives (like starch 
or carbopol) removes surface water and regulates porosity, 
while silane cross-linkers enhance interfacial strength. Over 
time, the bioadhesive transitions from non-permeable to per-
meable through enzyme-mediated degradation, generating 
a porous structure that promotes cell migration and tissue 
integration, thereby enabling durable adhesion. Another 
strategy is exemplified by zwitterionic polymers, such as 
poly(sulfobetaine methacrylate) (PSBMA), which can resist 
protein fouling and macrophage adhesion by forming strong 
hydration shells, significantly enhancing interface stability 
[147]. With in situ-generated pure zwitterionic surfaces, a 
coating-free elastomer that is hydrophobic in bulk exhibits 
superior performance as a fibrosis-resistant implant for up 
to six months of use (Fig. 6f). Specifically, this superior 
performance is achieved by hindering the initial stage of the 
immune cascade through resistance to non-specific protein 
adsorption [148]. Together, these encapsulation and inter-
face-engineering strategies address the chronic challenges 
unique to long-term implantation, including fibrosis, persis-
tent immune activation, and long-term signal drift.

Mechanical mismatch remains another critical issue. Soft 
tissues such as brain or myocardium exhibit bending stiff-
ness orders of magnitude lower than most electronic materi-
als [149]. To address this, ultrathin polymer films (e.g., PI, 
parylene-C, PDMS) below 10 µm in thickness can achieve 
bending stiffness comparable to biological tissue, reducing 
shear stress at the interface [150]. An ultraflexible electrode 
modified with a nanocomposite of reduced graphene oxide 
and PEDOT:PSS establishes a stable electronic interface, 
enabling simultaneous detection of neural electrical activity 

and dopamine concentrations deep within the brain [151] 
(Fig. 6g). Flexible polymers including hydrogels, shape-
memory polymers, and liquid crystal elastomers accommo-
date cyclic organ motion without delamination or cracking 
[152–154]. However, despite advances, achieving true long-
term mechanical compliance remains an unsolved problem, 
particularly for highly dynamic environments like the heart 
or bladder. Long-term mechanical adaptability therefore 
remains one of the central bottlenecks to multi-year implant-
able systems.

For reliable signal acquisition, conductive elements must 
remain electronically and chemically stable for years under 
physiological conditions. PEDOT and PEDOT:PSS are 
attractive for their softness and low impedance, but they still 
suffer from gradual dedoping and loss of conductivity in the 
physiological environment [155]. Density functional theory 
calculations indicate a robust Coulomb interaction between 
PEDOT and 3-mercaptopropionic acid (3-MPA), surpass-
ing PEDOT:PSS. As reported, a hybrid film composed of 
3-MPA-modified gold nanoparticles and PEDOT exhibits 
superior electrochemical and mechanical stability, enabling 
the capture of high-quality, long-term electrophysiological 
signals in vivo and continuous recording of target neurons 
for up to 16 weeks [156] (Fig. 6h). Carbon-based materi-
als such as graphene and carbon nanotube (CNT)–polymer 
composites show promise for enhanced durability, though 
challenges in reproducible large-scale fabrication persist 
[157]. Hybrid metal–polymer systems, combining ultrathin 
noble metals with stretchable substrates, have shown suc-
cess but still face risks of fatigue and corrosion [158]. These 
advances collectively highlight the necessity of developing 
conductive systems capable of maintaining low-impedance, 
high-stability operation over months to years.

