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Highlights

• Bi2Se3 was investigated as a novel sodium-ion battery anode material.

• Sodiation/desodiation mechanism of Bi2Se3 has been carefully investigated.

• Bi2Se3/C electrode demonstrates high cycling stability.

Abstract Bi2Se3 was studied as a novel sodium-ion bat-

tery anode material because of its high theoretical capacity

and high intrinsic conductivity. Integrated with carbon,

Bi2Se3/C composite shows excellent cyclic performance

and rate capability. For instance, the Bi2Se3/C anode

delivers an initial capacity of 527 mAh g-1 at 0.1 A g-1

and maintains 89% of this capacity over 100 cycles. The

phase change and sodium storage mechanism are also

carefully investigated.

800

700

600

500

400

300

200

100

0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

100
90
80
70
60
50
40
30
20
10
0

C
ou

lo
m

bi
c 

E
ffi

ci
en

cy
 (%

)

0 10 20 30 40 50

Charge

Unit: A g-1 10, 7, 5, 3, 1, 0.5, 0.3, 0.1

Bi2Se3/C

Discharge

Cycle Number

S
pe

ci
fic

 C
ap

ac
ity

 (m
A

h 
g-1

)

Specific Capacity (mAh g-1)

V
ol

ta
ge

 (V
 v

s.
 N

a+ /N
a)

60 70 80 90 100 0 100 200 300 400 500

Keywords Bi2Se3 � Sodium-ion battery � High-energy ball

milling � Sodium storage mechanism

1 Introduction

Sodium-ion batteries (SIBs) have recently regained exten-

sive research interest as alternatives to lithium-ion batteries

(LIBs) for energy storage owing to the low cost and

abundance of Na [1–5]. The lack of high energy density

anode materials has impeded the progress of SIBs for a

long time [6]. Developing suitable anode materials for SIBs

with both high capacity and long cycle life is highly

desired. Among anode materials, alloying-type materials

[7] have attracted much attention. For example, Sn, Sb, and
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Bi can reversibly alloy with Na? and provide high theo-

retical gravimetric capacities ([ 300 mAh g-1), which far

exceed the capacities of carbonaceous materials and Ti-

based materials. The accompanying challenge for alloying-

type materials is the large volume expansion when alloying

with Na?. Bi displays a relatively small volume expansion

(ca. 250% expansion from Bi to Na3Bi), compared to Sn

(ca. 420% expansion from Sn to Na3.75Sn) and Sb (ca.

293% expansion from Sb to Na3Sb) [8], which is beneficial

for a stable anode [9]. The voltage plateau is also an

important criterion in evaluating an electrode material. A

low operating voltage for anode materials can endow a cell

with a high operation voltage. However, Na plating, den-

drite formation, and electrolyte decomposition occur on the

anode side when the discharge voltage approaches 0 V, as

is often the case for hard carbon anodes [10–12]. The

plateaus of Bi between 0.3 and 0.9 V versus Na?/Na are

favorable for maintaining a high operation voltage and

avoiding the aforementioned detrimental effects [13, 14].

Sulfides and selenides have been actively investigated

because their conversion reactions offer high capacities for

ion storage [15–18]. Recently, the Bi-based compound

Bi2S3 has been synthesized and displayed a high Na storage

capacity [19, 20]. However, the rate capacity was unsat-

isfactory, limited by the low intrinsic conductivity of sul-

fides [15]. Bi2Se3 displays an electrical conductivity two

orders of magnitude higher than that of Bi2S3 [21], which

can improve the electron transport. In addition, the shuttle

effect is relieved for selenides compared to sulfides [22].

Moreover, Bi2Se3 has a high density of 7.47 g cm-3 [21],

permitting the opportunity to fabricate small-sized devices

with high volumetric capacities (theoretically 3667 mAh

cm-3). Bi2Se3 has been applied in LIBs and exhibited

excellent electrochemical storage ability for Li?. Several

Bi2Se3 nanostructures, such as nanosheets and microrods,

have been designed for Li? storage [23, 24]. Furthermore,

high free electron densities can effectively improve the rate

capability; thus, doping strategies have been employed to

create S-doped and In-doped Bi2Se3 [25–27]. Despite the

good electrochemical performance in Li? storage, Bi2Se3

has not been reported as an anode material for SIBs.

Downsizing the bulk material to nanoscale and inte-

grating carbon with it can improve the electrochemical

performance, including the rate capability and cyclability,

by the shorter diffusion distances, more abundant reaction

sites on the large surface area, and additional space for

expansion [28–31]. Carbon can stabilize the nanomaterial

and provide an interconnected network for electron trans-

port as well, and the voids in the carbon can accommodate

volume expansion and allow permeation of the electrolyte

for fast Na? transport [32–34].

