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HIGHLIGHTS

e Dual-function molecular ligand (MA) can coordinate with Pb>* to passivate defect at grain boundaries and undergoes in-situ polym-

erization to form a stress-buffering network.

e Attributing to the simultaneous defect suppression and strain homogenization, the MA-modified perovskite solar cells demonstrate

high photovoltaic performance with power conversion efficiency up to 26.42% (rigid) and 25.03% (flexible).

e The MA-modified devices demonstrate excellent stability under various environmental stress conditions, including thermal aging,

light irradiation, and bending.
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construct a 3D crosslinking net-

work within perovskite films. This molecular-scale network effectively redistributes localized strain into a more homogeneous pattern, as
indicated by reduced strain variance and a lower Young’s modulus. Simultaneously, the MA network modulates crystallization kinetics,
leading to enlarged grain sizes, enhanced (001) orientation, and decreased defect density. Together, these effects minimize strain concen-
tration and promote elastic strain release, thereby suppressing microcrack formation at grain boundaries. As a result, the optimized rigid

perovskite solar cells exhibit superior conversion efficiency of 26.42%, while the FPSCs reach 25.03% with excellent mechanical stability.
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1 Introduction

Flexible perovskite solar cells (FPSCs) have attracted sig-
nificant attention for use in portable electronic, intelligent
buildings and unmanned systems, due to their light weight,
compatibility with irregular surfaces, and low production
cost [1, 2], With ongoing advancements in solvent engi-
neering [3], interface engineering [4—6], component engi-
neering [7], and additive engineering [8—10], the current
certified power conversion efficiency (PCE) of FPSCs has
transcended from the initial 2.6% to the current 25.44%
[11-16], rivaling their rigid counterparts, highlights the
immense potential of FPSCs for practical applications.
However, for successful commercialization, mechanical
reliability is as crucial as high efficiency. The commercial
standard for mechanical reliability adopts the commonly
used existing ISO protocol, which evaluates flexibility
using indicators such as bending cycle count, bending
radius, and PCE retained after bending [17, 18]. Although
laboratory-scale devices have demonstrated encouraging
results, the mechanical stability of FPSCs under com-
bined stressors (e.g., light, moisture, and mechanical
deformation) remains a critical challenge for commercial
applications.

The inherent brittleness of perovskite crystalline films
critically impacts the mechanical durability of FPSCs [19].
In particularly, polycrystalline perovskite films contain
numerous grain boundaries (GBs), which serve as defect-
rich and degradation-prone regions [20]. On one hand,
poor perovskite crystallization on flexible substrates often
leads to an even higher density of GBs, increasing the
number of defect recombination centers and accelerating
photoelectric degradation during bending [21-24]. On the
other hand, GBs act as strain concentration points, making
the films more susceptible to cracking under mechanical
stress, leading to significant decrease in efficiency [25].

In general, two types of strategies have been commonly
used to enhance the mechanical stability of F-PSCs [26]: one
approach involves forming larger grains sizes with high crys-
tallinity to reduce defect density by introducing functional
additives to adjust nucleation and growth process of perovs-
kite [27-29]. The other strategy involves releasing the stress
at the GBs by incorporating elastomers or crosslinkable poly-
mers into the perovskite films [30-35]. However, for defect
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passivation approaches, although it effectively passivating
grain boundary defects, it may not address the strain concen-
tration under bending, limiting holistic mechanical robustness.
Meanwhile, for strain-alleviation approaches, it may primar-
ily focus on strain distribution might not simultaneously and
optimally tackle the defect nucleation at the atomic level, par-
ticularly impurities like Pbl, at grain boundaries which also
induce localized strain [36, 37]. These studies underscore the
importance of improving film quality, they predominantly
address either defect passivation or strain alleviation in a rela-
tively isolated manner. Therefore, a coupled strategy involve
designedly suppresses defect nucleation while simultaneously
establishing a robust network to homogenize mechanical stress
to achieve mechanical reliability.

