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HIGHLIGHTS

e [t systematically discusses the contribution of entropy-driven approaches to the design of self-assembled structures and performance

regulation in cellulosic elastomers.

e This review systematically examines design strategies for ordered self-assembled structures in cellulosic elastomers and investigates

their structure-property relationships.

e [t presents a comprehensive review of performance design strategies for self-assembled cellulosic elastomers across mechanical and

electrical domains, focusing on electromechanical conversion and self-powered sensing applications.

ABSTRACT The rapid advancement of flexible electronics technology has placed

higher demands on the structural design and performance regulation of elastic

materials. Cellulosic elastomers, with their biodegradability, renewability, and tun- ,& >

ability, emerge as ideal candidate materials. Entropy-driven self-assembly promotes i / 6 by \

the spontaneous formation of ordered structures, serving as a crucial pathway for i ;Q éf — SO r" ﬁ;) :A

optimizing cellulose elastomer properties. However, the structure—property rela- [ ""‘.gg 4 TR </§ L Y %

tionship between the self-assembled ordered structures of cellulose elastomers and E § =y o §

their mechanical and electrical properties remains insufficiently explored. It hinders Bt E‘”va e 455 o,
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the expansion of their applications in electronic devices. This paper systematically 2
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and self-powered sensing, while also exploring the challenges and prospects for ""’"'d“””’e’\&cenulosicelasmmev

structure design
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reviews the structure—property regulation mechanisms of self-assembled cellulosic

elastomers from an entropy-driven perspective. It elucidates the application prin- & pplcaton

ciples and performance optimization strategies for mechanical energy harvesting
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performance enhancement. This work provides a reference for the development of

self-assembled cellulosic elastomers in the field of energy devices.
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1 Introduction

The development of flexible electronic devices represents a
major challenge in the field of materials science and technol-
ogy. Originating from fundamental theoretical exploration,
this technology not only promises to drive diverse innova-
tive applications in advanced electronic products such as
micro-energy harvesters [1, 2], electronic skin [3, 4], flex-
ible displays [5], biosensors, and wearable electronics [6, 7],
but also imposes higher demands on the structural design
and performance regulation of its core material—elasto-
mers [8—11]. Stretchable flexible electronics can cover arbi-
trary curved surfaces and moving components (e.g., robotic
arm joints, medical bandages) [12—14], greatly expanding
their application scenarios and making flexible elastomers
the key materials for achieving this goal. In emerging energy
fields, triboelectric nanogenerators (TENG) [15-20], piezo-
electric nanogenerators (PENG) [21-23], and dielectric elas-
tomer generators (DEG) [24] have become vital sources of
clean energy, demonstrating immense potential particularly
in low-frequency micro-energy harvesting and self-pow-
ered sensor-energy-harvesting integration [25]. Elastomer
materials demonstrate unique advantages in novel wearable
energy and sensing devices due to their excellent mechanical
properties, biocompatibility, high sensitivity, and signal-to-
noise ratio [26]. Recent research has continuously focused
on enhancing the electromechanical conversion efficiency
of elastomer energy devices through various enhancement
strategies and expanding their applications in self-powered
sensing.

However, current elastomer energy harvesting and sens-
ing technologies still face multiple challenges: on one hand,
traditional elastomer materials struggle to balance high
electromechanical performance with environmental sus-
tainability, as their non-degradable nature contributes to
the growing electronic waste problem [27-29]; on the other
hand, existing material systems often fail to simultaneously
meet the comprehensive requirements of stretchability, ther-
mal stability, and biocompatibility while maintaining high
sensitivity and signal-to-noise ratio [29-34]. These limita-
tions severely constrain the further application of flexible
electronic devices in terms of sustainability and long-term
reliability. Against this backdrop, cellulose-based elasto-
mers demonstrate unique advantages distinct from tradi-
tional synthetic materials: Its performance advantages stem
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from its multiscale structural features, including molecu-
lar chains, supramolecular chains, and macroscopic fibers.
Hydroxyl groups on cellulose molecular chains enhance
mechanical properties through hydrogen bonding and
electrostatic interactions [35]. They readily accept graft-
ing modifications to introduce dynamic covalent bonds,
thereby improving mechanical strength and self-healing
capabilities [36]. Within cellulose’s supramolecular struc-
ture, crystalline regions provide rigidity and strong polar-
ity, while amorphous regions confer flexibility and impact
resistance [37—40]. At the macroscale, the order of cellulose
molecules and aggregates significantly influences electri-
cal properties [41], stiffness [42], elasticity [43], and sur-
face energy [44]. Its networks effectively reduce internal
defect density, enabling synergistic optimization of reduced
dielectric loss, enhanced breakdown strength, and improved
mechanical properties [45, 46].

Ordered structures form spontaneously through self-
assembly processes, which minimize the system’s free
energy by increasing entropy—the key driving force of self-
assembly [47]. Thus, entropy is central to the formation of
self-assembled structures. Leveraging the bonding proper-
ties of cellulose and environmental conditions (temperature,
pH, pressure, etc.) [48, 49], self-assembled structures at dif-
ferent hierarchical levels can be directionally constructed,
enabling precise control over material properties. At the
microscopic level, entropy-driven nanoscale chiral ordered
structures not only promote efficient stress dispersion but
also enhance dipole orientation, synergistically improving
both mechanical properties and dielectric response [50]. At
the macroscopic level, gradient structures and multi-level
biomimetic architectures formed under entropy regulation
buffer external mechanical forces and suppress charge dis-
sipation, thereby enhancing mechanical stability and electri-
cal energy conversion efficiency. Furthermore, such struc-
tures confer exceptional conformability and wear comfort
to the material, significantly enhancing its sensing stability
and environmental adaptability in wearable applications.
Consequently, the entropy-driven self-assembly mecha-
nism provides a theoretical foundation for overcoming the
performance limitations of cellulose elastomers, enabling
the construction of structures with biomimetic properties
and energy conversion capabilities [51-53]. This approach
not only underpins the structural design of mechanical-to-
electrical energy conversion materials but also establishes

https://doi.org/10.1007/s40820-025-02054-y
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a material foundation for developing high-precision, multi-
functional power generation devices and sensors.
Currently, numerous studies on self-assembled cellulosic
elastomers have been reported. For instance, some research
investigates the self-assembly of cellulose into chiral phase
arrays, designed for information encryption, or into skin-
like gradient structures for wearable electronic skin devices.
Particularly in the field of optics, the development of chiral
phase array structures has been well documented [54-57].
However, existing research generally lacks sufficient atten-
tion to the critical role of entropy-driven mechanisms in the
self-assembly process. Systematic summaries of the molec-
ular dynamic characteristics of self-assembly in mechani-
cal and electrical fields remain inadequate. The regulatory
mechanisms governing the “structure—property” relation-
ship in entropy-driven cellulosic elastomer self-assembly
have not been thoroughly explored. Consequently, material
design is still heavily dependent on empirical exploration,
thus precluding precise control over material performance.
This limitation constrains the effective application of cel-
lulosic elastomer materials in mechanical energy harvesting
and self-powered sensing. This paper provides a systematic
review of research progress in entropy-driven cellulosic
elastomer self-assembly across mechanical and electrical
domains. It first introduces the molecular structural char-
acteristics of cellulosic elastomers and their entropy-driven
self-assembly properties, systematically elucidating bonding
types, structural regulation mechanisms, and performance
optimization pathways. Subsequently, it delves into the prin-
ciples of electromechanical conversion and its applications
in piezoelectric power generation, triboelectric nanogenera-
tors, and dielectric elastomer power generation. Finally, it
summarizes compatibility challenges between elasticity and
electromechanical conversion performance, bottlenecks in
mass production, and outlines future trends toward multi-
modal self-powered integrated systems (Fig. 1). This work
aims to provide theoretical foundations and design insights
for innovative, efficient energy-harvesting technologies and
self-powered sensors, driving breakthrough applications of
next-generation flexible electronics in complex scenarios.

SHANGHAI JIAO TONG UNIVERSITY PRESS

2 Entropy-Driven Self-Assembly of Cellulosic
Elastomers

The spontaneous evolution of a system is primarily driven
by an increase in entropy sufficient to overcome unfavorable
or only marginally favorable enthalpy changes, leading to
a net decrease in Gibbs free energy. This thermodynamic
principle enables the system to evolve toward a macro-
scopic state encompassing more accessible microstates. In
the context of this study, we clearly delineate the role of
entropy-driven processes in the formation of ordered nano-
structures from molecular building blocks. Specifically, we
emphasize how the increase in conformational entropy from
flexible linkers, or the gain in translational entropy from
released ions, serves as the primary driving force behind the
observed structural ordering. This mechanism distinguishes
our system from those governed predominantly by enthalpy-
dominated interactions. Building upon this entropy-driven
framework, we demonstrate the design of self-assembled
cellulosic elastomers under functional entropy-favorable
conditions. By leveraging hydrogen bonds, weak interac-
tions, and non-dynamic covalent bonds within the system,
we achieve customizable control over the structural proper-
ties of the elastomers. This strategy effectively addresses the
performance requirements of elastomer materials in energy
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Fig. 1 Entropy-driven self-assembly of cellulose-based elastomeric
materials and their applications in energy harvesting and self-pow-
ered sensing
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harvesting and self-powered sensing applications. The pro-
posed approach holds significant potential for the develop-
ment and rational design of new energy materials, offering
clear guidance for enhancing electromechanical conversion
efficiency and electronic sensing performance, as illustrated
in Fig. 2.

2.1 Molecular Structural Characteristics of Cellulosic
Elastomers

Cellulose, a renewable, biodegradable, and environ-
mentally friendly material [58-60], is a linear polymer
composed of glucose units linked by -1,4-glycosidic
bonds [61]. This structure contrasts with the highly
rigid chains of polyvinylidene fluoride (PVDF) and the
highly flexible molecular chains of polydimethylsilox-
ane (PDMS) [62, 63]. Cellulose comprises crystalline
regions (where molecular chains are tightly packed) and
amorphous regions (where chain structures are loosely
arranged), exhibiting both high stiffness and extensibil-
ity. Benefiting from this characteristic, the cellulose crys-
tal-amorphous equilibrium, chain stiffness, and hydro-
gen bond network collectively regulate configurational
entropy, thereby determining the material’s structural
order and diversity (Fig. 3a) [15, 64—67]. Specifically,
the loosely arranged amorphous regions exhibit weaker
interactions like hydrogen bonds [68], resulting in higher
system entropy. Upon external stimulation, amorphous cel-
lulose chains reorganize through self-assembly to reduce
the system’s free energy. This process is driven by entropy
increase, meaning the system achieves macroscopic order
by expanding the number of microscopic states. Crystal-
line regions exhibit lower conformational entropy due to
ordered molecular packing, while amorphous regions pos-
sess higher entropy owing to greater molecular freedom.
The ratio between these regions can be dynamically regu-
lated by external conditions like temperature and pressure,
thereby influencing the material’s macroscopic properties.
Chain stiffness directly constrains conformational free-
dom [69]: highly rigid chains exhibit low entropic values,
while flexible chains display higher entropy. Balancing
mechanical behavior and entropy change is achieved by
modulating chain flexibility. The strength of hydrogen
bond networks determines the degree of intermolecular
order. Strong hydrogen bonds form ordered aggregates

© The authors
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Fig. 2 Entropy-driven design and applications of self-assembled cel-
lulosic elastomers for electromechanical energy conversion and self-
powered sensing

that reduce entropy, while weak hydrogen bonds maintain
higher conformational entropy. These three mechanisms
synergistically regulate conformational entropy, providing
key theoretical guidance for achieving ordered structural
design and functional optimization in materials.