Despite these advances, long-term implants remain the 
most demanding modality, requiring simultaneous solutions 
to mechanical, biochemical, and immunological challenges 
[160]. Device failure modes—including delamination, 
fibrotic encapsulation, biofouling, and material degrada-
tion—are not fully eliminated by current polymer strate-
gies [161]. Furthermore, regulatory approval for long-term 
implantable polymers remains stringent, demanding rigor-
ous demonstration of stability, safety, and reproducibility. 
Moreover, the field’s understanding of long-term in vivo 
performance remains incomplete, and careful considera-
tion is required to balance the benefits and risks of lifelong 
or multi-year implantation. For healthy individuals, the 
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necessity of long-term implants for health monitoring is 
questionable. By contrast, an application-oriented design 
principle is far more critical for guiding the development 
of long-term modalities [162]. Looking forward, the design 
of long-term implantable systems will increasingly rely on 
multifunctional polymer interfaces that integrate robust 
encapsulation with immune modulation, anti-biofouling per-
formance, and mechanical adaptability—capabilities essen-
tial for operation beyond three months and into multi-year 
timeframes. Wireless operation with battery-free or circuit-
free designs is essential for developing long-term in vivo 
platforms with minimal risk (Fig. 6i). The integration of AI-
driven monitoring and adaptive therapeutic feedback may 
also become a key direction, enabling devices that not only 
record signals but actively respond to the body’s evolving 
state [163]. Importantly, the molecular tunability and struc-
tural versatility of polymers provide a unique opportunity 
to engineer such interfaces across chemical, mechanical, 
and biological dimensions. Yet, translating these laboratory 
advances into clinically validated systems that operate reli-
ably over years and across human-scale variability remains 
the ultimate bottleneck. Ultimately, the success of long-term 
implantable systems will depend not only on advanced poly-
mer chemistry but also on their ability to demonstrate reli-
able, reproducible, and clinically validated performance over 
multi-month to multi-year operation.

3 � Safety‑level‑oriented Framework 
Integrating Functional Layers 
and Polymeric Material Classes

A safety-level-oriented framework enables polymer-based 
health-monitoring devices to be systematically positioned 
along a continuum from noninvasive to long-term implant-
able systems (Fig. 7). This continuum reflects not only the 
physical depth of device deployment but also the escalating 
biological burdens imposed by tissue contact time, biome-
chanical coupling, and immunological engagement. Such 
a perspective is essential for flexible polymer-based elec-
tronics, whose soft mechanics, biointegration pathways, and 
degradation behaviors extend well beyond the categoriza-
tions traditionally used for rigid medical devices. By struc-
turing the field around operational depth and physiological 
residence time, the framework provides a mechanistic basis 

for comparing device classes that would otherwise be dif-
ficult to evaluate within a single conceptual space.

At the noninvasive level, devices remain external and 
impose minimal biological risk. Their interface function 
relies on soft, breathable, and biocompatible elastomers or 
hydrogels to ensure comfort and stable skin coupling [164]. 
Longer tissue contact time introduces risks of occlusion, 
irritation, and microbial growth, which necessitate the use of 
porous or moisture-permeable films, antimicrobial coatings, 
and hypoallergenic adhesives [165]. In microinvasive modal-
ities, which penetrate only superficial tissues or mucosa, 
both interface and acquisition functions require mechanical 
precision and mild biocompatibility. As tissue contact time 
increases, the likelihood of local inflammation and infection 
also rises. This concern motivates the use of bioresorbable 
microneedles, zwitterionic hydrogels, and antimicrobial 
coatings to support reliable signal capture while minimiz-
ing immune response. At greater tissue depths and residence 
times, the biological burden increases sharply, necessitating 
the shift into short-term implantable modalities. Short-term 
implantable devices, embedded for hours to several weeks, 
face elevated risks of immune activation, tissue adhesion, 
and premature failure of protective layers. These modalities 
require materials that can sustain acquisition and feedback 
functions during transient but direct contact with internal 
tissues. Polymers in this category must exhibit predictable 
short-term stability and non-toxic degradation, with biore-
sorbable scaffolds and drug-eluting hydrogels frequently 
employed. Long-term implantable systems, designed for 
continuous operation over weeks to years, encounter the 
most stringent interface, acquisition, and feedback require-
ments. Persistent tissue contact time increases the risks of 
fibrotic encapsulation, chronic immune activation, biofoul-
ing, and mechanical fatigue. To address these challenges, 
long-term implantable devices rely on robust encapsulation 
materials, ultrathin tissue-matched substrates, electrochemi-
cally stable conductive polymers, and zwitterionic coatings 
to maintain both functionality and biocompatibility.

