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HIGHLIGHTS

• Coral‑like yolk–shell‑structured nickel oxide/carbon composite microspheres were synthesized.

• Phase separation and polystyrene nanobead decomposition affected the structure formation.

• Coral‑like yolk with interconnected mesopores provided excellent Li‑ion storage properties.

ABSTRACT: In this study, coral‑like yolk–shell‑structured NiO/C composite microspheres 
(denoted as CYS‑NiO/C) were prepared using spray pyrolysis. The unique yolk–shell structure 
was characterized, and the formation mechanism of the structure was proposed. Both the phase 
separation of the polyvinylpyrrolidone and polystyrene (PS) colloidal solution and the decompo‑
sition of the size‑controlled PS nanobeads in the droplet played crucial roles in the formation of 
the unique coral‑like yolk–shell structure. The CYS‑NiO/C microspheres delivered a reversible 
discharge capacity of 991 mAh g−1 after 500 cycles at the current density of 1.0 A g−1. The dis‑
charge capacity of the CYS‑NiO/C microspheres after the 1000th cycle at the current density of 
2.0 A g−1 was 635 mAh g−1, and the capacity retention measured from the second cycle was 91%. 
The final discharge capacities of the CYS‑NiO/C microspheres at the current densities of 0.5, 
1.5, 3.0, 5.0, 7.0, and 10.0 A g−1 were 753, 648, 560, 490, 440, and 389 mAh g−1, respectively. 
The synergetic effect of the coral‑like yolk–shell structure with well‑defined interconnected 
mesopores and highly conductive carbon resulted in the excellent  Li+‑ion storage properties of 
the CYS‑NiO/C microspheres.

KEYWORDS: Yolk–shell; Nickel oxide; Carbon composite; Anode materials; Spray pyrolysis; Lithium‑ion batteries

   ISSN 2311‑6706
e‑ISSN 2150‑5551

      CN 31‑2103/TB

ARTICLE

Cite as
Nano‑Micro Lett. 
(2019) 11:3

Received: 15 October 2018 
Accepted: 10 December 2018 
Published online: 9 January 2019 
© The Author(s) 2019

https://doi.org/10.1007/s40820‑018‑0234‑0

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-018-0234-0&domain=pdf


 Nano‑Micro Lett. (2019) 11:33 Page 2 of 18

https://doi.org/10.1007/s40820‑018‑0234‑0© The authors

1 Introduction

With the rapid increase in the energy demand, lithium‑ion 
batteries (LIBs) have gained immense attention as next‑gen‑
eration energy storage devices and sources of vehicle energy 
[1–7]. Hence, in order to improve the performance of LIBs, it 
is imperative to develop innovative anode materials [8–11].
Transition metal oxides (TMOs) have been recognized as 
appropriate anode materials owing to their higher theoretical 
capacities as compared to that of graphite, high abundance, 
and chemical stability [12–16]. However, the drastic capaci‑
tance fading of TMOs owing to their large volume expansion 
during cycling has hindered their application as LIB anodes 
[17–21]. Therefore, various TMO nanostructures including 
nanoparticles, nanowalls, nanotubes, nanofibers, and nano‑
flakes have been extensively studied [22–28]. Recently, the 
yolk–shell structure materials have been used to improve the 
anode performance of LIBs [29–34]. For example, Zhang 
et al. synthesized an iron oxide/carbon yolk–shell structure 
by carbonizing α‑Fe2O3/SiO2/poly‑dopamine composite nan‑
oparticles followed by the removal of the  SiO2 layer using 
NaOH. The  Fe2O3/carbon yolk–shell structure exhibited a 
high reversible capacity of 810 mAh g−1 at 0.2 C rate and an 
excellent cycling stability while maintaining a capacity of 
790 mAh g−1 after 100 cycles [32]. Yu et al. also prepared 
yolk–shell Ni–Co mixed oxide nanoprisms through simple 
thermal annealing of Ni–Co precursor particles in air. These 
nanoprisms exhibited a reversible capacity of 1029 mAh g−1 
after 30 cycles at 200 mA g−1 [33]. Furthermore, Kim et al. 
integrated N‑doped carbon in the hollow space between the 
yolk and the shell to achieve high capacity, accommodate 
volume change, improve electrical conductivity, and form a 
stable solid–electrolyte interphase (SEI) layer [34].

However, although yolk–shell structures with various 
compositions have been studied thus far, their long‑term 
cycle properties are unsatisfactory for practical applications 
owing to their intrinsic low structural stability. An effec‑
tive approach to overcome this limitation is to make TMO 
composites with carbonaceous materials. However, it is dif‑
ficult to prepare yolk–shell‑structured TMO/carbon hybrids 
using traditional synthesis methods. Therefore, the uniform 
composition of carbon and TMO and their even distribution 
in both the yolk and shell are quite challenging and have not 
been studied before.