2.2 Entropy-Driven Contribution to the Self-Assembly
of a Cellulosic Elastomer

Entropy-driven processes play a pivotal role in material struc-
ture design through self-assembly mechanisms in nature.
These processes accelerate the increase in a system’s total
entropy—comprising vibrational, rotational, and configura-
tional entropy (Fig. 3b)—by promoting spontaneous molecu-
lar rearrangements under thermodynamic equilibrium [70]. In
cellulose systems, the dominant entropy contributions depend
on specific physicochemical processes and system conditions.
During dispersion, translational entropy and interfacial entropy
typically prevail; in mechanical property regulation and hydra-
tion, conformational entropy and interfacial entropy play more
significant roles. Different types of entropy are interrelated,
collectively determining the structure and properties of cellu-
lose systems. The self-assembly of cellulose elastomers exem-
plifies such entropy-driven dynamic equilibrium. In these sys-
tems, entropic forces—such as dissipative forces [71], elastic
forces, and nonpolar surface interactions (Fig. 3c)—guide the
formation of ordered structures by maximizing total entropy
in a controlled manner. From a thermodynamic perspective,
the system’s free energy G is jointly determined by enthalpy

https://doi.org/10.1007/s40820-025-02054-y
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Fig. 3 Structural features of cellulose molecules. a Cellulose hierarchical structure. Reproduced with permission from Ref. [81], Copyright
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H and entropy S, highlighting how entropy generation governs
assembly pathways [72].

G=H-TS (1)

Temperature T represents the tendency for free energy
G to minimize toward thermodynamic equilibrium. Typi-
cally, self-assembling systems reduce free energy by
increasing entropy. This reduction can occur through two
pathways: increasing entropy (potentially increasing the
number of possible microstates within the system) or
decreasing enthalpy (lowering the internal energy of the
system). During self-assembly, these entropy-increasing
pathways can drive the formation of ordered structures
within the system. Hydrophobic interactions exemplify
entropy-driven mechanisms, their strength intensifying
with rising temperatures. Quantitatively, hydrophobic

SHANGHAI JIAO TONG UNIVERSITY PRESS

units form repulsive volume regions in water, causing
water molecules to rearrange around them and thereby
incurring an entropy cost. This entropy change can be
quantified by the reduction in spatial conformational vol-
ume afforded by hydrogen bond formation: small hydro-
phobic units diminish the available conformational space
for water molecules, lowering the system’s number of
microstates. However, when hydrophobic units self-assem-
ble, the system achieves a net entropy increase by reducing
repulsive volume and releasing ordered water molecules,
thereby driving assembly [73, 74]. The spontaneous self-
assembly of cellulose molecular chains in solution follows
the principle of entropy maximization [75, 76], where the
system achieves thermodynamically stable conformations
by minimizing Gibbs free energy. When cellulose nanofib-
ers (CNF) or cellulose nanocrystals (CNC) are dispersed

@ Springer
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in solvent, structural color changes are observable under
cross-polarized light, arising from the formation of
ordered solvation layers between the surface-abundant
hydroxyl groups and solvent molecules [77]. As water
evaporates, the system’s entropy decreases. To compensate
for this entropy loss, cellulose molecules spontaneously
assemble into higher-order structures (e.g., nematic liquid
crystals), restoring entropy equilibrium at a larger scale
and yielding brighter colors [78] (Fig. 3d). To more intui-
tively illustrating entropy-driven self-assembly of ordered
cellulose structures, the CNC suspension is depicted as a
helical configuration. The guiding field n(r) rotates peri-
odically along an axis termed the helical axis. The result-
ing alignment can be described as a stack of continuously
rotating nematic alignment layers with infinitesimal thick-
ness (Fig. 3e). The helical axis can be characterized by an
additional nonpolar unit vector m, ensuring the orienter
remains perpendicular to the helical axis (n L m). This
helical structure reveals that precise programming of mac-
roscopic properties in chiral soft matter can be achieved by
balancing chiral interactions with elastic forces.

In supramolecular polymer systems, supramolecular poly-
mers exist in a state of thermodynamic equilibrium, with
their assembly adjustable through external stimuli such as
temperature. Entropy changes manifest here as a synergy
between steric volume effects and secondary interactions:
in the liquid crystalline state, entropy effects (such as steric
volume) combine with weak interactions to facilitate the
formation of one-dimensional polymeric structures [79].
Therefore, entropy-driven force is the core driving force for
the self-assembly of cellulosic elastomers. It promotes the
spontaneous ordered arrangement of molecules by maxi-
mizing the system’s entropy value. Cellulose nanoparticles
form mesoscopic ordered structures in solvents by reducing
the excluded volume and balancing the entropy-enthalpy
relationship [80]. This entropy-driven self-assembly mecha-
nism confers dynamically responsive properties to materials,
enabling precise modulation through external stimuli such
as temperature and ionic strength. The process facilitates
energy-efficient and fully reversible structural reconfigura-
tion, thereby establishing a fundamental framework for the
rational design of intelligent materials.

© The authors

2.3 Factors Affecting Entropy-Driven Self-Assembly
of Cellulosic Elastomer

The factors influencing the entropy-driven process of cel-
lulose elastomers can be broadly categorized into two types
(Table 1)—internal factors (molecular scale, crystallinity,
functional groups) and external factors (temperature, pres-
sure, solvent environment). Cellulose scale, cellulose crys-
tallinity, and cellulose functional groups are key components
within its own structure [84]. At the cellulose scale, self-
assembly frequently occurs at the micrometer and nanom-
eter scales. The minute dimensions of cellulose fibers create
more favorable conditions for colloidal Brownian motion
within self-assembly systems, endowing them with high
translational and rotational entropy values that promote
the initiation of self-assembly [85, 86]. Furthermore, high
aspect ratio nanofibrils exhibit a substantial volume repul-
sion effect that significantly enhances the driving force
of orientation entropy. This allows the system to achieve
substantial translational entropy gains at lower concentra-
tions by sacrificing a small amount of orientation entropy,
thereby markedly lowering the isotropic-nematic transition
temperature. Conversely, this effect leads to an increase in
the transition temperature.

Cellulose crystallinity determines its morphology: highly
crystalline cellulose forms rod-like particles that readily
spontaneously assemble into entropy-driven chiral structures
to maintain rotational entropy and release solvent degrees of
freedom. In contrast, low-crystallinity particles hinder chiral
structure formation [87, 88]. This arises because the crystal-
linity index governs the efficiency of this entropy-driven pro-
cess by regulating the synergy of particle interactions: a high
crystallinity index ensures uniformity in size, shape, and
charge distribution, enabling synergistic ordered arrange-
ment at low concentrations and thus significantly lowering
the isotropic-nematic transition concentration; Conversely,
the multiscale disorder introduced by low-crystallinity indi-
ces severely impedes entropy-driven ordering, leading to a
marked increase in transition concentration or even suppres-
sion of phase transition.

Cellulose functional groups significantly influence
entropy-driven self-assembly, primarily through their bond-
ing types within the system. The abundant hydroxyl groups
in cellulose molecular structures impart negative charge to
cellulose particles. Hydrogen bonds and electrostatic interac-
tions precisely guide assembly processes by finely regulating

https://doi.org/10.1007/s40820-025-02054-y
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the dynamic equilibrium between ““solvent entropy gain and
solute entropy loss.” Specifically [89]: Electrostatic repul-
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sion acts as a competitive regulatory factor. By establishing
an energy barrier that mutually constrains the entropy-driven
force (such as the dissipative force), it prevents disordered
aggregation of solute particles while ensuring that the loss
of configurational entropy during the ordering process is
effectively compensated by the significant gain in solvent
entropy. This guides the formation of thermodynamically
stable ordered structures [90]. Concurrently, hydrogen bond-
ing acts as a cooperative regulatory factor. Leveraging its
unique directionality and specificity, it provides critical
structural guidance and binding sites for the assembly driven
by entropy. This synergistic interaction with the entropy-
driven force jointly determines the final configuration and
symmetry of the superstructure. The synergistic and com-
petitive mechanisms between these two forces collectively
maintain the delicate equilibrium between solvent entropy

while hydrogen bonds and covalent bonds jointly determine the

assembly behavior of low-crystallinity particles is dominated
diversity of interactions

by other interactions
and kinetics. Excessive heating disrupts the formed ordered

structures
while high pH/low ionic strength enhances stability

promoting the occurrence of self-assembly
reorganization along specific pathways

and solute entropy, forming a crucial foundation for achiev-

Smaller particle sizes confer greater mobility to the system,
High-crystallinity particles tend to assemble spontaneously. The
Electrostatic repulsion creates conditions for ordered assembly,
Moderate heating significantly enhances assembly driving forces
Provide compressive driving force for assembly and induce

Low pH/high ionic strength enhances assembly driving force,

Effects on Self-Assembly Driving Forces

ing controllable self-assembly. Furthermore, the relatively
active C4 hydroxyl groups on cellulose facilitate grafting of
other functional groups (carboxyl, sulfate, sulfonate, etc.),
enabling additional interactions between cellulose molecules
(e.g., hydrophobic interactions, conjugation effects). This
further enhances the diversity of self-assembled cellulosic
elastomer structures.

Another category involves external factors such as tem-
perature, pressure, and solvation environment of the cel-
lulose medium. While elevated temperatures increase
molecular thermal motion entropy, they may disrupt ordered
structures. Moderate heating, however, can provide energy
to overcome energy barriers, promoting the formation of
entropy-driven liquid crystal phases. Increased pressure
generally restricts system degrees of freedom and reduces

bonding, covalent bonding, etc., reducing entropy, while elec-

ordered water molecules bound, resulting in a larger increase in
trostatic repulsion increases entropy (AS)

entropy (AS) after assembly
leading to a significant increase in entropy during assembly,

whereas high crystallinity exhibits only a limited increase in

entropy
cellulose and water, thereby increasing entropy gain (AS)

promoting aggregation and reducing entropy (AS)

increase term (TAS)

entropy, promoting the formation of compact ordered struc-

Low crystallinity can confine a large amount of ordered water,
Aggregation occurs through electrostatic attraction, hydrogen
Increasing temperature amplifies the contribution of the entropy
High pressure can disrupt the hydrogen bond network between

Low pH/high ionic strength weakens electrostatic repulsion,

Effect on Entropy Change (AS)

tures. However, under specific conditions, compression
can induce rearrangements that yield entropy gains. The
ionic strength, hydrophobic effects, and polarity of disper-
sants within the solvation environment play crucial roles.
Enhanced ionic strength can shield electrostatic repulsion,
facilitating entropy-driven ordered assembly, but excessive

Cellulose particle size The smaller the initial particle size, the greater the number of

Crystallinity
Functional group
Pressure

Solvent environment

shielding leads to aggregation. The hydrophobic effect of
water can significantly release molecular entropy to drive
assembly, while changes in dispersant polarity may alter the
equilibrium between hydrophobic interactions and hydrogen
bonding [91].
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In cellulose entropy-driven self-assembly, multiple param-
eters synergistically regulate its multi-level structural evolu-
tion [92, 93]: particle size, crystallinity, hydrogen bonding/
electrostatic interactions, temperature, pressure, and solvent
environment. Small particle size provides high translational
entropy to drive free molecular chain motion [94], while
high crystallinity confers a rigid framework supporting
ordered arrangement. The equilibrium between hydrogen
bonding and electrostatic interactions both guides specific
assembly and maintains structural stability. Temperature and
pressure, as external enabling factors, activate molecular
motion and induce densification and ordering, respectively.
The solvent environment ultimately fixes the network topol-
ogy by modulating interaction strengths. This multiscale
synergy constructs a three-dimensional network architec-
ture featuring ordered, densely interconnected structures. By
optimizing stress transmission pathways and charge trans-
port channels, it holds potential for enhancing the material’s
piezoelectric response, triboelectric output, and strain sens-
ing performance.

