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HIGHLIGHTS

•	 A cooperative dual-mode sodium-storage mechanism, combining interstitial solid-solution intercalation and surface pseudocapacitance, 
is identified, diverging from the conventional conversion-dominated chemistry of nickel phosphides.

•	 In-situ/ex-situ analyses provide direct evidence of reversible Na+ insertion into lattice interstitials through (111)-oriented interplanar 
channels, enabling low-strain lattice breathing without phase transformation.

•	 The freestanding Ni2P composite electrode achieves exceptional performance, including high reversible capacity (≈560 mAh g−1), 
remarkable rate capability (135 mAh g−1 at 10 A g−1), and long-term stability over 2000 cycles.

ABSTRACT  Nickel-rich nickel phosphide (Ni2P) has 
emerged as a promising sodium-ion battery anode owing 
to its high theoretical capacity and intrinsic electronic 
conductivity, yet its charge storage chemistry remains 
controversial and is often oversimplified as a conversion 
reaction. Herein, we design a freestanding Ni2P compos-
ite electrode composed of ultrasmall Ni2P nanocrystals 
embedded within a phosphorus-doped, graphene-like 
porous carbon matrix. Comprehensive in-situ and ex-situ 
analyses unequivocally demonstrate an interstitial solid-
solution mechanism, wherein Na+ ions reversibly occupy lattice interstitials via (111)-oriented interplanar channels, inducing reversible 
lattice breathing without phase transformation. This bulk intercalation process is synergistically coupled with a substantial pseudocapacitive 
contribution, establishing a cooperative dual-mode storage mechanism. Benefiting from this solid-solution–capacitive chemistry, the electrode 
delivers a high reversible capacity (≈560 mAh g−1), outstanding rate capability (135 mAh g−1 at 10 A g−1), and exceptional long-term stability 
(263 mAh g−1 after 2000 cycles). When paired with a Na3V2(PO4)3@C cathode, the full cell achieves a high-energy density of 245 Wh kg−1. 
This work establishes solid-solution–capacitive coupling as a general paradigm for designing high-rate and durable sodium-ion battery anodes.
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1  Introduction

Given the pressing need for cost-effective and sustainable 
energy storage, sodium-ion batteries (SIBs) have emerged 
as a compelling post-lithium alternative, driven by the earth-
abundance and low cost of sodium, and envisioned to play a 
pivotal role in stabilizing large-scale renewable energy grids 
[1–4]. However, the practical deployment of SIBs is ham-
pered by the intrinsic characteristics of Na+—its large ionic 
radius (1.02 Å) and relatively high redox potential (-2.71 V 
vs. SHE) relative to Li+ (-3.04 V vs. SHE) [5, 6]. Such 
intrinsic features collectively result in sluggish solid-state 
diffusion kinetics, limited energy density, and pronounced 
structural instability in host materials during cycling [7–9]. 
Consequently, developing anode materials with rapid ion/
electron transport, robust structural resilience, and high 
reversible capacity remains a crucial yet challenging pursuit.

Among various anode candidates, nickel-rich nickel phos-
phide (Ni2P) stands out due to its distinctive bonding charac-
teristics arising from the synergistic interplay between metallic 
Ni–Ni bonding and a robust covalent Ni–P framework [10, 
11]. This dual bonding nature endows Ni2P with high intrin-
sic electronic conductivity, structural robustness, and tun-
able redox properties, thereby positioning it as a promising 
sodium-ion battery anode, as reflected by its high theoretical 
capacity and advantageous operating voltages [12–15]. In par-
ticular, compared with hard carbon, the current commercial 
benchmark characterized by limited intrinsic conductivity, 
moderate capacity, and low tap density, Ni2P provides mark-
edly higher electronic conductivity, a substantially higher 
theoretical capacity, and a greater tap density conducive to 
enhancing volumetric energy density, underscoring its poten-
tial for high-rate and high-energy SIB applications [1, 16, 17]. 
Despite these advantages, the Na+ storage chemistry of Ni2P 
remains controversial. Conventionally, the prevailing model for 
Na+ storage predominantly ascribes to a conversion reaction 
mechanism, culminating in the formation of Na3P and metal-
lic Ni [18–20]. However, recent in-situ and operando charac-
terizations have repeatedly failed to identify these expected 
crystalline products, revealing a clear inconsistency with the 
conventional mechanism and highlighting a critical gap in our 
mechanistic understanding of Na+ storage in Ni2P [21].

At the nanoscale, however, sodium-storage mecha-
nisms are governed by distinct thermodynamic and kinetic 

constraints that deviate markedly from bulk behavior 
[22–24]. When the particle size is reduced below a critical 
threshold (~ 20 nm), the enlarged surface-to-volume ratio 
and elevated nucleation barrier suppress classical conversion 
reactions [25], giving rise instead to an interstitial solid-
solution–type process complemented by a surface redox 
pseudocapacitive contribution [26–29]. This cooperative 
intercalation–capacitive mechanism has been documented 
in several transition-metal chalcogenides [30–33]. However, 
whether a similar mechanism operates in transition-metal 
phosphides (TMPs) such as Ni2P remains unclear, largely 
owing to the lack of direct in-situ structural or spectroscopic 
evidence.