While this classification is fundamentally governed by 
invasiveness and tissue contact time, the functional require-
ments of each modality, including contact interface, signal 
acquisition, and signal feedback/transmission, directly shape 
the selection of polymeric material classes incorporated 
within these devices. These functional layers and material 
classes together provide a mechanistic basis for understand-
ing how biosafety constraints influence polymer design. 
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To further contextualize how polymeric materials operate 
with these constraints, Fig. 8 illustrates the relationships 
among functional layers, polymer material classes, and the 
modality categories. This mapping highlights the sequential 
nature of material selection in polymeric health-monitoring 
systems. Each modality draws on a characteristic combina-
tion of interface, acquisition and feedback functions, and 
these functional demands guide the use of specific polymer 
families. Hydrogels and elastomers predominantly support 
interface functions in noninvasive and microinvasive sys-
tems due to their softness and tissue-matched mechanics, 
whereas conductive polymers and encapsulation materials 
become increasingly important for acquisition and feedback 
operations as devices move toward short- and long-term 
implantation. Several polymer systems also demonstrate 
multifunctionality within this landscape. Conductive hydro-
gels, ionic elastomers, and other hybrid systems contribute 
simultaneously to more than one functional layer, enabling 
them to operate across adjacent safety levels and facilitating 
smoother transitions between sensing regimes [166, 167].

Taken together, these observations complement the 
safety-level-oriented framework by clarifying how polymer 
classes align with the operational workflow of health-mon-
itoring devices. This integrated perspective illustrates that 

although tissue contact time modulates material demand, 
the degree of invasiveness remains the primary determinant 
of biosafety. The progression from hours to years imposes 
escalating demands on stability, immune compatibility, and 
long-term functional persistence. This reinforces that tis-
sue contact time and invasiveness jointly dictate biosafety 
thresholds and shape the feasible material space for each 
modality. While ISO 10993-1 provides internationally rec-
ognized categories for medical-device biocompatibility, its 
structure—organized around contact type and duration—
does not capture the multilayered interplay among device 
architecture, polymer chemistry, functional roles, and opera-
tional depth that defines flexible polymer-based electronics. 
Rather than replacing ISO standards, our safety-level-ori-
ented framework complements them by offering a modality-
specific, materials-integrated perspective uniquely suited to 
emerging soft, transient, and multifunctional devices, for 
which traditional classifications provide insufficient resolu-
tion. In this sense, the framework functions not only as a 
taxonomic tool but also as a forward-looking design map 
for emerging soft and multifunctional polymeric systems.

By positioning diverse modalities within this unified 
structure, we provide guiding principles for rational poly-
mer design and device architecture that support a balanced 

Fig. 7   Safety-level-oriented mapping of polymer-based health-monitoring modalities across operational depth, tissue contact time, and biosafety 
burden
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combination of safety, durability, and functional perfor-
mance. This framework also clarifies critical challenges 
that remain unresolved, including the need for standardized 
metrics for long-term biocompatibility and the persistent 
difficulty of reconciling biodegradability with stable sig-
nal transduction. Addressing these gaps will be essential 
for advancing next-generation polymeric systems capable 
of supporting reliable, long-term physiological monitoring.

4 � Perspectives and Outlooks

Looking ahead, the development of polymer-based health-
monitoring modalities will be guided by several critical 
directions.

(1)	 Strengthening an application-oriented design philoso-
phy will be essential. Polymers must be selected not 
only for their intrinsic properties but also for their com-
patibility with specific usage scenarios. Hydrogels, for 
example, offer excellent biocompatibilities and ionic 
conductivity but are hindered by dehydration and 
mechanical fragility; in contrast, solvent independent 
elastomers provide more robust alternatives for long-
term external monitoring. On the other hand, in vivo 
applications, dehydration can be reasonably neglected 
due to the aqueous physiological milieu. Under these 
conditions, hydrogel-based systems gain distinct advan-
tages due to their tissue-like water content, tunable 
porosity, and biochemical functionalization, enabling 

superior biointegration and signal fidelity. This contrast 
illustrates the importance of aligning material choice 
with the specific operating environment rather than 
adhering to a one-size-fits-all paradigm.

(2)	 Careful transition from conventional metals to flexible 
semiconductors and polymer circuits represents both 
an opportunity and a challenge. Emerging organic 
semiconductors, stretchable conductors, and polymeric 
processors promise seamless integration of sensing, 
processing, and communication within soft devices. 
However, their reliability and maturity still lag behind 
established metal-based technologies. In the near term, 
selective hybridization-combining polymeric compo-
nents with metallic counterparts may provide the most 
pragmatic pathway toward clinical transition, balancing 
innovation with proven stability.