In our study, a simple high-energy ball milling (HEBM)

method was adopted to synthesize Bi2Se3 and Bi2Se3/C

nanocomposite. The Bi2Se3/C nanocomposite delivers an

initial reversible capacity of 527 mAh g-1 at 0.1 A g-1

with 89% retention over 100 cycles. The phase changes

during cycling were investigated by ex situ X-ray diffrac-

tion (XRD) to reveal the Na storage mechanism. The

rational material design combined with effective synthetic

protocol is important and this work is expected to shed

light on future work on developing excellent anode mate-

rials for SIBs.

2 Experimental

2.1 Synthesis Process

The synthesis of Bi2Se3 and Bi2Se3/C was performed by

HEBM. Bi (Alfa Aesar, 99.999%) and Se (Alfa Aesar,

99.999%) in a molar ratio of 2:3 were sealed in an Ar-filled

stainless steel jar and then ball milled for 10 h at 1200 rpm

(Spex 8000 M) to form phase-pure Bi2Se3 powder. Gra-

phite powders were milled for 48 h beforehand. Then, the

milled graphite was added to Bi2Se3 powders in the weight

ratio of 2:8 and ball milled for another 6 h to form the

carbon-integrated Bi2Se3 nanocomposite.

2.2 Material Characterization

The phases were investigated by XRD on a Rigaku

SmartLab diffractometer with a Cu Ka source at the scan

rate of 5 deg. min-1. The morphology was studied under

scanning electron microscopy (SEM, LEO 1525). The

nanostructures and the diffraction patterns were charac-

terized by transmission electron microscopy (TEM, JEOL

2010F, operated under 200 kV). The elemental mapping

was collected by energy-dispersive X-ray spectroscopy

(EDS) (attached to the TEM). X-ray photoelectron spec-

troscopy (XPS) measurements were performed on a PHI

Quantera XPS instrument. To confirm the carbon content,

the samples were heated at 10 �C min-1 from room tem-

perature to 600 �C in thermogravimetric analysis (TGA,

Q500).

2.3 Electrochemical Measurements

Coin cells (CR 2025) with Bi2Se3 or Bi2Se3/C as the active

material were assembled for battery tests. A slurry was

made by mixing 70 wt% active material, 20 wt% carbon

black, and 10 wt% polyacrylic acid (PAA) and then coated

on a Cu foil to form the working electrodes, followed by

drying at 60 �C under vacuum overnight. To prepare the

electrolyte, 1 mol L-1 NaClO4 was dissolved in propylene

carbonate/ethylene carbonate (1:1 in volume) with 5 wt%

fluoroethylene carbonate (FEC) as an additive. The loading
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of the active materials was 1.4 ± 0.2 mg cm-2 for the

Bi2Se3/C electrode and 1.5 ± 0.3 mg cm-2 for the Bi2Se3

electrode. Homemade Na lumps and glass fibers were

applied as the reference/counter electrodes and the sepa-

rators, respectively. The electrochemical measurements of

the cells were performed galvanostatically between 0.01

and 2.5 V versus Na/Na? on a Land CT2001A battery

tester. Cyclic voltammetry (CV) curves were swept at

0.1 mV s-1 on a BioLogic SP-200 electrochemical work-

station. Electrochemical impedance spectroscopy (EIS)

was measured from 100 kHz to 100 mHz with a voltage

amplitude of 5 mV.

3 Results and Discussion

Figure 1 displays the structural and morphological char-

acterization details of Bi2Se3 and Bi2Se3/C. The XRD

patterns of Bi2Se3 and Bi2Se3/C are shown in Fig. 1a. The

ball milled Bi2Se3 and Bi2Se3/C display the same XRD

patterns, which match well with the pure rhombohedral

phase (space group R�3m (166), JCPDS card No. 33-0214).

After ball milling with carbon for another 6 h, the peaks of

Bi2Se3/C become broader, indicating that smaller

nanocrystals are produced. The crystal structure is again

confirmed in the electron diffraction patterns of Fig. 1b,

with the rings well indexed as the planes (0 0 6), (1 0 1),

(0 1 5), (0 1 8), and (1 0 10) of rhombohedral-phase Bi2Se3.

The TEM image in Fig. 1c and high-resolution TEM image

in Fig. 1d show that the secondary Bi2Se3 particles are

composed of well-developed nanocrystals with sizes

ranging from a few nanometers to tens of nanometers.