In this work, we resolve the long-standing mechanistic 
ambiguity of Ni2P by constructing a hierarchical, freestanding 
Ni2P@GPC/CFP composite electrode, integrating ultrasmall 
Ni2P nanocrystals into a graphene-like phosphorus-doped 
carbon (GPC) matrix on a carbon fiber paper (CFP) scaffold. 
This composite electrode serves as both a high-performance 
anode and a platform for mechanistic exploration. In-situ 
X-ray diffraction, quasi-insitu X-ray photoelectron spectros-
copy, and density functional theory analyses collectively 
uncover a cooperative sodium-storage mechanism, in which 
Na+ ions reversibly access interstitial sites through (111)-ori-
ented interplanar channels, inducing low-strain lattice breath-
ing without phase transformation. A concurrent pseudoca-
pacitive process further accelerates charge-storage kinetics. 
This conversion-free, dual-mode solid-solution–capacitive 
behavior redefines the sodium-storage mechanism in Ni2P 
and establishes a generalizable design principle for high-rate 
and durable transition-metal phosphide anodes.

2 � Experimental Section

2.1 � Materials

Carbon fiber paper (CFP) was obtained from Cetech Co., Ltd. 
Nickel acetate (Ni(CH3COO)2), glucose (C6H12O6), potas-
sium hydroxide (KOH), red phosphorus (P), sulfuric acid 
(H2SO4, ≥ 98 wt%), hydrochloric acid (HCl, 35 wt%), nitric 
acid (HNO3, ≥ 65 wt%), oxalic acid dihydrate (C2H2O4·2H2O), 
sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O), 
n-propanol (C3H6OH), sodium (Na) metal, super P, polyvi-
nylidene fluoride (PVDF), and N-methyl-2-pyrrolidone (NMP) 
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were purchased from Sinopharm Chemical Reagent Co., Ltd. 
(China). Vanadium pentoxide (V2O5) was obtained from Xiya 
Chemical Co., Ltd. GF/D glass microfiber membrane, sodium 
perchlorate (NaClO4), ethylene carbonate (EC), dimethyl car-
bonate (DMC), fluoroethylene carbonate (FEC), and aluminum 
(Al) foil were purchased from the DoDoChem. Argon (Ar) and 
Ar/H2 (9:1, v/v) were supplied by Hefei Kexun Chemical Co., 
Ltd.

2.2 � Synthesis of Ni2P@GPC/CFP Composite

To synthesize the Ni2P@GPC/CFP composite, 4 mmol of 
nickel acetate and 5.5 mmol of glucose were dissolved in 
50 mL deionized water under magnetic stirring. Subse-
quently, 50 mL of 1.5 M KOH solution was added dropwise, 
followed by continuous stirring at room temperature for 6 h. 
Then, 6 mmol of red phosphorus was added, and the mixture 
was stirred for an additional 12 h. The resulting mixture was 
heated to 80 °C to partially evaporate the solvent, yielding a 
viscous precursor slurry.

The precursor slurry was uniformly coated onto CFP 
(areal density: 2.0 mg  cm−2) and dried under vacuum at 
60 °C for 12 h, resulting in an areal precursor mass loading 
of 3–5 mg cm−2. The coated CFP was subsequently annealed 
at 850 °C for 4 h under an Ar atmosphere at a heating rate of 
3 °C min−1. The annealed product was sequentially washed 
with 1 M HCl and deionized water, and then dried under vac-
uum at 60 °C for 24 h to obtain the final Ni2P@GPC/CFP 
composite. The mass loading of the active Ni2P@GPC was 
1.4 ± 0.2 mg cm−2.

2.3 � Synthesis of GPC/CFP and Ni2P

The GPC/CFP composite was obtained by selectively remov-
ing Ni2P from the Ni2P@GPC/CFP electrode through aqua 
regia etching, followed by thorough rinsing with deionized 
water and drying. For comparison, pure Ni2P was synthe-
sized using the same protocol as Ni2P@GPC/CFP, except 
that glucose and the CFP substrate were omitted.

2.4 � Synthesis of Na3V2(PO4)3@C (NVP@C) Composite

In a typical process, 3.95 mmol of V2O5 and 12 mmol of 
C2H2O4·2H2O were dissolved in 40 mL of deionized water 

under stirring at 70 °C for 1 h to form a light-blue solution. 
Subsequently, 11.8 mmol of NaH2PO4·2H2O and 2.2 mmol 
of glucose were added and stirred for 30 min. Then, 100 mL 
of n-propanol was added, followed by stirring for an addi-
tional hour. The resulting mixture was dried at 90 °C for 6 h 
to yield a solid precursor.

