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HIGHLIGHTS

• Bimetallic nickel cobalt sulfide (Ni,Co)S2 nanosheet arrays were demonstrated as a multifunctional catalyst for OER, HER, and ORR.

• First principle calculations were performed to probe the rate-limiting step, which involves the formation of *OOH from  HO− on the 
(Ni,Co)S2 surface.

• A water-splitting system was designed with the (Ni,Co)S2 serving as both cathode and anode, and a Zn–air battery cathode electro-
catalyst.

ABSTRACT The development of efficient earth-abundant electrocatalysts 
for oxygen reduction, oxygen evolution, and hydrogen evolution reactions 
(ORR, OER, and HER) is important for future energy conversion and energy 
storage devices, for which both rechargeable Zn–air batteries and water 
splitting have raised great expectations. Herein, we report a single-phase 
bimetallic nickel cobalt sulfide ((Ni,Co)S2) as an efficient electrocatalyst 
for both OER and ORR. Owing to the synergistic combination of Ni and 
Co, the (Ni,Co)S2 exhibits superior electrocatalytic performance for ORR, 
OER, and HER in an alkaline electrolyte, and the first principle calculation 
results indicate that the reaction of an adsorbed O atom with a  H2O molecule 
to form a *OOH is the potential limiting step in the OER. Importantly, it 
could be utilized as an advanced air electrode material in Zn–air batteries, 
which shows an enhanced charge–discharge performance (charging voltage of 
1.71 V and discharge voltage of 1.26 V at 2 mA cm−2), large specific capacity 
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(842 mAh gZn
−1 at 5 mA cm−2), and excellent cycling stability (480 h). Interestingly, the (Ni,Co)S2-based Zn–air battery can efficiently 

power an electrochemical water-splitting unit with (Ni,Co)S2 serving as both the electrodes. This reveals that the prepared (Ni,Co)S2 has 
promising applications in future energy conversion and energy storage devices.

KEYWORDS (Ni,Co)S2 nanosheet arrays; DFT calculations; Zn–air batteries; Water splitting

1 Introduction

The ever-worsening environmental issues and non-renewa-
bility of fossil fuels have stimulated extensive investigations 
for the development of sustainable energy in future energy 
conversion and storage technology [1–3]. The high-rate 
oxygen reduction or evolution reaction (ORR or OER) and 
hydrogen evolution reaction (HER) at lower overpotentials 
are of great importance to the enhancement of energy utili-
zation rate and output power in these green energy systems. 
At present, the bottleneck of both water-splitting technolo-
gies and rechargeable metal–air batteries is the availabil-
ity of highly efficient and durable electrocatalysts. Zn–air 
batteries have the merits of high theoretical energy density, 
environmental friendliness, and high safety for the next-gen-
eration energy storage systems [4, 5], where its development 
is still hampered by a low working voltage owing to the slug-
gish rate of ORR/OER [6, 7]. Here, HER, which is a cru-
cial electrochemical reaction in water splitting and requires 
highly efficient electrocatalysts, is equally important [8, 9]. 
Pt-based materials exhibit excellent catalytic efficiency for 
HER and ORR, while Ru- and Ir-based materials are the best 
electrocatalysts for OER reactions [10–12]. However, their 
high scarcity, high cost, and insufficient long-term stabil-
ity are limiting the large-scale commercial applications [13, 
14]. Therefore, earth-abundant, durable, and highly efficient 
trifunctional (ORR, OER, and HER) electrocatalysts are 
urgently required [15, 16].

As a class of low-cost alternatives, transition metal-
based materials, such as transition metal phosphides [17, 
18], oxides [19–21], sulfides [22, 23], selenides [24, 25], 
nitrides [26, 27], borides [28, 29], hydroxides [30, 31], and 
others [32–34], have attracted overwhelming research inter-
ests recently. In particular, transition metal sulfides, such 
as  CoS2 and  NiS2, are considered a group of low-cost and 
eco-friendly electrocatalysts for ORR, OER, and HER owing 
to their high electrocatalytic activity, high stability, and cost-
effectiveness [35–37]. Substitution of the transition metals 
with other dopants (such as V, Mn, and Cu) has been proved 

to enhance their electrocatalytic performance because of 
the synergistic effects among the metallic atoms [38–40]. 
Caban-Acevedo et al. [41] recently demonstrated that the 
replacement of S atom by P atom in  CoS2, forming CoPS, 
could alter the electronic structure and dramatically enhance 
the HER performance. Liang et al. [42] also revealed that 
their bimetallic NiCoP nanostructures show superior cata-
lytic activity toward both HER and OER in alkaline media 
compared to monometallic  Ni2P. Although similar efforts 
are expected to be made for the bimetallic NiCoS, compared 
with the monometallic counterparts, challenges exist in the 
design of multifunctional catalysts.

