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HIGHLIGHTS

® [norganic high-performance fibers (IHPFs)-based composites development and electromagnetic interference (EMI) shielding mecha-

nisms are reviewed.
e Surface modification strategies for IHPF’s surface inertness challenge and EMI shielding layer construction are summarized.

e Future directions and current challenges for achieving large-scale, durable, and environmentally stable IHPF-based EMI shielding

materials are outlined.
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ces, which significantly undermine the long-term service reli-
ability of composites under extreme conditions. This paper

introduces the EM shielding mechanism, highlights common issues of surface inertness in IHPFs, and elaborates on both “dry” and “wet” surface
modification strategies. These strategies enable the formation of robust functional layers, facilitating the integration of high strength, high modu-
lus, and multifunctionality, while ensuring interfacial reliability in composites. Furthermore, the principles and processing techniques of various
strategies for fabricating EMI shielding functional layers on IHPFs surfaces are reviewed, and recent advances in the application of functional-
ized IHPFs, as well as service reliability and environmental stability, are summarized, including EMI shielding protection and radar-absorbing

stealth. Finally, the challenges and future research directions for the large-scale and long-term stable application of IHPF-based EMI shielding
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functionalization in high-end fields are discussed, offering insights that may accelerate the development of next-generation lightweight, sustainable,

and multifunctional EMI shielding materials.
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Abbreviations

EM Electromagnetic

EMI Electromagnetic interference

EMR Electromagnetic radiation

IHPF Inorganic high-performance fiber

ALD Atomic layer deposition

CVD Chemical vapor deposition

SEg Reflection loss

SEy Multiple reflection loss

SE, Absorption loss

SE; Total EM shielding effectiveness

VNA Vector network analyzer

SSE Specific shielding effectiveness

LIG Laser-induced graphene

GF Glass fiber

CF Carbon fiber

BF Basalt fiber

QF Quartz fiber

SiC Silicon carbide

Al,O4 Aluminum oxide

PECVD Plasma-enhanced chemical vapor deposition

VG Vertical graphene

CNTs Carbon nanotubes

MWCNTs Multiwalled carbon nanotubes

AZ0O Aluminum-doped zinc oxide

TMA Trimethylaluminum

AgNWs Silver nanowires

ScPEG Solid—solid phase change polyethylene glycol

IFSS Interfacial shear strength

ILSS Interlaminar shear strength

HMCF High-modulus carbon fiber

LMs Liquid metals

ANF Aramid nanofiber

Co-Ni Cobalt—nickel

ACBF Aramid-carbon blended fabric

xGnPs Exfoliated graphene nanoparticles

PPy Polypyrrole

PANI Polyaniline

PTh Polythiophene

PDA Polydopamine

RL, i, Minimum reflection loss

VARI Vacuum-assisted resin infusion

MOFs Metal-organic frameworks

MXenes Two-dimensional transition metal carbides
and nitrides
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VSS Vapor-surface—solid

VS Vapor—solid

GO Graphene oxide

AF Alumina fiber

[ Green shielding index

RCS Radar cross-section

PAN Polyacrylonitrile

EAB Effective absorption bandwidth
DEZ Diethylzinc

CTE Coefficient of thermal expansion

1 Introduction

With the rapid development of wireless communication,
radar technology, and the widespread use of gigahertz power
devices, the space we live in has become saturated with
dense EM waves. The resulting electromagnetic interfer-
ence (EMI) and electromagnetic radiation (EMR) pollution
have emerged as significant issues that cannot be ignored.
They not only lead to malfunctions of precision electronic
devices and jeopardize information security, but also pose
potential threats to human health [1-3]. In extreme environ-
ments such as aerospace, additional natural factors including
strong ultraviolet radiation and cosmic rays further affect the
orderly operation of space stations and the health of astro-
nauts. Traditional metallic shielding materials (e.g., copper
and aluminum foils), though exhibiting excellent electrical
conductivity and shielding performance, suffer from inherent
drawbacks such as high density, susceptibility to corrosion,
rigidity, and poor processability. These limitations severely
restrict their application in modern electronic devices that
demand lightweight, flexible, and highly integrated materials
[4, 5]. Consequently, it is urgent to develop high-efficiency,
lightweight, and durable EMI shielding materials suitable
for aerospace, military, and other extreme conditions.
Among the candidate materials, inorganic high-perfor-
mance fibers (IHPFs) have attracted growing attention due to
their unique structural and excellent comprehensive proper-
ties. Generally, IHPFs can be broadly classified into tradi-
tional IHPFs and emerging nanomaterial-based fibers. The
traditional IHPFs include glass fibers (GFs), quartz fibers
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(QFs), basalt fibers (BFs), SiC fibers, and other ceramic fib-
ers. Their high strength-to-weight ratios, excellent thermal
stability, and remarkable chemical inertness make them
ideal structural materials for aerospace and defense applica-
tions (Fig. 1 and Table 1) [6-8]. In contrast, the emerging
nanomaterial-based fibers—such as carbon nanotube (CNT)
fibers, graphene fibers, MXene fibers, and hybrid nanofib-
ers—exhibit outstanding electrical conductivity, flexibility,
and multifunctionality derived from their nanoscale building
blocks [9-11]. However, except for metallic and carbon-based
fibers [12, 13], most traditional IHPFs are insulating in nature,
making it difficult to realize effective reflection and absorption
of EM waves [14—16]. Moreover, these fibers share inherent
challenges: their highly stable chemical structures and smooth
surfaces result in low surface energy and a scarcity of reactive
sites, which can easily lead to delamination of functional coat-
ings under stress or thermal cycling, ultimately causing the
loss of EMI shielding functionality. This has become a criti-
cal bottleneck affecting their functional modification and the
overall performance of fiber-reinforced composites [17-19].

To overcome these intrinsic limitations of traditional
IHPFs, surface activation and interfacial modification have
become indispensable strategies. Addressing the surface
inertness of IHPFs not only enables the construction of robust
functional layers on their surfaces—integrating high strength,
high modulus, and multifunctionality—but also promotes
strong interfacial adhesion with various polymer matrices,
ensuring excellent composite performance. Therefore, nec-
essary surface activation pretreatments, aimed at increasing
surface roughness and introducing reactive chemical groups,
serve as the prerequisite and key initial step for building dura-
ble EMI shielding coatings. Considerable research has been
devoted to improving fiber surface activity. Currently, the
most widely explored approaches include liquid-phase oxi-
dation [20, 21], electrochemical oxidation [22, 23], plasma
treatment [24, 25], surface sizing [26, 27], coating [28, 29],
and chemical grafting [30, 31]. Although electrochemical
oxidation has been extensively applied in industry, harsh
modification conditions may impair fiber mechanical prop-
erties. Plasma treatment offers high efficiency, but entails
high costs and potential surface damage. Surface sizing and
coating methods, which apply a compatible polymer layer
onto fiber surfaces, can effectively protect the fibers and are
relatively simple, though they may encounter interfacial
bonding issues with polymer matrices. Surface grafting, on
the other hand, has emerged as an important strategy for fiber
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functionalization, offering strong design flexibility, control-
lable and mild reaction conditions, and minimal damage to
fiber mechanical properties. However, challenges remain
regarding the control of grafting degree and uniformity.
Each method presents distinct advantages and disadvan-
tages, requiring careful selection based on practical applica-
tion needs.

After successful surface activation, precise functionaliza-
tion strategies become critical for imparting EMI shielding
and absorption capabilities to the fibers. The central objec-
tive of these strategies lies in constructing continuous con-
ductive networks and incorporating magnetic or dielectric
loss components. Conventional physical deposition and
chemical treatment methods, as well as emerging interfacial
modification techniques, represent the primary pathways.
Physical deposition techniques such as magnetron sputtering
[32-34], vacuum-assisted filtration [35, 36], and spraying [37,
38] can rapidly form metallic or carbon-based thin films on
fiber surfaces, thereby enhancing conductivity and shielding
performance, though challenges of adhesion and durability
remain. In contrast, electroless plating [39—41], electroplating
[42, 43], and chemical vapor deposition (CVD) [44—46] can
produce dense, continuous metallic or carbon-based coatings
with superior electrical conductivity and wear resistance. By
tailoring parameters such as coating thickness, grain size, and
interfacial morphology, the shielding mechanism—including
reflection, absorption, and multiple scattering—can be finely
regulated. Additionally, in situ polymerization [47-49] and
surface grafting [50, 51] can introduce conductive polymers
(e.g., polyaniline, polypyrrole) onto fiber surfaces, yielding
lightweight, flexible composites that balance mechanical
integrity with EM loss performance. In recent years, with
advances in nanotechnology, novel strategies such as atomic
layer deposition (ALD) [52-54] and laser etching [55, 56]
have been increasingly applied to the functional modification
of IHPFs. ALD, with its atomic-level precision in layer-by-
layer deposition, enables the formation of uniform, ultra-thin,
and strongly adherent conformal coatings, providing new
opportunities for interfacial engineering and multifunctional
integration. Laser etching, by directly creating micro—nano-
structures on fiber surfaces, enhances interfacial roughness
and increases multiple scattering pathways of EM waves,
thereby significantly improving absorption performance.
Taken together, the continuous evolution of surface function-
alization strategies is offering greater design flexibility and
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Fig. 1 a Inorganic high-performance fiber materials used in EMI shielding with their corresponding functional characteristics. b, ¢ Numbers
of publications and citations regarding IHPF materials with EMI shielding properties from 2011 to 2025. The data were collected on the Web
of Science with the key words of “Carbon fiber”, “Graphene fiber”, “CNT fiber”, “Basalt fiber”, “Quartz fiber”, “Glass fiber”, “SiC fiber”, “BN
fiber”, “Al,O; fiber”, “Molybdenum fiber”, “Tungsten fiber”, “Stainless steel fiber”, and “EMI Shielding”

broader application prospects for [HPF-based EMI shielding
materials.