The dried precursor was ground into a fine powder and 
subjected to a two-step thermal treatment under an Ar/H2 
(9:1, v/v) atmosphere: preheating at 350 °C for 4 h at a heat-
ing rate of 2 °C min−1, followed by calcination at 800 °C 
for 6 h at a heating rate of 5 °C min−1, yielding the final 
NVP@C composite as a black powder.

2.5 � Materials Characterization

X-ray diffraction (XRD, D/Max-2500 V, Rigaku) with CuKα 
radiation (λ = 0.154056 nm) was used to identify the crystal-
line phases, with scanning performed over 2θ = 10°-80° at 
a scan rate of 5° min−1. The morphology and microstruc-
ture were examined using field-emission scanning electron 
microscopy (FE-SEM, ZEISS Sigma 300) and field-emission 
transmission electron microscopy (FE-TEM, Talos F200X 
G2). Elemental composition and distribution were character-
ized by energy-dispersive X-ray spectroscopy (EDS, Oxford 
Instruments, Max50). Surface chemical states were analyzed 
using X-ray photoelectron spectroscopy (XPS, ESCALAB 
250Xi, Thermo Scientific). Raman spectroscopy (LabRAM 
HR Evolution, Horiba) with a 532-nm excitation laser was 
used to probe structural features and bonding characteristics.

Thermal stability was evaluated by thermogravi-
metric analysis (TGA, PerkinElmer) conducted in air 
from 30 to 800 °C at a heating rate of 10 °C min−1. Spe-
cific surface area and pore structure were measured by 
Brunauer–Emmett–Teller (BET) analysis (Autosorb-IQ3).

2.6 � Cell Assembly and Electrochemical Measurements

CR2032-type coin cells were assembled in an Ar-filled 
glovebox to evaluate the electrochemical performance 
of Ni2P@GPC/CFP and GPC/CFP. These materials were 
directly used as working electrodes (12 mm in diameter), 
with sodium metal as the counter electrode, GF/D glass 
microfiber membrane as the separator, and 1 M NaClO4 in 
EC/DMC (1:1, v/v) containing 5 wt% FEC as the electrolyte. 
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The amount of electrolyte was controlled at 180 μL per cell. 
Galvanostatic cycling was performed within 0.01–3.0 V (vs. 
Na+/Na).

In-situ XRD measurements were carried out using a spe-
cially designed coin-cell configuration. The in-situ cell was 
assembled following the same procedure as the half-cell, 
except that the stainless-steel cathode cap was replaced by 
a Be window to allow X-ray penetration, whereas the anode 
cap was replaced by a sealed steel sleeve. The assembled cell 
was mounted onto the XRD stage with the Be window facing 
the X-ray beam, and electrical leads were connected to an 
electrochemical workstation. During the measurement, XRD 
patterns were continuously collected over 2θ = 30°-60° at a 
scan rate of 5° min−1, while the cell was cycled at 50 mA g−1 
within 0.01–3.0 V (vs. Na+/Na).

For the preparation of Ni2P electrodes, a slurry of Ni2P, 
Super P, and polyvinylidene fluoride (PVDF) (8:1:1, w/w) 
in N-methyl-2-pyrrolidone (NMP) was cast onto Al foil 
and dried under vacuum at 60 °C for 12 h. Circular disks 
(12 mm diameter) with an active-material mass loading of 
1.4–1.6 mg cm−2 were punched and assembled into half-
cells under the same conditions described above.

For full-cell testing, the NVP@C cathode was prepared 
following the same casting procedure. The areal mass load-
ings of the cathode and anode were controlled at a ratio of 
2:1, with the cathode loading fixed at 3.0 mg cm−2. Prior to 
full-cell assembly, the Ni2P@GPC/CFP anode was activated 
at 50 mA g−1 for 5 cycles within 0.01–3 V (vs. Na+/Na). Full 
cells were assembled using Ni2P@GPC/CFP as the anode and 
NVP@C as the cathode, and cycled within 0.5–3.7 V. The 
energy and power densities were calculated using the follow-
ing equations [34, 35]:

where I (A) is the discharge current, Δt (s) is the discharge 
time, ΔV  (V) is the average voltage, and m (g) is the total 
mass of active materials on both electrodes.