(3)	 Advancing biodegradable and transient systems will 
open new opportunities for short-term implantable 
and microinvasive platforms. Bioresorbable polymers 
such as PLGA, PCL, and silk fibroin enable devices 
that naturally degrade after use, eliminating the need 
for surgical retrieval and reducing long-term risks. 
Coupling such materials with transient electronics and 
resorbable power modules could transform temporary 
monitoring after surgery or acute disease into a safe, 
fully self-resolving intervention.

(4)	 System-level integration of power supply, sensing, and 
data communication is required in a unified platform. 
While current flexible health-monitoring devices often 
rely on bulky external batteries or wired connections, 
future systems are expected to adopt on-body power 

Fig. 8   Integrated mapping of functional layers, polymer material classes, and modality categories in flexible health-monitoring systems. PEG: 
poly(ethylene glycol); SEBS: styrene–ethylene–butylene–styrene block copolymer; LCE: liquid crystal elastomer; CNT: carbon nanotube; PANI: 
polyaniline; LIG: laser-induced graphene; PAA: poly(acrylic acid); PVB: poly(vinyl butyral)
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solutions such as thin-film stretchable batteries, energy 
harvesting modules (thermoelectric, triboelectric, or 
piezoelectric generators), and wireless power transfer. 
Meanwhile, sensing modalities are moving from single-
parameter acquisition to multimodal platforms capa-
ble of simultaneously recording electrophysiological, 
mechanical, and biochemical signals. To fully realize 
their potential, these sensing units must be seamlessly 
coupled with wireless communication modules, such 
as flexible antennas and near-field communication 
circuits. Such strategies enable continuous and secure 
transmission of physiological data. The convergence of 
power, sensing, and transmission into polymer-based 
flexible systems will mark a crucial step toward practi-
cal, autonomous, and clinically relevant health-moni-
toring technologies.

(5)	 Personalization and scalable manufacturing are 
expected to play a decisive role in bridging laboratory 
research and real-world adoption. Additive manufac-
turing, electrospinning, and textile integration allow 
the customization of device geometry, porosity, and 
mechanics to match individual patient need; at the 
same time, scalable production strategies are necessary 
to ensure reproducibility, regulatory compliance, and 
cost-effectiveness.

(6)	 Establishing standardized safety metrics within the 
biosafety framework will be critical. Although poly-
mers provide diverse options for tailoring mechani-
cal compliance, degradation behavior, and interfacial 
chemistry, systematic evaluation of their biosafety 
across modalities remains lacking. Future research 
must prioritize quantitative benchmarks for immune 
response (e.g., macrophage activation, fibrosis indi-
ces), standardized degradation windows aligned with 
clinical monitoring timelines, and longitudinal signal 
stability metrics. Harmonizing these parameters into a 
common framework will not only enable more rigor-
ous comparison of different material platforms but also 
accelerate regulatory approval and clinical translation. 
By integrating safety metrics directly into material 
design and device evaluation, the safety-level-oriented 
paradigm can evolve from a conceptual framework into 
a practical roadmap for polymer selection and device 
certification.

(7)	 Ensuring long-term stability remains a central bottle-
neck across all four modalities. Despite differing lev-
els of invasiveness, polymer-based systems ultimately 
fail through similar mechanisms, including interfacial 
drift, fibrotic encapsulation, moisture-induced degrada-
tion, mechanical fatigue, and progressive impedance 
or signal decay. Future progress will benefit from a 

streamlined design–testing pathway that includes: i 
material-level evaluation of modulus matching, per-
meability, and degradation kinetics; (ii) interface-level 
assessment of adhesion, strain-transfer stability, and 
fouling resistance; (iii) device-level accelerated aging 
under physiologically relevant humidity, ionic strength, 
and cyclic loading; and (iv) staged in vivo validation 
aligned with the four safety levels. Embedding such a 
systematic pathway within the proposed safety-level-
oriented framework will be essential for achieving reli-
able long-term physiological monitoring.

Taken together, these perspectives emphasize that the 
future of polymer-based health monitoring will not be 
defined by a single material breakthrough, but by the rational 
integration of application-driven material selection, judi-
cious adoption of new electronic paradigms, safe transient 
designs, and personalized manufacturing strategies. Within 
this safety-level-oriented framework, polymers are uniquely 
positioned to enable monitoring systems that are not only 
flexible and biocompatible but also adaptive, durable, and 
clinically translatable—ultimately fulfilling the promise of 
a safety-level-oriented framework for polymer-based health 
monitoring.
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