As is known, both  CoS2 and  NiS2 have the same crys-
tal structure, and the chemical nature and atomic radius of 
Ni and Co atoms are very similar, which would enable the 
formation of bimetallic NiCoS. In this work, we present a 
detailed study on the synthesis of single-phase bimetallic 
nickel cobalt sulfide (denoted as (Ni,Co)S2) nanosheets by 
the hydrothermal process and subsequent post-sulfuration. 
The resulting (Ni,Co)S2 shows the desired trifunctional elec-
trocatalytic activities in OER, ORR, and HER as an electro-
catalyst, and therefore has promising potential as a cathode 
in Zn–air batteries and water-splitting catalysis. In addition, 
it demonstrates excellent OER activity with an overpoten-
tial of 270 mV at 10 mA cm−2 and a notable outstanding 
potential difference (ΔE = Ej=10–E1/2) between E1/2 for ORR 
and Ej=10 for OER of only 0.79 V, thus outperforming many 
of the bifunctional electrocatalysts. The air electrode made 
of (Ni,Co)S2 nanosheets exhibited superior performance in 
both primary and rechargeable Zn–air batteries, showing a 
specific capacity of 842 mAh gZn

−1 at 5 mA cm−2, a high and 
stable open circuit potential of 1.48 V, a large peak power 
density of 152.70 mW cm−2, and excellent cycling stability 
without any decrease in polarization even after 480 h. The 
rechargeable Zn–air batteries using (Ni,Co)S2 as the cathode 
could efficiently power an electrochemical water-splitting 
unit catalyzed by the (Ni,Co)S2 nanosheets grown on a car-
bon cloth for both OER and HER, thus demonstrating its 
potential as an integrated green energy system.
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2  Experimental

2.1  Synthesis of  NiS2,  CoS2, and (Ni,Co)S2

2.1.1  Preparation of Precursors

Precursors for (Ni,Co)S2 were synthesized on a carbon cloth 
by modifying a reported procedure [39]. First, 1.5 mmol 
 NiCl2·6H2O, 3.0 mmol  NH4F, 7.5 mmol  (NH2)2CO, and 
1.5 mmol Co(NO3)2·6H2O were dissolved in 50 mL de-
ionized water. Then, 16 mL of the solution was transferred 
to a 23 mL PTFE-lined stainless steel autoclave containing 
the substrate leaning against the autoclave wall. The sealed 
autoclave was heated at 110 °C for 5 h. After cooling, the 
substrate was taken out, washed with water and ethanol, 
and dried in an oven at 60 °C for 30 min. The precursor of 
 NiS2 or  CoS2 was prepared by the same above-mentioned 
process, except without the addition of Co(NO3)2·6H2O or 
 NiCl2·6H2O, respectively.

2.1.2  Thermal Conversion

A carbon cloth covered with the as-grown precursor was 
placed in the center of a fused silica tube in a tube furnace 
equipped with gas flow controllers. An alumina boat con-
taining 10 mmol of sulfur powder was placed at the furthest 
upstream position within the reactor tube. The tube was 
then purged three times with argon gas and maintained at 
101.3 kPa under a steady flow of Ar carrier gas (99.999%) 
at 25 sccm (standard cubic centimeter per minute). The 
temperature of the furnace was ramped to 500 °C and held 
for 60 min. After cooling under Ar flow, the sample was 
removed and rinsed with  CS2 (99.9%) for 10 min, then 
washed with ethanol, and dried in an oven at 60 °C for 1 h.

2.2  Preparation of Electrocatalyst Ink

The catalyst ink was typically made by dispersing 10 mg of 
the catalyst and 10 mg of carbon black (Vulcan XC72) in 
50 mL petroleum ether, and then dropped them on a carbon 
cloth. After drying, 18 mg of catalyst, 90 μL Nafion-117 
solution, and 4410 μL N, N-dimethylformamide (DMF) were 
added into a 10 mL container and ultrasonicated for 30 min.