In this study, we proposed a novel facile method for the 
synthesis of yolk–shell‑structured TMO/carbon hybrid 
microspheres. The yolk had a coral‑like structure with inter‑
connected mesopores. Coral‑like yolks shorten the  Li+‑ion 
diffusion path, facilitating the penetration of the electrolyte 
into the yolk during cycling. In addition, yolk–shell carbon 
composites can expand freely and hence show a highly sta‑
ble SEI at the surface. Owing to the highly stable SEIs, such 
composites show excellent  Li+‑ion storage properties. Based 
on this concept, we synthesized coral‑like yolk–shell‑struc‑
tured NiO/C composite microspheres via a one‑pot spray 
pyrolysis process and a subsequent heat treatment. During 
the spray pyrolysis, polyvinylpyrrolidone (PVP) in the drop‑
let partially phase‑separated from the polystyrene (PS) col‑
loidal solution and migrated outward, and interconnected 
mesopores were formed owing to the decomposition of PS. 
The subsequent thermal contraction of the inner part of the 
composite at high reaction temperatures during the spray 
pyrolysis process resulted in the formation of unique coral‑
like yolk–shell‑structured NiO/C composite microspheres. 
The resulting NiO/C composite microspheres showed an 
ideal structure, and their long‑term cycling and rate per‑
formances were superior to those of the other NiO‑based 
nanomaterials with various morphologies reported till date.

2  Experimental Section

2.1  Sample Preparation

Coral‑like yolk–shell‑structured metal oxide/C composite 
microspheres were prepared via one‑pot spray pyrolysis. 
First, the NiO–Ni–C composite microspheres with the coral‑
like yolk–shell structure (denoted as CYS‑Ni/NiO/C) were 
directly prepared by spray pyrolysis using a 0.2 M aqueous 
spray solution of nickel nitrate hexahydrate [Ni(NO3)2·6H2O, 
Daejung, 97%], 20 g L−1 of PVP [(C6H9NO),  Mw 40,000, 
Daejung], and 20 g L−1 of PS nanobeads (40 nm). The size‑
controlled PS nanobeads (40 nm) were synthesized using an 
emulsifier‑free emulsion polymerization method. The spray 
pyrolysis system used in this study is shown in Fig. S1. In 
the spray pyrolysis process, droplets were generated with 
the aid of a 1.7 MHz ultrasonic spray generator consisting 
of six vibrators. Subsequently, the droplets were transferred 
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to a quartz reactor (length = 1200 nm and diameter = 50 nm) 
by  N2 gas (carrier) at a flow rate of 10 L min−1. During the 
spray pyrolysis process, the reactor temperature was main‑
tained at 700 °C. After the spray pyrolysis process, the as‑
prepared microspheres (CYS‑Ni/NiO/C) were post‑treated 
at 250 °C at a heating rate of 5 °C  min−1 for 1 h under an 
air atmosphere in order to optimize the carbon content in 
the structure and transform the residual metallic Ni into the 
NiO phase. After the heat treatment, coral‑like yolk–shell 
NiO/C composite microspheres (denoted as CYS‑NiO/C) 
were obtained. For comparison, bare NiO microspheres with 
a hollow structure (denoted as hollow NiO) were also pre‑
pared via spray pyrolysis at 700 °C in an air atmosphere. The 
spray solution consisted of only nickel nitrate hexahydrate 
(without PVP and PS nanobeads).

2.2  Characterization Techniques

The morphology of the samples was examined using field‑
emission scanning electron microscopy (FE‑SEM, ULTRA 
PLUS, ZEISS) and field‑emission transmission electron 
microscopy (FE‑TEM, JEOL, JEM‑2100F). The phase 
analysis of the samples was carried out by X‑ray diffrac‑
tion (XRD, D8 Discover with GADDS, Bruker) using Cu 
 Kα radiation (λ = 1.5418 Å). The chemical composition of 
the samples was investigated by X‑ray photoelectron spec‑
troscopy (XPS, Thermo Scientific K‑Alpha) using a focused 
monochromatic Al Kα radiation at 12 kV and 20 mA. Raman 
spectroscopy (Jobin–Yvon LabRam, HR800, excitation 
source = 514 nm He–Ne laser) was conducted to confirm 
the presence of a graphitic structure in the samples. The 
surface areas of the samples were estimated using the 
Brunauer–Emmett–Teller (BET) method where  N2 was used 
as the adsorbate gas. Thermogravimetric analysis (TGA) 
was carried out using a Pyris 1 TG analyzer (Perkin Elmer) 
over the temperature range of 25–700 °C at a heating rate of 
10 °C  min−1 under an air atmosphere.