Thus, entropy-driven self-assembly in cellulosic elas-
tomers exhibits remarkable structural tunability, arising
from the synergistic interplay between intrinsic properties
(scale, crystallinity, functional groups) and environmental
conditions (temperature, pressure, solvation). These fac-
tors enable controlled preparation of multiscale structures
from nanoscale to macroscale by regulating the system’s
entropy-enthalpy balance and diverse interactions, provid-
ing an effective and controllable pathway for designing
ordered material structures.

2.4 Cellulosic Composite Elastomer Self-Assembled
by Entropy-Driven

According to existing research studies, cellulose elasto-
mers are typically not composed solely of cellulose [15,
54]. To meet the demands of energy harvesting and self-
powered sensing, they often require interaction with natu-
ral or synthetic polymers to achieve structural and func-
tional diversity, thereby fulfilling specific requirements
such as elasticity, toughness, and environmental adaptabil-
ity. Common natural polymers include alginates, chitosan,
and hyaluronic acid, while synthetic polymers encompass

© The authors

polyvinyl alcohol, polyethylene glycol, polyacrylic acid,
and polyacrylamide (Fig. 4a, b) [95].

Cellulose self-assembles with these polymers through
noncovalent interactions-hydrogen bonds, van der Waals
forces, electrostatic interactions, and hydrophobic effects-
to form ordered structures and functional materials
(Fig. 4ci) [96, 97]. However, they differ in their entropy
regulation mechanisms. Taking the cellulose-PVA and
cellulose-PEG systems as examples, the former achieves
enthalpy-dominated self-assembly through a high-strength
hydrogen bond network, significantly suppressing molec-
ular chain conformational entropy to form low-entropy
ordered structures [98, 99]. The latter, however, disrupts
the cellulose-water structure through hydration to release
translational entropy of water molecules while enhancing
segmental mobility to increase conformational entropy,
thereby achieving a dynamically stable system dominated
by entropy increase [100, 101]. Furthermore, introducing
natural polymers containing dynamic bonds (e.g., borate
bonds, disulfide bonds, or metal coordination bonds) into
the system provides an effective approach for constructing
entropy-enthalpy synergistically regulated smart networks
(Fig. 4cii) [102, 103].

These dynamic bonds undergo reversible bonding and
network restructuring in response to external stimuli such
as pH, light, or temperature. By increasing conforma-
tional entropy and accessible microstates, they not only
significantly enhance the material’s self-healing capabil-
ity, mechanical properties, and environmental adaptability
but also enable intelligent response and dynamic regulation
of macroscopic properties [95, 104, 105]. An energy land-
scape model explains the entropy-enthalpy synergistic regu-
lation mechanism [106]. In traditional covalent networks,
the system is permanently locked in a single stable state.
Once pushed out of the energy well by external forces (e.g.,
deformation), it cannot return due to extremely high energy
barriers, leading to permanent deformation or destruc-
tion, with configuration entropy frozen at a low level. In
dynamic networks, reversible dynamic bonds (contributing
enthalpy, AH) construct an energy landscape composed of
multiple shallow energy wells (closely related to the bond
energies of each dynamic bond in Fig. 4d). The energy bar-
riers between these wells correspond to the activation energy
for bond exchange. Under external stimuli (e.g., heat), the
system gains energy to overcome these barriers, enabling
exploration between different network configurations. This

https://doi.org/10.1007/s40820-025-02054-y
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accessibility among numerous metastable states manifests
as a significant increase in the system’s configurational
entropy (—TAS). Macroscopic adaptability—such as
stress relaxation or shape reconfiguration—is the external
expression of the system evolving from one high-entropy
state to another via dynamic bond exchange during relaxa-
tion. Thus, dynamic bond switching acts as the molecular
engine, configurational entropy serves as the driving force,

| SHANGHAI JIAO TONG UNIVERSITY PRESS

and macroscopic adaptation emerges as the final behavior
(Fig. 4e).

Therefore, entropy-driven self-assembly of cellulose and
polymeric materials is crucial for constructing multifunc-
tional cellulose-based elastomer structures, offering a prom-
ising pathway for their application in mechanical energy har-
vesting and flexible wearable electronics.
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3 Entropy-Driven Regulation
of Self-Assembled Structural Performance
in Cellulosic Elastomer

Self-assembly processes and Bouligand structures are often
regarded as closely related in cellulose-based materials, rep-
resenting common structural forms of self-assembly [108,
109]. However, recent studies indicate that entropy-driven
self-assembly of cellulosic elastomers can yield macro-
scopic materials with highly diverse structural morpholo-
gies [110-115]. The final structure depends on the syner-
gistic interaction of multiple factors, extending far beyond
Bouligand configurations. To systematically understand
the design principles of self-assembled structures and their
structure—property relationships, this section will focus on
reviewing the formation conditions and functional charac-
teristics of several typical structures, including Bouligand
structures, hierarchical layered structures, gradient struc-
tures, and functional interface structures. The analysis will
cover their performance in dielectric properties, mechanical
properties, and other aspects, aiming to provide theoreti-
cal foundations and experimental guidance for the targeted
structural design of cellulosic elastomers.

3.1 Structure of Self-Assembled Cellulosic Elastomer

The structural diversity of self-assembled ordered cellu-
losic elastomers is not without discernible patterns. Entropy
serves as the “switch” that regulates the design of material
conformation structures in this process. This study focuses
on analyzing the formation conditions of Bouligand order,
multilayer/multi-level network order, and gradient order, elu-
cidating the structural evolution patterns in self-assembly
processes from an entropy perspective.

3.1.1 Bouligand Structure

The Bouligand structure found in nature (such as the exo-
skeletons of crustaceans) is a classic example formed by
nanocellulose through multiscale self-assembly [116].
Although nanocellulose crystal suspensions can sponta-
neously assemble into Bouligand structures via electro-
static interactions and hydrogen bonding during solvent

© The authors

evaporation, their mechanical properties often fail to meet
the requirements for elastomer applications. To address this,
researchers dispersed cellulose nanocrystals in polyvinyl
alcohol (PVA) solutions and introduced high-concentration
ions during the self-assembly of PVA/CNC blends via salt-
ing-out treatment. This approach successfully constructed
CNC/PVA composite elastomers with helical ordered struc-
tures (Fig. 5a, b) [117]. The initial dispersed state of this
strategy is jointly maintained by the electrostatic repulsion
(enthalpy) and translational entropy (entropy) of CNC,
alongside the hydration (enthalpy) and conformational
entropy (entropy) of PVA. Salting-out treatment triggers
phase transition by shielding electrostatic forces (enthalpy
regulation) and releasing translational entropy of water mol-
ecules (entropy-driven). During self-assembly, CNC auton-
omously arranges into a chiral liquid crystal template via
entropy-driven organization, while PVA achieves structural
stabilization by forming a hydrogen bond network (enthalpy-
driven). This culminates in a synergistic assembly mode
where “entropy drives structure formation, and enthalpy
stabilizes the structure.”

3.1.2 Multiscale Hierarchical Network Structure

Similar to the formation of Bouligand structures.
Researchers replaced water in the gel with the [BMIm]
ZnxCly ionic liquid (composed of a 1-butyl-3-methylim-
idazolium cation and a zinc chloride anion cluster) via a
displacement method [115]. This process first substantially
increased the translational entropy of the system through
solvent exchange (entropy-driven), while simultaneously
forming strong coordination bonds between the ZnxCly
anions in the ionic liquid and the hydroxyl groups on the
TOCNEF cellulose chains (enthalpy-driven). Subsequently,
during the entanglement assembly between the PAM cova-
lent network and TOCNF aggregates, TOCNF autono-
mously arranges into nanoscale pseudo-pore structures
via entropy-driven self-assembly (nanoscale poly-TOCNF
networks embedded within microscale PAM scaffold net-
works, mimicking leaf hierarchical grid structures), while
the PAM network constructs microscale scaffolds through
covalent crosslinking (enthalpy-driven). In the resulting
hierarchical grid structure, supramolecular interactions
(e.g., hydrogen bonds, ionic coordination) act as synergis-
tic regulatory units, stabilizing the entropy-driven ordered

https://doi.org/10.1007/s40820-025-02054-y
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assembly via enthalpy-driven mechanisms. This achieves
a synergistic regulation mechanism where “entropy drives
multi-level topological construction while enthalpy locks
the network structure” (Fig. 5c).

Similarly, during the freeze-drying process of the CNF/
PANI supramolecular system, the “disadvantageous” self-
acceleration effect (The self-acceleration effect has been
regarded as “undesirable” in the process of supramolecu-
lar autocatalytic polymerization) driven by entropy para-
doxically forces the formation of multiple hydrogen bonds
between polymer chains (enthalpy-driven) by restricting
molecular motion degrees of freedom (reducing configu-
rational entropy) [114]. These rapidly matched double

ol
¥ N

&
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hydrogen bonds act as molecular-level catalysts, com-
pensating for entropy loss through exothermic reactions
(enthalpy-driven) while guiding the multiscale entan-
glement of nanofibrillated cellulose and polyaniline via
directed alignment (Fig. 5d). Ultimately, during the den-
sification stage of the CNF substrate layer, the system
undergoes macroscopic deformation driven by entropy
increase (solvent molecular translational entropy rise)
from solvent evaporation, while a dense hydrogen bond
network (enthalpy-driven) locks the leaf-like elastomer
structure (The dense CNF-supported substrate layer (leaf)
is gently pressed into shape during the freeze-drying
process of the CNF/PANI supramolecular self-assem-
bled aerogel). This achieves synergistic self-assembly
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characterized by “entropy-driven molecular orientation
induction and enthalpy-driven multi-level structural
consolidation.”

3.1.3 Gradient Structure

Unlike the structures described above, the design of biomi-
metic gradient structures demands more stringent prepara-
tion conditions. Researchers successfully synthesized a mul-
tidimensional gradient porous conductive carbon nanofiber
cellulose (CNC) elastomer material (Fig. Se) composed of
CNC and highly oriented nickel chains through self-assem-
bly, utilizing processes such as freeze-drying combined with
annealing [118, 119]. Analysis of the process entropy evo-
lution revealed that vacuum drying provided a low-entropy
environment, restricting molecular motion within Ni/CNC.
Rapid cooling froze the ice-like Ni/CNC, gradually promot-
ing its ordering. This significantly reduced collision-induced
energy transfer and disorder, lowering the system’s entropy.
Consequently, the frozen ordered structure was preserved
and stabilized.