2.3  Calculation Details

The DFT calculations were performed by Vienna ab initio 
simulation package (VASP). The standard generalized-
gradient approximation (GGA) in the form of the Per-
dew–Burke–Ernzerhof (PBE) exchange model was used. 
The energy cutoff for the plane-wave basis set and the 
convergence threshold to obtain the wave functions were 
400 and  10−5 eV, respectively. Further, 3d electrons of Ni 
were treated using the GGA + U method with a Ueff (U–J) 
of 5.76 eV. Ionic relaxations were conducted until all the 
force components became < 0.02 eV Å−1. For the density of 
states (DOS), the Brillouin zone is represented by the set of 
5 × 5×5 k points for geometry optimizations. A rectangular 
supercell of size 11.00 × 11.00 Å2 was used to calculate the 
OER activity with active sites on the (100) surface.

3  Results and Discussion

The phase structure of each sample was measured by X-ray 
diffraction (XRD). As shown in Fig. 1a, the XRD patterns 
of both  NiS2 and  CoS2, which were fabricated as reference 
samples, correspond to a cubic structure with a Pa-3 space 
group (JCPDS No. 11-0099 for  NiS2 and No. 41-1471 
for  CoS2) with lattice constants of a = b = c = 5.567  Å 
and a = b = c = 5.538 Å, respectively. The XRD pattern of 
(Ni,Co)S2 is consistent with those of  NiS2 and  CoS2 with 
its diffraction peaks located between those of  NiS2 and 
 CoS2, which can be clearly seen from the magnified area 
of the XRD pattern with the 2θ angles ranging from 30.5° 
to 33.5° (Fig. 1b). This confirms the formation of a single-
phase crystal structure, where Co and Ni are alloyed in the 
bimetallic compound structure. Raman spectroscopy was 
employed to further confirm the formation of single-phase 
(Ni,Co)S2. For the monometallic samples, distinct peaks 
are observed at about 479 cm−1 for  NiS2 and 391 cm−1 for 
 CoS2 corresponding to the out-of-plane Ag vibrational mode 
(Fig. 1c) [43, 44]. For (Ni,Co)S2, the peak of Ag vibrational 
mode is located at 425 cm−1 between those of  NiS2 and 
 CoS2, indicating that the atomic vibration in (Ni,Co)S2 is 
a unified whole; this concurs with the XRD result. In addi-
tion, an obvious peak at 276 cm−1 is observed for all the 
three samples, which corresponds to the in-plane vibration 
mode of Eg for the cubic structure [45, 46]. The morphology 
was studied by both scanning electron microscopy (SEM) 
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and transmission electron microscopy (TEM). Figure 1d 
shows that the as-synthesized (Ni,Co)S2 has the morphol-
ogy of cactus-like nanosheets growing uniformly on the 
carbon cloth, which are nanoplates with some nanowires at 
the edges. It is not a combination of two morphologies but 
is a single morphology, which can be confirmed by subse-
quent high-resolution TEM (HRTEM) analysis. In contrast, 
 NiS2 has nanoplate morphology, while  CoS2 has nanowire 
morphology with a diameter of 50–100 nm (Fig. S1). The 
TEM images shown in Fig. 1e further confirm the forma-
tion of the observed nanosheet morphology with nanowires 
grown at the edges. Figure 1f, h shows the HRTEM images 
of the nanosheet and nanowire regions of (Ni,Co)S2, where 

lattices with spacings of 2.79 and 2.50 Å can be assigned to 
the (200) and (210) planes of (Ni,Co)S2, respectively. These 
lattice spacing values are between those of  NiS2 and  CoS2 
(Fig. S2), which further reveals that (Ni,Co)S2 is a single-
phase structure. The energy-dispersive X-ray spectrum 
(EDS) shows that (Ni,Co)S2 has a Ni/Co atomic ratio of 
1:1 (Fig. 1g). The element mapping images in Fig. 1i show 
that Ni, Co, and S elements are uniformly distributed in the 
selected area.