2.3  Electrochemical Measurements

The electrochemical performances of the samples as LIB 
anodes were evaluated using 2032‑type coin cells. The 
prepared NiO samples were used as the working electrode 
composed of 70 wt% active material, 20 wt% carbon black 
(Super‑P) as the conductive material, and 10 wt% sodium 

carboxymethyl cellulose as the binder on a copper foil. The 
Li metal and microporous polypropylene film were used 
as the counter electrode and separator, respectively. The 
electrolyte used was 1 M  LiPF6 in a mixture of fluoroethyl‑
ene carbonate and dimethyl carbonate with a volume ratio 
of 1:1. The cells were assembled in a glove box under an 
Ar atmosphere. The electrochemical performances of the 
samples were evaluated using cyclic voltammetry (CV), 
charge–discharge testing, and electrochemical impedance 
spectroscopy (EIS). The mass loading of the samples for 
the test was 1.0 mg cm−2. The CV measurements of the 
samples were carried out at a scan rate of 0.1 mV s−1 over 
the potential range of 0.001–3.0 V. The charge–discharge 
testing of the samples was carried out at current densities 
of 0.5–10.0 A g−1 within the same potential window of 
0.001–3.0 V. The EIS of the samples was carried out over 
the frequency range of 100 kHz–0.01 Hz using a perturba‑
tion of 10 mV.

3  Results and Discussion

3.1  Synthesis of Ni/NiO/C Microspheres

In order to elucidate the formation mechanism of the unique 
coral‑like yolk–shell‑structured metal oxide/C composites, 
the effects of both the reaction temperature during the 
spray pyrolysis and organic polymers as additives on the 
microsphere morphologies were investigated in detail. The 
morphologies of the as‑prepared microspheres obtained 
using  the solution with Ni salt, PVP, and containing an 
optimum amount of PS nanobeads at various reaction tem‑
peratures are shown in Fig. 1. As the reaction temperature 
was increased from 300 to 700 °C, the decomposition of 
the Ni salt, PVP, and the PS nanobeads occurred sequen‑
tially. It should be noted that the PS nanobeads decomposed 
at temperatures higher than 500 °C, generating numerous 
mesopores inside the composite structure (Fig. 1c). Sub‑
sequently, the inner part of the composite contracted ther‑
mally in the hot reaction zone (at 600 °C) during the spray 
pyrolysis, which resulted in the formation of a hollow space 
between the porous yolk and the shell, as shown in Fig. 1d. 
The formation of the hollow space between the yolk and the 
shell during the spray pyrolysis process is illustrated in Fig. 
S2. Therefore, the morphology of the resulting microspheres 
changed from dense to the desirable coral‑like yolk–shell 



 Nano‑Micro Lett. (2019) 11:33 Page 4 of 18

https://doi.org/10.1007/s40820‑018‑0234‑0© The authors

structure. The change in the color of the microspheres from 
yellow to black indicates the carbonization of PVP. There‑
fore, coral‑like yolk–shell‑structured microspheres were 
obtained at temperatures higher than 600 °C.

The interaction between the organic polymer additives 
(PVP and the PS nanobeads) with the Ni salt significantly 
affected the microsphere morphology (Fig. 2). The micro‑
spheres obtained from the Ni salt–PVP solution (without PS 
nanobeads) were spherical with a hollow structure and thin 
walls (Fig. 2a). In the spray pyrolysis process, hollow micro‑
spheres are formed by the fast drying of the droplets and 
the rapid decomposition of metal salts at high temperatures. 
However, when 10 g L−1 PS nanobeads were added to the salt 
solution as an organic additive, fractured core–shell micro‑
spheres with a porous core with well‑defined mesopores@
shell with a wrinkled surface were obtained (Fig. 2b). In 
the drying step during the initial stage of the spray pyroly‑
sis process, PVP in the droplet partially separated from the 
PS colloidal solution and migrated outward, while the PS 
nanobeads in the solution moved inward. At the same time, 
the Ni salt, which had a high affinity toward PVP, was also 
transferred outward along with PVP. The decomposition of 
the PS nanobeads resulted in the generation of mesopores 
in the structure. As the PS nanobead content of the spray 
solution was increased to 20 g L−1, a hollow space was gen‑
erated in the region between the porous yolk and the shell, 
as shown in Fig. 2c. This is because of the decomposition 
of a large amount of PS nanobeads into gaseous products, 
which resulted in the generation of numerous mesopores 
inside the carbon composite structure. Subsequently, the 
inner part of the composite underwent thermal contraction 
in the hot reaction zone during the spray pyrolysis process, 
which resulted in the formation of a hollow space between 
the yolk and the shell. An increase in the PS nanobead 
content to 40 g L−1 resulted in an increase in the hollow 
space between the porous yolk and the shell, as shown in 
Fig. 2d. However, a further increase in the PS nanobead 
content to 80 g L−1 resulted in the shrinking of the shell into 
the vast internal space formed by excessive PS nanobead 
decomposition owing to the inward force, which resulted 
in a core–shell structure with a porous core and shell, as 
shown in Fig. 2e. In addition, an increase in the PS nano‑
bead content (Fig. 2a–e) resulted in the formation of surface 
wrinkles because of the migration of PVP to the shell part. 

Fig. 1  Morphologies of the as‑prepared powders obtained by spray 
pyrolysis at different temperatures: a 300 °C, b 400 °C, c 500 °C, d 
600 °C, e 700 °C, and f 800 °C
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Fig. 2  Morphologies of the as‑prepared powders obtained from the solution containing Ni salt, PVP, and a without PS nanobeads, b with 10 g 
 L−1, c 20 g L−1, d 40 g L−1, and e 80 g L−1 PS nanobeads
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Moreover, the depth of the surface wrinkles also increased 
with an increase in the PS nanobead content owing to the 
thermal contraction of the shell to the interior of the core. 
In summary, coral‑like yolk–shell‑structured metal oxide/C 
composite microspheres can be prepared by controlling the 
reaction temperature during the spray pyrolysis process and 
by using organic additives with an optimum ratio of PVP 
and PS nanobeads.