Galvanostatic charge–discharge (GCD) and galvanostatic 
intermittent titration technique (GITT) tests were conducted on 
a Neware battery testing system. Cyclic voltammetry (CV) and 
electrochemical impedance spectroscopy (EIS) measurements 
were performed on an Autolab PGSTAT302N electrochemical 

(1)E =
IΔtΔV

3.6m
(Wh kg−1)

(2)P =
3600E

Δt
(W kg−1)

workstation. EIS was carried out over a frequency range of 
10 mHz to 100 kHz with an amplitude of 5 mV. CV scans 
were recorded within 0.01–3.0 V at a scan rate of 0.1 mV s−1. 
GITT was applied to estimate the Na+ diffusion coefficient. 
The half-cells were discharged within 0.01–3 V at 50 mA g−1 
for a 20 min current pulse, followed by a 2-h relaxation period. 
This pulse-rest sequence was repeated until the cutoff voltage 
was reached. For EIS analysis, the Warburg coefficient ( σw ) 
was extracted from the linear relationship between the real 
part of impedance (Z′) and ω−0.5 in the low-frequency region 
(ω = 2πf). The Na+ diffusion coefficient ( DNa+ ) was calculated 
using the following equations [36]:

where R is the gas constant, T is the absolute temperature, 
A is the electrode surface area, n is the number of electrons, 
F is the Faraday constant, and C is the molar concentration 
of Na+ in the electrolyte. All electrochemical measurements 
were carried out at an ambient temperature of 25 °C.

2.7 � Theoretical Calculations

Density functional theory (DFT) calculations were per-
formed using the Vienna Ab initio Simulation Package 
(VASP 5.4) [37, 38]. The Perdew–Burke–Ernzerhof (PBE) 
functional within the generalized gradient approximation 
(GGA) was employed to describe electron exchange-cor-
relation interactions, and spin polarization was included 
throughout the calculations [39].

A plane-wave cutoff energy of 550 eV was used. Brillouin-
zone sampling was performed using a Monkhorst–Pack 
k-point mesh of 3 × 3 × 1. The convergence criteria were set 
to 10–5 eV for the total energy and 0.03 eV Å−1 for the atomic 
forces. Surface models of graphene-like carbon (GC), gra-
phene-like phosphorus-doped carbon (GPC), and Ni2P(111) 
were constructed using a slab geometry, in which the bot-
tom layers were fixed, while the remaining layers were fully 
relaxed. A vacuum layer of 10 Å was applied along the z-axis 
to avoid interactions between adjacent periodic images.

The adsorption energies (Ead) of a Na atom on the GC 
(001), GPC (001), and Ni2P (111) surfaces were calculated 
using:

(3)Z
� = R

e
+ R

ct
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w
�
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where E
Na@Slab

 is the total energy of a Na atom adsorbed on 
the surface, E

Slab
 is the total energy of the pristine surface, 

and E
Na

 is the energy of bulk metallic sodium per unit cell 
(containing two Na atoms).

3 � Results and Discussion

3.1 � Microstructure and Structural Characterization

The Ni2P@GPC/CFP composite was synthesized via a 
synchronous calcination–phosphorization strategy, during 
which nickel acetate was partially reduced to metallic Ni 
to catalyze the graphitization of the carbon precursor [40], 
while red phosphorus served both as a phosphorus source 
and a reactive modulating agent to tailor the carbon frame-
work [41, 42]. Meanwhile, KOH activation generated abun-
dant hierarchical porosity [43, 44], ultimately yielding a 
graphene-like, phosphorus-doped carbon network intimately 
integrated with Ni2P nanocrystals (Fig. 1a). X-ray diffraction 
(XRD) patterns (Fig. 1b) verify the successful formation 
of crystalline Ni2P together with a characteristic graphitic 
(002) reflection [45], with sharp peaks indexed to the (111), 
(201), (210), (300), (211), (310), (311), and (400) planes 
of Ni2P (PDF 03-0953). After aqua regia etching, only the 
carbon (002) peak remains, unambiguously confirming that 
the Ni2P phase is embedded within and stabilized by the 
porous carbon matrix. Scanning electron microscopy (SEM) 
images (Figs. 1c, d, and S1, S2) show that the Ni2P@GPC 
uniformly covers the carbon fiber paper (CFP, fiber diam-
eter ~ 10 μm; thickness ~ 230 μm), forming a freestanding 
three-dimensional conductive network. The CFP scaffold 
serves simultaneously as current collector and mechanical 
backbone, eliminating the need for polymer binders, conduc-
tive additives, and metal foils. This binder-free architecture 
simplifies electrode fabrication and significantly enhances 
volumetric energy density by minimizing inactive compo-
nents and improving the utilization of electroactive materi-
als. Remarkably, the Ni2P@GPC/CFP composite maintains 
excellent mechanical integrity even under a 500-g load 
(Fig. S3), demonstrating its robustness for direct use as a 
SIB anode. Energy-dispersive X-ray spectroscopy (EDX) 

(5)E
ad

= E
Na@Slab

− (E
Slab

+ 1∕2E
Na
) mapping (Figs. 1e and S4) demonstrates the homogeneous 

distribution of Ni and P within the graphene-like carbon 
matrix. Transmission electron microscopy (TEM) (Figs. 1f 
and S5, S6) further reveals an ultrathin, graphene-like 
porous carbon architecture that provides fast electron/ion 
transport pathways while offering nanoscale confinement for 
Ni2P domains, which is critical for accommodating volume 
fluctuations during cycling. High-resolution TEM (HRTEM) 
images and selected area electron diffraction (SAED) pat-
terns (Fig. 1g-i) display well-defined lattice fringes corre-
sponding to the Ni2P (111) and (201) planes [46], consistent 
with the XRD results and confirming the high crystallinity 
of the embedded Ni2P nanocrystals.