To further examine their composition and valence state, 
X-ray photoelectron spectroscopy (XPS) measurements 
were performed. The wide spectrum of (Ni,Co)S2 reveals 
the presence of Ni, Co, and S elements (Fig. S3). The Co 
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2p spectrum in Fig. 2a shows the main peaks of Co 2p3/2 
and Co 2p1/2 along with their satellite peaks. For  CoS2 and 
(Ni,Co)S2, two peaks appear at 778.5 and 781.6 eV, which 
belong to Co 2p3/2 and indicate the presence of  Co2+ [47]. 
The Ni 2p spectrum (Fig. 2b) shows 2p3/2 and 2p1/2 doublets 
due to spin–orbit coupling. The Ni 2p spectra of both  NiS2 
and (Ni,Co)S2 show two peaks at 854.7 and 856.3 eV cor-
responding to Ni 2p3/2, and a satellite peak at higher bind-
ing energies [48]. The S 2p1/2 and S 2p3/2 peaks for these 
three samples are located at 164.1 and 162.8 eV, respec-
tively, corresponding to  (S2)2− (Fig. 2c) [49]. The binding 
energies of Ni 2p and Co 2p in (Ni,Co)S2 show no obvious 
shift compared with  NiS2 and  CoS2, revealing that the Ni 
and Co atoms are uniformly distributed in the crystal struc-
ture. Thus, we demonstrated the formation of single-phase 
(Ni,Co)S2 in our case. Figure 2d shows the calculated DOS 
of (Ni,Co)S2,  NiS2, and  CoS2. It can be seen that (Ni,Co)S2 
shows metallic nature with more electron-occupied states 
at the Fermi level, while  CoS2 shows metallicity and  NiS2 
shows semiconductor characteristic (bandgap = 0.6 eV). As 
shown by the schematic in Fig. S4 and the inset of Fig. 2e, 

(Ni,Co)S2 has a cubic crystal structure, with Ni atoms 
replacing half of the Co atoms, adopting the  CoS2 structure. 
The partial density of states (PDOS) curves of (Ni,Co)S2 
shown in Fig. 2e indicate a strong hybridization of Ni 3d, 
Co 3d, and S 2p, which combined with the charge density 
distribution results (Fig. 2f), suggest an outstanding electri-
cal conductivity of (Ni,Co)S2. The PDOS of  NiS2 and  CoS2 
are shown in the supporting information for comparison 
(Figs. S5, S6).

The performance of (Ni,Co)S2 in electrocatalytic oxygen 
evolution is evaluated using a three-electrode configuration 
in 0.1 M KOH solution, where  NiS2,  CoS2, and commercial 
Ir/C catalysts are used as the control samples. The polariza-
tion curve is firstly obtained by linear voltammetry scanning 
(LSV). The original LSV curves for OER are shown in the 
supporting information (Fig. S7). After converting by the 
method detailed in the supporting information, the stand-
ard polarization curves are obtained. As shown in Fig. 3a, 
the onset overpotential of (Ni,Co)S2 is 1.47 V, which is 
lower than that of  NiS2 (1.57 V),  CoS2 (1.50 V), and com-
mercial Ir/C (1.48 V). For  NiS2 and (Ni,Co)S2, there is a 
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visible oxidation peak at about 1.32 V, which is similar to 
that previously reported for Ni-based catalysts [48]. Upon 
deducting the thermodynamic water decomposition voltage 
of 1.23 V [50], (Ni,Co)S2 shows an initial overpotential of 
240 mV. When the current density reaches 10 mA cm−2, 
the overpotential of (Ni,Co)S2 is 270 mV and compares 
favorably to 410, 350, and 310 mV for  NiS2,  CoS2, and 
Ir/C, respectively. As shown in Fig. 3b, the Tafel slope of 
(Ni,Co)S2 is 58 mV dec−1, which is smaller than that of  NiS2 
(123 mV dec−1) and  CoS2 (107 mV dec−1) and is close to 
that of Ir/C (77 mV dec−1). The reduced Tafel slope indi-
cates that (Ni,Co)S2 exhibits a faster dynamics in the OER 
process [51]. Electrochemical impedance spectroscopy (EIS) 