The morphologies of the CYS‑Ni/NiO/C composite 
microspheres prepared by spray pyrolysis at 700 °C using 

the solution with 20 g L−1 of PS nanobeads are shown in 
Fig. 3. The XRD pattern of these microspheres (Fig. 4a) 
showed the presence of a predominant metallic Ni phase 
with cubic NiO phases [35]. This indicates that the micro‑
spheres were composed of Ni, NiO, and C (carbonized 
by PVP). During the spray pyrolysis, a large number of 
metallic Ni nanocrystals were formed under a  N2 atmos‑
phere through the carbothermal reduction reaction [36]. 
The CYS‑Ni/NiO/C microspheres were spherical with a 
mean size of 1.3 µm and showed wrinkled surfaces owing 

Fig. 3  a, b, d FE‑SEM images, c, e HR‑TEM images, f SAED pattern, and g elemental mapping images of the CYS‑Ni/NiO/C microspheres
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to the shrinkage of the shell at the high reaction tempera‑
ture of 700 °C. The SEM and TEM images in Fig. 3b, c 
also showed that the microspheres had a distinct coral‑
like yolk–void–shell configuration. The microspheres 
shown in Fig. 3d showed a coral‑like yolk with a defi‑
nite porous structure, and the mesopores were intercon‑
nected with each other. The high‑resolution TEM image 
shown in Fig. 3e reveals that the microspheres consisted 
of nanocrystals (with a size distribution of 5–10 nm) sur‑
rounded by a carbon matrix. The Ni and NiO nanocrystals 
with lattice fringes were separated by gaps of 0.20 and 
0.24 nm, which correspond to the (111) plane of the cubic 
Ni metal and (111) plane of the cubic NiO, respectively 
[37]. The selected area electron diffraction (SAED) pat‑
tern of the composite microspheres (Fig. 3f) also con‑
firmed the presence of metallic Ni and NiO crystals in 
them. From the elemental mapping images of the micro‑
spheres shown in Fig. 3g, it can be observed that Ni was 
uniformly distributed in the C matrix. The TGA curve 
shown in Fig. S3a revealed that the microspheres first 
showed a slight weight gain and then a sharp weight loss. 
The weight gain at 240 °C can be attributed to the conver‑
sion of metallic Ni to NiO. Moreover, the weight loss at 
310–400 °C can be attributed to the combustion of C. The 
weight loss due to the combustion of a large amount of C 
was reduced by continuous Ni oxidation.

3.2  Synthesis of NiO/C Microspheres

In order to optimize C contents and transform metallic 
Ni into NiO, the CYS‑Ni/NiO/C microspheres were heat‑
treated at 250 °C, and the resulting CYS‑NiO/C composite 
microspheres without metallic Ni are shown in Fig. 5. The 
XRD pattern of the CYS‑Ni/NiO/C microspheres (Fig. 4b) 
confirmed the complete oxidation of metallic Ni to NiO. 
The mean crystallite size of NiO was determined by apply‑
ing the Scherrer equation to its (200) crystal plane and was 
found to be 17 nm. The CYS‑NiO/C microsphere retained 
its original coral‑like yolk–shell structure despite the heat 
treatment (Fig. 5a–d). In other words, the microspheres 
showed the coral‑like yolk–void–shell, and the mesopores 
in the yolk were interconnected even after the heat treatment 
(Fig. 5d). From the high‑resolution TEM image shown in 
Fig. 5e, it can be observed that NiO nanocrystals with a 
size distribution of 10–20 nm were well distributed in the 

graphitic carbon matrix. The presence of layers with a lat‑
tice spacing of 0.34 nm in the (002) crystal plane confirmed 
the graphitization of C [38]. Ni metal acted as a catalyst for 
the graphitization of C during the spray pyrolysis process at 
a relatively low temperature of 700 °C [39, 40]. The lattice 
fringes and SAED pattern (inset of Fig. 5e, f) further con‑
firmed the complete conversion of Ni into NiO in the CYS‑
NiO/C microsphere. The lattice fringes separated by a gap 
of 0.21 nm corresponded to the (200) crystal plane of cubic 
NiO [24, 41]. The elemental mapping image of CYS‑NiO/C 
(Fig. 5g) revealed that the NiO nanocrystals were uniformly 
distributed in the C matrix. The NiO and C contents of the 
CYS‑NiO/C microsphere were 82% and 18%, respectively, 
as calculated from the TGA results (Fig. S3b).