In this study, we report a method that can be facilely applied
to achieve collective roles of the two strategies mentioned
above. Specifically, a liquid cross-linkable Methacrylic anhy-
dride (MA) into the perovskite precursor to inhibit the Pbl,
impurities nucleated at the contacted GBs and reduce strain
accumulation. The carbonyl groups in MA coordinate with
Pb** and promote larger grain growth and enhanced crystal-
linity, resulting in reduced defect density and improved charge
transport. Moreover, in-situ crosslinking forms a robust net-
work that ensures more uniform strain distribution and mini-
mizes stress concentration within the film. As a result, the
optimized rigid and flexible PSCs achieved PCEs of 26.42%
and 25.03%, respectively. Notably, the flexible devices retained
90% of their initial PCE after 3000 bending cycles, demon-
strating excellent mechanical durability.

2 Experimental Section
2.1 Materials

I-doped tin oxide (ITO), bathocuproine (BCP, 99.9%) were
purchased from Libra Technology Corporation. Lead iodide
(Pbl,, 99.999%), Formamidinium iodide (FAIL, 99.99%),
methylammonium bromide (MABr, 99.99%) and methyl-
amine chloride (MACI, 99.99%) were purchased from Great-
cell Solar (Australia). 2-(3,6-Dimethoxy-9H-carbazol-9-yl)
ethyl phosphonic acid (MeO-2PACz, 99.99%) and Lead
(II) bromide (PbBr,, 99.99%) were purchased form Tokyo
Chemical Industry (TCI). Cesium iodide (Csl, 99.999%) was

https://doi.org/10.1007/s40820-026-02079-x
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purchased from Xi’an Yuri Solar Co., Ltd., dimethyl sul-
foxide (DMSO, 99.7%, SuperDry, with molecular sieves),
N, N-Dimethylformamide (DMF, 99.8%, SuperDry, with
molecular sieves), Chlorobenzene (CB, 99.8%, SuperDry,
with molecular sieves), ethyl alcohol and isopropanol (IPA,
99.5%, SuperDry, with molecular sieves) were purchased
from J&K scientific. Methacrylic anhydride (MA, 94%, 0.2%
topanol stabilizing agent) was purchased from MACKLIN.

2.2 Device Fabrication

The inverted device architecture was PET (ITO)/SAM/PSK/
C4o/BCP/Ag. The PET (ITO) substrate was treated with
UV-ozone for 20 min without cleaning. The SAM solution
(0.3 mg mL~! in Absolute ethanol) was spin-coated on PET
(ITO) substrate at 3000 rpm for 30 s and then annealed at
100 °C for 10 min. For the preparation of perovskite pre-
cursor solution, 1.7 M Cs, osMA osFA ooPbl; perovskite
precursor in DMF: DMSO (4:1 volume ratio, v: v) with
5% MAPDCI; excess. For the doped solution, MA (1 mol
L") was added in previous perovskite solution. The per-
ovskite solution was stirring for 12 h and filtered with a
filter head of 0.22 pm. For the perovskite layer, 100 pL pre-
pared perovskite solution was spin-coated on the HTL at
1000 and 5000 rpm for 10 and 30 s with a ramp of 500 and
2000 rpm s~!. During the last 10 s of the spinning process,
the film was treated by drop-casting chlorobenzene (200
pL). The substrates were annealed on a hot plate at 100 °C
for 40 min in nitrogen atmosphere. The solar cells were
completed followed by thermally evaporating of Cg, layer
(40 nm), BCP layer (10 nm), and Ag layer (110 nm).