Although significant progress has been achieved in the
study of IHPFs for EMI shielding, there is still a lack of
systematic reviews summarizing their preparation methods,
application scenarios, and future challenges. This review
aims to fill that gap by providing a comprehensive over-
view of this rapidly evolving field. First, the mechanisms
of EMI shielding and corresponding evaluation criteria are
discussed. Then, the inherent challenges of IHPFs are ana-
lyzed, along with current approaches to overcome them and
their respective advantages and limitations. Subsequently,
we focus on the functionalization strategies for imparting
EMI shielding properties to IHPFs, covering both traditional
physical and chemical methods as well as emerging interfa-
cial modification techniques. Furthermore, their innovative
applications in extreme environments such as aerospace,

© The authors

advanced electronics, and stealth defense are elaborated.
Finally, the major challenges and future directions in this
field are outlined, aiming to provide valuable insights and
inspiration for the design of the next generation of structur-
ally integrated, multifunctional EMI shielding materials.
2 Fundamental Principles

for Electromagnetic Shielding

2.1 Electromagnetic Shielding Mechanisms

Shielding refers to the suppression of EMI by “cutting off”
the coupling paths of EM fields, and it is one of the prima-
ries means of achieving protection against EM radiation.
EM shielding involves the use of conductive or magnetic
materials to confine EMR within a specified spatial region.
The purpose is either to enclose the interference source with
a shielding body to suppress its disturbance to sensitive

https://doi.org/10.1007/s40820-025-02053-z
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Table 1 Mechanical and physical properties and applications of IHPFs
Fiber category Fiber types Key characteristics Main applications References
Carbon-based fiber CF Ultra-high specific strength; Aircraft & spacecraft structures, sporting [54]
Good fatigue resistance; goods
Excellent electrical conductivity
Graphene fiber Lightweight yet strong; Wearable sensors, flexible supercapacitors,  [100]
Superior flexibility; batteries
Outstanding EMI shielding ability
CNT fiber Outstanding specific strength; EMI shielding wires, flexible conductors [99]
Low density;
Ultra-high electrical conductivity
Silicon-based fiber BF Excellent thermal stability; Fireproof fabrics, sporting goods, wind [95]
Good flame retardancys; blades
Environmentally friendly
GF High tensile strength at low cost; Antenna covers, boat hulls, wind blades [91]
Chemical inertness;
Easy processability
QF Outstanding thermal shock resistance; High-frequency radomes, precision optical [92]
Electrically insulating components
Ceramic-based fiber SiC fiber Outstanding oxidation resistance; Rocket nozzles, jet-engine hot-section parts  [105]
corrosion-proof; (blades, vanes)
Superior radiation resistance
Si;N, fiber Chemically inert; Hypersonic vehicle radomes [104]
Outstanding neutron & radiation tolerance
Al,O; fiber Ultra-high temperature stability; Furnace linings, metal-matrix brake pads, [102]
Low thermal conductivity; lightweight armor
Chemical inertness
BN fiber Low density & lightweight; Rocket combustion-chamber liners, antenna  [103]
Good flexibility & weaveability radomes
Metal fiber Molybdenum fiber Superior creep resistance; High-temperature furnace elements, hyper-  [12]
Good corrosion resistance sonic thermal protection systems
Ideal for extreme-environment
Tungsten fiber Highest melting point; Rocket nozzle reinforcements, radiation [13]

Low thermal expansion coefficient;
Excellent electrical conductivity

shields

equipment or to protect personnel in the surrounding space,
or to enclose sensitive equipment to prevent interference
from external sources. In general, EMI shielding refers
to shielding against alternating EM fields above 10 kHz
[57-60]. According to EM theory, in high-frequency EM
waves characterized primarily by radiation, the electric and
magnetic fields are interdependent. Therefore, in practice,
shielding either the electric or the magnetic field is suffi-
cient, since the other will be eliminated simultaneously.
The mechanisms of EMI shielding can be explained using
various approaches, such as the eddy current effect method
[61, 62], EM field theory, and transmission line theory.
Among these, the transmission line theory has become
widely adopted because of its computational simplicity,
high accuracy, and intuitive understanding. As illustrated in

SHANGHAI JIAO TONG UNIVERSITY PRESS

Fig. 2a, transmission line theory treats the shielding body
as a segment of a transmission line. When a radiation field
encounters the shielding material, part of it is reflected at
the outer surface, while the remainder penetrates into the
shield and propagates forward [63—65]. During propagation,
the EM waves undergo continuous attenuation within the
shield, along with multiple reflections and transmissions at
its interfaces. Therefore, the shielding mechanism comprises
three components: reflection loss (SEy) on the surface of the
shield, absorption loss (SE,) within the shielding material,
and multiple reflection loss (SE,,) inside the shield.

Based on Schelkunoff’s theory [66], the total EM shield-
ing effectiveness (SE}) can be expressed as the combined
contribution of SE, SE,, and SE,, for the EM waves trans-
mitted through the shielding body, as shown in Eq. (1):

@ Springer
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SE; =SEg + SE, + SEy (D

The intensity of EM waves penetrating into a conduc-
tor decreases progressively with increasing depth. The
skin depth () is defined as the distance at which the EM
waves intensity decreases to 1/e (e is the Euler’s number;
1/e=0.37) [67-69]. The expression for d is given as:

5=1 = (Varon) @

Here, o denotes the electrical conductivity, f the radiation
frequency, and i the magnetic permeability. The parameter
a is the attenuation constant of EM waves in the shielding

He o 2
e 1+(;) ~1,

where o represents the angular frequency (2xf) and e the

material, expressed as a = @

© The authors

dielectric constant. From Eq. (2), & decreases with increas-
ing f, o, and p.

2.1.1 SE,

The shielding effectiveness due to reflection arises from the
impedance mismatch between the propagation medium of
the incident EM waves and the surface of the shielding mate-
rial. When an incident EM wave encounters a conductive
material with high carrier density, a portion of the wave is
reflected due to the discontinuity in the intrinsic impedance.
Therefore, SEy is primarily determined by the electrical con-
ductivity and carrier mobility of the shielding material. The
SEj value from the front to the back surface of the shielding
layer can be expressed as Eq. (3):

https://doi.org/10.1007/s40820-025-02053-z
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SE, = 20log,, <ﬂ> =395+10log,y ——  (3)
477, 2fru
Here, Z and Z, represent the impedances of the shielding
material and air, respectively. According to Eq. (3), SEy is
related to the material’s o and p as well as the frequency f
of the EM waves [70].

2.1.2 SE,

SE, represents the attenuation of the EM waves energy as it
propagates through the material. The incident wave induces
eddy currents and dipole polarization losses within the
shielding layer, which convert EM energy into heat [71]. To
significantly enhance absorption loss, the following condi-
tions are required: (i) high electrical conductivity for Ohmic
loss, which strengthens the interaction between electrons and
incident EM waves; and (ii) high ¢ and u, which increase
eddy current loss and hysteresis loss. The absorbed EM
energy is dissipated in the form of heat. The SE, of the
shielding material can be expressed as Eq. (4):

SE, = 20(%) logyg e = 8.68% = 8.684\/f o @)

where d denotes the thickness of the shielding layer. Thus,
SE, depends on controllable parameters such as thickness
and conductivity, as well as the intrinsic EM properties of
the material.

2.1.3 SE,,

SE,; accounts for the energy dissipation caused by multiple
internal reflections at interfaces or within porous/multilayer
structure This process can repeat until the EM energy is
fully dissipated. The multiple reflection efficiency (SE,,) of
a shielding material is calculated as Eq. (5):

SEy =20log o (1-¢7 ) =20log,o (1-107 ) (s

SE,; mainly depends on the thickness of the material.
When the thickness of the shielding layer exceeds the skin
depth or when SE> 15 dB, SE,, can be neglected [72, 73].
However, if the thickness is significantly smaller than the
skin depth, multiple reflections must be considered when
evaluating the shielding performance.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

In addition to macroscopic reflections occurring between
the two boundaries of the EMI shielding layer, reflections
and scattering can also take place within the microstructure
of the shielding material. Such internal multiple reflections
and scattering can further extend the propagation path of
EM waves, thereby enhancing absorption loss and overall
SE.

In summary, SEy is dominant in highly conductive metallic
coatings, SE, is crucial for magnetic or dielectric loss mate-
rials, and SE,; becomes significant only in thin or low-loss
multilayer systems where internal reflections cannot be fully
attenuated. Understanding the interplay among these terms
provides valuable guidance for designing materials with
balanced reflection—absorption behavior in EMI shielding
applications. It is worth noting that in certain cases, excessive
reflection of EM waves may deteriorate the EM environment
in the surrounding space. Therefore, researchers have continu-
ously focused on increasing the absorption loss of EMI shield-
ing materials, reducing their reflection loss, and mitigating
their environmental impact [74-77].

2.2 Evaluation Criteria

To quantitatively describe the shielding performance, SE is
commonly used to evaluate the ability and efficiency of a
shielding material in suppressing EMI. SE is influenced by the
properties of the shielding material, the frequency of the inter-
ference source, the distance between the shielding body and
the interference source, as well as various possible discontinui-
ties present in the shield [78, 79]. The SE can be expressed as
shown in Eq. (6):

Et Ht Pt
SE =20log,, (E) = 20log,, <E> = 20log,, <}—,l>
(6)

Here, E;, E,, H,, H,, P,, and P, represent the incident elec-
tric field strength, transmitted electric field strength, incident
magnetic field strength, transmitted magnetic field strength,
incident power, and transmitted power, respectively.

In experiments, EMI SE is typically determined using a
vector network analyzer (VNA) by measuring the scatter-
ing parameters S;; and S,,. S, represents the portion of the
EM wave emitted from port 1 that is reflected by the shield-
ing material and received again at port 1, while S,; repre-
sents the portion of the EM wave emitted from port 1 that
passes through the shielding material and is received at port

@ Springer
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2. Based on Egs. (7-12), the R, T, A, SEr, SEg, and SE, can
be calculated.

R=|S,[ )
T= |521|2 ®)
A=1-R-T ©
SE; = —101log(T) (10)
SEg= — 10log(1 — R)= — 1010g<1 - |s“|2) 11

SE, = — 10log(T/(1 = R))= — 101og<|s.21 P/a—-|s, |2))
(12)

The functionalization of EMI shielding in fibers is usually
achieved through two approaches. One is to deposit con-
ductive layers and magnetic substances on fibers’ surface
[80—84]. The other is to change the fabric’s weaving method
from a structural design perspective, altering the transmis-
sion direction of EM waves on the fiber surface [85], thereby
enhancing the effect of EMI shielding (Fig. 2b). Moreover,
in the field of wearable devices, shielding materials are
required not only to meet the demands of EMI shielding but
also to be “thin” and “light”, thereby enhancing the comfort
of wearable electronics. In aerospace, integrated circuits, and
related fields, lightweight materials can effectively reduce
overall weight, saving both energy and space. To evaluate
material performance while fully accounting for the effects
of thickness and density on SE, we define the following three
specific SE parameters (SSE, SE/t, and SSE/t) [86—89]:

SSE = EMI SE (dB cm® g_l) (13)
SE/t= EMISE (dBcm™) (14)
SSE/t = EMISE (dBem’g™!) (15)

The SSE incorporates three key parameters—SE, thick-
ness (d), and density (p)—and is particularly important for
evaluating the EMI SE of lightweight and thin materials. A
higher SSE value indicates that the material is thinner and
lighter while still maintaining strong shielding performance.

© The authors

Normalized parameters have been widely applied in the
fields of porous EMI shielding materials and ultra-thin EMI
shielding materials, especially for multilayer heterogene-
ous EMI shielding systems. Unlike single-layer materials,
multilayer composite materials usually exhibit a synergistic
effect due to interface impedance mismatch, multiple inter-
nal reflections, and distributed conductive or magnetic loss
centers. Therefore, while the absolute SE value reflects the
total attenuation capability, SSE provides a weight-normal-
ized shielding efficiency metric, which is crucial for light-
weight aerospace and wearable applications. Similarly, SE/t
represents thickness-normalized shielding performance and
is suitable for ultra-thin coatings and flexible fabrics. The
comprehensive index SSE/t further quantifies the shielding
per unit mass and thickness.

3 Common Problem and Modification
Strategies for High-Performance Inorganic
Fiber Materials

Although THPFs possess superior intrinsic properties, their
application in EMI shielding is often hindered by interfa-
cial challenges. Across different fiber systems, one recurring
bottleneck emerges—surface inertness. This universal issue
governs the extent to which functional coatings or matrix
resins can adhere to the fiber surface, directly influencing
the integrity and durability of the shielding network. A clear
understanding of this common problem is therefore essential
before exploring modification strategies to overcome it.