Fig. 4  XRD patterns of the a CYS‑Ni/NiO/C and b CYS‑NiO/C 
microspheres
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The elemental compositions of the CYS‑NiO/C micro‑
spheres were analyzed using XPS (Fig. 6a–c). The survey 
spectrum of the CYS‑NiO/C microspheres (in Fig. 6a) 
showed the presence of Ni, O, and C elements, which is 
consistent with the elemental mapping results (Fig. 5g) 
[42]. The high‑resolution Ni 2p spectrum of the micro‑
spheres (Fig. 6b) showed two major Ni 2p3/2 and Ni 2p1/2 
peaks for  Ni3+ and  Ni2+, respectively, along with their sat‑
ellite peaks [43, 44]. The  Ni3+ peak can be attributed to 
the formation of O‑rich nickel oxide owing to the burning 

of C during the heat treatment [43, 44]. However, the 
amount of O‑rich nickel oxide was assumed to be neg‑
ligible because of the existence of a pure NiO phase, as 
confirmed by the XRD results (Fig. 4b). Figure 6c shows 
the deconvoluted C1s spectrum of the microspheres. The 
peaks corresponding to sp2‑bonded C (C–C), C–OH, and 
O–C–O were observed at 284.5, 285.9, and 287.7 eV, 
respectively [45]. The sharp peak corresponding to sp2‑
bonded C observed in the XPS and Raman spectra of the 
CYS‑NiO/C microspheres (Fig. 6d) further confirmed the 

Fig. 5  a, b, d FE‑SEM images, c, e HR‑TEM images, f SAED pattern, and g elemental mapping images of the CYS‑NiO/C microspheres
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presence of graphitic carbon in them. The presence of 
graphitic carbon can be attributed to the graphitization 
of C, wherein the Ni metal acted as a catalyst. This is 
consistent with the high‑resolution TEM results (Fig. 5e). 
The ID/IG ratio (measure of degree of graphitization) of 

the CYS‑NiO/C microspheres was approximately 0.72. 
The  N2 adsorption and desorption isotherms (Fig. 6e) 
and pore distribution curves (Fig. 6f) of the CYS‑NiO/C 
microspheres revealed their porous nature. The isotherms 
of the CYS‑NiO/C microspheres were H3 type, indicating 

Fig. 6  a Survey XPS, b Ni 2p XPS, c C 1s XPS and d Raman spectra, e  N2 adsorption and desorption isotherms, and f BJH pore size distribu‑
tion of the CYS‑NiO/C microspheres
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the presence of mesopores within the structure [46]. The 
BET surface area of the CYS‑NiO/C microspheres was 
58 m2 g−1. The CYS‑NiO/C microspheres showed two 
types of mesopores, wherein the mesopores smaller than 
10 nm can be attributed to the spaces uniformly distrib‑
uted in the NiO/C composite, and the relatively larger 
mesopores can be attributed to the voids formed by the 
decomposition of PS nanobeads. Additionally, a very 
sharp peak at 3.8 nm was observed because of the tensile 
strength effect evident from the pore distribution curve 
[47, 48]. The numerous well‑developed mesopores in the 
structure and C matrix contributed to the high BET surface 
area of the CYS‑NiO/C microspheres.

The formation mechanism of the CYS‑NiO/C composite 
microspheres can be elucidated as follows: Droplets con‑
sisting of uniformly distributed Ni salt, PVP, and PS nano‑
beads were generated by an ultrasonic nebulizer during the 
spray pyrolysis process (Scheme 1‑①). PVP bonded with 
PS in water through the interaction between the hydro‑
phobic PS methylene/methane groups and the positive 
dipole moment of the pyrrolidone ring amide nitrogen. 
Additionally, the amide groups of PVP bonded with Ni 
ions through strong ionic bonds. Therefore, PVP stabilized 
the PS nanobeads and Ni salt in the droplets generated dur‑
ing the spray pyrolysis process. Upon drying, each drop‑
let (several microns in size) produced one Ni salt–PVP 

Scheme 1  Formation mechanism of the coral‑like yolk–shell‑structured NiO/C composite microspheres
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composite microsphere containing numerous 40‑nm PS 
nanobeads. During the spray pyrolysis, PVP melted and 
partially phase‑separated from the PS colloidal solution. It 
then migrated to the outside of the structure. At the same 
time, the Ni salt, which had a high affinity toward PVP, 
also moved outside the structure along with PVP. Here, 
PS nanobeads were homogeneously dispersed throughout 
the microspheres except the PVP‑rich shell. Hence, a Ni 
salt–PVP–PS nanobead composite with a PVP‑rich shell 
and PS‑concentrated core was formed (Scheme 1‑②). Sub‑
sequently, several changes occurred simultaneously, result‑
ing in the formation of a hierarchically porous NiO–Ni–C 
composite: (1) the decomposition of nickel salt to metallic 
Ni and NiO nanocrystals, (2) carbonization of PVP, and 
(3) formation of mesopores because of the decomposition 
of PS nanobeads (Scheme 1‑③). The subsequent thermal 
contraction of the inner part of the structure resulted in 
the generation of a hollow space between the porous yolk 
with well‑defined voids and the shell in the CYS‑Ni/NiO/C 
microsphere (Scheme 1‑④). Finally, the oxidation of the 
metallic Ni and partial decomposition of the C matrix in 
the CYS‑Ni/NiO/C microsphere during the post‑heat treat‑
ment resulted in the formation of a CYS‑NiO/C composite 
microsphere (Scheme 1‑⑤).