Figure 1e, f demonstrate that the Bi2Se3 nanocrystals are

well encapsulated and uniformly distributed in the carbon

matrix after integration with carbon. The primary

nanocrystal sizes are approximately 5–20 nm, much

smaller than those of as-synthesized Bi2Se3 because the

carbon matrix can well separate and stabilize Bi2Se3

nanocrystals [32]. To reflect nanocrystal sizes across the

samples, additional high-resolution TEM images are pro-

vided in Fig. S1. The particle sizes of the Bi2Se3/C

nanocomposite also grow finer due to the separation of

Fig. 1 a XRD patterns of as-synthesized Bi2Se3 and Bi2Se3/C. b The diffraction pattern of Bi2Se3. c Low- and d high-resolution TEM images of

Bi2Se3. e Low- and f high-resolution TEM images of Bi2Se3/C. g Scanning TEM (STEM) image and its corresponding elemental (Bi, Se, and C)

mappings
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carbon compared to those of bare Bi2Se3, as observed in

the SEM images (Fig. S2). Clear fringes of the crystal

planes of Bi2Se3 can be found in Fig. 1f, indicating that the

Bi2Se3 maintains good crystallinity in the carbon com-

posite. In Fig. 1g, the uniform distribution of the elements

Bi, Se, and C is confirmed by the EDS mapping. The

carbon content of the composite is further confirmed to be

20.7 wt% by the TGA test (Fig. S3).

The half-cell of Bi2Se3/C was cycled at a scan rate of

0.1 mV s-1 within 0.01–2.5 V versus Na?/Na and the I–

V curves are shown in Fig. 2a. Three cathodic peaks at

1.04, 0.52, and 0.27 V and four anodic peaks at 1.88, 1.7,

0.79, and 0.67 V are depicted in the first cycle. The peak

positions are analogous to those in Bi2S3 anode because of

the similar properties between S and Se as chalcogens

[14, 19, 20]. In the cathodic scan, Bi and Na2Se form at

1.04 V [19, 20], followed by the sodiation of Bi at lower

voltages of 0.52 and 0.27 V [14]. In the reverse scan,

desodiation of the Na–Bi alloy occurs at 0.67 and 0.79 V

[14], then NaBiSe2 is formed at 1.7 and 1.88 V

[19, 20, 35]. The peak at 1.04 V in the first cycle is slightly

shifted to 1.14 V in the following cycle. Other than this

shift, the CV curves overlap very well, which indicates a

highly reversible Na storage kinetics. Figure S4 also dis-

plays the CV curve of Bi2Se3. The same characteristics are

observed in the CV curves of Bi2Se3 and Bi2Se3/C, which

indicate that integrating carbon does not affect the sodia-

tion process of Bi2Se3. However, integrating carbon does

improve the stability of the electrode, which is evidenced

by the obvious decrease in the peak intensities of bare

Bi2Se3 over CV cycling.

The cyclic performances of Bi2Se3 and Bi2Se3/C at 0.1

A g-1 and the related Coulombic efficiency of the Bi2Se3/C

anode are shown in Fig. 2b. Alloying and conversion

anodes often show lower Coulombic efficiencies than

intercalation anodes. At the first cycle, the Bi2Se3 and

Bi2Se3/C anodes both display reasonably high Coulombic

efficiencies ([ 75%), indicating higher utilization of Na?

than most alloying anodes. With carbon integrated, the

reversible capacity of Bi2Se3/C anode (527 mAh g-1) is

somewhat comprised compared to the capacity of 557 mAh

g-1 for the Bi2Se3 anode at the first cycle. In the following

cycles, however, the Bi2Se3/C anode exhibits much

improved stability, reaching a steady value of

510 mAh g-1 within five cycles and retaining 89% of the

initial capacity over 100 cycles, while the Bi2Se3 anode
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Fig. 2 Studies of electrochemical properties of the Bi2Se3/C anode for SIBs. a CV curves of the Bi2Se3/C anode at 0.1 mV s-1. b Cyclic

performance of Bi2Se3/C and Bi2Se3 anodes at 0.1 A g-1 and the related Coulombic efficiency of Bi2Se3/C anode. c Discharge/charge profiles

and d rate performance of Bi2Se3/C anode at different current densities
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displays a fast decay in capacity to below 200 mAh g-1

within 20 cycles. At a higher current density of 0.5 A g-1,

the Bi2Se3/C anode still shows high stability with an initial

capacity of 445 mAh g-1 after the first two cycles at 0.1 A

g-1 and that of 383 mAh g-1 over 180 cycles (Fig. S5).