2.3 Characterizations

The mechanism of action was verified between C=0
and Pb** through X-ray photoelectron spectroscopy
(XPS) (ESCALAB250Xi, Thermo Fisher Scientific) and
middle and far infrared spectrometer (Spectrum 400F,
PerkinElmer). X-ray diffractometer (XRD, Rigaku D/
MAX-2400 diffractometer). The Kelvin probe force
microscopy (KPFM) and Conductive atomic force micro-
scope (C-AFM) were conducted by atomic force micro-
scope (AFM, SPA400, Zeiss). Surface morphology was
performed by top view scanning electron microscope
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(SEM, Zeiss, Supra55, SE2 pattern under 5 kV). Dark
current—voltage (J-V), space-charge-limited current
(SCLC), conductivity and current—voltage (J-V, 10 mV
57!, 100 mW c¢m~2, standard silicon solar cell calibration)
were performed sunlight simulator with a digital source
meter. (IVX-50, EnLi Technology, Taiwan). The N, can be
obtained from equation: N, =2V eey/eL?, where Vyg is
the trap-filled voltage, e is the elemental charge and L is
the distance between the electrodes. Transient photocur-
rent (TPC) and transient photovoltage (TPV) were per-
formed by transient photocurrent/voltage tester (Shanghai
Jinzhu Technology Co., LTD, laser 570 nm). Energy band
alignment was obtained from ultraviolet photoelectron
spectroscopy (UPS, Specs, PHOIBOS 100, Helium lamp)
measurement. Transmittance and absorption were per-
formed by Ultraviolet—visible (UV—vis) absorb spectrum
(PE Lambda 950). The incident-photon-to-current effi-
ciency (IPCE) was tested by QE-R of Taiwan enlitechnol-
ogy. Steady-state photoluminescence (PL) was performed
fluorescence spectrophotometer (HORIB-FM-2015).
GIWAXS mapping was performed via grazing-incidence
wide-angle X-ray scattering (GIWAXS, BL14B1 beam-
line, Pilatus 2 M detector of the Shanghai Synchrotron
Radiation Facility (SSRF) using X-ray with a wavelength
of 0.6887 A under 18 keV). PL mapping measurements
were conducted using LSM 980.

2.4 Computational Details

First-principles calculations were performed using density
functional theory (DFT) as implemented in the Vienna
ab initio Simulation Package (VASP). The projector aug-
mented wave (PAW) method was adopted to describe the
electron—ion interactions, and the exchange—correlation
energy was treated within the generalized gradient approx-
imation (GGA) using the Perdew-Burke-Ernzerhof (PBE)
functional. A plane-wave cutoff energy of 550 eV and a
k-point mesh with a reciprocal space density of 0.04 A
were employed to ensure convergence. Slab models of
the FAPbI; surface were constructed with a vacuum layer
of 15 A to avoid artificial interactions between periodic
images. The surface defect formation energies of iodine
and lead vacancies were calculated before and after sur-
face passivation to evaluate the passivation effects. The
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defect formation energy was determined according to
Ef = Edefect(i or Pb)_Eperfecl + E(i or Pb)*

For the lead vacancy: Lead’s low electronegativity may
promote the transfer of electrons from the vacancy region
to the oxygen atom of the acyl group in acetic anhydride,
resulting in some charge transfer and coordination interac-
tion. For the iodine vacancy: the region near the vacancy
may have an electronic deficiency due to the absence of
iodine atoms. This electronic deficiency may make the
area around the iodine vacancy electron-deficient, thus
becoming electrophilic and potentially interacting with
electron-rich functional groups, such as the oxygen atom
in the acyl group.

At last, we position the target molecule near the defect
and perform geometric optimization to ensure that the rel-
ative orientation between the molecule and the defect cor-
responds to the lowest energy configuration. This process
facilitates the rational placement of the target molecule
in the vicinity of the defect, leading to the formation of a
stable adsorption structure.

2.5 Bending Durability Tests

The bending durability of FPSCs was evaluated using a
mechanical tester (PR-BDM-100, Puri, China) in constant-
radius bending mode (30 cycles per minute) with different
bending radii (o0, 10, 8, 6, 4, and 2 mm) and bending times
(0-3000 times) under room temperature (25-30 °C). The
corresponding J-V curves were periodically measured in
a flat state under AM 1.5 G100 mW c¢m™2 illumination for
200 cycles.