3.3  Evaluation of Li‑Ion Storage Performance

The effects of the morphological features of the CYS‑NiO/C 
and CYS‑Ni/NiO/C microspheres on their electrochemical 
performance as LIB anodes were investigated. Hollow‑struc‑
tured bare NiO microspheres were directly prepared by spray 
pyrolysis using a nickel nitrate solution (without both PVP 
and PS nanobeads) under an air atmosphere for comparison, 
as shown in Fig. S4. The surface of the droplet was super‑
saturated by fast drying, which precipitated NiO crystals on 
the shell. Subsequently, the Ni salts in the droplet diffused 
out, resulting in the formation of a NiO microsphere with a 
hollow structure. The CV curves for the first five cycles of 
the CYS‑NiO/C microspheres at a scan rate of 0.1 mV s−1 
over the potential range of 0.001–3.0 V (versus  Li+/Li) are 
shown in Fig. 7a. In the first cathodic scan, a reduction 
peak was observed at approximately 0.64 V attributing to 
the initial reduction of NiO to Ni accompanied by the for‑
mation of amorphous  Li2O and the decomposition of the 
electrolyte to form an SEI [24, 49–51]. The relatively weak 

peak at 0.51 V can be attributed to structural destruction 
and was not observed in the subsequent scans [49].  Li+‑ion 
insertion into the graphitic C matrix was also observed at 
0.21 V [50]. The reduction peaks shifted to higher potentials 
from the second cycle onwards because of the formation 
of ultrafine NiO nanocrystals during cycling [24, 51]. In 
the anodic scan, from the first cycle onwards, two broad 
peaks were observed at 1.29 and 2.18 V corresponding to 
the dissolution of the organic SEI layer and the subsequent 
oxidation of the Ni nanocrystals into NiO along with the 
decomposition of  Li2O [24, 49–51]. The excellent revers‑
ibility of the discharge–charge process described by the 
reaction: NiO + 2Li

+
+ 2e

−
↔ Ni + Li

2
O , was ensured 

by the overlapped CV profiles in Fig. 7a after the second 
cycle [50, 51]. The CV curves of the CYS‑Ni/NiO/C and 
hollow NiO microspheres are shown in Fig. S5. The CYS‑
Ni/NiO/C microspheres showed relatively broad CV peaks 
with low intensities as compared to the hollow NiO micro‑
spheres because of their low‑crystalline NiO composition 
and high Ni content. An extra reduction peak was observed 
at 1.1 V in the first cathodic scan because of the decomposi‑
tion of the electrolyte and the formation of SEI films [52]. 
The CV curve of the hollow NiO microsphere exhibited a 
sharp reduction peak at approximately 0.48 V owing to the 
formation of amorphous  Li2O and the SEI and the reduction 
of NiO into Ni [24, 49–51]. Among the samples, the CYS‑
NiO/C microspheres showed a high‑potential reduction peak 
in the first cathodic scan, indicating that their  Li+‑ion lithia‑
tion/delithiation reactions proceeded readily.

The initial discharge–charge profiles of the CYS‑NiO/C, 
CYS‑Ni/NiO/C, and hollow NiO microspheres at a high 
current density of 1.0 A g−1 are shown in Fig. 7b. The dis‑
charge–charge profiles of the samples were consistent with 
their CV results. The discharge curve of the hollow NiO 
microspheres featured a clear long plateau at approximately 
0.59 V owing to the presence of highly crystalline NiO crys‑
tals in them [24, 51]. However, the CYS‑NiO/C and CYS‑Ni/
NiO/C microspheres exhibited an unclear plateau because of 
the presence of C‑surrounded NiO crystals (low crystallinity) 
in them [24, 53]. The initial discharge capacities of the CYS‑
NiO/C, CYS‑Ni/NiO/C, and hollow NiO microspheres were 
1124, 770, and 1148 mAh g−1, respectively, and their corre‑
sponding charge capacities were 778, 426, and 819 mAh g−1, 
respectively. The theoretical capacity of the CYS‑NiO/C 
microspheres was about 588 mAh g−1, as calculated using the 
theoretical specific capacities of NiO (718 mAh g−1) and C 
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(372 mAh g−1). The high capacity of the CYS‑NiO/C micro‑
spheres can be attributed to the partial reversible formation 
and decomposition of the gel‑like SEI film on the surface of 
the electrode and their pseudo‑capacitance [54].The initial 
Coulombic efficiencies (CE) of the CYS‑NiO/C, CYS‑Ni/
NiO/C, and hollow NiO microspheres were found to be 69%, 
55%, and 71%, respectively. The CYS‑Ni/NiO/C microspheres 
showed the lowest CE among the samples because of their 

high C content with a high initial irreversible capacity loss 
[24, 30]. Although the CYS‑NiO/C microspheres also had a 
C content of 18 wt%, their CE was comparable to that of the 
C‑free NiO hollow microspheres. The high structural stabil‑
ity of the CYS‑NiO/C microspheres in the first discharge and 
charge cycles resulted in a high initial CE.