3.1.4 Stimulus—Response Function Interface Structure

The principle of stimulus—response function interface struc-
ture primarily relies on the ability of materials or systems
to perceive and respond to specific external stimuli, achiev-
ing interfacial regulation by altering their own physical and
chemical properties through self-assembly [120]. Cellulosic
elastomers also serve as a typical example in the design of
stimulus-responsive interfacial structures. The researchers
utilized dopamine-modified CNF (CNF-DA) and polyacrylic
acid (PAA) to co-assemble a supramolecular CNF-DA/
PAA@Fe*" hydrogel elastomer (Fig. 5f) that exhibits both
reversible tough adhesion and easy photopeeling [110]. The
UV light and oxygen induce a Fenton-like reaction, control-
ling the valence state of Fe ions within the gel. This dramati-
cally alters the interfacial adhesion of the hydrogel elasto-
mer, enabling excellent dynamic skin adsorption/desorption
transitions. Metal ion-induced coordination and dynamic
hydrogen bonding assemble the gel into denser aggregates—
an entropy-reducing process—conferring superior structural
stability. Under UV irradiation, the entire elastomer sys-
tem undergoes stability disruption as Fe ion coordination

© The authors

weakens, representing an entropy-increasing process. Within
the larger natural environment, the gel undergoes oxidative
degradation by oxygen, reverting to a low-entropy stable
state. Similarly, the research team utilized CNC co-assem-
bled with 3-dimethyl(methacryloyloxyethyl)propane sulfonic
acid ammonium salt (DMAPS) and methacrylic acid (MAA)
to achieve an ordered orientation arrangement of P(DMAPS-
MAA) hydrogel elastomers under shear stress [121]. Influ-
enced by extensive dynamic hydrogen bonds, this hydrogel
exhibits outstanding self-healing properties. More notably,
the shape bending of the gel elastomer can be controlled by
regulating pH and moisture content. During this process,
high pH provides high ionic strength, causing the gel elas-
tomer to disperse and exist in a high-entropy state. When pH
decreases, hydrogen bonds drive the gel to re-aggregate and
stabilize, shifting to a low-entropy state, thereby achieving
dynamic shape tunability of the elastomer.

Similar stimulus-responsive interfacial structures can be
activated not only by light and pH but also by heat, electric
fields, magnetic fields, and other stimuli. These stimuli pro-
vide additional high-entropy conditions for the elastomer. It
is precisely through the equilibrium between the stimulus
source and cellulose self-assembly that dynamic interfacial
changes are achieved.

3.1.5 Design Principles and Performance Trade-off
Analysis of Self-Assembled Structures

Although the self-assembled structures presented in this
section—such as Bouligand, layered, and gradient struc-
tures—exhibit rich morphological diversity, their forma-
tion processes all adhere to a common core principle: the
final macroscopic structure arises from the competition
and equilibrium between entropy and enthalpy [122]. Suc-
cessful self-assembly is not merely an entropic increase
process. Instead, it involves introducing specific enthalpy
contributions (such as templates, external fields, or inter-
facial interactions) to guide the entropy maximization pro-
cess toward predefined long-range ordered structures. This
principle generates distinct structure—property trade-offs
across different architectures, significantly influencing their
mechanical and functional characteristics (e.g., dielectric
properties). Specifically, Bouligand structures sacrifice
some in-plane strength for exceptional toughness and impact
resistance through helical arrangements. Their multi-level

https://doi.org/10.1007/s40820-025-02054-y
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interfacial architecture simultaneously aids polarization
and charge dissipation, optimizing dielectric loss [123];
Layered structures achieve outstanding in-plane strength
and directional functional transport, though their interfacial
layers may become mechanical weak points. Nevertheless,
this highly anisotropic structure provides an ideal template
for fabricating layered composites with high-dielectric con-
stants and low losses through effective control of interfacial
polarization [124, 125]. Gradient structures achieve smooth
transitions in mechanical properties and effective mitiga-
tion of stress concentration through continuous variations
in composition or porosity [126]. Their gradually chang-
ing dielectric constant distribution further positions them
as unique platforms for high charge transport and gradi-
ent dielectric materials [127]. Thus, precise control over
entropy/enthalpy equilibrium and a deep understanding of
the inherent “mechanical-functional” trade-offs within spe-
cific structures are key to the targeted design and optimiza-
tion of these multifunctional materials.

3.2 Properties of Self-Assembled Cellulosic Elastomer

Entropy-driven self-assembly provides a powerful mecha-
nism for tailoring the properties of cellulose-based elasto-
mers through dynamic bonding and hierarchical structural
organization. This approach enhances mechanical strength
and toughness via intermolecular interactions such as hydro-
gen bonding, enables self-healing capabilities through
reversible dynamic covalent and noncovalent bonds, and
improves dielectric performance by promoting structural
ordering and polarization modulation. These strategies col-
lectively offer a versatile pathway for engineering multifunc-
tional cellulosic elastomers with programmable properties.

3.2.1 Modulating Mechanical Performance

Entropy-driven cellulose self-assembly forms ordered struc-
tures through intermolecular interactions such as hydrogen
bonds and van der Waals forces. This enables materials to
disperse stress more effectively under external forces, sig-
nificantly enhancing their strength and toughness (Fig. 6a—c)
[128]. This process can also construct supramolecular sys-
tems (such as strong and tough cellulose supramolecular
hydrogels) or co-assemble with nanoparticles, polymers,
and other components to form composite materials (such

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

as cellulose-bentonite hydrogels, which exhibit both high
strength and low-temperature resistance), further enhanc-
ing mechanical properties [129]. In general, cellulose
self-assembly offers a promising avenue for optimizing
the mechanical properties of materials by controlling self-
assembly conditions and incorporating other components,
leading to broad application prospects.

The classification of mechanical properties for entropy-
driven self-assembled cellulosic elastomers is shown in
Table 2. A summary of recent comparisons of the mechani-
cal properties (tensile strength, fracture strain, and elastic
modulus) of entropy-driven cellulose elastomers is provided
to highlight the performance differences between cellulose
and various polymer assemblies. Based on the principle of
entropy-driven self-assembly, a flexible, multifunctional,
wearable bacterial cellulose @Fe;0,/carbon nanotube/
Ti;C,T, composite film with an asymmetric gradient struc-
ture was prepared using a hydrogen-bonding self-assembly
strategy. The asymmetric gradient multilayer structure min-
imizes nanofiller agglomeration and maximizes interlayer
hydrogen-bonding interactions, endowing the composite
film with excellent mechanical properties [132].

Furthermore, using bio-based gelatin/glycerol (GG)
elastomer as the dielectric elastomer matrix, CNC with
abundant hydroxyl groups disrupts hydrogen bonds
between gelatin molecules under entropy-driven self-
assembly and forms stronger hydrogen bonds with them.
The favorable interfacial interactions between GG and
CNC, along with the excellent dispersion of CNC within
the GG matrix, confirm the pivotal role of entropy-driven
assembly hydrogen bond formation in enhancing mechani-
cal properties [148].

Unlike organic polymers, which readily stabilize each
other through intermolecular hydrogen-bonding interac-
tions, the uniform dispersion of inorganic nanoparticles
within nanocellulose films requires careful regulation of
entropy-driven thermodynamic parameters (temperature,
particle concentration, etc.) [149], through in situ layer-by-
layer self-assembly, structurally uniform bacterial cellu-
lose/graphene oxide (BC/GO) hydrogel elastomers. Strong
hydrogen bonds between BC and GO ensure tight bonding
between one-dimensional and two-dimensional compo-
nents, while the layer-by-layer cultivation mode improves
GO nanosheet dispersion within the BC matrix. This pro-
motes mechanical binding between BC nanofibers and GO
nanosheets, forming a network structure. Strong hydrogen

@ Springer
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Table 2 Comparison of mechanical properties of cellulosic elastomers

Elastomeric Materials Tensile strength (MPa) Fracture strain (%) Elastic modulus (MPa) References
PVA/nanocellulose 15.0 12.0 60.0 [133]
PVA/BC 36.2 47.0 - [134]
Deacetylated cellulose acetate/polyurethane 21.0 91.1 23.5 [135]
nanofiber
a-CNFs@PVA 39.0 4.5 1100.0 [136]
PolyC/CNF 28.0 1.7 1800.0 [137]
CNC/PVA @UiO-66-(COOH), 1.7 55.0 - [138]
Flexible photonic film (FPES) 15.7 5.8 901.0 [139]
ICN 16.0 384 190.0 [140]
Ammonium sulfate-treated PAM/MC 4.4 690.0 3.8 [141]
DICI-1 - 24.3 7.4x1073 [142]
Reinforced cellulose-protein (RCP) 30.7 160.0 64.1 [143]
Cel-BF, 34 - 24.0 [144]
PAA-g-QCE/PVA 1.1 465.0 0.3 [145]
CNF/PU hybrid 0.25 23.0 - [146]
CNPF-reinforced silica 0.08 45.0 1.9 [147]

© The authors https://doi.org/10.1007/s40820-025-02054-y
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bonds, tight mechanical entanglement, and uniform distri-
bution collectively enhance the mechanical properties of
BC/GO hydrogels [150].

When preparing nanocomposites, the uniform disper-
sion of nanoparticles in nanocellulose films is critical.
Therefore, the layer-by-layer self-assembly technique
is an effective method to construct materials with high
mechanical strength and uniformity. Thick bacterial cel-
lulose/graphene oxide (BC/GO) hydrogels with a uni-
form structure were prepared by layer-by-layer assembly
in situ. The strong hydrogen bonds formed between BC
and GO ensured the tight binding of 1D and 2D compo-
nents, while the layer-by-layer culture mode improved the
dispersion of GO nanosheets in the BC matrix and pro-
moted the mechanical bundling of BC nanofibers to GO
nanosheets, forming a vein-like structure. Strong hydrogen
bonds, tight mechanical bundling, and uniform distribu-
tion together enhanced the mechanical properties of the
BC/GO hydrogels. Exceptional mechanical properties—
high strength and toughness—ensure that devices resist
fatigue damage, crack propagation, or permanent failure
under repeated mechanical deformation such as bending,
stretching, and compression. This is crucial for wearable
devices and electronic skins requiring long-term, stable
operation [151, 152].

3.2.2 Self-Healing Performance

The performance regulation of self-healing materials relies
on the reversible breaking and recombination of dynamic
bonds, and entropy-driven self-assembly plays an impor-
tant role in this process by maximizing the system disorder
(entropy increase). Dynamic bonds spontaneously recom-
bine at the damage interface to achieve a balance between
energy dissipation and structural recovery [153]. In recent
years, multi-network designs based on dynamic covalent
bonds (such as Schiff base bonds and disulfide bonds) and
noncovalent bonds (such as hydrogen bonds, metal coordi-
nation, and m-w stacking), combined with entropy increase-
dominated spontaneous recombination mechanisms, have
become a key strategy for improving the self-healing effi-
ciency of materials [154]. Notably, different self-healing
mechanisms exhibit significant variations in their entropy
requirements and thermodynamic constraints.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

Self-healing systems dominated by dynamic covalent
bonds require substantial entropy increase to overcome
bond-breaking energy barriers: temperature-sensitive
dynamic disulfide bonds synergizing with hydrogen bonds
enable efficient reconstruction of covalent-noncovalent
crosslinked networks in cellulose materials, while the
material’s strong temperature dependence in viscoelasticity
confers exceptional reprocessing and reshaping capabili-
ties [155]. In cellulose bioplastics containing dynamic imine
bonds, temperature-induced entropy increase activates imine
bond-exchange reactions, enhancing molecular chain mobil-
ity and bond-exchange rates to drive crosslinking network
reconstruction [156]. The dynamic reversibility of Schiff
base bonds synergizes with the energy dissipation proper-
ties of metal coordination bonds to form an entropy-driven
effect, conferring highly efficient self-healing capabilities
upon hydrogels (Fig. 6d) [157]. Flexible photonic films
(FPES) achieve self-healing through dual entropy-driven
mechanisms: dynamic disulfide bond exchange and the chi-
ral nematic structure of CNC (Fig. 6e) [139]. The covalent
bond exchange requires significantly higher entropy increase
than noncovalent interactions.