2.6 Lattice Strain Calculation

For assessing the strain index ¢ of perovskite lattices, we
utilize the 20-sin2¢@ method associated with Bragg’s Law
and generalized Hooke’s Law, as Eq. (1):

_ E . d(o _dn
o= (1 +v)sin2e < d, > M

where ¢ and n are the scattering vector angles, pertaining to
the perovskite film surface normal direction.

© The authors

For the out-of-plane and in-plane directions, we obtain
that out-of-plane ¢ =90° (L) and in-plane n=0° (Il). Then it
can be calculated that sin2¢ =1, as shown in Eq. (2):

oo _E .<dl_d||> )
“a+v) d, )

Due to g =2n/d, we further convert Eqgs. (2)-(3) as

follows:

oo _E '<¢I||—LIL> ;
d+v) 7 G)

We introduce Ag to represent the difference between g

and ¢, (Ag = g — q,)- Since the change in the denominator
q, is negligible compared to that in the numerator Ag, we
can use a constant value g, to represent, resulting as Eq. (4):

E

bt @

where E is Young’s modulus and v is Poisson’s ratio of the
perovskite film, respectively. E and v are evaluated as 10
GPa and 0.3, respectively. Also, the scattering vector con-
stant g, =10 nm™" is available.

From the resultant Eq. (4), we can observe that ¢ is pro-
portional to Ag value. The Agq is calculated by subtracting
the out-of-plane scattering vector ¢, value from that (g,) of
in-plane.

3 Results and Discussion
3.1 Chemical Interaction and Defect Passivation

The schematic diagram of the chemical structure of MA
cross-linked molecular monomer and its regulation of per-
ovskite crystal growth process is shown in Fig. 1a. The MA
molecule is a polymerizable and small molecule monomer
with C=C bond at both ends. After annealing, the solution
of pure MA changed from transparent to colloidal indicating
the formation of cross-linked MA (Fig. S1) [38]. Further-
more, the in-situ cross-linking of MA and the chemical inter-
actions between the cross-linked polymers and perovskites
were investigated by Fourier transform infrared spectroscopy
(FTIR). As shown in Fig. 1b, the characteristic C=C stretch-
ing peak at 1635 cm™! and the bending peak at 949 cm™!
almost disappears, indicating that the MA molecule has

https://doi.org/10.1007/s40820-026-02079-x
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undergone heat-induced polymerization to form cross-
linked polymer networks [39]. In addition, the C=0O stretch-
ing vibration peaks shift to lower wavenumbers of 1749
and 1718 cm™!, which may be induced by the interaction
between C =0 bonds and Pb*" ions [40, 41]. X-ray photo-
electron spectroscopy (XPS) was used to further probe the
interactions between MA and perovskite (Fig. 1¢). After the
modification of MA, the main peaks at 142.20 eV (Pb 4f;,,)
and 137.35 eV (Pb 4f;,,) were shifted toward low binding
energy regions (142.10 and 137.25 eV, respectively), which
indicates that the C=0 of MA molecule coordinated with
Pb** [42]. The cross-sectional high-resolution TEM image
showed the MA cross-linked perovskite film can clearly dis-
tinguish the grain boundaries (GBs) between the perovskite
grains (Fig. S2). Subsequently, we calculated the formation
energies of dominant defects such as iodine vacancy (V) and
lead vacancies (Vpy) in the perovskite films, using density
functional theory (DFT) [43]. Top views of these intrinsic
defects and their passivated configurations with MA were
presented in Figs. 1d and S3. After being treated by MA,
the formation energies of Vp, and V| increased notably from
1.49 and 1.29 eV to 2.51 and 1.95 eV (Fig. le), respectively,
indicating that MA significantly inhibit the defect formation,
thereby facilitating the realization of high-quality perovskite
films with enhanced properties.