was further employed to understand the interfacial electron 
transport between the electrolyte and catalyst at 1.45 V 
versus RHE from 10 kHz to 0.1 Hz. The curve fitting and 
equivalent circuit analysis results of the EIS data agree well 
with the (RQR) model. In Fig. 3c, Rs is the solution resist-
ance (~ 3 Ω) and Rct is the charge transfer resistance. A lower 
Rct corresponds to a faster electronic transmission [52]. As 
illustrated in Fig. 3c, the EIS of (Ni,Co)S2 shows the small-
est radius corresponding to the minimum Rct value and indi-
cates a faster reaction rate than those of  NiS2 and  CoS2. The 
double-layer capacitance (Cdl) is obtained by cyclic voltam-
metry (CV) performed at different scan rates (in the range 
of 20–180 mV s−1, Fig. S8) to evaluate the electrochemical 
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active sites [53]. Figure 3d shows that the Cdl of (Ni,Co)
S2 is 41 mF cm−2, which is larger than the Cdl of  CoS2 
(30 mF cm−2) and two times the Cdl of  NiS2 (16 mF cm−2); 
this reveals that there are more electrochemical active sites 
in (Ni,Co)S2 for OER. The synergistic effect of Ni and Co 
in (Ni,Co)S2 activates new active sites, increasing the elec-
trochemical active surface area (EASA). To further assess 
the OER catalytic rates, the turnover frequencies (TOFs) 
of the three electrocatalysts were estimated, assuming that 
all the metal ions in the electrocatalysts were catalytically 
active (Fig. S9) [54]. As shown in Fig. S9, at an overpoten-
tial of 1.55 V versus RHE, the TOF of (Ni,Co)S2 is 3.02 s−1, 
whereas the TOFs of  CoS2 and  NiS2 are 0.65 and 0.22 s−1, 
respectively. This suggests that (Ni,Co)S2 has the fastest rate 
for OER catalysis. The OER parameters of the three catalysts 
and Ir/C are listed in Table S1 for comparison. As shown in 
Fig. 3e, even after testing for 70,000 s at 1.5 V, the current 
density of (Ni,Co)S2 remains at 40 mA cm−2, revealing the 
outstanding stability of (Ni,Co)S2 in OER compared with 
the degenerated current densities of  NiS2 and  CoS2. A com-
parison of the OER performance of (Ni,Co)S2 with that of 
other typical catalysts is shown in Table S2. For comparison, 
the OER polarization curves of the physically mixed  CoS2 
and  NiS2 (named  CoS2 + NiS2) were also examined, which 
reveals that its performance is in between those of  CoS2 and 
 NiS2 (Fig. S10). Besides, the structure and morphology after 
the long cycling test and the structural evolution process are 
shown in Figs. S11–13. The diffraction peaks of the cycled 
(Ni,Co)S2 are similar to those of the fresh (Ni,Co)S2, indi-
cating that it retains its phase even after prolonged tests. 
The surface of the nanosheets is constantly corroded during 
repeated charge and discharge tests, resulting in a coarse 
surface and some oxidation state. The entire OER progress 
can be summarized in four elementary reaction models 
consisting of three key intermediates: *OH, *O, and *OOH 
(Fig. 3g) [55]. Each elementary step releases  H+ cation and 
electron. It is crucial for the intermediate to have an appro-
priate Gibbs free energy. Figure 3f shows the Gibbs free 
energy (ΔG) diagram for the (100) surface of (Ni,Co)S2 with 
correlative intermediates at different reaction steps. It can be 
seen that the third step is the potential limiting step (PLS), 
where an adsorbed O atom reacts with a  H2O molecule to 
form a *OOH. The overpotential (η) calculated by DFT 
calculations is 0.51 V for *O + H2O (l) ⇌ *OOH + H+ + e−, 
which is smaller than that of pure  CoS2 (η = 0.54 V) and 
 NiS2 (η = 2.00 V) at the (001) surface (Figs. S14, S15). The 

calculated results are consistent with the above experiment 
results, indicating that bimetallic (Ni,Co)S2 can be a better 
electrocatalyst than monometallic  CoS2 and  NiS2.

Oxygen reduction activities were studied to determine the 
suitability of (Ni,Co)S2 as a bifunctional electrocatalyst for 
both ORR and OER. It was examined with a rotating disk 
electrode (RDE) in 0.1 M aq. KOH electrolyte at room tem-
perature. As shown in Fig. 4a, (Ni,Co)S2 shows the highest 
onset overpotential of 0.82 V, while it is 0.79 and 0.76 V for 
 CoS2 and  NiS2, respectively. The limiting current densities 
were measured as 4.2, 3.0, and 3.7 mA cm−2 for (Ni,Co)
S2,  CoS2, and  NiS2, respectively, at overpotential of 0.20 V. 
The half-wave potential of (Ni,Co)S2 (0.71 V) is slightly 
smaller than that of Pt/C (0.78 V) but higher than that of 
 CoS2 (0.63 V) and  NiS2 (0.68 V). The physically mixed sam-
ple  CoS2 + NiS2 was also measured. The results show that its 
ORR performance is between that of  CoS2 and  NiS2, which 
illustrates the importance of (Ni,Co)S2 as a single-phase 
bimetallic catalyst (Fig. S16).