3.1 Common Problem for IHPFs

IHPFs constitute a class of continuous filament materials
manufactured via high-temperature melt-drawing or CVD
processes from inorganic compounds or elements (e.g.,
Si0,, Al,05, SiC, C). Owing to their lightweight nature,
exceptional mechanical properties (high specific strength
and modulus), outstanding thermal stability, and chemical
inertness, they are regarded as ideal structural-functional
integrated carriers. These fibers are extensively employed in
cutting-edge fields such as aerospace, defense, and industrial
infrastructure. Common types include GFs [90, 91], QFs
[92], BFs [93-95], CFs [96-98], CNTs fibers [99], graphene
fibers [100], and ceramic fibers (e.g., Al,O5, BN, SiC, Si;N,

https://doi.org/10.1007/s40820-025-02053-z
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fiber) [101-105]. However, their highly stable chemical
structures and smooth physical morphologies result in intrin-
sic surface inertness, which presents common problems for
their application in EMI shielding (Table 2). For instance,
CFs exhibit a carbon content exceeding 90%, with carbon
atoms arranged in a highly ordered structure, leading to pro-
nounced surface inertness [106]. This inertness is primarily
manifested as extremely low surface energy and a severe
lack of reactive sites, resulting in poor interfacial compatibil-
ity and weak physical/chemical adhesion between the fiber
surface and functional coatings (e.g., metals, conductive
polymers, or carbon nanomaterials). The underlying cause
lies in the fact that the intrinsic chemical bonds (e.g., C-C,
Si—0, Al-O bonds) of most inorganic fibers (except metal-
lic fibers) are highly stable and covalent, making effective
chemical interactions with external substances difficult. This
inherent “inertness” can have catastrophic consequences in
composite systems; under external stress or thermal cycling,
weak interfacial bonding readily becomes the initiation point
for failure, causing functional coatings to powder, crack, or
delaminate extensively from the fiber surface. Ultimately,
this disrupts the EMI shielding network, leading to rapid
performance degradation or complete failure. Therefore,
effectively overcoming this common challenge through sur-
face activation strategies to establish a robust and durable
foundation for subsequent functional coatings is a prerequi-
site for realizing high-performance and highly reliable fiber-
based EMI shielding materials. This section will systemati-
cally analyze the nature of this interfacial issue and provide
a detailed review of advanced surface treatment strategies
to address it.

3.2 Modification Strategies

Addressing the surface inertness of IHPFs not only enables
the construction of robust functional layers on the fiber sur-
face, integrating high strength, high modulus, and multifunc-
tionality, but also promotes strong interfaces with various
resin matrices, ensuring superior composite performance.
Consequently, necessary surface activation pretreatment to
increase surface roughness and introduce active chemical
groups is a critical prerequisite and the essential first step
for constructing durable EMI shielding functional coatings.
Based on the phase and medium environment in which the
physicochemical processes occur at the fiber interface during

SHANGHAI JIAO TONG UNIVERSITY PRESS

treatment, various methods can be categorized into “dry”
and “wet” processes (Table 3). It should be noted that the
surface modification strategies discussed in this section pri-
marily aim to activate the chemically inert surfaces of IHPFs
and improve their interfacial reactivity and adhesion with
subsequent coatings or matrices. These activation processes
serve as fundamental pretreatments prior to EMI function-
alization, while the strategies to construct the EMI shielding
functional layers is systematically discussed later in Sect. 4.

3.2.1 “Dry” Surface Modification

Dry processing refers to methods where the fiber surface
does not directly contact liquid media (particularly aque-
ous solutions) during treatment. Reactions or interactions
typically occur in gaseous or vacuum environments, such
as plasma treatment [107—109], high-energy irradiation
[110], ozone treatment [111-113], thermal treatment [114],
and vapor deposition [115-117]. Plasma comprises elec-
trons, ions, neutrals, radicals, excited atoms, molecules,
and photons, all generated by electron-driven reactions.
Plasma surface treatment is highly efficient; its core mech-
anism involves bombarding the fiber surface with high-
energy active species (e.g., oxygen plasma) to introduce
polar groups and cause etching. Yang et al. implemented a
three-step process of Ar plasma cleaning, O, plasma func-
tionalization, and HA plasma polymerization, achieving
a synergistic interfacial strengthening effect. After 3 min
of treatment, the interfacial shear strength (IFSS) of CF/
epoxy composites increased from 39.3 MPa to a maximum
of 81.4 MPa (Fig. 3a) [118]. Ozone treatment is another
typical dry surface treatment technology. Its core mecha-
nism utilizes the strong oxidizing power of gaseous ozone
(O5) to induce redox reactions on the fiber surface at room
temperature, selectively introducing oxygen-containing
functional groups and mildly etching the surface, thereby
altering the fiber’s surface chemical activity and physical
structure. Huang et al. subjected pitch-based CFs to ozone
treatment, successfully introducing stable oxygen-containing
polar functional groups such as carboxyl groups (-COOH),
resulting in CFs with enhanced microwave heating perfor-
mance (Fig. 3b) [119]. Thermal treatment, as an important
dry surface treatment technology, can effectively modify
the surface chemistry of fibers by controlling the atmos-
phere and temperature, thereby improving their interfacial

@ Springer
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Table 2 Advantages and disadvantages of IHPFs

Advantages

Disadvantages

Ultra-high temperature resist-
ance

High strength-to-weight ratio

Excellent chemical & corrosion
resistance

Superior creep and fatigue resist-
ance

Outstanding thermal stability &
low CTE

Electrically/thermally conduc-
tive or insulating as desired

Tailorable dielectric/EMI shield-
ing properties

Non-flammable and radiation
tolerant

Long service life under extreme
environments

Enables multifunctional com-
posites

High manufacturing cost

Intrinsic brittleness (low strain-to-
failure)

Difficult to cut or machine
Limited flexibility
Poor impact toughness

Surface inertness — weak fiber-
matrix bonding

Requires specialized sizing or
coupling agents

Dense (not lightweight for some
ceramic fibers)

Limited supply chain & long lead
times

High processing temperatures
(> 1000 °C) for sintering/CVI

compatibility with resin matrices. The core mechanism
involves using thermal energy under different atmospheres to
selectively remove surface contaminants, introduce or elim-
inate oxygen-containing functional groups, and modulate
the surface microstructure. For instance, Kim et al. system-
atically studied the effects of thermal treatment in nitrogen
(inert atmosphere) and oxygen (reactive atmosphere) on CF
properties. The study demonstrated that moderate thermal
treatment (300-500 °C) in an oxygen atmosphere is an effec-
tive method for enhancing the interfacial activity of CFs
through “surface oxidative functionalization”, particularly
suitable for the surface regeneration and performance recov-
ery of recycled CFs. However, temperature and time must
be strictly controlled to avoid degradation of the fiber bulk
at excessively high temperatures (Fig. 3c) [120].

Beyond conventional methods such as ozone oxidation
and thermal treatment, CVD has emerged as a highly effec-
tive surface modification technique for inorganic fibers. By
introducing gaseous precursors that undergo chemical reac-
tions on the fiber surface, CVD enables precise control over
surface composition and microstructure, thereby signifi-
cantly enhancing interfacial compatibility with metal matri-
ces and improving electrochemical performance. The core
mechanism involves the in situ growth of functional coatings
with tailored morphology and chemical properties through

© The authors

careful regulation of reaction temperature, pressure, and
precursor types. For instance, Liu et al. employed plasma-
enhanced chemical vapor deposition (PECVD) to directly
grow vertical graphene (VG) on a GF separator surface
using CH, as the carbon source at a relatively low synthesis
temperature. Subsequent air plasma treatment introduced
oxygen and nitrogen heteroatoms, successfully transform-
ing the originally electrochemically inert GF surface into a
zinc-affine functional interface. This modification signifi-
cantly enhanced its affinity toward zinc ions and improved
its ability to guide uniform zinc deposition (Fig. 3d) [121].

3.2.2 “Wet” Chemical Modification

“Wet” processing involves treatments conducted in liquid
media (typically aqueous solutions, sometimes organic
solvents), relying on chemical reactions in the liquid envi-
ronment to alter the physical and chemical properties of
the fiber surface, including liquid-phase oxidation [122],
electrochemical oxidation [123], sizing, coating [124], and
chemical grafting functionalization [125-127].
Liquid-phase oxidation is a classic “wet” surface modi-
fication technique [21]. Its core mechanism leverages the
chemical oxidizing power of strong acids (e.g., nitric acid,
sulfuric acid) or strong oxidant solutions to efficiently
introduce polar functional groups (e.g., oxygen- or nitro-
gen-containing groups) onto the fiber surface in a liquid
environment, while slightly etching the surface to increase
specific surface area, thereby significantly improving the
fiber’s interfacial compatibility and electrochemical activity.
Ni et al. achieved a synergistic effect of “functional group
introduction” and “pore structure optimization” through
liquid-phase oxidation, ultimately endowing nitrogen-doped
pitch-based activated CFs (NPACF) with exceptional elec-
trochemical performance in KOH electrolyte. This study
demonstrated that liquid-phase oxidation is an efficient, low-
temperature, and rapid strategy for fiber surface activation
and functionalization, particularly suitable for low-soften-
ing-point precursors that cannot withstand high-temperature
treatments, providing critical technical support for preparing
inorganic high-performance functional fibers (Fig. 4a) [128].
Electrochemical oxidation is an efficient and controlla-
ble wet surface treatment technology. Its core mechanism
involves using an applied electric field to drive electro-
chemical reactions of anions (e.g., OH™, NO;7) or water

https://doi.org/10.1007/s40820-025-02053-z
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molecules from the electrolyte on the fiber surface, thereby
efficiently and uniformly introducing oxygen-containing
functional groups and creating nanoscale rough structures,
fundamentally enhancing the interfacial bonding perfor-
mance with resin matrices. For instance, Fu et al. subjected
high-modulus CF (HMCEF) surfaces to anodic oxidation via
electrochemical oxidation treatment, followed by electro-
chemical grafting of diethylenetriamine. This simultane-
ously increased the content of oxygen- and nitrogen-contain-
ing functional groups on the HMCF surface, significantly
improving the interfacial properties of HMCF composites.
The interlaminar shear strength (ILSS) of HMCF/epoxy
composites reached 97.5 MPa, a 257.1% increase compared
to untreated HMCF (Fig. 4b) [129]. Therefore, electrochemi-
cal oxidation is considered a highly promising fiber surface
activation technology, especially applicable in high-perfor-
mance composite fields demanding extreme interfacial prop-
erties, effectively addressing the interfacial bonding chal-
lenges posed by the surface inertness of high-modulus CFs.

Sizing is a “wet” post-treatment technology widely used in
industrial production. Its core mechanism involves passing sur-
face-activated fibers through a sizing agent containing polymer
film formers, coupling agents, and functional nanoparticles to
form a thin, uniform polymer coating on the surface. This coat-
ing not only protects the fibers from abrasion but, more cru-
cially, acts as a bridge, generating strong physical adsorption
and chemical bonding with both the fiber surface and the resin
matrix through its own functional groups, thereby significantly
enhancing the composite’s interfacial properties. Li et al. inno-
vatively introduced Fe;0, magnetic nanoparticles into a tradi-
tional epoxy-based sizing agent. This treatment aimed not only
to impart magnetism to BFs but also significantly enhanced
their interfacial bonding capacity, fundamentally solving the
weak interfacial adhesion caused by the inert surface of BFs.
Results showed that both the ILSS and IFSS of the composites
were markedly improved after this functional sizing treatment.
Additionally, the treatment successfully endowed the fibers
and their composites with additional magnetic responsive-
ness, demonstrating the great potential of sizing technology
in achieving integrated “interface strengthening—functionaliza-
tion” of fibers (Fig. 4c) [130].