Noncovalent-dominated self-healing systems demand
lower entropy increase but are constrained by molecular
motion degrees of freedom: in aqueous polyurethane—cel-
lulose nanofibre (SWPU-CNF) elastomers exhibit self-heal-
ing through hydrogen bond disruption by entropic increase
upon heating, followed by hydrogen bond reformation upon
cooling. The CNF induces a looser hard domain structure in
the composite, enhancing molecular mobility and reducing
dynamic bond activation energy, thereby further optimiz-
ing self-healing efficiency [158]; Microfibrillated cellulose
(MFC)-reinforced PVA-borax hydrogels exhibit outstanding
self-healing capability and mechanical strength, alongside
pH-responsive sol-gel reversible transitions. Their self-
repair and dynamic reversibility stem from flexible poly-
mer chains, hydrogen bond reconstruction, and reversible
diol borate bonds [159]. Thermoresponsive supramolecular
hydrogels achieve rapid gel-sol transitions under thermal
stimulation-induced entropy increase through hydrogen
bonding and n-n stacking interactions [160].

The introduction of self-healing capabilities has signifi-
cantly enhanced the practical value and reliability of cel-
lulose elastomer devices in mechanical energy harvesting
and self-powered sensing applications [161, 162]. Specifi-
cally, this property first ensures the recoverability of device

@ Springer



215 Page 16 of 44

Nano-Micro Lett. (2026) 18:215

functionality: when accidental damage causes circuit breaks
or electromechanical failure, the material can achieve struc-
tural healing and functional regeneration through dynami-
cally reversible chemical bond rearrangement. Furthermore,
it endows devices with the potential to withstand complex,
unpredictable mechanical stresses. This is crucial for equip-
ment requiring long-term stable operation in dynamic envi-
ronments—such as electronic skin and implantable monitor-
ing systems—Ilaying the material foundation for constructing
highly robust intelligent systems.

3.2.3 Dielectric Property

The optimization of dielectric properties relies on the bal-
ance between polarization mechanisms and energy loss
within the material [163], and entropy-driven self-assembly
can significantly affect the dielectric response by regulat-
ing the dynamic arrangement of molecules or nanostruc-
tures (such as hydrogen bond networks and dipole orien-
tations) [164]. The entropy-driven self-assembly process
maximizes the disorder of the system (entropy increase),
prompting the material to form a stable structure with
the lowest energy in dynamic equilibrium, thereby opti-
mizing the synergistic relationship between the dielectric
constant (¢) and the dielectric loss (tand) [165, 166]. Spe-
cifically, entropy-driven self-assembly can both reduce free
polar groups by enhancing hydrogen-bonding interactions
between components, thereby regulating polarization relaxa-
tion to influence the dielectric constant [167]; and promote
the formation of interfaces and hydrogen bonds with larger
dipole moments, thus enhancing the dielectric constant of
composite materials [168]. A summary of recent studies on

Table 3 Comparison of dielectric properties of cellulosic elastomers

entropy-driven dielectric properties (dielectric constant,
dielectric loss tangent) in cellulose elastomers is presented
to highlight the contrast between cellulose and various pol-
ymer-assembled dielectric materials (Table 3).

Ultralight aerogels with aligned pores were synthesized
from CNC and agarose (AG) through techniques such as
ice-crystal-induced alignment, freeze-drying, and chemical
modification. The oriented structure (including CNC arrays
and aligned pores) and heterojunction with electron trans-
fer pathways of the CNC/AG aerogels reduced the dielec-
tric loss, exhibiting a synergistic effect in improving the
electromechanical conversion efficiency and triboelectric
performance [169].

Electric field-induced molecular self-assembly align-
ment also demonstrates significant regulatory effects. By
studying the alignment direction of sodium carboxymethyl
cellulose microfibers in silicone elastomer (PDMS) under
a DC electric field, composite films with high-dielectric
constants can be produced. Compared to composite films
without CMC alignment, the aligned composite films exhibit
a significant increase in dielectric constant. This is because
their chain-like structure resembles the parallel model of
two-phase composites, which exhibit higher dielectric con-
stants when the second phase is aligned parallel to the elec-
tric field, thereby enhancing the dielectric properties [170].
Furthermore, self-assembly-driven chemical crosslinking
regulates the mobility of molecular chains. For example,
in the preparation of epichlorohydrin (ECH)-crosslinked
regenerated cellulose membranes (RCCE), the reaction
between cellulose hydroxyl groups and ECH weakens the
hydrogen bond network and reduces crystallinity, releasing

Elastomer Material Frequency (Hz) Dielectric Constant Dielectric Loss References
Regenerated Cellulose 10° 13.0 0.030 [45]
RC/AONS/PVDF Ternary 10° 10.2 0.021 [175]
RC/PVDF Composite 10° 9.0 0.030 [176]
CA/PMMA Composite 103 6.7 0.028 [177]
CNF/PVA 107! 46x%10° 2.020 [178]
CMC - 78.1 - [179]
CNF/CNT 10'° 2.0 0.500 [180]
GNS/Cellulose 100 7.2 1.860 [181]
CNT/Cellulose-Derived 10'° 7.5 1.150 [182]
PPy/CA 10'° 33 0.360 [183]
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more freely mobile -OH groups, thus increasing the dielec-
tric constant [171].

Functionalization of cellulose with cyanoethyl groups,
followed by introduction into plasticized PVC, yields CEC/
PVC elastomers. The large orientational polarization of the
C=N dipole moment expands the interfacial capacitance,
endowing the elastomer with a high-dielectric constant
[131] (Fig. 6f, g). Unlike the aforementioned-mechanism
that merely increases the dielectric constant, achieving syn-
ergistic high-dielectric constant and low dielectric loss is
key to enhancing the high electrical output and long service
life of cellulose elastomer materials as flexible electronic
components [172, 173]. Flexible regenerated cellulose/
polypyridine (RC-PPy) conductive composite films achieve
synergistic high-dielectric constant and low dielectric loss
values by forming continuous conductive networks. Their
loss factor (¢"") comprises three distinct effects:

" __n " "
€ =€, teyy tEp )

Where €" ., €y, and €”p; represent DC conductivity, inter-
facial polarization, and dipole orientation, or the Debye loss
factor, respectively. The total frequency-dependent conduc-
tivity of the composite can be expressed as:

ol =0y +0, 3)

where o, and o, are the DC and AC conductivities,
respectively [174].

The dielectric properties enhanced by entropy-driven
self-assembly strategies is crucial for device performance.
In triboelectric nanogenerators, a higher dielectric prop-
erty strengthens the confinement of triboelectric charges
and electrostatic induction capabilities, directly increasing
charge density and power output [184]. Simultaneously,
when employed as the dielectric layer in capacitive sensors,
its exceptional polarization properties convert minute pres-
sures or strains into significant capacitance changes, ena-
bling highly sensitive signal detection [185]. This dual func-
tionality makes dielectrically optimized cellulose elastomers
valuable for both efficient energy harvesting and precision
sensing applications.

To clarify the design principles of self-assembled struc-
tures and correlate them with specific energy-harvesting
mechanisms is crucial for achieving high-performance
devices. This study thoroughly explores the structure—prop-
erty relationships between various self-assembled struc-
tures—such as Bouligand structures, multiscale structures,
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gradient structures, and dynamically stimulus-responsive
network structures—and their core properties (mechanical
properties, dielectric properties, self-healing properties, and
electromechanical conversion properties). It also compiles
and organizes the contributions of these structural charac-
teristics to the field of energy harvesting. Relevant findings
are summarized in Table 4.

4 Cellulosic Elastomer for Electromechanical
Conversion and Self-Powered Sensing

Entropy-driven self-assembly systematically optimizes the
electromechanical response properties of cellulose elasto-
mers by precisely regulating molecular orientation, hydrogen
bond rearrangement, and multiscale structural formation.
Regarding dielectric performance, molecular chain orien-
tation induces more directional dipoles that respond more
actively to applied charges, thereby enabling more efficient
dipole polarization. Conversely, the ordered arrangement
of cellulose chains reduces distances between crosslinking
sites, hindering impurity ion transport and thereby suppress-
ing dielectric relaxation of dipoles to a certain extent. [184,
194]. Hydrogen bond network restructuring directly regu-
lates dielectric polarization strength and relaxation behav-
ior by altering dipole density, orientation, and rotational
barriers [195, 196]. Multiscale structures significantly
enhance interfacial polarization by constructing interfaces
and defects across different dimensions (from molecular
to nano- and micrometers), thereby enabling control over
material dielectric properties [197]. High-dielectric prop-
erties critically influence common mechanical-to-electrical
energy conversion generators (piezoelectric, triboelectric,
and dielectroelastic generators). As a key medium, dielectric
properties profoundly affect the performance of various elec-
tromechanical energy conversion devices through distinct
physical mechanisms: A high-dielectric constant enhances a
material’s ability to store and maintain polarization charges
induced under stress, thereby effectively increasing the
apparent piezoelectric voltage coefficient under identical
strain conditions [198]. In triboelectric power generation,
high-dielectric constants significantly enhance open-circuit
voltage and short-circuit current by amplifying dielectric
polarization and electrostatic induction effects; for dielectro-
elastic generators, high-dielectric constants directly increase
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Table 4 Comparative analysis of common self-assembled structural properties in energy-harvesting applications

Structure Mechanical Prop-  Dielectric Proper- ~ Self-healing capa-  Electromechanical Conver- References
erties ties bility sion Performance

Bouligand @ - - @ [117]
Bouligand @ - - @ [186]
multiscale @ - - @ [152]
multiscale @ - - @ [187]
multiscale - @ - @ [188]
Gradient @ - - @ [189]
Gradient - - - @ [190]
Gradient @ - - - [191]
Dynamic Stimulus Response @ - @ - [158]
Dynamic Stimulus Response © - @ @ [192]
Dynamic Stimulus Response @ - - @ [193]

energy density, while low dielectric loss and high breakdown
strength jointly ensure charging/discharging efficiency and
upper operational field limits [199, 200].

Additionally, entropy-driven self-assembly endows mate-
rials with enhanced mechanical properties and self-healing
capabilities. This significantly boosts the environmental
adaptability, durability, and functional reliability of energy
harvesting and sensing systems: optimized mechanical prop-
erties—such as high toughness and stretchability—ensure
structural integrity and stable output during complex defor-
mations, while directly improving piezoelectric/triboelec-
tric energy conversion efficiency by effectively transmitting
and amplifying external stresses. Self-healing capabilities
autonomously repair microcracks and circuit breaks caused
by mechanical fatigue or damage [201, 202]. This not only
restores the device’s mechanical integrity to sustain long-
term performance but, more critically, reconstructs disrupted
conductive pathways and dielectric isolation layers. Conse-
quently, electrical output signals (e.g., current, resistance)
regain consistency, substantially extending sensor lifespan
under harsh conditions and enhancing data acquisition

© The authors

reliability. Ultimately, this enables intelligent, robust, and
sustainable self-powered sensing. These self-assembly-
induced multiscale structural features synergistically
enhance material mechanical durability and self-healing
capabilities while establishing a systematic regulation path-
way from molecular order to macroscopic performance. This
section will delve into the regulatory mechanisms governing
the dielectric, piezoelectric, and triboelectric properties of
cellulose elastomers, providing theoretical foundations for
developing high-performance mechanical energy harvesting
and self-powered sensing materials.

4.1 Piezoelectricity

Piezoelectric power generation in elastomers primarily relies
on the piezoelectric effect to convert mechanical energy into
electrical energy, with its performance determined by both
the piezoelectric coefficient and strain rate. By optimizing
the intrinsic properties of piezoelectric materials, design-
ing energy-harvesting structures such as multilayer stacks
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and cantilever beams, and integrating impedance-matching
circuits with energy management chips, output efficiency
can be significantly enhanced. This provides critical tech-
nological support for low-frequency energy harvesting and
self-powered sensing applications.