The cycling performances of the samples at the current 
density of 1.0 A g−1 are shown in Fig. 7c. The hollow NiO 

Fig. 7  Electrochemical properties of the CYS‑NiO/C, CYS‑Ni/NiO/C, and hollow NiO microspheres for lithium‑ion storage: a CV curves of 
the CYS‑NiO/C microspheres, b 1st charge/discharge curves at the current density of 1.0 A g−1, c cycling performance at the current density of 
1.0 A g−1, d rate performance of the CYS‑NiO/C microspheres, and e long‑term cycling performance of the CYS‑NiO/C microspheres at the 
current density of 2.0 A g−1
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microspheres showed a gradual increase in the capacity up 
to 80 cycles. The initial increase in the capacity was due to 
their pulverization with large NiO crystals, which resulted 
in the generation of a fresh metal surface in every cathodic 
process and the formation of a continuous reversible SEI 
layer [46, 54, 55]. However, the microspheres showed a 
drastic decrease in the capacity to 312 mAh g−1 after 250 
cycles because of the collapse of their structure by large 
volume changes during the repeated cycles. In contrast, both 
the CYS‑NiO/C and CYS‑Ni/NiO/C microspheres exhib‑
ited excellent cycling performances even at the high cur‑
rent density of 1.0 A g−1. The CYS‑NiO/C microspheres 
showed a higher specific capacity than that of the CYS‑Ni/
NiO/C microspheres. This is because the CYS‑Ni/NiO/C 
microspheres are composed of metallic Ni with inactiv‑
ity for the LIB reaction and a relatively larger amount of 
C content with a low discharge capacity in the structure [52, 
53, 56]. The CYS‑NiO/C, CYS‑Ni/NiO/C, and hollow NiO 
microspheres delivered reversible specific discharge capaci‑
ties of 991, 430, and 191 mAh g−1 after 500 cycles, respec‑
tively. The CYS‑NiO/C microspheres maintained a steady 
CE of more than 99.3%. Because of the C‑surrounded NiO 
crystals, interconnected mesopores in the core, and hollow 
space between the yolk and the shell, the CYS‑NiO/C micro‑
spheres effectively accommodated the volume expansion 
induced by the repeated lithiation/delithiation of  Li+ ions 
and showed high cycling stability. Moreover, the fast  Li+ 
ion and electron diffusion in these microspheres resulted in 
a superior rate performance, as shown in Fig. 7d. The final 
discharge capacities of the CYS‑NiO/C microspheres at the 
current densities of 0.5, 1.5, 3.0, 5.0, 7.0, and 10.0 A g−1 
were 753, 648, 560, 490, 440, and 389 mAh g−1, respec‑
tively. The coral‑like yolk with numerous interconnected 
mesopores provided easy electrolyte accessibility to the 
electrode, thus providing a short diffusion length for  Li+ 
ions, which resulted in an excellent rate performance. When 
the current density was reduced to 0.5 A g−1 again, the dis‑
charge capacity of the CYS‑NiO/C microspheres recovered 
well to 737 mAh g−1, indicating that their  Li+‑ion storage 
performance was not degraded even at high current den‑
sities. Since the capacity of the hollow NiO microspheres 
increased gradually up to 80 cycles (Fig. S6), they showed 
a higher capacity than the CYS‑NiO/C microspheres at the 
same current density. This can be attributed to the pulveriza‑
tion of the hollow NiO microspheres with large NiO crystals, 
which resulted in the generation of a fresh metal surface in 

every cathodic process and the formation of a reversible SEI 
layer continuously up to 80 cycles.

The long‑term cycling performance and CE of the CYS‑
NiO/C microspheres at the high current density of 2.0 A g−1 
are shown in Fig. 7e. The discharge capacities at the 2nd 
and 1000th cycles were 699 and 635 mAh g−1, respectively, 
and the capacity retention calculated from the second cycle 
was 91%. The CE of the CYS‑NiO/C microspheres reached 
99.1% after the 15th cycle and remained constant dur‑
ing the subsequent cycles. The CYS‑NiO/C microspheres 
showed the best reversible capacities at high current densi‑
ties and long‑term cycling performance as compared to the 
other NiO materials and their carbon hybrids with various 
morphologies reported previously (Table S1). This can be 
attributed to the synergetic effect of the coral‑like yolk–shell 
structure with well‑defined interconnected mesopores and 
conductive carbon in these microspheres.