X-ray photoelectron spectroscopy (XPS) further 
elucidates the chemical environment of the compos-
ite (Fig. S7a). The C 1s spectrum displays characteris-
tic peaks assigned to C–C/C = C (284.7 eV), C-O/C-P 
(285.5 eV), and C =O (288.4 eV) [47–50] (Fig. S7b). The 
P 2p spectrum shows P-Ni (130.5 and 129.7 eV) and P–C 
(133.8 eV) signals, confirming both the formation of Ni2P 
and P doping in the GPC [51, 52] (Fig. 1j). The Ni 2p 
spectrum exhibits Ni2+ features at 856.9 and 874.7 eV 
together with pronounced satellite peaks (Fig. 1k), indica-
tive of surface oxidation and interfacial Ni–P–C interac-
tions, which may facilitate interfacial charge transfer [53]. 
Raman spectra reveal distinct D and G bands at 1354 
and 1590 cm−1 with nearly identical ID/IG ratios (1.06 
vs. 1.05) for Ni2P@GPC/CFP and GPC/CFP, suggesting 
comparable defect densities and increased surface reactiv-
ity resulting from P doping [54] (Fig. 1l). Thermogravi-
metric analysis (TGA) shows a major weight loss between 
140 and 430 °C due to the carbon combustion and Ni2P 
decomposition, followed by the formation of Ni3(PO4)2, 
Ni2P2O7, and NiO at temperatures above 585 °C [55]. 
Based on the residual mass, the Ni2P content is estimated 
to be ~ 43.9 wt% (Fig. S7c). Nitrogen adsorption–desorp-
tion isotherms exhibit typical type-IV profiles with BET 
surface area of 221.0 m2 g−1 and pore volume of 0.412 
cm3 g−1 for Ni2P@GPC/CFP, slightly lower than that of 
GPC/CFP owing to the incorporation of Ni2P nanopar-
ticles (Fig. S7d–f). The resulting hierarchical porosity 
ensures efficient electrolyte infiltration and ion diffusion, 
thereby supporting fast electrochemical kinetics.
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3.2 � Electrochemical Performance Evaluation

The Na+ storage performance of Ni2P@GPC/CFP was 
first evaluated by CV and GCD analyses. As shown in 
Fig. 2a, the CV profiles at 0.1 mV s−1 display a broad 

irreversible cathodic peak at ≈2.07 V in the first scan, 
associated with SEI formation and electrolyte degrada-
tion [56, 57]. The cathodic peak at ≈0.91 V shifts posi-
tively to ≈0.99 V in subsequent cycles, indicative of elec-
trode activation with reduced polarization and improved 

Fig. 1   a Schematic illustration of the synthesis for Ni2P@GPC/CFP. b XRD patterns of Ni2P@GPC/CFP, GPC/CFP, and pure Ni2P. c, d SEM 
images and e corresponding EDX elemental mapping of Ni2P@GPC/CFP matched with d. f TEM and g HRTEM images of Ni2P@GPC/CFP 
(inset: SAED pattern). h, i FFT of Ni2P. j P 2p and k Ni 2p XPS spectra of Ni2P@GPC/CFP. l Raman spectra of Ni2P@GPC/CFP and GPC/CFP
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Na+ insertion kinetics [47, 58]. A distinct anodic peak at 
1.78 V is associated with Na+ extraction, and the highly 
overlapped profiles from the 2nd to 5th cycles confirm 
excellent reversibility. GCD measurements at 0.1 A g−1 
show first-cycle discharge/charge capacities of 791/560 
mAh g−1, giving an initial Coulombic efficiency (ICE) of 
70.8% (Fig. 2b). The relatively low ICE is attributed to 
irreversible Na+ consumption during SEI formation and 
ion trapping [59]. Upon prolonged cycling, the capacity 

stabilizes at ≈405 mAh g−1 after 300 cycles, with a Cou-
lombic efficiency (CE) of ≈99.8% and a remarkably low 
decay rate of ≈0.09% per cycle. The nearly identical GCD 
profiles (Fig. S8a) corroborate the structural integrity of 
the electrode. In contrast, control electrodes exhibit sub-
stantially inferior performance: GPC/CFP delivers only 
148 mAh g−1 initially and fades to 93 mAh g−1 after 300 
cycles, while bare Ni2P undergoes rapid capacity loss 

Fig. 2   a CV curves of Ni2P@GPC/CFP at 0.1 mV s−1 for the first five cycles. b Cycling performance of Ni2P@GPC/CFP, GPC/CFP, and Ni2P 
at 100 mA g−1. c Rate performance of Ni2P@GPC/CFP, GPC/CFP, and Ni2P. d Performance comparison of the Ni2P@PC/CFP anode with pre-
viously reported transition-metal-phosphide anodes. e Cycling performance and f rate capability of Ni2P@GPC/CFP||NVP@C full cell
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due to severe pulverization and electrical disconnection 
(Figs. 2b and S8c, e).