4.1.1 Principle of Piezoelectric Power Generation

Piezoelectric generators, as a type of self-powered generator,
boast advantages such as simple fabrication, low cost, and
high energy conversion efficiency, thus finding wide applica-
tion in fields like low-frequency energy harvesting, wearable
devices, and electronic equipment [203, 204].

A piezoelectric nanogenerator (PENG) comprises piezoe-
lectric materials, metal electrodes, and an encapsulation cas-
ing. Among these, piezoelectric materials serve as the core
component of PENG, responsible for converting mechanical
energy into electrical energy [205]. Electrodes function to
collect and transmit the electric charges generated by the
piezoelectric materials. The encapsulation casing is typically
made of lightweight yet durable materials, providing struc-
tural support for the PENG while effectively protecting the
electrodes and piezoelectric materials from external hazards
(e.g., dust, moisture, and physical damage) [206].

The working principle of PENG lies in converting
mechanical energy into electrical energy via the piezoelec-
tric effect (Fig. 7a, b) [209]. The fundamental equations of
the piezoelectric effect are as follows:

{ Op = CpgEp ~ ik @)
D, = e €, + KLy

where o, denotes the stress tensor, D; the electric displace-
ment,c,, the elastic modulus tensor,e, the strain tensor, €
the piezoelectric tensor, and E; the electric field. k;and ¢,
denote the dielectric tensor and piezoelectric tensor, respec-
tively. Equation 4 is a coupled equation, for which an ana-
lytical solution often does not exist (Fig. 7ci). To tackle this
issue, Gao et al. employed a perturbation expansion method
to solve the coupled equations, deriving an expression for
the piezoelectric potential distribution with high accuracy
(with a deviation of less than 6%) (Fig. 7cii-civ) [208]:

Dg; = e;,€p 5)
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In these equations, Dy, denotes the residual displace-
ment, while p®, =R denote the volume charge and surface
charge, respectively. Thus, the mechanism of PENG can
be described as follows. Under external force, the volume
charges and surface charges generated by the piezoelectric
material induce a potential drop across the PENG electrodes.
Once PENG is connected to an external load, this potential
drop drives electron flow, thereby generating electricity. As
shown in Eq. 5, electric displacement is determined by the
strain tensor and piezoelectric tensor. Based on Eq. 6, we
assume that the piezoelectric material is uniformly distrib-
uted internally, with only residual surface charges present.
The equivalent circuit of PENG can be modeled as a voltage
source. V; in series with a capacitor Cp, thereby yielding the
voltage source equation (Fig. 7d) as shown in Eq. 7:

¢ipkp

Yo=-c- (7

where C,, Denotes the capacitance of PENG. When PENG is
connected to a capacitive load, the existence of C, Results in
the output voltage being lower than the open-circuit voltage.
Recently, Wang et al. identified a key parameter governing
the mechanical-to-electrical energy conversion, the displace-
ment current density (Eq. 8) [211, 212]:

0Dy Oep
J=——= eiﬂ? (8)

ot

In such cases, the equivalent circuit of PENG can be
modeled as a current source in parallel with Cp,. Equation 8
establishes a relationship between the strain rate, piezoelec-
tric coefficient, and PENG output. From this relationship,
it can be concluded that a higher strain rate and a superior
piezoelectric coefficient will lead to a greater PENG output.
Therefore, under fixed external load conditions. In addition
to using soft, stretchable elastic materials as the substrate in
piezoelectric elastomer generators. The design and develop-
ment of piezoelectric materials with excellent piezoelectric
coefficients and high strain rates are of great significance.
This is crucial for the efficient conversion of mechanical
energy to electrical energy in PENG.
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The power generation mechanism of the PENG
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Fig. 7 Piezoelectric elastomer generator mechanism. a PENG generator mechanism. b simulation model, stress, and piezoelectric potential dis-
tribution under tensile conditions. Reproduced with permission from Ref. [207], Copyright 2018 Elsevier. ¢ (i) Piezoelectric potential distribu-
tion of deflected nanowires (length 600 nm, diameter 50 nm) under a lateral force of 80 nN. (ii) and (iii) piezoelectric potential of the PENG
cross section (z0=300 nm) calculated analytically using the finite element method. (iv) comparison of piezoelectric potentials calculated by
the two methods. Reproduced with permission from Ref. [208], Copyright 2007 American Chemical Society. d Equivalent circuit of the PENG,
where the PENG is treated as a voltage source. Reproduced with permission from Ref. [209], Copyright 2021 Elsevier. e Energy-harvesting
model of the PENG. Reproduced with permission from Ref. [210], Copyright 2018 Royal Society of Chemistry. f Major factors influencing the
output performance of the PENG (piezoelectric constant, electromechanical coupling coefficient, dielectric constant) and their regulation of elec-

trical output. Reproduced with permission from Ref. [21], Copyright 2025 John Wiley and Sons

4.1.2 Optimization of Piezoelectric Power Generation
Performance of Elastomers

Optimizing piezoelectric output performance requires syn-
ergistic regulation across three dimensions: material prop-
erties, structural design, and energy management [213]. At
the material level, piezoelectric constants (ds5), dielectric
constants, and electromechanical coupling coefficients
are key performance-determining parameters (Fig. 7e,
f) [21, 210, 214]. Intrinsic material performance can be
significantly enhanced through compositional regulation,

© The authors

texturing, and composite modification. Taking the typical
piezoelectric polymer PVDF as an example, its electro-
mechanical conversion capability fundamentally relies on
the formation and orientation of the electroactive p phase.
From the perspective of the polarization mechanism, the
generation of the piezoelectric effect necessitates the
condition of ‘directional alignment of dipoles’. Currently,
three primary strategies enhance dipole alignment to
achieve superior piezoelectric performance: firstly, induc-
ing dipole alignment in piezoelectric materials through
the electrostatic polarization process; secondly, controlling
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Nano-Micro Lett. (2026) 18:215

Page 21 of 44 215

material orientation (termed texturing); and thirdly, gen-
erating self-polarization effects by introducing interfa-
cial polarization between different components Regard-
ing structural optimization, multilayer stacking designs
enhance low-stress response, while cantilever structures
combined with mass tuning optimize resonant frequency
matching. Flexible electrode designs ensure stable contact
under large deformations [215-218]. The thin-walled char-
acteristics of porous structures substantially reduce mate-
rial Young’s modulus [219], enabling significant deforma-
tion under external forces while promoting internal dipole
deflection to intensify piezoelectric effects [220]. Micro/
nanostructures enhance piezoelectric performance through
geometric strain confinement effects, high strain tolerance,
and ordered dipole alignment [221-223].

In terms of structural optimization, multilayer stacked
designs can enhance low-stress response, while cantile-
ver beam structures combined with mass block tuning can
optimize resonance frequency matching. Flexible electrode
designs guarantee stable contact under large deformations.
Optimizing the energy management system is crucial for
practical applications. Precise impedance-matching circuit
design enables maximum power transmission.

Integrated energy-harvesting chips improve AC-DC con-
version efficiency. The combination with energy storage sys-
tems effectively addresses the issue of intermittent energy
output. Current research remains challenged by key technical
bottlenecks, such as wideband energy harvesting and effi-
cient conversion under small stresses. These advancements
will propel the application of piezoelectric technology in
low-frequency vibration energy harvesting and self-powered
sensing, providing reliable micro-energy solutions for the
Internet of Things and intelligent systems.

4.2 Elastomer Triboelectric Nanogenerator

Triboelectric nanogenerators (TENG) convert mechani-
cal energy into electricity through contact electrification
and electrostatic induction, with output performance gov-
erned by surface charge density and dielectric character-
istics [224, 225]. Performance is enhanced by selecting
triboelectric pairs with high electron affinity differences,
engineering micro/nano-structured surfaces, and imple-
menting multilayer architectures to maximize contact area.
Further improvements in energy conversion efficiency and
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operational stability are achieved through synchronous
charge extraction circuits and impedance-matching strate-
gies, making TENG a foundational technology for flexible
wearable electronics and self-powered systems.

4.2.1 Principle of Elastomer Triboelectric
Nanogenerators

TENG first introduced by Wang and his team in 2012,
operates on the principles of electrostatic induction and
the triboelectric effect [226-229]. Specifically, when two
objects composed of distinct materials come into con-
tact, disparities in their electron-confinement capabilities
lead to the generation of equal and opposite charges at
the contact interface. The charges formed on the material
surfaces give rise to a potential difference in the external
circuit. Electrons are propelled by this potential differ-
ence to move between the electrodes. If there is a load
or a short-circuit in the external circuit, the charges will
oscillate between the two electrodes. This process thus
generates an electric current. TENG can be classified into
four operational modes: vertical contact-separation mode,
lateral sliding mode, single-electrode mode, and freestand-
ing triboelectric-layer mode (Fig. 8a) [230-232]. One of
the remarkable features of TENG is its ability to transform
energy into electrical energy. This energy is almost any
irregular and predominantly low-frequency type, sourced
from human activities, machinery, and natural phenomena.
Taking the typical vertical contact-separation mode as an
example (Fig. 8b), the relationship between the induced
voltage V transferred charge O, and displacement x of the
triboelectric layer is given by Eq. 9 [233, 234]:
X (1)

0 o
V=—a(do+x(t))+7 )

The open-circuit voltage is given by Eq. 10:

Vo=
oc p (10)
In the short-circuit (SC) state, V is 0. The transferred
charge Qg is given by Eq. 11:

Sox (1)

Osc = 4+ x0) (11)

The short-circuit current (/) is given by Eq. 12:
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Schematic of the four fundamental modes of TENG
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do,,  Sod, dx _ Sodyv(t)
€ (dy+x(0)* At (dy+x(0)*

Iyc = (12)

Therefore, the output performance of TENG directly
depends on the surface charge density (o) and effective dielec-
tric thickness (d,) of the triboelectric material. Furthermore,
in the parallel-plate capacitor model, o is related to the capaci-
tance (c) of the dielectric layer, and this relationship can be
expressed by Egs. 13 and 14 [235]:
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cv
o = T (13)
Se g,
c=—1= 14
y 14

A higher dielectric constant and thinner dimensions are key
to improving TENG output performance. Recent studies have
shown that increasing the dielectric constant can effectively
increase the total charge transfer density (o/) [236]. Its expres-
sion is given by Eq. 15:
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_Godgap

ol = ———
dgap +d,/o,

s)

Herein, o denotes the equilibrium triboelectric charge den-
sity. d

gap
thickness, respectively, and €, is the dielectric constant. Under

and d, represent the gap distance and dielectric film

a fixed surface charge density, increasing the dielectric con-
stant of triboelectric materials can effectively enhance TENG
output performance [236]. Furthermore, a higher dielectric
constant promotes surface charge accumulation during con-
tact [200, 237, 238]. Owing to this dual mechanism, enhancing
the dielectric constant markedly boosts triboelectric perfor-
mance. Thus, tuning the dielectric properties of the triboelec-
tric layer emerges as an effective strategy to improve the output
performance of triboelectric materials. Moreover, triboelec-
tric materials with superior wear resistance and mechanical
robustness are critical for ensuring the stability and durability
of TENG electrical output. Elastomers with high mechanical
strength and tensile toughness stand out as promising candi-
dates for TENGs [239, 240]. They offer distinct advantages in
the design of wearable flexible devices, electronic skin, and
human—machine interaction systems. However, in contrast
to PENGs, which require rigorous encapsulation, TENG are
susceptible to interference from environmental humidity and
temperature. Therefore, engineering elastomers with excellent
humidity resistance is pivotal for maintaining the stability of
electrical signals.