The cyclic performance of Bi2Se3/C is superior to those of

other Bi-based materials and competitive with many typi-

cal anode materials (Table S1) [36–41]. Although the ini-

tial capacity of Bi2Se3/C is not extremely high compared to

those of similar materials reported, the unique advantage of

this composite is its stability in long-term cycling. For

example, at 0.1 A g-1, the capacity of 470 mAh g-1 for

Bi2Se3/C composite at the 100th cycle is more than triple

that of Bi@C microspheres [42] and ca. 50% higher than

that of Bi2S3 nanorods at the 40th cycle [19]. Figure 2c

shows the voltage profiles of the Bi2Se3/C anode for a wide

range of discharge/charge rates between 0.01 and 2.5 V

versus Na?/Na. At the low current density of 0.1 A g-1, the

plateaus can be clearly identified with three discharge

plateaus and four charge plateaus, corresponding to the

peaks in the CV curves. The discharge/charge profiles

maintain analogous shapes and plateaus even at very high

current densities, indicating the fast reaction kinetics of the

Na storage process. The details of the fast reaction kinetics

may be ascribed to the fast capacitive contribution, as

discussed later. Figure 2d shows the excellent rate capa-

bility of Bi2Se3/C as an anode material for SIBs.

Remarkably, it delivers the high capacities of 500, 445,

415, 384, 332, 298, 255, and 186 mAh g-1 at 0.1, 0.3, 0.5,

1, 3, 5, 7, and 10 A g-1, respectively. To confirm the high

reversibility, 0.1 A g-1 is applied again after cycling at 10

A g-1, and the capacity returns to its previous level as

expected. The rate capacities of Bi2Se3/C are competitive

with those of typical anode materials listed in Table S2 and

the performance is better at high current densities. The

volumetric capacity is also an important consideration for

practical application; that of the Bi2Se3/C electrode reaches

1064 mAh cm-3, calculated by multiplying the volumetric

density of Bi2Se3/C (2.02 g cm-3) with the gravimetric

capacity (527 mAh g-1) at 0.1 A g-1.

To explore the insights of sodiation/desodiation mech-

anism of Bi2Se3, ex situ XRD was conducted. After

charging/discharging, the electrodes were removed from

the cells in a glove box and covered with Kapton tapes to

avoid oxidation. The sampling points were chosen in ref-

erence to the dQ/dV curves in Fig. 3a. When the anode is

sodiated to 0.86 V from the open-circuit voltage, the Bi2-

Se3 characteristic peak disappears while Bi peaks appear

with Na2Se [14]. The XRD patterns of Bi and Na2Se are

maintained when the material is discharged to a low volt-

age of 0.47 V. In this process, the intercalation of Na? into

Bi may occur. The phase of NaBi appears at 0.01 V,

indicating that alloying reaction occurs at the complete

sodiation state [8, 43]. In the desodiation process, Bi

dealloys with Na?, evidenced by the appearance of the Bi

phase at 0.88 V. However, even at the highest potential of

2.5 V, the Bi2Se3 phase does not recover; instead, NaBiSe2

with Bi phases are formed [19]. The irreversible Bi2Se3

change can also explain the peak shifting from 1.04 V in

the first cycle to 1.14 V in the following cycles in the I–

V curves of Fig. 2a. When the electrode is again sodiated to

1.05 V at the second cycle, diffraction patterns corre-

sponding to Bi and Na2Se appear again. In summary, the

phase changes during cycling can be listed as the following

four steps:

Sodiation process:

conversion reaction: Bi2Se3 þ 6Naþ þ 6e�

! 2Bi þ 3Na2Se irreversibleð Þ ð1Þ

alloying reaction: Bi þ xNaþ þ xe� ! NaxBi ð2Þ

Desodiation process

dealloying reaction: NaxBi ! Bi þ xNaþ þ xe� ð3Þ

conversion reaction: Bi þ 2Na2Se

! NaBiSe2 þ 3Naþ þ 3e� ð4Þ

In addition to XRD analysis, XPS was also applied to

provide a more comprehensive understanding of the

materials and the electrochemical process, because XPS is

sensitive to the surface within the depth of ca. 5 nm. Fig-

ure S7 displays the XPS survey spectrum and high-reso-

lution spectra of Bi 4f and Se 3d for Bi2Se3/C electrode.