Chemical grafting is a “wet” treatment technology that
covalently bonds functionally specific molecules or nano-
materials firmly to the fiber surface [131]. It offers strong
design flexibility, mild and controllable reaction conditions,

© The authors

and minimal damage to the fiber’s mechanical properties. For
instance, Ji et al. vertically and uniformly grafted CNTs onto
the CF surface by multistep chemical reactions. This structure
increased the fiber’s specific surface area, providing numerous
sites for mechanical anchoring. Furthermore, the grafted CNT
network can impart additional functionalities like electrical
and thermal conductivity to the composites (Fig. 4d) [132].
Compared to methods like physical coating, chemical graft-
ing via covalent bonds offers durable and stable modification
effects that resist debonding under high temperatures or shear
forces during processing. It represents one of the most power-
ful technical pathways for achieving a “qualitative leap” in the
interface of fiber composites, particularly suited for cutting-
edge applications in aerospace and defense where extreme
interfacial performance is required.

4 Preparation Strategies for EMI Shielding
Inorganic High-Performance Fibers/Fabrics

IHPFs, owing to their exceptional tensile strength, high
modulus, and outstanding environmental resistance, serve
as ideal substrates for constructing lightweight and durable
EMI shielding materials. However, as previously discussed,
their inherent surface chemical inertness and smooth physi-
cal morphology severely restrict the robust loading and uni-
form construction of functional coatings, presenting a pri-
mary bottleneck for practical applications. After successfully
introducing active sites and improving wettability through
surface activation treatments (e.g., plasma, ozone oxida-
tion, and chemical etching), the core research focus shifts
to employing precise functionalization strategies to endow
these fibers with efficient EMI shielding and absorption
capabilities. The key to achieving high-performance EMI
shielding lies in constructing a continuous conductive net-
work on the fiber surface and within the bulk phase through
precise preparation processes to enhance EM wave reflection
loss, while simultaneously introducing abundant magnetic/
dielectric loss units, such as metals [133—136], conductive
polymers [137-139], carbon-based materials [140—143], and
novel materials [144-146] (Fig. 5). This enhances polari-
zation relaxation and energy conversion, thereby promot-
ing the absorption and dissipation of EM waves. To realize
this goal, researchers have developed a series of physical
and chemical preparation methods (Table 4). Based on

https://doi.org/10.1007/s40820-025-02053-z
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their principles and characteristics, these methods can be
primarily categorized into physical deposition, chemical
treatment, and other emerging technologies. This section
will systematically review the principles and processes of
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these preparation strategies, delve into how different meth-
ods regulate the EM parameters and microstructure of
the materials, and ultimately achieve customizable EM
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protection functions, transitioning from “reflection-domi-
nated” to “absorption-dominated” mechanisms.

4.1 Physical Deposition Method

With the rapid development of electronics in industrial,
military, and aerospace sectors, there is a pressing need for

© The authors

adjustable and durable EMI shielding textiles possessing excel-
lent mechanical properties. Physical deposition methods (such
as spray-drying, vacuum deposition, and magnetron sputtering)
typically involve the physical attachment and film formation
of vapor or liquid-phase precursors on the fiber surface. These
methods offer advantages including relative process simplicity,
minimal damage to the fiber substrate, and ease of scalability
[147-149]. Simultaneously, they enable the uniform deposition

https://doi.org/10.1007/s40820-025-02053-z
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of conductive or magnetic material coatings on the fiber sur-
face, significantly enhancing its EMI shielding performance. By
adjusting deposition parameters (e.g., deposition rate, atmos-
phere pressure, and energy input), one can not only optimize
the coating’s density and adhesion but also impart excellent
stability and durability to the fiber fabric. Consequently, physi-
cal deposition has become an important and widely applied
strategy for modifying IHPFs for EMI shielding.

4.1.1 Spray-Drying

Spray-drying is a relatively mature technology character-
ized by low cost, simple operation, and high productiv-
ity compared to other techniques. These advantages make
it particularly suitable for fabricating conductive metal
structures on flexible substrates and for large-scale manu-
facturing [150, 151]. In EMI shielding composite research,
multiwalled carbon nanotubes (IMWCNTSs) [152, 153] and
exfoliated graphite nanoplatelets (xGnPs) [154, 155] are
widely used to construct efficient conductive networks
due to their excellent electrical conductivity and unique
micro-morphology, significantly enhancing the mate-
rial’s EMI SE. As shown in Fig. 6a, Park et al. utilized
a spray gun to coat a mixed suspension of MWCNTs and
xGnPs onto a GF surface, followed by resin infiltration and
molding to prepare a multilayer composite shielding mate-
rial. By optimizing parameters such as MWCNT length,
xGnP size, mixing ratio, and number of coating layers,
the system enhanced conductive pathways and interfacial
structure, ultimately achieving a shielding performance
of 35.3-56.8 dB in the frequency range of 30 MHz to
1.5 GHz [156]. The spray-molding process demonstrates
good scalability and applicability, laying the foundation
for developing multifunctional composites that integrate
EMI shielding, self-sensing, and structural intelligence. In
the field of EMI shielding composites, AgNWs [157, 158]
have become an important material for constructing highly
efficient conductive networks due to their high conductiv-
ity, large aspect ratio, and excellent mechanical flexibility,
making them especially suitable for flexible fabric-based
functional composites. As shown in Fig. 6b, Liang et al.
modified a GF fabric (GFF) surface with AgNWs via
spray-drying and further coated it with a self-cross-link-
ing solid—solid phase change polyethylene glycol (ScCPEG)
layer based on multiple hydrogen bond cross-linking. The

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

single-layer SCPEG coating A-GFF revealed the excellent
and practical function of blocking radio wave transmis-
sion of the sample by the change of the indicator light in
the safe house. This successfully produced an integrated
fabric composite with excellent EMI shielding, thermal
management, and information encryption functionalities,
offering new ideas for the multiscenario application of
high-end EM protection structures in aerospace, military
equipment, and smart buildings [159]. Compared to pre-
cious metals like silver and gold, copper offers advantages
such as lower processing cost, high conductivity, and good
ductility, making it a common metallic coating material
for enhancing the EMI shielding performance of fiber-
based composites [160—162]. Chen et al. used a spray-
assisted deposition method to construct a nanostructured
copper coating on a CF fabric (CFF) surface. By control-
ling the number of spraying cycles (10 to 100 cycles),
they achieved uniform coverage of a flocculent hierarchi-
cal rough structure composed of Cu nanoparticles, which
exhibited excellent EMI shielding performance. The SE;
reached approximately 61.3 dB, nearly 20 dB higher than
that of untreated CFF. Although the stability of this mate-
rial under high-temperature and salt spray environments
requires further improvement, this study demonstrates the
good application potential of spray-assisted deposition
technology for preparing lightweight, high-performance
flexible EMI shielding textiles [37].

4.1.2 Vacuum Deposition

Vacuum deposition is a physical vapor deposition tech-
nique conducted in a vacuum or high vacuum environ-
ment, where evaporated or sputtered material is depos-
ited onto the fiber surface. This method effectively
reduces interference from gas molecules during the dep-
osition process, resulting in coatings with higher purity
and better density [163—-165]. By adjusting parameters
such as deposition rate, vacuum level, and substrate tem-
perature, the thickness, crystal structure, and adhesion
of the coating can be controlled, enabling precise tun-
ing of SE and durability. Furthermore, as this method
does not significantly affect the mechanical properties
of the fiber, it is considered an effective approach for
the surface functionalization of high-performance fibers.

@ Springer
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As shown in Fig. 6¢, Song et al. used BF as the skeleton,
aramid nanofiber (ANF) as the reinforcement, and CNTs
as the conductive network. They successfully constructed
a BF/ANF/CNT composite paper with a layered structure
via vacuum-assisted filtration technology. In the X-band
(8.2—-12.4 GHz), this material, with a thickness of 48 pm,
achieved a SE of 24.6 dB. Its SSE per unit thickness

© The authors

(SSE/t) was as high as 12,504 dB cm? g_l, demonstrat-
ing exceptional EMI shielding performance, environmen-
tal stability, and Joule heating performance [166]. The
material not only performs excellently under conven-
tional conditions but also maintains structural and func-
tional integrity under extreme conditions, showing broad
application prospects. This work provides new ideas for

https://doi.org/10.1007/s40820-025-02053-z
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Table 4 Summary of preparation strategies and key parameters (mechanical property, SSE/t, and other indicators) for the EMI shielding func-
tional layer of IHPFs

Preparation method Substrate Materials Frequency EMI SE Tempera- Main cost ~ Key parameters ~ References
(GHz) (dB) ture
Physical Spray- GF AgNWs; 8-12 40-72 Room temp. Materials Tensile strength ~ [157]
Deposi- drying ScPEG (spray) (precur- (up to
tion sor); 191 MPa)
energy for
drying
GF MWCNT; 0.03-1.5 35.3-56.8  Room temp. Thickness: [154]
xGnP (spray) 3.024+0.03 mm
BF Ti;C,T, 8-12 41.53 45 °C Electro-thermal  [144]
(extract); property: (4 V,
80 °C 70 °C)
(dry)
CF Cu 0.9-1.5 59.8 60 °C (etch- - [37]
ing)
Vacuum CF CNT 8-12 24.6 50 °C (hot- Equipment; SSE/t:12,504 dB [164]
deposi- press) target mate-  cm? g~
tion rials
Chemical Electroless GF Cu 8-12 74.59 20-60 °C Materials;  Cu layer: [169]
treatment plating (deposi-  wastewater 8.02 pm
tion); treatment
60 °C
(dry)
GF Ni; CNTs 8-12; 1-18 >50; 45 °C CNTs: 9.2 wt% [168]
>35 (deposi-
tion)
ACBF Co-Ni alloy 0.03-6 42.57 80 °C Tensile strength  [172]
(deposi- (72.9 MPa)
tion)
CF Ni-W-Cu-P 8-12 37 75+2°C Tensile strength ~ [40]
(deposi- (538.8 MPa)
tion)
CF; Gra- Ni; Ag 8-12 33.7 Ag: 40 °C, Thickness: 2 mm; [167]
phene Ni: 60 °C Absorption
fiber (deposi- (82.7%)
tion)
Electroplat- CF Ni 8-12 71 25 °C Energy; Thickness: [173]
ing (deposi-  Environ- 1.2 mm;
tion) mental Tensile strength
cost (22.4 MPa)
CF Ni 8-12 23.5-31.6 50°C Flexural strength  [43]
(deposi- 21.1%
tion) increase)
CF-RGO Ni 2-18 >10 - Thickness:2 mm  [42]
In situ CF PDA, BN 8-12 50.06 60 °C Equipment; ILSS and mode [179]
polymeri- energy; II toughness
zation materials (35.50%,
97.35%
increase)
CoNi/CF PPy 2-18 68.78 Room temp EAB: 5.62 GHz; [180]
Thick-

ness:2.43 mm
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Table 4 (continued)