4.2.2 Optimization of Triboelectric Power Generation
Performance of Elastomers

The performance optimization of TENG necessitates sys-
tematic regulation across four key domains: material selec-
tion, structural design, energy management, and environ-
mental adaptability. At the material level, peak performance
can be realized by choosing friction material pairings that
exhibit substantial disparities in electron affinity (e.g.,
PTFE-nylon systems). This choice should be complemented
by surface micro/nano-structuring and chemical modifica-
tion. These enhancements serve to elevate dielectric proper-
ties and enlarge the contact area between the positive and
negative friction layers (Fig. 8c) [241]. It is noteworthy that,
beyond dielectric constant regulation, enhancing polariza-
tion efficiency and charge retention capacity also constitute
core strategies for improving the triboelectric effect. By
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modulating material molecular orientation, crystallinity,
and dielectric constant to alter charge characteristics before
and after corona polarization, the triboelectric properties of
electret and non-electret polymers can be optimized [242].
Regarding polarization treatment techniques, the quenched
polarization (QP) process enhances charge density and sta-
bility by introducing deep traps through modification of the
polymer lattice structure, thereby enabling ultra-long-term
storage of triboelectric charges [243]. Concerning charge
compensation, research has demonstrated for the first time
that charge dissipation in open air can be compensated via
radical ion transfer processes, thereby achieving ultra-high
charge densities [244]. Regarding enhanced charge retention
capability, an acid ion sandwiching strategy stores charge
by forming sandwich structures requiring high activation
energy. Simultaneously, selective anion migration compen-
sates for polarization charge dissipation, yielding positively
charged triboelectric materials with superior charge reten-
tion performance [245].

Presently, TENG research still grapples with challenges
such as the low efficiency of low-frequency energy har-
vesting and the underdeveloped large-scale fabrication
processes. Future research ought to concentrate on three
main directions. Firstly, develop novel functional materi-
als with self-healing capabilities to prolong the lifespan of
devices. Secondly, hybrid systems integrating TENG with
other energy-harvesting technologies have been developed.
By combining the piezoelectric effect [247] and magnetic
induction effects [248], these systems achieve efficient
energy capture across a broad spectrum. Finally, explore
the application of biomimetic structures and smart respon-
sive materials in TENG to surpass the existing performance
boundaries. These innovative studies will greatly promote
the practical application of TENG in areas like IoT sensors,
wearable electronics, and marine energy harvesting. This
thus offers new technical approaches for realizing self-pow-
ered systems.

4.3 Dielectric Elastomer Generator

Dielectric Elastomer Generators (DEG) convert mechani-
cal energy into electricity through cyclic stretching and
releasing, with performance governed by key parameters
including dielectric permittivity, breakdown strength, and
elastic modulus. Energy density and conversion efficiency
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are enhanced through multilayer gradient architectures, pre-
stretching treatments, and synchronous charge extraction
circuits, positioning DEGs as efficient energy solutions for
applications such as wave energy harvesting and wearable
electronics.

4.3.1 Principle of Dielectric Elastomer Generators

Relative to the material property requirements of PENG
and TENG, the elastomers required for DEG impose higher
demands. Specifically, dielectric elastomer (DE) materials
typically require high energy density, large deformability,
and high electromechanical conversion efficiency [249].
Owing to such material advantages, DEG exhibits higher
electrical output power density and superior electrome-
chanical coupling performance compared to TENG and
PENG [250]. A traditional dielectric DEG is a dielectric
capacitor (DEC). It consists of a DE material sandwiched
between two compliant electrodes. When connected to
an external high-voltage power supply, it converts input
mechanical energy into electrical energy through a stretch-
ing-releasing cycle (Fig. 9a, b) [251].

First, the DEGs is stretched under an external force. This
causes the area of the DE film to increase and its thickness
to decrease. As a result, the capacitance of the elastomer
film is enhanced. Subsequently, an external bias voltage is
applied to excite the stretched DE material. Upon removal
of the external force, the DE material relaxes. This leads
to a decrease in its capacitance, along with an increase in
voltage and electrical energy. When modeled as the simplest
parallel-plate capacitor, it satisfies the assumptions of energy
storage and constant charge, that is:

Q = Cl V] = C2V2 (16)

Based on this, the calculation method for the theoretical

electrical energy generated (AEy.,,,) is as follows:

heory

2
1 ) E0EAL Ay
- =01 1 _1
2C1 Vl 2d1 Vl Ag
(17)

A .
where C <C = %) and V represents the capacitance and

AE, E,—E, = %szg -

heory —

voltage across the DE material, respectively. £, denotes the
vacuum permittivity, €, denotes the relative permittivity of
the DE material, A and d represent the effective working area
and thickness, respectively, and subscripts 1 and 2 denote the

© The authors

‘stretched’ and ‘released’ states of the DE material,
respectively.

Based on the existingAE,, two important energy-har-

eory?
vesting characteristics, namely energy density (w) and elec-
tromechanical conversion efficiency (#), can be calculated.

The energy generated during a single cycle can be expressed
AE

theory theory

AE .
asw=—=2 p= , where m represents the effective
m

Mech
mass of the DE material and W), represents the output

mechanical work.

From the structure of traditional dielectric elastomer sys-
tems, it can be seen that conventional dielectric elastomer
generators require kilovolt-level bias voltages. After each
cycle of expansion and contraction, the consumed charge
must be replenished by the external bias voltage, which
greatly limits their practical industrial applications. To
overcome this limitation, alternating current dielectric elas-
tomer generators (AC-DEG) with passive configurations
have been developed. Compared to traditional DEG, AC-
DEG retain all the advantages of DEG. Meanwhile, they
eliminate the need for kilovolt-level bias voltages via the
use of an electret electrostatic voltage source (EEVS) and a
charge pump circuit (P-Circuit) (Fig. 9¢) [253]. The DEC,
as the only active component, enables the AC-DEG to adopt
various shapes and achieve multi-degree-of-freedom motion
due to its stretchability. Meanwhile, the energy conversion
efficiency and stability can be improved by optimizing the
internal structural parameters (Fig. 9d). Among elastomer
materials, dielectric elastomers need to exhibit excellent
mechanical properties-such as elastic recovery, toughness,
and tensile strength well as superior dielectric properties.
All these properties are critical for the effective conversion
between mechanical and electrical energy.

4.3.2 Optimization of the Power Generation Performance
of Dielectric Elastomer Generators

The performance of dielectric DEG is influenced by a
combination of material properties, structural design, and
operating conditions. Key material parameters include
dielectric permittivity (e), dielectric strength (E,), and
elastic modulus (E), which are interdependent (Fig. 9e).
High-¢ materials (e.g., BaTiO;/PDMS composites, €~ 15)
can enhance charge storage capacity. However, excessive
filler content (>20 wt%) can compromise flexibility. A low
E (0.1-1 MPa) allows for large deformations but may lead to

https://doi.org/10.1007/s40820-025-02054-y
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areduction in E,. For structural optimization, pre-stretching
(100%-300%) can increase E, up to 50 kV mm™". Multi-
layer gradient designs can effectively integrate high e with
low E, while wrinkled or fiber-reinforced structures offer
a balance between flexibility and durability. At the system
level, load impedance must be properly matched. Synchro-
nous charge extraction techniques can be applied, achieving
energy densities of up to 0.5 J g~'. Additionally, resonant
circuit designs can be utilized to broaden the operational
frequency bandwidth (0.1-30 Hz).

SHANGHAI JIAO TONG UNIVERSITY PRESS

The current challenge lies in resolving the inherent trade-
offs among high permittivity (¢>30), low E, and high break-
down strength (E, > 100 kV mm™!). By designing more suit-
able structural configurations for DEGs and modifying their
operational modes (Fig. 91, g), together with machine learn-
ing-based optimization, energy conversion efficiency can be
further improved. This advancement is expected to enable
applications such as wave energy harvesting (> 1 J cm™)
and wearable electronics (> 1 mW cm™2). At the core of
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this progress is the multiscale synergistic optimization of
materials, structures, and systems.

4.4 Applications of Entropy-Driven Self-Assembled
Cellulosic Elastomers

Entropy-driven self-assembled cellulosic elastomers exhibit
versatile functionality in energy harvesting and intelligent
sensing applications. These materials efficiently convert
mechanical energy-such as human motion-into electricity
through integrated triboelectric, piezoelectric, and dielectric
transduction mechanisms. Furthermore, structural entropy
changes within the material generate detectable electrical
signals, enabling applications in wireless motion monitor-
ing, non-contact sensing, and human—machine interfaces.
These capabilities position cellulosic elastomers as promis-
ing components for self-powered wearable devices and adap-
tive intelligent systems.

4.4.1 Mechanical Energy Harvesting

During the process of mechanical energy harvesting, exter-
nal mechanical disturbances (such as vibration and pressing)
are applied to the material. This triggers an entropy-driven
mechanism. The mechanism leads to dynamic reconstruc-
tion and entropy changes in the material’s internal micro-
structures. These microstructures include the distribution
of nanofillers, molecular chain orientation, and interfacial
hydrogen bond networks [258]. A triboelectric pressure sen-
sor based on hydrophilic triboelectric elastomer and gradi-
ent microchannels enhances sensing performance through
pressure-induced water-bridge modulation of the built-in
electric field, ion-rich interface, and selective ion transfer,
achieving simultaneous improvements in sensitivity and lin-
earity [259]. Additionally, the FTENG, based on a porous,
flexible piezoelectric film (HPF), is connected to a wearable
textile belt and secured to clothing on the human buttocks.
During daily activities such as walking and running, the
arm may lightly contact the buttocks, inducing mechanical
deformation. This enables the HPF-FTENG to efficiently
harvest the generated biomechanical energy (Fig. 10a) [260].
Entropy-driven cellulose-based elastomers also show prom-
ise in the field of functional integration. Lycra fabric (LC)
demonstrates significant potential in wearable TENG appli-
cations due to its high elastic recovery, shape retention, and

© The authors

body-hugging properties. Conductive polypyrrole (PPy)
and naturally derived chitosan (CS)/phytic acid (PA), both
tribo-negative materials, were sequentially applied to Lycra
fabric (LC) to assemble a biodegradable and flame-retardant
LPCP-TENG. The breathable and elastic LPCP-TENG can
be integrated into various parts of firefighting suits to harvest
mechanical energy generated by movements such as climb-
ing, grasping equipment, and running, thereby enabling sus-
tainable energy collection (Fig. 10b) [261].

CNFs, as a derivative material of natural cellulose,
possess outstanding advantages including a high aspect
ratio, high transparency, excellent mechanical strength,
good flexibility, and ideal electrical properties [262, 263].
Consequently, they have become a research hotspot in the
field of flexible energy storage and harvesting. However,
CNF exhibits weak triboelectric properties, which can be
enhanced through chemical modification. For instance,
highly porous CNF/PEI aerogels were prepared via an ami-
dation process. PEI modification alters the flexibility of CNF
molecular chains and their surface charge distribution, lead-
ing to more pronounced changes in conformational entropy
under mechanical stress. This endows the CNF/PEI aerogel
not only with robust mechanical properties but also with
exceptional triboelectric activity, significantly enhancing
the output performance of the triboelectric nanogenera-
tor (TENG). Such a TENG holds promise for harvesting
energy from bodily movements such as water droplet impact.
(Fig. 10c) [264].