At high current density (1 A g−1), Ni2P@GPC/CFP 
retains 263 mAh g−1 after 2000 cycles (78.2% retention, 
decay ≈ 0.02% per cycle), far outperforming GPC/CFP (79 
mAh g−1) and Ni2P (50 mAh g−1) (Fig. S8g). Even at an 
ultrahigh rate of 10 A g−1, it delivers 135 mAh g−1, signifi-
cantly exceeding GPC/CFP and Ni2P, and fully recovers 
to 396 mAh g−1 when the current density returns to 0.1 
A g−1 (Figs. 2c and S8b, d, f), demonstrating outstand-
ing rate capability. Benchmarking against state-of-the-art 
transition-metal-phosphide anodes (Fig. 2d; Table S1) 
shows that Ni2P@GPC/CFP exhibits competitive overall 
performance.

To assess practical applicability, a full cell was assembled 
using Ni2P@GPC/CFP as the anode and NVP@C as the 
cathode. The full cell delivers an initial capacity of 98 mAh 
g−1 at 0.5 C, corresponding to an energy density of 245 Wh 
kg−1 at a power density of 98 W kg−1 (based on the total 
mass of active materials in both electrodes). Remarkably, 
it retains 82 mAh g−1 after 400 cycles at 0.5 C, with a low 
fading rate of only 0.03% per cycle and a nearly 100% CE 
(Figs. 2e and S9a). The cell also exhibits robust rate per-
formance, delivering 86 to 68 mAh g−1 from 0.2 to 3.0 C, 
with full recovery to ~ 84 mAh g−1 once the current density 
returns to 0.2 C (Figs.2f and S9b). Even at 2 C, 73 mAh g−1 
is maintained after 400 cycles (89.3% retention; Fig. S9c, d). 
The ability of the assembled device to stably power an LED 
display (inset, Fig. 2e) visually demonstrates its practical 
applicability.

Ex-situ FE-SEM and EDX analyses after long-term 
cycling (Figs. S10–S12) reveal a well-preserved porous 
architecture with uniformly distributed Ni, P, and C, con-
firming the absence of pulverization or aggregation. This 
structural robustness stems from the rational material 
design: hierarchical porosity ensures electrolyte accessibil-
ity; the graphene-like carbon scaffold buffers volume fluctu-
ations and maintains electrical conductivity; nanosized Ni2P 
domains shorten diffusion paths and enhance interfacial 
kinetics; P doping improves electronic/ionic transport and 
provides additional active sites; and the binder-free configu-
ration maximizes active-material utilization and minimizes 
interfacial side reactions, thereby offering a clean platform 
to probe the intrinsic Na-storage mechanism of Ni2P.

3.3 � Elucidation of Sodium‑Storage Kinetics

To gain deeper mechanistic insight, the Na+ storage kinetics 
were investigated using the GITT (Figs. 3a and S13a–c). 
According to Fick’s second law [60], the Na+ diffusion coef-
ficient ( D

Na
+ ) can be estimated as: D

Na
+ = 4

��

(
mBVm

MBS
)
2
(
ΔEs

ΔE
�

)
2
 , 

where S (cm2) is the effective electrode area; MB (g mol−1), 
Vm (cm3 mol−1), and mB (g) denote the molar mass, molar 
volume, and mass of the active material, respectively; τ is 
the pulse duration; ∆Es (V) is the steady-state voltage 
change, and ∆Eτ (V) is the transient voltage change during 
the pulse. The average log(D

Na
+ ) values of -10.6, -11.0, and 

-11.3 (Fig. 3b) for Ni2P@GPC/CFP, GPC/CFP, and Ni2P 
highlight the enhanced Na+ diffusivity in the composite. 
Nyquist plots at various discharge depths (Fig. 3c) show a 
consistently low and nearly invariant charge-transfer resist-
ance (~ 10.3 Ω), with minor changes in the Warburg slope, 
indicative of pseudocapacitive-dominated behavior [32, 61]. 
For Ni2P@GPC/CFP||Na, the interfacial resistance increases 
modestly after 100 cycles due to gradual SEI growth, yet it 
remains significantly lower than that of Ni2P (Fig. S13d-f; 
Table S2), indicating that 3D hierarchical GPC framework 
enhances charge-transfer dynamics and stabilizes the inter-
face during cycling. Furthermore, the Na+ diffusion coeffi-
cients extracted from the Warburg region of the EIS spectra 
further corroborate the improved ion transport in Ni2P@
GPC/CFP. Compared to GPC/CFP and pure Ni2P, Ni2P@
GPC/CFP shows consistently higher Na+ diffusion coeffi-
cients (Figs. 3d and S13g-h; Table S2), confirming its supe-
rior ion transport properties.