The CV scan results are shown in Fig. 4b. The curve 
measured in a  N2-saturated electrolyte solution is smooth, 
indicating no oxygen reduction reaction. However, in the 
 O2-saturated electrolyte solution, a sharp cathodic peak 
appeared at 0.75 V, revealing the occurrence of an ORR. 
Under the same test conditions, the oxygen reduction 
peaks of  NiS2 and  CoS2 are 0.74 and 0.67 V, respectively 
(Fig. S17). To explore the reaction mechanism of oxygen 
reduction, LSV curves with various speeds (from 400 to 
2400 rpm) were measured, and the results shown in Fig. 4c 
indicate that the current density increases with increasing 
 O2 diffusion rate. According to the K–L equation [56], the 
calculated electron transfer number (n) is 3.8, which indi-
cates that a four-electron process dominates the oxygen 
reduction for (Ni,Co)S2. Table S3 lists the ORR parameters 
of the three catalysts. The ORR path was further verified 
with a rotating ring-disk electrode (RRDE) at 1.3 V at a 
rate of 2 mV s−1. As shown in Fig. 4d, the n value (3.9) 
thus estimated is consistent with the result obtained from 
the K–L equation. It clearly indicates that the oxygen reduc-
tion proceeds via an efficient four-electron pathway. A 
comparison of the ORR performance of (Ni,Co)S2 with the 
performances of some of the reported catalysts is shown 
in Table S4. As a bifunctional electrocatalyst, the overall 
oxygen activity of (Ni,Co)S2 is evaluated by the potential 
difference (ΔE = Ej=10–E1/2) between E1/2 for ORR and 
Ej=10 for OER. In general, an efficient reversible oxidation 
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reaction requires a small ΔE, with the ΔE of commercial 
state-of-the-art electrocatalysts reported as 0.94 V for Pt/C 
and 0.92 V for Ir/C and Ru/C [57]. Figure 4e shows that 
the ΔE of (Ni,Co)S2 is 0.79 V, which is much lower than 
those of the reported precious electrocatalysts (Table S5) 
as well as the ΔE of  NiS2 (0.95 V) and  CoS2 (0.94 V). This 
further indicates the excellent electrocatalytic characteristics 
of (Ni,Co)S2 as a multifunctional electrocatalyst.

To demonstrate the application potential of (Ni,Co)S2 
nanosheets as a bifunctional electrocatalyst for a Zn–air 
battery, we first constructed primary Zn–air batteries by 
using (Ni,Co)S2 as the electrocatalyst. The schematic dia-
gram of a two-electrode liquid rechargeable battery is shown 
in Fig. 5a. The (Ni,Co)S2-based Zn–air battery shows an 
open cell voltage of 1.48 V at the beginning (Fig.  5b), 
which is similar to the result obtained by the multimeter 
test. After a continuous discharge of 20 h, the discharge 
voltage of (Ni,Co)S2 remains at 1.47 V, which is an ideal 
and stable high discharge voltage, whereas the open cell 
voltages of  NiS2- and  CoS2-based Zn–air batteries are 1.42 
and 1.38 V, respectively (Fig. S18). As shown in Fig. 5c, 

the battery energy density of (Ni,Co)S2-based Zn–air bat-
tery is 152.7 W cm−2. A current density of 170 mA cm−2 
was measured at an overpotential of 0.40 V. The charge and 
discharge cycle tests of (Ni,Co)S2-based Zn–air batteries 
were performed with 20 min cycles (charging for 10 min 
and discharging for 10 min; Fig. 5d). At a current density 
of 2 mA cm−2, it shows a stable charging voltage of 1.71 V 
and a discharge voltage 1.26 V with a very small charge–dis-
charge gap of 0.45 V, which increases to 0.46 V after 480 h 
(Fig. 5e), revealing its superb stability. This value is much 
higher than that of many of the reported catalysts (Table S6). 
Similarly, the charge and discharge cycle curves were tested 
at a current density of 6 mA cm−2 for 100 h (Fig. S19). The 
results indicate that the (Ni,Co)S2-based Zn–air battery has 
a large specific capacity of 842 mAh gZn

−1 at a current density 
of 5 mA cm−2 (Fig. 5f), which is larger than that of both 
 NiS2 (732 mAh gZn

−1) and  CoS2 (681 mAh gZn
−1) (Fig. S20). 

