Supporting Information for

A Novel Hierarchical Porous 3 D Structure Vanadium Nitride/Carbon Membrane for high performance Supercapacitor Negative Electrodes

Yage Wu¹, Yunlong Yang¹, Xiaoning Zhao¹, Yongtao Tan¹, Ying Liu¹, Zhen Wang¹,

Fen Ran^{1, 2,}

¹State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China

2School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, People's Republic of China

*Corresponding author. E-mail: <u>ranfen@163.com</u>; or <u>ranfen@lut.cn</u> (Fen Ran)

Supplementary Figures and Tables

Fig. S1 SEM images: a-c the cross-section views of VN/C (II)

Fig. S2 The surface SEM view of VN/C (II)

Fig. S3 The TEM images in different magnification multiples of VN/C (II)

Fig. S4 a N₂ adsorption-desorption isotherms, and b pore size distribution of VN/C (II)

Fig. S5 X-ray photoelectron spectra of VN/C (II)

Fig. S6 TEM images of VN/C (I) after cycling

|--|

Samples	BET Surface Area (m² g ⁻¹)	t-Plot Micropore Area (m² g ⁻¹)	Total Pore Volume (cm ³ g ⁻¹)	Micropore Volume (cm ³ g ⁻¹)	Micropore Area Ratio
VN/C (II)	504.2	485.9	0.25	0.19	76.0 %
VN/C (I)	523.5	501.8	0.24	0.10	83.5 %

Sample	C at%	N at%	O at%	V at%	C-O at%	N-O at%	C-OH at%
VN/C (I)	88.0	3.6	6.1	2.3	20.0	20.9	29.7
VN/C (II)	87.8	4.2	5.3	2.7	17.1	12.3	16.9

Table S2 Elemental analysis and XPS surface characterization of the VN/C (I) and VN/C (II)

 Table S3 The electrochemical performance of various VN-based electrodes reported in literature

Negative	Supercapacitors	Electrolyte	Specific	E _{max}	P _{max}	Voltage	References
materials	iterials (SCs)		capacitan	(Wh	(W	Window	(year)
			ce of SCs	kg-1)	kg ⁻¹)		
VN	VN//VN	aqueous 2	17.5 F g ⁻¹	2.7	4800	0~1 V	[1]
	Symmetric SCs	М КОН	at 1 A				(2014)
			g-1				
VNQDs/PC	VNQDs/PC//VNQDs/PC	aqueous 6	53.75 F	10.7	3000	0~1.2 V	[2]
	Symmetric SCs	М КОН	g ⁻¹ at 0.5	5			(2016)
			A g ⁻¹				
VN/CNTs	VN/CNTs//VN/CNTs	aqueous 6		4	1000	0~1 V	[3]
	Symmetric SCs	М КОН			0		(2011)
AC	AC//V2O5.0.6H2O	aqueous	64.4 F g ⁻¹	29.0	2000	0~1.8 V	[4]
	Asymmetric SCs	0.5 M	at current				(2009)
		K_2SO_4	rate of 2C				
VN-MWCN	VN-MWCNT//MnO2-M	aqueous	86 F g ⁻¹ at	38.7	316.	0~1.8 V	[5]
Т	WCNT	0.5 M	0.25 mA		2		(2014)
	Asymmetric SCs	Na ₂ SO ₄	cm ⁻²				
		aqueous 2	75 F g ⁻¹ at	16		0~1.6 V	[6]
PCNS@VN	PCNS@VNNP//NiO	М КОН	1 A g ⁻¹		800		(2016)
NP	Asymmetric SCs						
VNQD/CNF	VNQD/CNF//Ni(OH)2	aqueous 6	93.5 F g ⁻¹	31.2	3875	0~1.55	[7]
	Asymmetric SCs	М КОН	at 1 A g ⁻¹			V	(2017)
VN/C (I)	VN/C-M // Ni(OH)2	aqueous 6	122 F g ⁻¹	43.0	4000	0~1.6 V	our
	Asymmetric SCs	М КОН	at 1 A g ⁻¹				work

References

- R. Wang, X. Yan, J. Lang, A hybrid supercapacitor based on flower-like Co(OH)₂ and urchin-like VN electrode materials. J. Mater. Chem. A 2, 12724-12732 (2014). https://doi.org/10.1039/C4TA01296H
- [2] Y. Yang, L. Zhao, K. Shen, Y. Liu, X. Zhao, J. Wu, F. Ran, Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for

capacitive energy storage. J. Power Sources **333**, 61-71 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.151

- [3] C. Ghimbeu, E. Raymundo-Pi-ero, P. Fioux, Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 21, 13268-13275 (2011). https://doi.org/10.1039/c1jm11014d
- [4] Q. Qu, Y. Shi, L. Li, V₂O₅· 0.6 H₂O nanoribbons as cathode material for asymmetric supercapacitor in K₂SO₄ solution. Electrochem. Commun. **11**, 1325-1328 (2009). https://doi.org/10.1016/j.elecom.2009.05.003
- [5] Y. Su, I. Zhitomirsky, Hybrid MnO₂/carbon nanotube-VN/carbon nanotube supercapacitors. J. Power Sources 267, 235-242 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.091
- [6] Y. Liu, L. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode based on nano-vanadium nitride incorporated on porous carbon nanospheres derived from ionic amphiphilic block copolymers & vanadium-contained ion assembly systems. Electrochim. Acta 211, 469-477 (2016). https://doi.org/10.1016/j.electacta.2016.06.058
- [7] Y. Wu, F. Ran, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. J. Power Sources 344, 1-10. (2017). https://doi.org/10.1016/j.jpowsour.2017.01.095