3.2 Crystallization and Morphology of Perovskite
Films

To investigate the influence of MA on the crystallization and
microstructure of perovskite, scanning electron microscopy
(SEM) measurements was conducted. The incorporation
of the crosslinked polymer clearly affects film formation,
as evidenced by the SEM images. As shown in Fig. 2a, b,
the target films exhibit smoother, more uniform surfaces
with fewer defects compared to the control, indicating that
MA effectively regulates crystal growth. In addition, the
average grain size in the target films is larger than in the
control film (Fig. 2c). Beyond morphology improvements,
grazing-incidence wide-angle X-ray scattering (GIWAXS)
data (Fig. 2d—f) show that the target films possess stronger
diffraction intensities, suggesting enhanced crystallinity
[44]. Due to the strong coordination effect between MA and
Pb’*, MA may weaken the coordination interaction between
Pbl, and DMF, resulting in larger colloids (Fig. S4). In situ

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

UV-vis spectra of the perovskite films during annealing
indicated that the presence of MA can delay conversion from
the intermediate phase to a-FAPbI;, which slows the crystal-
lization process and results in larger grain sizes (Fig. S5). To
further examine the crystallization process, in-situ GIWAXS
was performed, capturing the Q-integrated intensity distri-
bution from O to 300 s (Fig. 2g—i). The full spectral data
are provided in Fig. S6. Notably, the peak intensity of the
(001) plane at g= 10 nm~" is significantly larger in the target
film than in the control (Fig. 2i), confirming the improved
crystallinity induced by MA. And the crystallization time is
also increased from 65 to 70 s, indicating that MA polymer
can delay the crystallization of perovskite, which further
confirms the enhancement of crystallinity.

3.3 Strain Homogenize and Residual Stress
Investigation

To investigate the surface composition and residual strain
distribution in flexible perovskite films, grazing-incidence
wide-angle X-ray scattering (GIWAXS) was performed.
The peak-area ratios of Pbl, to perovskite, overall perovs-
kite peak intensities and strain-related signals were cal-
culated from the Q-integrated data, with the correspond-
ing mapping images presented in Fig. 3. A schematic of
the measurement principle is shown in Fig. S7. From the
mapping of the Pbl,-to-perovskite (001) peak-area ratio
(Fig. 3a, b), the variance in the target film is 1.38 x 107,
slightly lower than the control film’s 1.40 x 107> (Fig.
S8). This suggests a more uniform distribution of residual
Pbl, on the target film surface, which could help reduce
defect density and suppress non-radiative recombination
[45, 46]. The perovskite peak-area mapping (Fig. 3c, d)
reveals a substantial improvement in uniformity. The target
film shows a variance of 5.56 x 107#, significantly lower
than the control film’s 57.58 x 107%, indicating enhanced
crystallinity and homogeneity. Similarly, the strain map-
ping (Fig. 3e, f) shows reduced variance in the target
film (1.52 % 1072) compared to the control (3.25x 1072),
confirming that MA minimizes strain concentration and
promotes more uniform stress distribution during in-situ
crosslinking. The local mechanical properties of perovs-
kite films were quantitatively characterized with the nano-
indentation measurement (Fig. S9). It clearly shown that
the Young’s modulus of control film is larger and uneven

@ Springer
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Fig. 1 Cross-linking effect of MA in perovskite film. a Schematic illustration of MA in perovskite film to release stress and enhance bending
resistance. b FTIR spectra of pure MA and Pbl, film with MA modification after annealing. ¢ XPS Pb 4f binding spectra of control and MA-

modified perovskite films. d Top view of the theoretical models of Vp,
defects before and after passivation by MA

distribution, while the MA-modified film exhibited minor
changes. It has been confirmed in detail that the robust
cross-linked network formed by MA can form a more uni-
form strain distribution and minimize stress concentra-
tion. Mechanical properties were further evaluated using
peak force quantitative nanomechanical (PF-QNM) atomic
force microscopy (AFM), as shown in Fig. S10. The aver-
age Young’s modulus of the target film is reduced to 8.97
GPa, compared to 11.33 GPa in the control, indicating that
the MA polymer enhances film toughness by increasing
mechanical flexibility. Grazing-incidence X-ray diffraction