To probe the charge-storage mechanism, scan rate-
dependent CV analysis of Ni2P@GPC/CFP performed 
(Fig. 3e). The current response (i) scales with the scan rate 
(v) according to a power-law (i = avb) [62, 63], where a is a 
variable parameter, and b is an index used to assess the reac-
tion kinetics. The b value close to 1.0 typically corresponds 
to surface capacitive behavior, while a value closer to 0.5 
indicates a diffusion-dominated process. The b-values for 
oxidation (0.783) and reduction (0.755) suggest a hybrid 
diffusion-capacitive mechanism that enables fast Na+ uptake 
and release (Fig. S14a). Quantitative deconvolution using 
i = k1ν + k2ν1/2 reveals that the capacitive contribution domi-
nates at higher scan rates [64, 65], increasing from 48.2% at 
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0.1 mV s−1 to 75.4% at 1.0 mV s−1, and reaching 61.9% at 
0.8 mV s−1 (Figs. 3f and S14b). The predominance of capac-
itive contributions facilitates fast Na+ uptake/release, which 
underpins the outstanding high-rate capability and structural 
durability of Ni2P@GPC/CFP over prolonged cycling.

3.4 � Mechanistic Investigation and Theoretical 
Validation

The Na-storage mechanism was further elucidated through 
a combination of in-situ/ex-situ characterizations and DFT 

Fig. 3    a GITT time-potential profiles of Ni2P@GPC/CFP. b Ion diffusion coefficients of Ni2P@GPC/CFP, GPC/CFP, and Ni2P. c Nyquist plots 
of Ni2P@GPC/CFP at different DOD states (0.01–3.0V). d Fitting line of Z′ vs. ω−0.5 for EIS before cycling, after 50 and 100 cycles of Ni2P@
GPC/CFP. e CV profiles of Ni2P@GPC/CFP at different scan rates, and f Capacitive-controlled contribution of Na+ at 0.8 mV s−1
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calculations. In-situ XRD measurements during both the 
first and 10th cycles (Fig. 4a, e) reveal that Ni2P@GPC/CFP 
retains its crystalline structure throughout sodiation and des-
odiation, with no appearance of new peaks, thus excluding a 
conversion-based process. Notably, the Ni2P (111) reflection 
undergoes a fully reversible shift toward lower 2θ during 
sodiation and recovers upon desodiation, corresponding to 
a reversible unit-cell expansion of ~ 2.5% to 2.7% (Fig. 4b, 
f), indicating the lattice breathing behavior. The interplanar 
spacing of the Ni2P (111) plane (0.220 nm) is significantly 
larger than the effective size of desolvated Na+ (~ 0.102 nm), 
whereas other low-index planes have substantially smaller 
spacings. As a result, Na+ insertion is geometrically favored 
along the (111)-oriented interplanar channels, enabling 
preferential Na+ occupation of lattice interstitial sites (e.g., 
irregular octahedral voids) in Ni2P.

Ex-situ HRTEM further corroborates this behav-
ior: the (111) lattice spacing expands from ~ 0.220 
to ~ 0.226 nm upon discharging to 0.01 V, and contracts 
back to ~ 0.220 nm after charging to 3.0 V during the first 
cycle (Fig. 4c, d). A similar trend is observed in the 10th 
cycle (0.228 → 0.221 nm; Fig. 4g, h). This reversible lattice 
breathing behavior, sustained across multiple cycles, under-
scores the low-strain, non-conversion nature of the intersti-
tial solid-solution mechanism in Ni2P. Further analysis of 
in-situ XRD data (Fig. S15) confirms the preservation of 
the crystallographic integrity of Ni2P throughout cycling, 
evidenced by minimal changes in the intensity ratios of Ni2P 
(201)/BeO (100) and Ni2P (210)/BeO (100). Long-term ex-
situ XRD (Fig. S16) reveals that the (111) peak continues to 
shift to lower angles during sodiation, but the extent of this 
shift progressively decreases and stabilizes, suggesting that 

Fig. 4   In-situ and ex-situ structure evolution of Ni2P@GPC/CFP during sodiation/desodiation. a Charge–discharge curve and  curve and in-situ 
XRD patterns at the first cycle. b XRD of Ni2P (111) and unit cell volume change during the first cycle. c, d HRTEM image and corresponding 
FFT of Ni2P at 0.01 V (discharge) and 3.0 V (charge) in the first cycle. e Charge–discharge curve and in-situ XRD patterns at the 10th cycle. f 
Ni2P (111) evolution and volume change during the 10th cycle. g, h HRTEM image and corresponding FFT of Ni2P at 0.01 V (discharge) and 
3.0 V (charge) in the 10th cycle
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initial lattice expansion is more pronounced but becomes 
increasingly accommodated over cycles. Additionally, 
SEM–EDX mapping at different charge/discharge states 
after 10 cycles (Figs. S17-S19) shows uniform distributions 

of Ni, P, and C with no evidence of aggregation or phase 
separation, further supporting the intercalation-dominated, 
non-conversion behavior of Na+ storage in Ni2P.