Fig. 3 adQ/dV plots for the first two cycles and b ex-situ XRD results

of the Bi2Se3/C anode
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The peaks at 163.7 and 158.4 eV are assigned to Bi 4f5/2

and Bi 4f7/2, respectively. The peaks at 54.3 and 53.5 eV

correspond to Se 3d3/2 and Se 3d5/2 in Bi2Se3, respectively,

confirming the successful synthesis of Bi2Se3 [44]. In

addition, the peaks related to BiOx and SeOx are also found,

indicating oxidation happens at the surface [44]. The solid

electrolyte interface (SEI) compositions were also investi-

gated by comparing the electrode before and after one

cycle. Figure 4 indicates significant changes in the C

1s and F 1s spectra. The pristine electrode has a strong

signal at 284.6 eV related to the carbon bonds of graphite

or carbon black, and the small peaks at 285.3, 285.9, and

288.8 eV correspond to –CH2–, –CH–COONa, and R–

COONa of the PAA binder [9, 45]. After one cycle, several

new peaks are formed in the higher binding energy region

and the strong signal at 284.6 eV related to graphite and

carbon black disappears, indicating the formation of the

SEI film on the surface. The signals from 286.0 to

289.5 eV are assigned to the –C–O– and –C=O– species of

the SEI film and the peak at 291.1 eV arises from Na2CO3

of the SEI film [9, 46]. The signal related to F 1s appears

after one cycle, indicating that the SEI film contains F from

the decomposition of FEC.

The reaction kinetics can be revealed by EIS and the EIS

spectra of Bi2Se3/C electrode and Bi2Se3 electrode are

displayed in Fig. 5a. The intercept with the Zreal axis at

high frequency represents the electrolyte and contact

resistance (Rs), while the semicircles at medium frequency

are related to the SEI resistance (Rf) and electrolyte/elec-

trode charge transfer resistance (Rct) [47]. The equivalent

circuit model for the fitting is shown in the inset of Fig. 5a

with the fitting results listed in Table S3. Rct of the Bi2Se3/

C electrode decreases significantly from 661.4 to 81.4 X
after cycling benefited from the reconstructed porous

structure with close connections, as seen under SEM

(Fig. S8) [48]. On the contrary, the EIS spectra of Bi2Se3

display a large Rct increase after cycling due to the contact

loss. For the Bi2Se3 electrode after cycling, large aggre-

gates are formed with rough surfaces and loose contact

between particles. In addition, the Rf increase of 19.9 X for

the Bi2Se3 electrode is more significant than that of 6.8 X
for the Bi2Se3/C electrode, caused by the fracture and the

continuous growth of a thick SEI layer in the Bi2Se3

electrode.

For nanomaterials with large surface areas, surface-in-

duced capacitive processes can have significant effects and

improve the charge/discharge capability [49–51]. The

b value is often used as an index to estimate the surface-

induced capacitive contribution. According to i = amb,
where i is the current response at the scan rate m, the b value

can be readily fitted by log(i) - log(m) linear plots. The

b value can vary from 0.5 to 1. The capacitive process

dominates when the b value is close to 1, while diffusion-

controlled processes dominate when the b value approa-

ches 0.5. Figure 5b shows the I–V curves at different scan

rates for the Bi2Se3/C electrode; the relations of log(i) and
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Fig. 4 High-resolution XPS spectra a C 1s and b F 1s of the Bi2Se3/C electrode before and after one cycle
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log(m) at the corresponding peaks derived from the I–

V curves are shown in Fig. 5c, d. The fitted b values are

0.71, 0.82, 0.78, and 0.74 for the R1, R2–1, R2–2, R3 peaks

and 0.85, 0.85, 0.98, and 0.86 for O1–1, O1–2, O2, and O3

peaks. These values are much higher than 0.5, which

indicates that fast capacitive process occurs during Na

storage, contributing to the high rate capacity for the Bi2-

Se3/C electrode. The current and scan rate relations are not

shown for Bi2Se3 electrode because of the significant

changes of the CV curves over cycling.

4 Conclusions

The application of Bi2Se3 was explored as an anode

material for SIBs. Benefiting from the high theoretical

capacity and high intrinsic conductivity of Bi2Se3, the

positive effects of carbon, and the effective HEBM

method, a high-performance anode material was achieved.

The Bi2Se3/C electrode showed a high reversible capacity

of 527 mAh g-1 and retains 89% of this capacity over 100

cycles at 0.1 A g-1. To obtain insights regarding the

electrochemical process of Na storage, the phase changes

were revealed by ex situ XRD.
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