© The authors

and V; defects of MA-modified film. e Formation energy of Vp, and V;

(GIXRD) measurements were performed to further eluci-
date the strain distribution within the perovskite films. As
demonstrated in Fig. 3g—i, the diffraction peak of control
film gradually leftward shift to lower diffraction angles
with increasing ¥ angle (0° to 45°), while the MA-mod-
ified film exhibited negligible peak shift, indicating that
uniform lattice parameters throughout the film depth and
effective strain relaxation.

https://doi.org/10.1007/s40820-026-02079-x
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3.4 Carrier Dynamics Investigation

To further investigate the effect of MA on electrical per-
formance, conductive atomic force microscopy (c-AFM)
was conducted (Fig. S11). The target perovskite film
exhibits significantly higher average current compared to
the control film, which favors excellent carrier transport.
Photoluminescence (PL) and time-resolved photolumi-
nescence (TRPL) spectroscopy were employed to study
the photoelectric properties and charge carrier dynam-
ics (Fig. S12). The target perovskite film demonstrates
significantly higher PL intensity than the control, sug-
gesting suppressed non-radiative recombination [47].

SHANGHAI JIAO TONG UNIVERSITY PRESS

Specifically, the TRPL decay curves showed that the aver-
age PL lifetime increases from 243.2 ns in the control to
519.1 ns in the target film (Table S1), further confirming
reduced trap density and improved film quality induced
by stress release [48]. Trap density was analyzed using the
space-charge-limited current (SCLC) method in hole-only
and electron-only device configuration (Fig. S13). The
target device exhibits lower trap density. This reduction
is attributed to effective defect passivation via chemical
interactions [49]. Current density—voltage (J-V) character-
istics measured under dark conditions (Fig. S14) reveal a
lower dark current in the target PSCs, suggesting reduced
trap-assisted recombination and leakage current [50, 51].

@ Springer
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Furthermore, transient photocurrent (TPC) and transient
photovoltage (TPV) measurements (Fig. S15) show that
the target device has a longer charge carrier lifetime and
a shorter photocurrent decay time due to the tensile strain
gradient was almost eliminated, indicating more efficient
charge extraction and fewer trap states These results con-
firm that the in-situ crosslinked MA polymer enhances
carrier dynamics and reduces recombination losses in per-
ovskite film [52]. Additionally, the target film exhibits a
higher surface potential (Fig. S16) [53]. This enhanced
surface potential further supports improved charge trans-
fer and reduced carrier recombination in the MA-modi-
fied perovskite film.

© The authors

3.5 Photovoltaic Performance and Stability

Based on the above findings, FPSCs were fabricated
with the device structure PET/ITO/SAM/perovskite/Cgy/
bathocuproine (BCP)/Ag, as illustrated in Fig. 4a. The
effect of MA concentration on device performance was
systematically studied (Figs. 4b and S17), with 1.0 mol
L~! identified as the optimal concentration. The J-V curve
of the optimized FPSC was shown in Fig. 4c. Compared
to the control device (Fig. S18), the MA-modified device
achieved a champion PCE of 25.03% with V- of 1.18 V,
Jsc of 25.35 mA cm ™2 and fill factor of 83.61%. The J
derived from the J-V measurement aligns well with the

https://doi.org/10.1007/s40820-026-02079-x
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integrated current density obtained from the external quan-
tum efficiency (EQE) spectrum (Fig. S19). The operational
stability was tested at maximum power point under con-
tinuous illumination in N, atmosphere. The MA-modified
PSCs remained 90% of its original efficiency after 1850 h
due to the defect passivation and strain release effect,
while the PCE of control device declined considerably
(Fig. 4d). Additionally, the MA additive was applied in
rigid device, demonstrating superior performance, and
achieving a champion PCE of 26.42% (Fig. S20). Fur-
thermore, device stability was evaluated under nitrogen
atmosphere at room temperature. The unencapsulated flex-
ible MA-modified device retained over 89% of its initial