Besides, two liquid zinc–air batteries in series could power 
a red LED (Fig. 5g), while one liquid zinc–air battery could 
power an electronic watch successfully (Fig. 5h).
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We also characterized the electrocatalytic HER properties 
of the three samples. As shown in Fig. 6a, the onset overpo-
tential of (Ni,Co)S2 is 180 mV, which is lower than that of 
 NiS2 (~ 264 mV) and  CoS2 (~ 237 mV). When the current 
density reaches 10 mA cm−2,  NiS2 and  CoS2 require poten-
tials of 298 and 254 mV, respectively, while (Ni,Co)S2 only 
requires 210 mV. In addition, the Tafel slope is 68 mV dec−1 
for (Ni,Co)S2, which is smaller than that of  NiS2 and  CoS2 
(Fig. 6b). Furthermore, (Ni,Co)S2 shows the largest Cdl of 
40 mF cm−2 among the three samples and an excellent sta-
bility of more than 80,000 s for HER (Fig. S21, Table S7). 
Similarly, the HER polarization curve of  CoS2 + NiS2 is 
given in Fig. S22. Unsurprisingly, the physically mixed 
sample  CoS2 + NiS2 demonstrates an intermediate electro-
catalytic hydrogen evolution efficiency. We also observed 

that (Ni,Co)S2 exhibits the best electrocatalytic properties 
among the three samples. The excellent reversibility makes 
it a very promising multifunctional catalyst. Furthermore, 
we used it as both cathode and anode to fabricate a water-
splitting device. Figure 6c shows the schematic diagram 
of the self-assembled water-splitting unit powered by the 
(Ni,Co)S2-based Zn–air battery. In this self-assembled 
device, the anode undergoes oxidation reaction to gener-
ate oxygen, and the cathode undergoes reduction reaction 
to produce hydrogen. As shown in Fig. 6d, the LSV curves 
of the overall water-splitting reactions of (Ni,Co)S2 show a 
ΔV (EOER–EHER) of 1.71 and 1.80 V at 10 and 50 mA cm−2, 
respectively, revealing a noticeable electrocatalytic perfor-
mance of (Ni,Co)S2 in a water-splitting energy installation 
compared to many reported catalysts (Table S8). Figure 6e 
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shows that the cathode reacts to produce hydrogen and the 
anode oxidizes to produce oxygen, and the  H2 and  O2 were 
collected by the drainage method. After 60 min of con-
tinuous reaction, the amounts of  H2 and  O2 collected were 
1.15 mmol and 0.57 mmol (the ratio is 2:1), respectively. 
The output voltage stability of the self-assembled device 
was tested using a multimeter (Fig. S23). It can be seen that 
the output voltage stabilized after 1 h and did not reduce in 
the next hour, which reveals its good stability.

4  Conclusions

In summary, single-phase bimetallic (Ni,Co)S2 nanosheets 
were successfully synthesized by a hydrothermal route fol-
lowed by thermal conversion to sulfide. With the purposely 
tuned nanosheet morphology, electronic structure, enhanced 
electrical conductivity, and active sites in the bimetallic 
sulfides, the (Ni,Co)S2 nanosheets demonstrated a superior 
electrocatalytic performance for oxygen evolution, oxygen 
reduction, and hydrogen evolution in an alkaline electrolyte. 

First principle calculation results indicate that the adsorp-
tion of  HO− to form *OOH on the (Ni,Co)S2 surface is the 
potential limiting step in the OER. When used as an elec-
trode in a Zn–air battery, it demonstrated a small charge/
discharge voltage gap of 0.45 V at 2 mA cm−2, a high peak 
power density of 153.5 mW cm−2, a specific capacity of 
842 mAh gZn

−1 at 5 mA cm−2, and excellent cycling stability 
even after 480 h. The high efficiency demonstrates the appli-
cation potential of the rechargeable Zn–air battery in power-
ing an electrochemical water-splitting unit made of the same 
(Ni,Co)S2 nanosheets as both the electrodes, which exhibited 
a low cell voltage of 1.71 V at 10 mA cm−2. This work is 
helpful for improving the Zn–air battery performance and 
the utilization of new energy in the future.
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