Preparation method Substrate Materials Frequency EMI SE Tempera- Main cost ~ Key parameters ~ References
(GHz) (dB) ture
CVD CF CNT 18-26.5 40-50 900 °C Equipment; Overpotential: [183]
(120 min)  energy; 344 mV
materials
(precursor
gases)
BF CNT 8-12 37.37 800 °C Thickness: 2 mm  [46]
(60 min)
AF Graphene 2-18 85 800~ Growth tempera- [185]
1050 °C ture (~200 °C
(1-300 min) lower); Growth
rate (~3.4 times
faster)
AF Graphene 2-18 >30 1100 °C CVD flow: CH, [186]
(30- and H,
300 min)
AF Graphene 2-18 46 800- CVD flow: C;Hg  [189]
1100 °C and H,
(250 min)
AF Graphene 8-12 25 1000 °C Absorp- [117]
(30 min) tion: >90%
Thermal Graphene — — 8-12 >120 2L) 600 Equipment; 8.5x10°Sm™'  [191]
treatment fiber 2800 °C  energy;
(60 min) heating
time;
gas purity
CF CNT 2-18 >20 920 °C EAB: 4.4 GHz; [192]
(ZIF-8@ (pyrolysis) Thickness:
ZIF-67) 1.38 mm
CF CNT(ZIF-L) 8-12 384 400 °C 750 Wm™ K™' [193]
(2 h);
900 °C
(6h)
Others ALD CF AlL,O;+TiO, 8-12 45 150 °C Equipment; Structure color [198]
layers materials
(precur-
sor)
Laser etch- BF Graphene 8-12 ~20 (1 L); Localized Materials; - [200]
ing ~50(3L) high temp safety man-
agement
Dipping CF MWCNT 2;2.7 37; 68 Room temp Materials SSE/t: 35,000 dB  [203]

cm? g™!

addressing the reliability issues of EMI shielding materi-
als in extreme environments and offers important refer-
ences for the design and preparation of multifunctional

integrated flexible electronic materials.

© The authors

4.2 Chemical Treatment Method

Compared to physical deposition methods, chemical treat-

ment techniques construct functional coatings on fiber

surfaces through chemical reactions or modulation of the

chemical environment, offering advantages such as strong

adhesion, continuous film formation, and multiscale inter-

facial control. Typical methods include electroless plat-

ing, electroplating, in situ polymerization, chemical vapor

https://doi.org/10.1007/s40820-025-02053-z
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Fig. 6 Physical deposition method: spray-drying and vacuum deposition, are used to fabricate EMI shielding functional layers. a MWCNT or
MWCNT/xGnP are sprayed on the GFs; Illustration of EM waves interactions with CNTs and xGnPs; SEM micrographs of hybrid MWCNT/
xGnP coated GFs. Reproduced with permission from [156]. Copyright 2019, Elsevier B.V.; b Fabrication of the SCPEG-coated A-GFF; Hydro-
gen bonds among ScPEG coatings, silver nanowires (AgNWs), and fabric; The conductivity as a function of AgNWs content with different
spraying times; EMI SE and power coefficient of SCPEG-coated A-GFF; EMI shielding mechanism. Reproduced with permission from [159].
Copyright 2024, Elsevier B.V.; ¢ Fabrication process of BEJANF/CNT composite paper; Electrical conductivity, EMI SE, power coefficient, and
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deposition/infiltration, and annealing treatments. Chemical
treatments can introduce highly conductive or magnetic
functional layers onto the fiber surface, while effectively
regulating coating thickness, microstructure, and interfa-
cial adhesion by adjusting reaction conditions (e.g., solution
concentration, temperature, reaction time, and catalyst type)
[167]. These methods not only endow IHPFs with excellent
EMI SE but also balance flexibility, durability, and stabil-
ity in complex environments, thereby holding broad appli-
cation potential in the preparation of EMI shielding fiber
composites.

4.2.1 Electroless Plating

Electroless plating is an autocatalytic reduction process
that does not require an external power source, enabling
the uniform deposition of conductive metal layers on fiber
surfaces [168, 169]. Its advantage lies in achieving con-
tinuous coverage on fibers or fabrics with complex mor-
phologies, with coating thickness controllable via reaction
time and solution composition. Commonly used metals
include Ni, Cu, and Ag, which significantly enhance the
electrical conductivity and EMI shielding performance of
fibers [170-172]. Simultaneously, the coatings formed by
electroless plating exhibit strong adhesion to the substrate,
imparting excellent durability and stability to the fibers,
making this method widely applicable in the construc-
tion of EMI shielding textiles. Copper electroless plating,
due to its mature technology, low cost, and ease of scal-
ability, is extensively used to build continuous metallic
conductive layers on fiber surfaces, particularly for the
EMI shielding functionalization of IHPFs like GFs. As
shown in Fig. 7a, Parkash et al. achieved continuous and
dense copper layer coverage on the inert surface of GFs
via electroless copper plating, with a SE; of 74.59 dB
in the X-band, significantly superior to that of untreated
GFF (SE;=1.10 dB). They systematically investigated
the effect of deposition temperature (20—-60 °C) on the
microstructure, electrical conductivity, and EMI shielding
performance of the electroless copper layer on GFF [173].
By precisely controlling the deposition temperature, the
crystallinity, thickness, and density of the copper layer
could be regulated, enabling the production of high-per-
formance, lightweight, and flexible EMI shielding textiles
without complex pretreatment.

© The authors

Beyond single-metal coatings, alloy electroless plating
also demonstrates significant advantages in enhancing the
EMI shielding performance of fiber-based composites due
to its tunable multifunctional properties [174, 175]. Wang
et al. successfully constructed a cobalt—nickel (Co—Ni)
alloy coating on the surface of an aramid-carbon blended
fabric (ACBF) using electroless plating, markedly improv-
ing the material’s EMI SE and mechanical strength. The
average SEp reached 42.57 dB in the 30-6000 MHz fre-
quency range, primarily attributed to the synergistic effect
between the dielectric loss of CFs and the magnetic loss
of the Co-Ni alloy, achieving dual attenuation of EM
wave absorption and reflection. Furthermore, the material
exhibited excellent corrosion resistance and high mechani-
cal strength, showing broad application prospects in fields
such as aerospace flexible electronic equipment and military
protective textiles (Fig. 7b) [176]. This method features a
mild process that avoids strong acids or alkalis and can be
completed within 2-3 h, demonstrating good potential for
industrialization. Electroless coatings endow IHPFs with
high conductivity, forming continuous conductive net-
works responsible for reflection-dominated EMI shielding.
In addition, the in situ redox deposition process facilitates
strong chemical bonding between the coating and the fiber
surface, significantly enhancing interfacial adhesion and
mechanical integrity.

4.2.2 Electroplating

Electroplating is a method that uses an external electric field
to drive the reduction and deposition of metal ions onto fiber
surfaces, enabling the acquisition of highly dense and pure
metal coatings in a relatively short time. Compared to elec-
troless plating, electroplating offers higher controllability
over deposition rate and thickness and is suitable for large-
area continuous processing. By adjusting process param-
eters such as current density, electrolyte concentration, and
temperature, the adhesion and microstructure of the coating
can be effectively improved, thereby enhancing EMI shield-
ing efficiency. However, electroplating typically requires the
fiber substrate to possess some conductivity, so it is often
combined with other surface activation or pretreatment
methods. As shown in Fig. 7c, Wang et al. used electroplat-
ing to construct two types of nickel coatings on CF surfaces:
conventional flat and nanocone-shaped (denoted as CF@

https://doi.org/10.1007/s40820-025-02053-z
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CN and CF@NN, respectively). They found that differential
adsorption of NH,* ions in the plating solution induced the
growth of nickel grains along specific orientations, forming
nanocone array structures approximately several hundred
nanometers in height (CF@NN). This structure not only
enhanced the contact probability and mechanical interlock-
ing effect between fibers but also significantly improved the
electrical conductivity (41.2 S m™') and EMI SE; (71 dB
in the X-band at a thickness of only 1.2 mm) of the com-
posite film. Additionally, the CF@NN/PI composite film
exhibited excellent mechanical properties (tensile strength
of 22.4 MPa, elastic modulus of 90 MPa) and flexibility,
withstanding repeated bending without fracture, indicating
broad application prospects in microelectronic devices and
flexible wearable systems [177].

2
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4.2.3 In Situ Polymerization

In situ polymerization refers to the method of directly ini-
tiating monomer polymerization reactions on the surface
of fibers or fabrics to form conductive polymer coatings.
Common polymers include polypyrrole (PPy) [178], pol-
yaniline (PANI) [179], and polythiophene (PTh) [180].
These conductive polymers not only impart excellent elec-
trical conductivity to fibers but also combine lightweight,
flexibility, and good processability. By controlling polym-
erization conditions (e.g., type of oxidant, reaction temper-
ature, and monomer concentration), the coating thickness,
conductivity, and interfacial adhesion can be regulated
controllably, making this a strategy that balances perfor-
mance and process applicability in EMI shielding fibers.
It is particularly suitable for constructing polymer coat-
ings that integrate conductivity, dielectric properties, and

@ Springer
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good interfacial bonding [181, 182]. As shown in Fig. 8a,
Luo et al. successfully constructed a core—shell structured
boron nitride/short CF (BN/SCF) on the surface of SCF
via polydopamine (PDA)-assisted in situ polymerization
and electrostatic assembly technology. Using high-voltage
electrostatic flocking to achieve oriented alignment, they
ultimately prepared a multifunctional CF/epoxy composite
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via vacuum-assisted resin infusion (VARI). The composite
achieved an EMI SE of 50.06 dB, while the ILSS and frac-
ture toughness increased by 35.50% and 97.35%, respec-
tively, providing a new approach for realizing lightweight,
high-shielding, and tough integrated composites through
in situ polymerization interface engineering [183].

In Situ Polymerization (PAN)
(b)

e

PAN-based fibers CoNi/C fibers

CoNi/C fibers

CoNi/C@PPy composites

500 nm
— 4 6 8 10 12 14 16

Frequency/GHz

O\

and reflection

Dipole Conductive
polarization loss

|

1

1

1

1

1

%) 1

Interfacial Incident wave Eddy !
polarization current loss :
1

1

1

Transmitted wave :

Reflected wave 1

]

!  eeeee- > 1

Multiple scattering :

1

1

a

In Situ Polymerization (PANI)

Pp-phenylenediamine,
NaNO, and H*

0°C for 4h

APS, HCIO, and Aniline

0°C for 24h

C

CF-NH, composites CF@PANI composites

-33.19dB

F'!qu: o
4 6 8 10 12 "”Y(Ghz)ﬂ
Frequency (GHz)

14 16 18

Transmitted EM waves

Vs Conductive loss
Incident EM waves -~

S |

Reflected EM waves |

Fig. 8 Fabrication for EMI shielding functional layers by in situ polymerization method. a Preparation of BN/SCF; Preparation of PPD-PDA-

BNs; Preparation of BN/SCF felt-x/CF/EP composites. Reproduced with permission from [183].

