Supporting Information for

Nitrogen-Doped TiO₂-C Composite Nanofibers with High-Capacity and Long-

Cycle Life as Anode Materials for Sodium-ion Batteries

Su Nie¹, Li Liu^{1, 2, *}, Junfang Liu¹, Jianjun Xie¹, Yue Zhang¹, Jing Xia¹, Hanxiao Yan¹, Yiting Yuan¹, Xianyou Wang¹

¹National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China

²Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, People's Republic of China

*Corresponding author. E-mail: liulili1203@126.com (L. Liu)

Supplementary Figures

Fig. S1 TGA curves of TiO₂/N-C NFs and TiO₂-C NFs

Fig. S2 a Continuous discharge and charge curves of TiO_2 -C NFs electrode under a current density of 1 A g⁻¹. **b** Charge-discharge curves of TiO_2 -C NFs at 0.05-5 A g⁻¹ in the range of 0.01-2.5 V

Fig. S3 The electrochemical performances of TiO_2/N -C NFs added with different amounts of urea: **a** Cycle performance at current densities of 1 A g⁻¹. **b** rate capability

Fig. S4 a, b TEM images and **c** HR-TEM image of the TiO_2/N -C NFs electrode after cycling for 1000 cycles at 1 A g⁻¹ in SIBs (the EDS elemental mapping of the area, marked by the yellow rectangle in image **b**)

Fig. S5 High-resolution N 1s spectra of TiO₂-C NFs

Fig. S6 a Black curve shows the CV curve of TiO₂-C NFs and the red shaded part indicates the capacitive contribution measured at 10 mV s⁻¹. **b** Diagram of capacitive contribution to the total capacity at different scan rate of TiO₂-C NFs

Fig. S7 Nyquist plots and equivalent circuit of the TiO₂/N-C NFs with different amounts of urea in SIBs the first cycle at 0.05 A g^{-1}

Materials	Rate Performance (mAh g ⁻¹ / A g ⁻¹)	Cycle Performance (mAh g ⁻¹ (cycle number)A g ⁻¹)	References
Nitrogen-doped mesoporousTiO ₂ Nanofibers	310/0.067 108/3.35	110(500 th)/3.35	[S1]
Nitrogen-Doped TiO ₂ nanospheres	185/0.2 156/5	162(1000 th)/1	[82]
Anatase TiO2@C composites	230/0.033 80/6.68	148(500 th)/0.5	[\$3]
Anatase TiO ₂ /PVDF	229.8/0.168 102.1/6.72	180(500 th)/0.335	[S4]
MesoporousTiO ₂ nanosheets anchored on graphene	190.8/0.05 88.9/1.67	130(2000 th)/1.675	[85]
N-doped carbon coated TiO ₂ nanoparticles	204.8/0.168 84.9/3.35	122.1(3000 th)/3.36	[S 6]
Olive-like anatase TiO ₂	267/0.336 110/6.72	125 (1000 th)/3.36	[S7]
Defect-rich TiO₂. ₅/mooncake-shaped carbon	330/0.05 98.1/5	88.5(5000 th)/10	[S 8]
TiO2@CNT@C Nanorods	230/0.05 115.5/4	153/(1000 th)/1	[S9]
TiO ₂ particles/carbon	311.5/0.05 91.3/6.4	241(500 th)/0.4	[S 10]
Nitrogen-doped TiO ₂ - C composite nanofibers	268.5/0.05 124.5/5	179.2(1000 th)/1 118.1(2000 th)/5	this work

Table S1 Comparison of the electrochemical performance of $TiO_2/N-C$ NFs with previously reported TiO_2 -based materials as anode in sodium ion batteries

Table S2 Simulated impendence parameters (R_s and R_{ct}) of the TiO₂/N-C NFs with different amounts of urea in SIBs

Samples	0.05 g urea	0.1 g urea	0.2 g urea
$R_{ m s}\left(\Omega ight)$	7.51	7.33	8.26
$R_{ ext{ct}}\left(\Omega ight)$	104.3	85.5	170.2

Reference

- [S1]Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO₂ nanofibers as anode materials for high performance sodium-ion batteries. Small **12**, 3522 (2016). https://doi.org/10.1002/smll.201600606
- [S2]S. Liu, Z. Cai, J. Zhou, A. Pan, S. Liang, Nitrogen-doped TiO₂ nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4, 18278 (2016). https://doi.org/10.1039/C6TA08472A
- [S3]X. Shi, Z. Zhang, K. Du, Y. Lai, J. Fang, J. Li, Anatase TiO₂@C composites with porous structure as an advanced anode material for Na ion batteries. J. Power Sources 330, 1 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.132
- [S4]L. Ling, Y. Bai, Z. Wang, Q. Ni, G. Chen, Z. Zhou, C. Wu, Remarkable effect of sodium alginate aqueous binder on anatase TiO₂ as high-performance anode in sodium ion batteries. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b17659
- [S5]R. Zhang, Y. Wang, H. Zhou, J. Lang, J. Xu, Mesoporous TiO₂ nanosheets anchored on graphene for ultra-long life Na-ion batteries. Nanotechnology 29, 22 (2018). https://doi.org/10.1088/1361-6528/aab562
- [S6]J. Wang, G. Liu, K. Fan, D. Zhao, B. Liu, J. Jiang, D. Qian, C. Yang, J. Li, N-doped carbon coated anatase TiO₂ nanoparticles as superior Na-ion battery anodes. J. Colloid Interface Sci. 517, 134 (2018). https://doi.org/10.1016/j.jcis.2018.02.001
- [S7]J. Chen, Y. Zhang, G. Zou, Z. Huang, S. Li, H. Liao, J. Wang, H. Hou, X. Ji, Size-tunable olive-like anatase TiO₂ coated with carbon as superior anode for sodium-ion batteries. Small 12, 5554 (2016). https://doi.org/10.1002/smll.201601938
- [S8]H. He, Q. Zhang, H. Wang, H. Zhang, J. Li, Z. Peng, Y. Tang, M. Shao, Defect-rich TiO₂₋₈ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J. Power Sources **354**, 179 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.035
- [S9]Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO₂@CNT@C nanorods for high-performance Na-ion capacitors Adv. Energy Mater. 7, 1 (2017). https://doi.org/10.1002/aenm.201701222
- [S10] H. Tao, M. Zhou, K. Wang, S. Cheng, K. Jiang, Glycol derived carbon- TiO₂ as low cost and high performance anode material for sodium-ion batteries Sci. Rep. 7, 43895 (2017). https://doi.org/10.1038/srep43895