PCE after 6000 h of storage, whereas the control device
retained only 53% (Fig. S21). Thermal stability tests were
conducted on devices under the ISOS-D-2 protocol. As
shown in Fig. S22, the MA-based device retained 94.2%
of its initial PCE after 500 h in a nitrogen environment at
85 °C, whereas the control device exhibited rapid degrada-
tion over time, confirming the excellent stability imparted
by the MA additive.

Finally, the mechanical stability of the FPSCs was evalu-
ated through bending tests. As shown in Fig. 4e, the MA-
modified device retained 90% of its initial PCE after 3000
bending cycles at a bending radius of 10 mm, while the
control device maintained only 58% of its initial efficiency
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Fig. 4 Photovoltaic performance and mechanical stability of flexible PSCs. a Schematic diagram of flexible device structure. b PCE histo-
gram of FPSCs at different concentration. ¢ J-V curves of target device. d Continuous maximum power point (MPP) tracking of unencapsulated
FPSCs in nitrogen atmosphere. e Normalized PCE of the FPSCs after 3000 bending cycles at a curvature radius of 10 mm. f SEM images of
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after 1000 cycles under the same conditions. Figure S23
further illustrates the performance under different bending
radii. After 1000 cycles at a severe bending radius of 2 mm,
the control device showed a 63% loss in PCE, whereas the
target device retained 81% of its initial performance, dem-
onstrating significantly enhanced mechanical robustness due
to the in-situ crosslinking effect of MA. To further verify
these results, SEM images were captured before and after
200 bending cycles at a radius of 5 mm (Figs. 4f and S24).
Pronounced cracking was observed in the perovskite layer of
the control film after bending, while the MA-modified film
remained largely intact, exhibiting minimal visible damage.
These results confirm that MA significantly enhances the
mechanical integrity of the flexible perovskite film under
repeated deformation. To further elucidate the mechanism
behind the enhanced stability imparted by MA, steady-state
photoluminescence (PL) mapping was conducted to monitor
the evolution of film morphology and optoelectronic proper-
ties under mechanical stress. PL intensity mapping (Fig. 4g)
reveals significantly higher PL intensity in the target film
compared to the control, consistent with the previous steady-
state PL results. This suggests reduced nonradiative recom-
bination and improved crystallinity in the MA-treated films.
Notably, after 200 bending cycles, the target film retains
74% of its initial PL intensity, whereas the control retains
only 35%. This substantial difference reflects enhanced
carrier transport stability and provides further evidence
of the mechanical reinforcement achieved through in-situ
crosslinking.

4 Conclusion

In summary, a cross-linkable molecule (MA) was incorpo-
rated into the perovskite precursor to enhance the mechani-
cal robustness of perovskite films. The C=0 groups in MA
coordinate with undercoordinated Pb>* ions, effectively
passivating lead-related defects, resulting in the formation
of high-quality and large-grain perovskite films. Through
in-situ crosslinking, MA forms a robust polymer network at
grain boundaries, which reduces residual strain and improves
strain distribution across the film. As a result, MA-modified
flexible and rigid devices achieve champion PCEs of 25.03%
and 26.42%, respectively, along with outstanding mechani-
cal durability. This study presents an effective strategy for

© The authors

improving the mechanical toughness of FPSCs and offers
valuable insights into mitigating mechanical degradation in
flexible perovskite devices.
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