Copyright 2025, Elsevier B.V.; b Synthesis

processes of CoNi/C@PPy composites; SEM images of CoNi/C fibers and CoNi/C@PPy composites; RL values of CoNi/C; The possible EM
wave absorption mechanisms of CoNi/C @PPy composites. Reproduced with permission from [184]. Copyright 2022, Elsevier B.V.; ¢ Synthesis
procedure of CF@PANI; RL and 3D plots of CF@PANI composites; EM wave-absorbing mechanisms. Reproduced with permission from [185].
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Besides PDA, PPy is another commonly used conductive
polymer widely applied in the functional modification of
fiber surfaces to enhance their EMI performance. As shown
in Fig. 8b, Ma et al. prepared CoNi alloy-embedded CFs
(CoNi/C) via electrospinning and carbonization technology,
and further coated them with PPy using in situ polymeri-
zation to successfully construct CoNi/C @PPy composites.
The material exhibited excellent EM wave absorption perfor-
mance from low frequency to the Ku band, with a minimum
reflection loss (RL,,;,) of —68.78 dB and an effective absorp-
tion bandwidth (EAB) of 5.2 GHz, achieved at a low filler
loading of only 15 wt% [184]. Research indicated that the
introduction of PPy not only enhanced the conductive loss
and interfacial polarization of the material but also signifi-
cantly optimized impedance matching and attenuation capa-
bility through its synergistic effect with CFs and magnetic
particles. Furthermore, Gou et al. constructed a core—shell
structured CF@PANI composite functional layer by cova-
lently grafting polyaniline nanorods (PANI) onto amino-
functionalized CFs (CF-NH,) via diazonium reaction and
in situ polymerization (Fig. 8c) [185]. The CF@PANI-5
sample exhibited optimal EM wave attenuation capabil-
ity. Compared with CVD and other vapor-phase deposition
techniques, in situ polymerization does not require high-
temperature treatment. The resulting polymer layer has mod-
erate electrical conductivity and inherent flexibility. It can
not only prevent micro-cracks in the bottom coating during
material bending or thermal cycling, but also is suitable for
combining with other technologies to construct EMI shield-
ing functional layers that combine reflection and absorption.
Looking to the future, optimizing the interfacial chemistry
between the polymer and the fiber, the developing green,
scalable polymerization methods will be the key to advanc-
ing flexible and sustainable EMI shielding materials.

4.2.4 Chemical Vapor Deposition

CVD is a method that utilizes gaseous precursors which
decompose at high temperatures and deposit onto fiber sur-
faces. This technique can form inorganic coatings—such
as carbon, carbides, or metal oxides—that are structurally
dense, uniformly thick, and tightly bonded to the substrate
[186—-188]. CVD demonstrates outstanding performance in
enhancing the thermal stability, corrosion resistance, and
EMI shielding properties of fibers. As shown in Fig. 9a,

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

Liu et al. directly grew graphene on the surface of alumina
fiber fabric (AFF) using a self-designed roll-to-roll CVD
system, successfully preparing graphene-coated alumina
fiber fabric (GAFF). The study, for the first time on a non-
metallic substrate, revealed a metal-catalysis-like “vapor-
surface—solid” (VSS) growth mechanism. Compared to the
traditional “vapor—solid” (VS) model followed on conven-
tional non-catalytic non-metallic substrates; this mechanism
significantly reduced the graphene growth temperature (by
approximately 200 °C) and increased the growth rate (by
about 3.4 times). The obtained GAFF not only inherited the
high strength, lightweight, and flexibility of the alumina fib-
ers but also exhibited broadly tunable electrical conductiv-
ity and excellent EMI shielding performance (SE up to 85
dB). Furthermore, the self-designed roll-to-roll CVD system
enabled the stable large-scale production of GAFF, laying
a solid foundation for its practical application in efficient,
lightweight EMI shielding composites [189]. Building on
this research, Liu et al. further explored the potential of
GAFF for multifunctional integration and broad-spectrum
performance regulation. By precisely controlling the thick-
ness of the graphene during CVD and the pore structure
of the fabric itself, they successfully achieved wide-range
adjustment of multiple performance parameters of GAFF,
including electrical conductivity, electrothermal tempera-
ture, and EM wave reflectivity and transmissivity. This not
only enabled the roll-to-roll mass production of GAFF in
multiple specifications but also promoted the leapfrog devel-
opment of graphite-based composites from single function to
multidimensional compatibility of “structure—function—envi-
ronment” (Fig. 9b) [190].

Methane (CH,) is commonly used as a carbon source
for graphene growth on insulating substrates [191, 192].
Based on their previous work, Liu et al. further explored the
feasibility of using propane (C;Hg) for the rapid prepara-
tion of graphene on AFF and systematically compared its
growth behavior and mechanism with traditional carbon
sources (CH,, C,H,). The study found that C;Hg pyrolysis
at high temperatures generates unique active carbon spe-
cies, C;H, which exhibit lower migration energy barriers,
higher nucleation density, and faster growth rates on the AFF
surface, thereby significantly enhancing the coverage speed
and quality of graphene. Compared to CH, and C,H,, C;Hg
reduced the nucleation time from 110 and 48 min to just 2
min, increased the nucleation density by 160 and 50 times,
respectively, and increased the growth rate by more than 10

@ Springer
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times, achieving near-complete coverage efficiently within 8
min. The resulting GAFF not only possessed excellent tun-
able electrical conductivity, high mechanical strength, and
flexibility but also showed broad application prospects in
EMI shielding (Fig. 9¢) [193]. This research provides a new
strategy for the efficient, large-area, transfer-free preparation
of graphene on non-catalytic insulating substrates, advanc-
ing the practical application of graphene in functional com-
posites. Furthermore, for CVD technology, the composition
and microstructure of the coating can be precisely regulated
by optimizing the reaction atmosphere, temperature, and
precursor types, forming carbon nanostructures with hierar-
chical conductive networks, thereby triggering multiple scat-
tering, dielectric polarization and conductive loss, achieving
EMI shielding through both reflection and absorption. The
in situ growth process ensures excellent interface contact
between the carbon coating and the fiber substrate, forming
conductive pathways with excellent interface adhesion and
thermal stability. However, the high processing temperature
and equipment cost of CVD are still obstacles for large-scale
implementation. Future work can focus on improving meth-
ods such as low-temperature catalytic growth to achieve a
broadband, efficient and scalable EMI shielding system.

4.2.5 Thermal Treatment

Thermal treatment is typically employed as a post-process-
ing step following chemical deposition to improve the struc-
ture and properties of metal or inorganic coatings. At high
temperatures, grains within the deposited layer grow, while
defects and interfaces are reduced, thereby enhancing the
density and electrical conductivity of the coating. For metal-
plated fibers, annealing not only strengthens the adhesion
between the coating and the substrate but also reduces inter-
facial stress, improving its stability and durability [194]. The
choice of annealing temperature and time significantly influ-
ences the coating’s microstructure and EMI SE; therefore, an
appropriate heat treatment process is crucial for achieving
high-performance EMI shielding fibers.

Furthermore, beyond the strategy of directly growing gra-
phene on substrate surfaces, high-temperature annealing of pre-
formed carbon-based fibers has also emerged as a key method
for optimizing their intrinsic electrical and EM properties. As
shown in Fig. 10a, Gao et al. prepared graphene oxide (GO)
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fibers via wet spinning and obtained a series of graphene fibers
through chemical reduction and high-temperature annealing
(600-2800 °C). The heat treatment optimized the structure and
significantly enhanced the electrical conductivity of the fibers,
increasing from 1.2x 10* S m™! after chemical reduction to
8.5%10° S m~! after annealing at 2800 °C. When woven into
fabric, it exhibited exceptional EMI shielding performance in
the X-band: the SE; of a single-layer fabric reached up to 96
dB, and by adjusting the texture direction and layering, the SE;
of up to 126 dB could be achieved, along with excellent flex-
ibility and durability [195]. This work demonstrates that high-
temperature heat treatment is an efficient and scalable strategy
for repairing the structure of carbon materials and enhancing
their intrinsic shielding performance, providing an important
pathway for developing next-generation high-performance
flexible EMI shielding textiles.

While directly optimizing the intrinsic conductive and
shielding properties of carbon-based fibers through high-
temperature heat treatment, another strategy based on the
thermal conversion of metal-organic frameworks (MOFs)
to derive CNTs offers a new approach for constructing
hierarchical structures and achieving efficient, green EMI
shielding. Hou et al. developed a novel method for the selec-
tive growth of CNT cluster arrays on the CF surface. This
method used PS microspheres as a mask to regulate the
distribution of surface functional groups on CF. Through
bimetallic ZIF-8@ZIF-67 MOF coating and subsequent
high-temperature pyrolysis, Co-doped CNT cluster arrays
were catalytically grown in specific regions (Fig. 10b) [196].
Research indicated that the density and distribution of the
CNT clusters could be precisely controlled by the concen-
tration of PS microspheres and the degree of H,O, treat-
ment. In terms of EMI shielding performance, the material’s
SE; exceeded 20 dB in the 2—-18 GHz range, with a maxi-
mum green shielding index (g,) of 351 and g,> 12 across
the entire frequency band, far superior to the commercial
green shielding standard (g > 1), demonstrating excel-
lent absorption-dominated green shielding characteristics.
Moreover, extending this method to integrated thermal man-
agement-EMI shielding composites enables multifunctional
synergy and performance enhancement. Wu et al. achieved
in situ growth of leaf-like bimetallic ZIF-L (Co/Zn) on the
surface of CF cloth (CFC) followed by high-temperature
conversion, successfully constructing a three-dimensional
interconnected network of aligned CFs bridged by carbon
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nanotubes (CFC@CNT). This was further compounded with
epoxy resin (EP) to create a multifunctional composite. In
this structure, the ZIF-L-derived CNTs not only effectively
connected adjacent CFs, significantly reducing interfacial
thermal resistance, but the encapsulated Co nanoparticles
also provided stable magnetic loss capability. The resulting
CFC@CNT/EP composite exhibits exceptional anisotropic
thermal conductivity and high-efficiency EMI SE (38.4
dB). Furthermore, the composite maintains stable mechani-
cal properties, thermal conductivity, and shielding perfor-
mance even after hundreds of bending cycles, demonstrating
outstanding comprehensive application potential (Fig. 10c)
[197]. Thermal treatment plays a crucial role in the crystal-
linity, phase composition, and interface microstructure of
each functional layer on IHPFs. Appropriate annealing not
only enhances the electrical and magnetic properties of the
coating (NiO — Ni) by promoting grain growth and defect
repair, thereby regulating the two dominant EMI shielding
mechanisms of reflection and absorption, but also improves
the interface diffusion and adhesion between the coating and
the fiber substrate. However, excessively high temperatures
may damage the integrity of the fibers or cause the coat-
ing to crack. Therefore, optimizing the thermal treatment
scheme and environmental control is crucial for achieving a
balance between the material’s electrical conductivity and
mechanical stability.