Furthermore, electron-donating amino groups were
introduced into CNF aerogel via silanization to enhance its
positive polarity. The resulting CNF/CTS aerogel, based
on amino-modified CNF, achieved greater molecular chain
mobility through its physical pore structure. This struc-
tural feature facilitates more pronounced entropy-induced
charge transfer during interfacial contact. The aerogel-
derived A-NG can instantaneously illuminate 22 series-
connected blue LEDs under external force and charge
capacitors via a bridge rectifier, functioning as an efficient
energy-harvesting power source (Fig. 10d) [265]. In addi-
tion to variations in effective contact area, crystallization
induced by strain and temperature changes can also cause
shifts in the triboelectric sequence. Strain-induced crystal-
lization of molecular chains may generate ordered molecu-
lar orientation changes, thereby altering surface electron
density and leading to shifts or even reversals in tribo-
electric polarity. Notably, while silicone rubber (Ecoflex)

https://doi.org/10.1007/s40820-025-02054-y
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curve. Reproduced with permission from Ref. [265], Copyright 2018 John Wiley and Sons. e A watch powered by an E-TENG. Reproduced with
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exhibits minimal performance variation under different
strains at room temperature, strain-induced shifts in the
triboelectric series become apparent at—50 °C [266].
Hydroxypropyl cellulose (HPC), as a cellulose deriva-
tive, combines a rigid backbone, biocompatibility, and
abundant hydroxyl groups [267]. It forms dense dynamic
hydrogen bonds to enhance mechanical properties, while
its long linear molecular chains strengthen polymer net-
work entanglement, conferring high elasticity to eutectic
gels. When incorporated into metal-salt-based eutectic sol-
vents (MDES), the structural design anchoring cellulose to
PAA chains, combined with the rapid cleavage/reconstruc-
tion of dynamic sacrificial bonds, enables the fabrication
of highly resilient eutectic gels. Functioning as flexible

SHANGHAI JIAO TONG UNIVERSITY PRESS

E-TENGs, these gels harvest mechanical energy and can
power digital watches through finger taps. (Fig. 10e) [268].

4.4.2 Wireless Motion Sensor

Entropy-induced charge transfer or capacitance variation can
facilitate energy conversion through piezoelectric, triboe-
lectric, or dielectric effects [269]. In self-powered sensing,
environmental mechanical stimuli trigger entropy-driven
reversible structural changes. These alterations, such as
changes in dielectric constant, ionic conductivity, or inter-
facial potential difference, generate detectable electrical
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signal outputs, enabling sensing without external power
sources [270].

Bacterial cellulose (BC), tannic acid (TA) and LiCl
were incorporated into the P(AM-co-AA) polymer net-
work to prepare PBTL hydrogels exhibiting outstanding
extensibility, adhesion, and environmental adaptability.
A smart glove developed using PBTL sensors, combined
with VR technology, enables wireless gesture control of a
hexapod robot. (Fig. 11a) [271]. The polydopamine-modi-
fied cellulose nanofiber/polyvinyl alcohol-polyacrylamide
(PCNF/PVA-PAM) composite hydrogel enables wireless
signal transmission by converting mechanical deforma-
tion into resistance changes. The composite network
effectively dissipates energy and enhances the hydrogel’s

Wireless Motion Sensor

mechanical strength and toughness. When adhered to a
finger, the composite hydrogel allows specific gestures to
trigger long-distance wireless transmission of the “HELP”
message (Fig. 11b) [272].

The natural rubber/cellulose nanofiber (NR/CNF) strain
sensor exhibits significantly enhanced performance due
to the synergistic effect between the excellent electri-
cal conductivity of CNT/PEDOT: PSS and the mechani-
cal reinforcement provided by CNF. During the extension
and release of the index finger, wireless signals can be
transmitted in real time via a mobile application, enabling
simultaneous detection and processing of epidermal physi-
ological signals [274] (Fig. 11c). Additionally, as shown in
Fig. 11d, a real-time wireless transmission sensing system
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was developed using an energy-harvesting floor (CEHF)
made from commercial cellulose materials. When a person
steps on the CEHF, the converted electrical energy is used
both to detect the footsteps and to power the radio frequency
transmission system, allowing for the remote collection and
real-time processing of pedestrian traffic data [275]. The
TOCNF/MXene dual-functional sensor exhibits bimodal
responsiveness to humidity and pressure. This is achieved
through the synergistic integration of a three-dimensional
hydrogen-bonding network (TCMF film) and a porous aero-
gel structure (TCMA composite aerogel). When equipped
with a Bluetooth module, it enables real-time monitoring
of sleep respiration waveforms, thereby addressing the
limitation of single-functionality in traditional sensors
(Fig. 11e) [276].

4.4.3 Intelligent Human—Machine Interaction

The layered supramolecular conductive ionogel achieves
synergistic optimization of self-healing performance and
stress—strain elasticity. This is realized through an entropy-
driven fracture-reconstruction mechanism of the dynamic
disulfide bond network, supported by the mechanical rein-
forcement of a rigid hydroxypropyl cellulose framework.
The incorporation of polymerizable ionic liquids enhances
ionic conductivity. When used as a glove sensor, it enables
accurate gesture recognition and facilitates human—machine
interaction through robotic arm replication (Fig. 12a) [277].

Conductive ion gels depend on dynamic disulfide bonds
for self-healing. Unlike them, MXene/TEMPO-oxidized
bacterial cellulose (TOBC) double-network hydrogels
achieve superior mechanical properties and self-healing
capabilities. They do this through the synergistic entropy of
hydrogen bonds, dynamic three-dimensional networks, and
micelle interactions. Sensors fabricated from this hydrogel
can be employed as wireless remote interactive devices, ena-
bling fine motor control in robotics and virtual reality [281].

To expand the dimensions of motion trajectory moni-
toring, research has shifted toward multi-channel dielec-
tric enhancement designs. The cellulose carbon nanotube
aerogel TENG (CCA-TENG), due to its enhanced dielectric
constant and 3D porous structure, demonstrates excellent
output performance. A multi-channel human—-machine inter-
face sensor based on CCA-TENG enables motion trajectory
monitoring, and a self-powered dance mat developed from

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

it can be used to evaluate the gait mechanics distribution of
dancers (Fig. 12b) [278]. Furthermore, as shown in Fig. 12c,
a sleeve with four BC/polypyrole/spacer fabric (BPSF) pres-
sure sensor channels with a layered structure can achieve
human—computer interaction through the movement of each
sensor channel corresponding to the controller in different
directions [279]. The research extends from motion control
in physical space to interactive interfaces in virtual environ-
ments. A KCNF-TENG sensor, based on kapok cellulose
nanofiber film, can function as a human—machine interaction
control system in computer games to control the movement
of a balance ball (Fig. 12d) [280].

4.4.4 Non-Contact Signal Sensing

The silk fibroin-modified carbon nanotube/bacterial cellu-
lose/waterborne polyurethane (SSCNT/BC/WPU) gradient
nanocomposite film is used to construct a Janus film by regu-
lating the interaction between CNT and WPU. The result-
ing single-electrode TENG demonstrates excellent electri-
cal output performance and enables non-contact prediction
of human motion states and directions (Fig. 13a) [282]. In
contrast to the Janus film, which achieves short-range non-
contact sensing through electrostatic induction, the layered
CNT/MXene/CNF aerogel enables non-contact sensing by
utilizing thermal radiation from fingertips to generate a tem-
perature gradient, thereby producing a thermoelectric volt-
age (Fig. 13b) [283]. Additionally, a parallel-plate capacitive
sensor was fabricated using a large-pore, directionally lay-
ered, superelastic foam (PLA @Pulp), assembled from cel-
lulose pulp and polylactic acid (PLA) fibers, serving as the
dielectric layer to enable non-contact sensing. The extremely
low dielectric constant is attributed to the high porosity of
the foam and the insulating properties of PLA and pulp fib-
ers. When tweezers approach the device, the capacitance of
the sensor decreases (Fig. 13c) [284].

The research has been extended from air environments
to complex underwater media. In a one-pot crosslinking
process using a water-dimethyl sulfoxide binary solvent,
CNC and lithium chloride (LiCl) are incorporated into
a copolymer network to fabricate a conductive hydrogel
(CPAMD). The CPAMD sensor demonstrates excellent
non-contact sensing capabilities underwater and enables
underwater alarms by distinguishing signal patterns gener-
ated by the immersion of different objects (Fig. 13d) [285].
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2024 Springer Nature. d Human—machine interaction based on self-powered wearable sensors used as a game keyboard to control the direction
of the ball. Reproduced with permission from Ref. [280], Copyright 2024 Elsevier

Additionally, an electronic skin is fabricated by screen-
printing a silver sensing layer between a CNF/HPC
(hydroxypropyl cellulose)/PVA aerogel and a breathable
polyurethane epidermal layer. The self-assembled aero-
gel film combines extensibility and toughness. Sensors
based on this aerogel can differentiate breathing pat-
terns, detect humidity, and achieve non-contact sensing
(Fig. 13e) [286].

© The authors

S Summary and Outlook

Entropy-driven self-assembly of cellulose elastomers plays
a pivotal role in structural design, significantly impacting
the development of novel flexible energy materials. The
intrinsic connection between entropy-driven processes and
self-assembly demonstrates the remarkable processability
of cellulose elastomer materials through the formation of
ordered structures. In cellulose elastomer design, entropy-
driven approaches regulate structural transitions to tailor

https://doi.org/10.1007/s40820-025-02054-y
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desired properties, serving as a key pathway to achieve
electromechanical conversion efficiency. This provides a
design framework for next-generation energy harvesting and
sensing materials. However, challenges remain in enhanc-
ing mechanical energy conversion efficiency and advancing
the practical industrial application of entropy-driven self-
assembled cellulose elastomers (Fig. 14).

SHANGHAI JIAO TONG UNIVERSITY PRESS

5.1 Compatibility between Elasticity
and Electromechanical Conversion

The electromechanical conversion performance of cellulosic
elastomers is fundamentally limited by their low mechanical
strength and dielectric properties. While the common strat-
egy of incorporating high-dielectric fillers often deteriorates
mechanical integrity, entropy-driven structural assembly
offers a promising approach to break this trade-off. However,
the intrinsically low polarity, conductivity, and polarization
of cellulose still lead to inefficient charge separation and low
energy conversion efficiency. Therefore, despite the unique
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capability of entropy-driven assembly in enhancing perfor-
mance, cellulosic elastomers still significantly underperform
compared to established piezoelectric materials like PVDF
and PZT.

5.2 Production and Application Dilemma

The development of well-structured cellulose-based elas-
tomer materials typically involves high labor costs and
requires relatively demanding production conditions. In
contrast, petrochemical materials benefit from mature
manufacturing technologies, significant economies of
scale, and lower production costs. Consequently, due
to cost and market constraints, much research on cellu-
losic elastomers remains confined to small-scale labora-
tory production, with manufacturing technologies still in
their infancy. Global environmental initiatives are driv-
ing efforts to encourage and support the use of renewable,
biodegradable natural biomass resources. These resources
aim to replace petroleum-based materials. However, under
current economic pressures, a challenge has emerged in
balancing environmental considerations with economic
viability. Achieving large-scale production of cellulosic
elastomer materials while maintaining low costs and mini-
mizing R&D requirements remains a significant challenge.

© The authors

5.3 Trend Toward Multimodal Self-Powered
Integration

The power generation performance and electromechanical
conversion efficiency of single-mode systems are inherently
limited. The development of multimodal energy conver-
sion technologies-such as piezoelectric, triboelectric, and
dielectric elastomer generators-meets the global demand
for a green and low-carbon economy, offering vast potential
and significant societal value. Through using of multimodal
generators, mechanical, thermal, and solar energy from the
environment can be converted into electrical energy, thereby
improving the efficiency of mechanical energy conversion.
Achieving this demands precise process design and rigorous
stability testing to meet the needs of practical production.
Certain technical challenges remain. However, ongoing pro-
gress in science and manufacturing processes is expected to
drive the development of multimodal elastomer materials.
Such progress will contribute significantly to the sustainable
growth of green energy.
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