EIS was carried out to investigate the  Li+‑ion storage 
kinetics of the CYS‑NiO/C, CYS‑Ni/NiO/C, and hollow 
NiO microspheres. The Nyquist plots of the samples before 
cycling and after the 200th cycle were obtained via decon‑
volution using a Randle‑type equivalent circuit model, as 
shown in Fig. S7. The medium‑frequency semicircles in the 
Nyquist plots correspond to the charge‑transfer resistance 
(Rct) between the active material and the electrolyte, while 
the low‑frequency region corresponds to the diffusion of 
 Li+ ions within the electrodes [57–59]. The Rct values of 
the CYS‑NiO/C, CYS‑Ni/NiO/C, and hollow NiO micro‑
spheres before cycling were 314, 418, and 374 Ω, respec‑
tively, as shown in Fig. 8a. Although the CYS‑Ni/NiO/C 
microspheres consisted of a large amount of C, the pres‑
ence of amorphous C contributed to the highest Rct value. 
However, the Rct values of the microspheres decreased 
abruptly after the 1st cycle because of the formation of 
ultrafine NiO nanocrystals, as shown in Fig. 8b. The Rct 
values of the CYS‑NiO/C, CYS‑Ni/NiO/C, and hollow NiO 
microspheres after the 1st cycle were 15, 22, and 25 Ω, 
respectively. After 200 cycles, both the CYS‑NiO/C and 
CYS‑Ni/NiO/C microspheres with the coral‑like yolk–shell 
structure showed low Rct values of 18 and 19 Ω, respec‑
tively. This suggests that these microspheres showed high 
structural stability during the repeated  Li+‑ion lithiation/
delithiation processes, as shown in Fig. 8c. The presence 
of C‑surrounded NiO crystals, interconnected mesopores 
in the core, and hollow space between the yolk and shell 
improved the structural stability of the samples. In addition, 
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the easy electrolyte accessibility of the electrode and the 
short diffusion length of  Li+ ions lowered the charge‑trans‑
fer resistance of the microspheres. However, the structural 
destruction of the hollow NiO microspheres during cycling 
significantly increased their Rct value to 223 Ω. Figure 8d 
shows the relationship between the Zre and ω−1/2 [of the 
samples ω is the angular frequency in the low‑frequency 
region (ω = 2πf)] in the low‑frequency region after 200 
cycles. The low slope of the fitted curve of the electrodes 
at low frequencies indicates their good  Li+‑ion kinetics in 
the electrode materials. Both the CYS‑NiO/C and CYS‑Ni/
NiO/C microspheres showed lower gradients than that of 
the hollow NiO microspheres. This result suggests that the 
CYS‑NiO/C and CYS‑Ni/NiO/C microspheres showed bet‑
ter diffusion of the  Li+‑ion diffusion than the hollow NiO 
microspheres. The interconnected mesopores in the core 
and the hollow space between the yolk and shell of the 

coral‑like yolk–shell structures allowed the easy electrolyte 
accessibility to the electrode and shortened the diffusion 
length of  Li+ ions. In order to confirm this, the morpholo‑
gies of the samples were examined after 200 cycles. Fig‑
ure 9a clearly shows the cycle‑induced structural collapse 
of the hollow NiO microspheres. However, the CYS‑NiO/C 
and CYS‑Ni/NiO/C microspheres showed excellent struc‑
tural stability for repeated  Li+‑ion insertion and desertion 
over 200 cycles (Fig. 9b and d, respectively). The CYS‑
NiO/C microspheres maintained their coral‑like yolk–shell 
structure (with the shell composed of NiO and C) (TEM 
image shown in Fig. 9c). The unique microspheres exhib‑
ited long‑term cycling and high rate performances dur‑
ing repeated  Li+‑ion insertion and desertion because of 
the synergetic effect of the coral‑like yolk–shell structure 
with well‑defined interconnected mesopores and conduc‑
tive carbon.

Fig. 8  a–c Nyquist impedance plots (lines represent fitting data) and d relationships between the real part of the impedance (Zre) and ω−1/2 of 
the CYS‑NiO/C, CYS‑Ni/NiO/C, and hollow NiO microspheres: a before cycling, b after the 1st cycle, c, d after the 200th cycle
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Fig. 9  Morphologies of a hollow NiO, b, c CYS‑NiO/C, and d CYS‑Ni/NiO/C microspheres after the 200th cycles: a, b, d FE‑SEM images and 
c TEM images
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4  Conclusions

In this study, coral‑like yolk–shell‑structured metal oxide/
carbon composite microspheres were prepared using spray 
pyrolysis for the first time. During the spray pyrolysis, PVP 
in the droplet partially phase‑separated from the PS col‑
loidal solution and migrated outward, and interconnected 
mesopores were formed by the decomposition of PS. The 
subsequent thermal contraction of the inner part of the com‑
posites at high reaction temperatures during the spray pyrol‑
ysis resulted in the formation of unique CYS‑NiO/C micro‑
spheres. The CYS‑NiO/C microspheres exhibited excellent 
electrochemical properties for  Li+‑ion storage because of 
their high structural stability, shortened  Li+‑ion diffusion 
paths, high electrical conductivity, and easy penetration of 
the electrolyte into the yolk during the repeated  Li+ lithia‑
tion/delithiation processes. We believe that this novel strat‑
egy can be used for designing and synthesizing unique coral‑
like yolk–shell‑structured metal oxide/carbon composites for 
a wide range of applications such as catalysis, gas sensors, 
and hydrogen evolution reactions, and energy storage.
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