4.3 Other and Emerging Technologies

Beyond traditional physical deposition and chemical treat-
ment methods, several emerging technologies have gradually
been applied to the surface functionalization of IHPFs in
recent years. Novel techniques such as ALD and laser etch-
ing, leveraging their atomic-level processing precision or
unique structural design capabilities, are paving new ways
for the design of next-generation intelligent and ultra-effi-
cient EMI shielding materials. Compared to conventional
processes, these new strategies enable more refined, con-
trollable, and multifunctional interfacial structure regulation
on fiber surfaces, thereby further expanding the application
prospects of EMI shielding fibers in fields such as intel-
ligent protection, optical stealth, and multifield response
[198-201]. He et al. constructed a nacre-inspired functional
layer on the CF surface using ALD technology, realizing
the preparation of colored CFs while endowing them with
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excellent EMI SE and optical camouflage characteristics.
This study demonstrated that ALD can deposit ultra-thin
and uniform inorganic layers on fiber surfaces with precise
thickness controllability and excellent interfacial adhesion,
making it an effective pathway for achieving multifunctional
fiber surfaces (Fig. 11a) [202]. Other studies have shown
that aluminum-doped zinc oxide (AZO) films prepared by
ALD technology have excellent conductivity (DEZ:TMA
ratio=15:1, 1.053 mQ cm), which can enhance the interfa-
cial adhesion of the coating while achieving electromagnetic
shielding mainly through conductive loss [203]. Addition-
ally, Chen et al. utilized laser etching to in situ induce the
generation of laser-induced graphene (LIG) on the surface
of BF-reinforced composites, which not only enhanced the
material’s EMI shielding performance but also enabled vis-
ual detection of impact damage. This research showcased
the advantage of laser etching for the rapid, non-contact con-
struction of conductive networks on inorganic fiber surfaces,
opening new directions for the intelligence and multifunc-
tionality of EMI shielding composites (Fig. 11b) [204].

Compared to emerging high-precision methods like ALD
and laser etching, although dipping is not novel in techni-
cal principle, it remains a highly potential functionalization
means due to the simple process, low cost, and suitability
for large-area continuous processing [205, 206]. As shown
in Fig. 11c, Liu et al. prepared free-standing CFFs using an
MWCNT dip-coating method, significantly enhancing their
EMI shielding efficiency. This method is simple to operate,
scalable, and can impart excellent conductivity and EMI
shielding performance to the fabric while maintaining its
flexibility, demonstrating the application potential of dip-
ping as an efficient coating strategy for functionalizing fibers
[207].

Although SE is a crucial performance indicator, the actual
EMI shielding materials must also meet various require-
ments, such as flexibility, cost-effectiveness, and environ-
mental stability. However, these characteristics often have
trade-offs with EMI shielding performance (Table 4). It is
worth noting that the reported EMI SE values of IHPF-based
composites in different studies are often not directly compa-
rable due to variations in testing standards and conditions.
The most commonly used testing methods include ASTM
D4935-18, IEEE-STD 299, and GB/T 12190, which differ
in sample size, holder geometry, and frequency range (typi-
cally 8-12 GHz, 12-18 GHz, or broader). Moreover, param-
eters such as sample thickness, measurement configuration
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(coaxial transmission line; waveguide), and surface rough-
ness can significantly influence the measured SE by alter-
ing reflection and absorption ratios. Consequently, compar-
ing absolute SE values across different works may lead to
misleading conclusions unless these variables are carefully
normalized. To improve data consistency and comparability,
it is recommended that future reports clearly specify the test
standard, frequency range, incident wave direction, and sam-
ple thickness, and preferably include normalized parameters
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such as SSE, SE/t, or SSE/t. Establishing such standardized
reporting practices will facilitate fair benchmarking and
accelerate the rational design of EMI shielding IHPFs.

In summary, the EMI shielding functionalization of
IHPFs and their fabrics primarily relies on various sur-
face coating preparation strategies. Different processes
have their own advantages and limitations in terms of
coating composition control, interfacial adhesion, pro-
cess cost, and scalability. From an interface engineering
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perspective, the performance and durability of EMI
shielding IHPFs are predominantly determined by the
chemical and physical attributes of the fiber—coating
interface. Chemically, the intrinsic inertness of inorganic
fibers often results in insufficient bonding with metallic,
carbonaceous, or polymeric coatings, leading to weak
interfacial adhesion and potential delamination under
mechanical or thermal stress. Physically, mismatches
in thermal expansion coefficients, surface morphology,
and elastic moduli between the fiber substrate and the
functional layer can induce microcracking, stress con-
centration, and interfacial failure during service. These
challenges become even more pronounced in multilayer
heterogeneous architectures, where repeated thermal or
moisture cycling can accelerate interfacial degradation.
Therefore, the future development trend lies in combin-
ing multiple strategies, conducting effective interface
engineering through surface activation, gradient coating
design, and atomic-level conformal deposition (such as
ALD) and other approaches, to construct multifunctional
electromagnetic shielding fiber materials with high effi-
ciency, lightweight, durability, and multifield response
capabilities.

S Application for EMI Shielding Inorganic
High-Performance Fibers/Fabrics

Strategies to address common challenges such as surface
inertness in IHPFs are increasingly mature. Various methods
for preparing functional surface coatings, including physi-
cal deposition, chemical treatments, and emerging surface
modification technologies, continue to be refined. This not
only provides insights for improving the interfacial bond-
ing between fibers and functional layers but also establishes
a robust processing foundation for developing composite
fiber materials that integrate excellent mechanical proper-
ties with effective EMI shielding performance. Against this
backdrop, EMI shielding materials based on IHPFs have
gradually transitioned from laboratory exploration to prac-
tical applications, demonstrating broad prospects in several
critical fields. Specifically, their applications mainly include
EMI shielding textiles, wave-absorbing stealth materials,
protection for precision equipment, and specialized cables
(Fig. 12).
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5.1 EMI Shielding for Protection

EMI shielding textiles represent one of the most direct appli-
cation avenues, widely used in products such as protective
clothing, shielding curtains, and flexible shielding layers.
Traditional shielding methods mostly use metals, which are
not only costly, heavy, and have poor flexibility, but also
not corrosion-resistant and require regular maintenance.
In contrast, EMI shielding textiles based on IHPF com-
bine structural stability with flexibility and environmental
robustness. By depositing metals, conductive polymers, or
magnetic materials onto fiber-based fabrics, the EM SE;
can be significantly enhanced while maintaining the fabric’s
flexibility and breathability. CF has been widely studied and
applied due to its excellent mechanical properties, conduc-
tivity, and flexibility as fabric. Mei et al. employed electro-
less silver plating and one-step electrodeposition techniques
to develop a flexible superhydrophobic EMI shielding fabric
(CEF-NF/PDA/Ag/50-30) based on polydopamine (PDA)-
modified CF nonwoven fabric (CEF-NF). This fabric exhib-
ited a SE of up to 101.27 dB in the X-band, along with
a superhydrophobic surface (contact angle of 156.4°) and
good breathability, making it suitable for long-term use in
complex environments [208]. Fan et al. combined hydro-
phobic flame-retardant aramid fabric (FH-Al), porous flame-
retardant finished carbonized waste cotton (CR-WCN), and
carbon fiber nonwoven (CFN) using a simple sewing process
to prepare a multifunctional aluminum-flammability carbon-
ized waste cotton-carbon felt (A-FCWCF) composite fab-
ric, which has excellent development prospects. In addition,
when the A-FCWCF composite fabric’s thickness is 6 mm,
the EMI SE; reaches 82.63 dB, meeting the requirement of
military EMI shielding materials above 75 dB [209]. In addi-
tion, BFs also demonstrate broad application prospects in the
textile industry due to their mechanical properties, thermal
resistance, and corrosion resistance. Xu et al. modified BFFs
with functionalized anthraquinone polyurethane (WAPU)
coating to produce purple BFFs with excellent wear resist-
ance and EMI shielding function. The modified yarn did not
break until 25,000 cycles, which increased the cycle life by
1462.5% compared to the original BF. The fabric maintained
thermal and moisture comfort after treatment. Moreover, the
WAPU/Ag coated fabric’s EMI SE reaches 41.1 dB in the
X-band range [210]. Protective garments made from such
materials can effectively block EMR, safeguarding person-
nel in specialized occupations (e.g., medical, aviation, and
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military fields) from EM hazards. Furthermore, owing to the
excellent heat resistance, flame retardancy, and durability of
IHPFs, these materials demonstrate superior overall advan-
tages over traditional metal mesh materials in challenging
environments.

In aerospace, defense, and high-end electronic equip-
ment, precision instruments often need to operate stably in
environments with strong EM pulses, radiation, and extreme
temperatures. EMI shielding layers constructed from IHPFs
can effectively isolate external EMI while enhancing service
life through excellent thermal stability and corrosion resist-
ance. For instance, Xiao et al. significantly improved the EMI
shielding performance of SiC fiber-reinforced SiC (SiC/SiC)
composites via pyrolysis modification using inorganic salts
such as Fe(NO;); and NH,AI(SO,),. The study showed that
composites with a plain-weave fabric structure modified with
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Fe elements exhibited optimal shielding performance in the
X-band, with SE and SE, reaching 39.29 and 32.36 dB,
respectively. The shielding mechanism primarily involved
multiple internal reflections and absorption dissipation of EM
waves. In satellites, missiles, and avionics systems, multilayer
shielding structures based on such modified SiC/SiC fabrics
can simultaneously achieve lightweight design, high-temper-
ature stability, and strong EM protection. Compared to tradi-
tional metal shielding layers, their flexibility and wearability
make them more suitable for covering complex structures and
irregularly shaped equipment, demonstrating great potential
for protecting precision devices in extreme environments.
EMI shielding cables and shielding sleeves are critical
components in EM compatibility design, widely used in
military communications, rail transportation, and medical
electronic equipment. IHPF-based fabrics, owing to their
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excellent mechanical properties and abrasion resistance,
are ideal skeleton materials for flexible shielding sleeves.
When combined with metal or conductive coatings, they
effectively reduce EM leakage and signal interference.
Moreover, these materials maintain stable performance
under extreme conditions, providing reliable protection for
critical circuits and data transmission. Gao et al. prepared
GO fibers via wet spinning and obtained a series of struc-
turally optimized graphene fibers through chemical reduc-
tion and high-temperature annealing, significantly enhanc-
ing the electrical conductivity of the fibers. Due to the high
EMI shielding performance and flexibility of monolayered
textiles woven from graphene fibers, they can be wrapped
around cable bundles and protected by heat-shrink tubing,
showing potential for applications in daily life and aerospace
signal transmission. Furthermore, the standardization and
optimization of weaving technology will promote the func-
tional advantages of graphene fiber textiles in EMI shielding,
accelerating iterative development in areas such as personal
protection and information security.:

5.2 EM Wave-Absorbing Stealth

EM wave absorption and stealth technology are core require-
ments in aerospace and defense applications. Generally,
electromagnetic shielding materials mainly suppress EMI
through the reflection of conductive layers and multiple scat-
tering, blocking the transmission of electromagnetic waves.
On the other hand, electromagnetic wave absorption mate-
rials focus on converting incident electromagnetic energy
into heat or other forms through dielectric and magnetic
loss mechanisms, thereby minimizing secondary reflections
and achieving radar stealth performance [211-218]. When
combined with magnetic particles, carbon-based nanoma-
terials, or dielectric materials, IHPFs can form lightweight,
broadband wave-absorbing structures used for EM stealth in
fighter aircraft, drones, and naval vessels. Luo et al. coated
magnetic Fe-Co alloy on CF’s surface (FeCo@CFs) through
electroplating. By adjusting the electroplating temperature
at 25, 35, and 50 °C, they obtained thin plates, irregular
particles, and pyramids as Fe-Co coating morphologies, and
FeCo@CFs with different coating morphologies exhibited
different magnetic and complex dielectric constants. Among
them, FeCo@CFs with a thin plate morphology showed the
best absorption performance of 37.7 dB at 2-18 GHz [219].
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Liu et al. successfully prepared CF/epoxy composites with
tunable electrical conductivity by controlling the tempera-
ture and duration during the low-temperature carbonization
stage of polyacrylonitrile (PAN) pre-oxidized fibers. This
approach enabled a shift from traditional EM shielding to
highly efficient microwave absorption. By precisely regu-
lating the microstructure and graphitization degree of the
CFs, the impedance matching performance was significantly
improved, resulting in excellent wave-absorbing properties
across multiple frequency bands [220]. Despite their prom-
ise as green and multifunctional EMI protection solutions,
absorption-based systems also face several intrinsic limita-
tions. Their absorption bandwidths are often restricted by
impedance matching constraints and frequency-selective
losses, making broadband absorption challenging under
variable electromagnetic conditions. Moreover, thermal
management becomes critical under high-power irradiation,
as excessive heat accumulation may lead to thermal runaway,
degradation of matrix resins, or magnetic loss saturation.
In comparison, reflection-dominated systems, though less
“stealthy,” generally offer higher stability and better heat
dissipation in extreme aerospace environments due to their
metallic continuity and higher thermal conductivity. There-
fore, future research should focus on synergistically integrat-
ing absorption and reflection mechanisms to achieve both
broadband EM attenuation and thermal robustness, fulfill-
ing the stringent operational requirements of next-generation
aerospace and defense platforms.