Fig. 5   a–c Ex-situ XPS analysis of P 2p, Ni 2p and C 1s at different sodiation/desodiation states. d Top and front views of Na+ adsorption sites 
on the GC, GPC and Ni2P surfaces, along with their corresponding adsorption energies. e Na+ diffusion paths on GC, GPC and Ni2P surfaces, 
together with the associated diffusion barriers. f Schematic illustration of the proposed sodium storage behavior for Ni2P@GPC/CFP
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Quasi-in-situ XPS further provides insights into the elec-
tronic evolution during Na+ insertion/extraction. In the P 2p 
spectra (Fig. 5a), pristine Ni2P@GPC/CFP displays charac-
teristic P-Ni and P–C peaks. Upon discharging to 0.01 V, a 
new P-Na feature emerges, accompanied by a negative shift 
of the P-Ni peak, indicating increased electron density on P 
as Na+ occupies interstitial sites to form NaxNi2P [66]. Dur-
ing charging, the P-Na signal weakens at 1.2 V and disap-
pears at 3.0 V, with the P-Ni peaks returning to their initial 
positions, demonstrating excellent reversibility. The Ni 2p 
spectra (Fig. 5b) show parallel negative shifts during sodia-
tion and recovery upon desodiation, confirming reversible 
electron redistribution around Ni without forming metallic 
Ni. Meanwhile, the C 1s spectra (Fig. 5c) reveal subtle shifts 
of C–C/C=C and C–O/C–P components upon discharge, 
which also recover after charging, suggesting a reversible 
modulation of the carbon scaffold and C-P bonding. These 
findings collectively demonstrate a fully reversible electronic 
environment, consistent with an intercalation-dominated 
solid-solution mechanism.

DFT calculations were also performed to provide atomic-
level insights into Na+ adsorption and diffusion (Fig. 5d). 
The calculated adsorption energies are -0.89, -1.98, and 
-1.16 eV on GC (001), GPC (001), and Ni2P (111), respec-
tively, indicating that heteroatom-doped porous carbon 
offers the most favorable adsorption sites, while Ni2P also 
contributes strong anchoring. The corresponding diffusion 
barriers are 0.09, 0.03, and 0.36 eV for GC, GPC, and Ni2P, 
respectively (Fig. 5e), suggesting that although Ni2P affords 
strong Na binding, it suffers from sluggish ion transport. 
Compositing Ni2P with conductive GPC therefore combines 
strong adsorption with ultrafast ion diffusion, reconciling 
capacity retention with high-rate performance.

Taken together, the structural, spectroscopic, and theo-
retical findings consistently demonstrate that Na+ storage in 
Ni2P@GPC/CFP occurs through an interstitial solid-solution 
mechanism, in which desolvated Na+ ions enter and exit 
lattice interstitials along the (111) plane pathways without 
generating Na3P or metallic Ni. Figure 5f illustrates the pro-
posed sodium storage behavior for Ni2P@GPC/CFP. This 
mechanism facilitates highly reversible lattice breathing and 
structural stabilization during cycling. In parallel, kinetics 
analyses (CV and GITT/EIS) demonstrate dominant pseu-
docapacitive contributions at higher rates, synergistically 
complementing the solid-solution process. The dual-mode 
storage mechanism, comprising solid-solution intercalation 

coupled with capacitive behavior, underpins the high rate 
capability, capacity retention, and long-term durability of 
Ni2P@GPC/CFP.

4 � Conclusions

In summary, we demonstrate a freestanding Ni2P-based 
nanocomposite electrode that enables a dual-mode sodium-
storage mechanism, conclusively identified as a coopera-
tive interplay between interstitial solid-solution intercalation 
and surface pseudocapacitance. This concerted mechanism, 
which avoids the conventional conversion reaction, is facili-
tated by the designed hierarchical porosity and nanocon-
finement, yielding high reversible specific capacity of ≈405 
mAh g−1 after 300 cycles, outstanding rate capability (135 
mAh g−1 at 10 A g−1) and long-term stability with a specific 
capacity of 263 mAh g−1 at 1 A g−1 after 2000 cycles, cor-
responding to a capacity retention of 78.2%.
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