5.3 Service Reliability and Environmental Stability

As everyone knows, the long-term reliability and environmen-
tal stability of EMI shielding IHPFs are critically governed
by interfacial integrity and environmental degradation mecha-
nisms. Common failure modes include delamination, oxida-
tion, and fatigue cracking of coating layers under mechani-
cal or thermal stress. “Wet” chemical coatings are prone to
hydrolytic degradation, while metallic layers may suffer
oxidation-induced conductivity loss. Strategies such as ALD
barrier coatings, gradient architectures, and surface coupling
agents have been shown to mitigate these effects. Systematic
durability testing—such as cyclic bending, thermal shock,
and salt spray exposure—is essential for establishing the cor-
relation between microstructural stability and macroscopic
shielding performance. Overall, understanding and addressing
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degradation mechanisms are essential foundations for the prac-
tical deployment of EMI shielding IHPFs in advanced engi-
neering systems.

In summary, EMI shielding materials based on IHPFs show
broad application prospects in flexible textiles, wave-absorbing
stealth, precision equipment protection, and specialized cables.
However, in practical applications, there are many challenges
regarding the long-term reliability and environmental stabil-
ity of EMI shielding IHPF-based composites. The interfaces
among fibers, functional coatings, and matrix resins represent
the most critical yet vulnerable regions, where cyclic thermal
loads, mechanical vibrations, and humid environments can
induce microcracking, delamination, or oxidation. Accord-
ingly, precise chemical and physical interface engineering
is indispensable to achieve large-scale practical engineering
applications and maintain functionality under complex operat-
ing conditions. Techniques such as ALD for conformal nano-
coating, gradient interfacial architectures for stress relaxation,
and coupling-agent-assisted bonding for enhanced chemical
compatibility have demonstrated significant improvements in
adhesion strength and mitigation of interfacial degradation.
By integrating these interfacial optimization approaches into
both fabrication and application processes, IHPF-based EMI
shielding materials can attain superior durability, multifunc-
tionality, and environmental resilience—bridging the gap
between laboratory demonstrations and real-world implemen-
tation in aerospace and defense systems. In the future, with
continued advancements in multifunctional coating technol-
ogy, IHPFs are expected to play an even more critical role in
integrated systems for EM shielding, protection, and intelligent
monitoring.

6 Summary and Outlook

Owing to their lightweight nature, high specific strength,
high modulus, and excellent environmental stabil-
ity, IHPFs have become indispensable key materials in
extreme environments such as aerospace and defense/
military applications. They provide cutting-edge solu-
tions for related equipment in terms of lightweight design,
high durability, and multifunctionality. This review briefly
introduces the mechanisms of EMI shielding, highlights
common issues such as the surface inertness of IHPFs,
and elaborates on both “dry” and “wet” surface modifica-
tion strategies. These modification strategies enable the
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construction of robust functional layers on the fiber sur-
faces, integrating high strength, high modulus, and multi-
functionality, while ensuring the interfacial reliability and
stability of the composites. Subsequently, we reviewed the
principles and processes of various preparation strategies
for constructing EMI shielding functional layers on fiber
surfaces, discussed in depth how different methods tailor
the EM parameters and microstructure of the materials,
and summarized the application progress of EMI shield-
ing functionalized IHPFs in areas such as EMI shielding
textiles, wave-absorbing stealth, precision equipment pro-
tection, and specialized cables.

The development of IHPFs has achieved remarkable
accomplishments over the past few decades. Their excep-
tional mechanical properties, favorable cost-effectiveness,
and potential for multifunctional integration have gradu-
ally established them as crucial components of a new gen-
eration of advanced composite materials. With the grow-
ing severity of EMI and EMR issues, the strategic value
of EMI shielding functionalization for IHPFs in extreme
environments has become increasingly prominent. How-
ever, several key challenges require breakthroughs to facil-
itate their large-scale and long-term application in high-
precision and advanced fields: (1) Further optimization of
material design and structure is needed to ensure the long-
term stability of the interfaces between the functional layer
and the fiber, and between the fiber and the resin matrix.
(2) Strategies for functional design and processing must be
refined to maintain excellent mechanical properties while
balancing EMI shielding and absorption performance. (3)
Functional layers need to evolve beyond single shielding
functions toward the integrated synergy of EMI shielding,
absorption, and other multifunctional capabilities. (4) Cost
control and the realization of scalable manufacturing are
essential alongside the functionalization process. (5) A
shift from shielding modes relying solely on EM wave
reflection toward absorption-dominated green shielding
modes is necessary to achieve environmental friendliness
and sustainable development (Fig. 13).

Addressing these challenges requires a multidimensional
strategy that simultaneously considers interfacial design,
structural optimization, multifunctional coupling, and green
manufacturing. Firstly, while surface modification strategies
can construct functional layers on fibers, these interfaces
may still face issues like delamination, aging, and perfor-
mance degradation in complex service environments. Future
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Fig. 13 Summary of current research progress and future challenges and perspectives for EMI shielding IHPF-based materials

research should focus on optimizing the multiscale interfa-
cial structure design between the fiber-functional layer and
the fiber-resin matrix. Rational design of hierarchical and
hybrid IHPFs that integrate conductive, magnetic, and die-
lectric components at multiple scales will be essential. Tai-
loring fiber composition, coating uniformity, and interfacial
compatibility can help balance SE, mechanical robustness,
and flexibility. Data-driven modeling and machine-learn-
ing-assisted design may further accelerate the discovery of
optimal structures. For instance, combining techniques like
plasma activation and atomic layer deposition to introduce
chemical bonds or gradient transition layers could achieve
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dual assurance of chemical and mechanical stability at the
interface.

Secondly, regarding the balance between mechanical
properties and EMI functionality, overly thick or dense
functional layers often compromise the specific strength and
modulus of the fibers, while focusing solely on mechanical
performance makes it difficult to achieve ideal SE. There-
fore, there is an urgent need to develop functionalization
strategies that offer structural controllability, lightweight,
and high efficiency. Constructing ultra-thin nanocoatings,
layered conductive networks, or hierarchical porous struc-
tures holds promise for granting excellent EM regulation
capabilities while preserving mechanical properties, thereby
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achieving the synergistic optimization of “lightweight-high
strength-efficient shielding”.

In addition, traditional EMI shielding primarily relies on
single mechanisms like reflection or absorption. In practi-
cal applications, fiber functional layers must simultaneously
address multiple demands such as mechanical reinforce-
ment, thermal protection, corrosion resistance, and optical
response. The future trend involves utilizing multiscale inter-
face regulation and heterogeneous material synergy design
to integrate EMI shielding and wave absorption performance
with thermal management, fire retardancy, and sensing func-
tionalities. However, achieving such integration inevitably
introduces trade-offs between conductivity, flexibility, and
strength, requiring optimized microstructures and interfa-
cial architectures to maintain balanced performance. For
instance, composites of carbon-based conductive materials
(CF, CNT fiber, etc.) with metal oxides or conductive poly-
mers can achieve coupled multimechanisms and synergistic
enhancement of multiple properties.

Furthermore, concerning scalable manufacturing and cost
control, while laboratory-scale techniques such as electroless
plating, ALD, and CVD provide precise control at the labo-
ratory level, their cost, industrial scalability, and energy effi-
ciency remain critical challenges. Efforts should promote the
development of green, efficient, and low-energy consump-
tion preparation processes. Employing roll-to-roll deposition
techniques, atmospheric pressure ALD, or combining spray-
ing/dipping with microwave curing processes can enhance
production efficiency and reduce costs while maintaining
performance. Simultaneously, standardized testing and
evaluation systems suitable for industrial production should
be explored to ensure the consistency and controllability of
functional fiber performance in large-scale manufacturing,
thereby accelerating their practical application in aerospace,
defense, and civilian sectors.

Finally, environmental friendliness and sustainability con-
siderations must guide future material and process design.
Traditional wet-chemical routes often generate chemical
waste, whereas vapor-phase methods (e.g., ALD or roll-
to-roll CVD) are energy-intensive. Future research should
focus on developing green raw materials and biodegrad-
able/recyclable processes. Reducing chemical emissions,
utilizing recyclable or bio-based components, and adopting
solvent-free coating methods will minimize environmental
impact. Lightweight and corrosion-resistant IHPFs also
contribute to energy savings and longer service lifetimes,

© The authors

aligning with green manufacturing principles. Developing
low-energy, continuous, and environmentally benign pro-
cesses will be vital for industrial translation. Moreover, a
more critical issue is that traditional EMI shielding often
relies on high-reflectivity materials, which leads to the prob-
lem of secondary scattering of EM pollution. Future research
emphasis should shift toward absorption-based EMI shield-
ing strategies, such as introducing magnetic loss, dielectric
loss, and multiple scattering mechanisms to enhance the
effective dissipation of EM energy. Concurrently, developing
green shielding fibers based on renewable resources, low-
carbon processes, and recyclable materials will contribute
to advancing EM protective materials toward environmental
friendliness and sustainable development.

In summary, these ongoing developments highlight that
IHPFs possess immense potential for EMI shielding func-
tionalization and beyond. However, their large-scale applica-
tion in extreme environments is still constrained by multiple
challenges, including interfacial stability, the coupling of
mechanical and EM properties, multifunctional integration,
scalable manufacturing, and green sustainability. Future
development trends should focus on multiscale interface reg-
ulation and structural design, utilizing advanced processes
to construct efficient functional layers while balancing light-
weight and mechanical performance. For multifunctional
synergy, exploring the integration of EMI shielding with
thermal management, fire retardancy, sensing, and other
properties is essential to meet multiple demands in complex
environments and achieve functional customization. At the
process level, there is a need to develop green, low-cost, and
continuous functionalization technologies to facilitate the
transition from laboratory research to industrial application.
It is foreseeable that with continuous breakthroughs in new
material systems and multidimensional structural design,
the EMI shielding functionalization of IHPFs will play an
increasingly vital role in aerospace, national defense secu-
rity, and the next generation of intelligent electronic protec-
tion fields.
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