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HIGHLIGHTS 

• Nanomaterials-based nickel foam (NF-C/CoS/NiOOH) with nanosheets structure and core–shell heterostructure was prepared for the 
first time by a facile and fast synthesis strategy of Joule-heating and water soaking treatment.

• The formation mechanism of nanosheets structure was proposed that the driving force of nanosheets structure generation was the 
metastable nickel activated by thermal shock, and the CoS could induce the NiOOH nanosheets growing continually.

• NF-C/CoS/NiOOH exhibited good oxygen evolution, hydrogen evolution, and overall water splitting performance.

ABSTRACT Nanomaterials based 
on nickel foam (NF) have been 
widely applied in energy conver-
sion and storage field. Traditional 
synthesis methods such as hydro-
thermal method which is dangerous 
and high cost limited the scalable 
developments. Herein, we report a 
fast, simple, and low-cost synthesis 
method of nanomaterials based on 
NF by Joule-heating and water soak-
ing treatment. Thin carbon-coated 
CoS on NF (NF-C/CoS) was synthesized by Joule-heating for a few seconds with rapid cooling. And then, NF-C/CoS/NiOOH with 
core–shell heterostructure was fabricated by soaking treatment of NF-C/CoS in water on which NiOOH nanosheets grew spontaneously. 
The formation mechanism is proposed that the coordination complex precursor converts into C/CoS on NF driven by Joule-heating, and 
the nickel on the surface of NF is activated to form metastable nickel simultaneously. The metastable nickel reacting with water leads to 
the formation of NiOOH, and the induction of CoS makes NiOOH grow continuously. This synthesis technology provides a new route 
to manufacture NF-based nanostructures, and the as-fabricated NF-C/CoS/NiOOH exhibits great potential as electrocatalyst for oxygen 
evolution reaction and hydrogen evolution reaction.
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1 Introduction

Sustainable and green energy resources are becoming 
extremely important to meet the growing demand for 
energy developments due to the ever-rising environmental 
pollution and the increasing consumption of fossil fuels 
[1]. Recent studies on developing sustainable energy strat-
egies to address the current environmental and energy 
challenges have attracted significant interests [2]. Elec-
trocatalytic water splitting including hydrogen and oxygen 
producing is widely regarded as the most economical and 
effective way to produce clean and sustainable energy [3]. 
The overpotential corresponding to thermodynamics and 
kinetics of oxygen evolution reaction (OER) and hydrogen 
evolution reaction (HER) which are the half-reaction of 
water splitting depends on electrocatalytic materials [4].

Noble metal electrocatalysts such as Pt, Ru, and Ir have 
superior OER and HER electrocatalytic activities, but the 
development of noble metal electrocatalysts is restricted 
by the high-cost and conventional coating method in which 
the binder increases the resistance, buries the active sites, 
inhibits mass/electrons transports and the loading mass 
of the electrocatalysts is usually less than 1 mg cm−2, 
providing limited catalytically active sites [5, 6]. Enor-
mous efforts have been dedicated to the development of 
effective non-noble electrocatalysts and self-supporting 
electrode [7]. Nanomaterials based on nickel foam (NF) 
as self-supporting electrocatalysts have been extensively 
studied because NF as a high conductive substrate has the 
porous structure to provide higher active area, and nickel 
has good electrocatalytic activity. The NF which is widely 
used in practical applications such as NiMH battery [8], 
fuel cells [9], and electrocatalysts [10, 11] is low-cost and 
mature in industrial production. Studies in recent years 
have shown that NF-based nanoarchitectures as electro-
catalysts are mainly prepared by hydrothermal or solvo-
thermal methods because nickel has high reactivity with 
other additives to form kinds of nanostructures such as 
nanosheets and nanorods in water or other organic solvents 
under high temperature and pressure [12, 13]. However, 
hydrothermal and solvothermal processing requires high 
temperature and high pressure lasting a long time, which 
are harsh and dangerous conditions during industrial 
manufacturing. The use of additives and organic solvents 
increases the cost and may be harmful to the environment. 

These are not conducive to the industrial production of 
electrocatalysts based on NF. Therefore, it is necessary 
to find a fast and low-cost method to manufacture NF-
based electrocatalysts. In 2016, Chen et al. for the first 
time reported nanoparticles synthesized by simple Joule-
heating and rapid quenching, which provide a new method 
of ultrafast nanomanufacturing [14]. In the next few years, 
Yao et al. prepared high-entropy-alloy nanoparticles and 
single atoms loaded carbon nanofibers for small molecule 
electrocatalysis in the same method [15, 16]. Chen et al. 
prepared  FeS2 nanoparticles on reduced graphene oxides 
from  FeS2 microparticles in the same method [17]. This 
method which is essentially a thermal synthesis processing 
has superfast synthesis speed, but it still has limitations 
such as too high synthesis temperature and over-reliance 
on carbon supports.

Here, we designed and fabricated an integrated electro-
catalyst (NF-C/CoS/NiOOH) by using NF as Joule-heating 
substrate and water soaking treatment innovatively. The 
cobalt–thiourea coordination complex as precursor load-
ing on NF in situ transforms into doped carbon-coated CoS 
(NF-C/CoS) by Joule-heating with raped cooling which 
leads to nickel activated to be metastable that is like the 
“seeds” forming magically and the “soil” becoming fertile 
through lightning (Fig. 1a, b). It is remarkable that NF-C/
CoS/NiOOH with nanosheet structure was fabricated by 
simple soaking treatment of NF-C/CoS in water on which 
a nanostructure formation mechanism was proposed for 
the first time (Fig. 1b). The metastable nickel reacting with 
water led to the formation of NiOOH nanosheets and the 
C/CoS like “seeds” in the “flowerpot” induced flowerlike 
NiOOH nanosheets growing spontaneously and continuously 
(Fig. 1a). NF-C/CoS/NiOOH exhibited good OER, HER, 
and overall water splitting electrocatalytic performance.

2  Experimental Section

2.1  Materials Preparation

2.1.1  Chemicals

Cobalt (II) acetate tetrahydrate, thiourea, Pt/C (wt % = 20%), 
and  IrO2 were purchased from Aladdin (Shanghai, China). 
Nickel foam (NF) without any treatment was cut to 
3.5 cm × 0.5 cm × 0.1 cm.
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2.1.2  Preparation of NF‑C/CoS/NiOOH

Cobalt (II) acetate tetrahydrate and thiourea were dissolved 
into ethanol to prepare 1 M cobalt–thiourea coordination 
complex solution. The solution was dropped into the NF 
with 100 μL  cm−2 and then the NF dried at 60 °C for 30 min. 
The direct current supply was adopted for Joule-heating 
(MAISHENG-MP1203D, 0–50 A, 0–50 V). The as-pre-
pared cobalt–thiourea coordination complex solution was 
dropped into the nickel foam as shown in Fig. R3. The dis-
tance between powered clamps was 2.5 cm. The cobalt–thio-
urea coordination complex loading nickel foam clamped on 
the power clamps was transferred into the argon glove box. 
The clamp was passed to a current of 5A for 10–15 s, when 
the nickel foam changes from purple to black (Fig. S1b, c). 
Finally, the NF-C/CoS/NiOOH was prepared by soaking 
NF-C/CoS in water overnight.

2.1.3  Preparation of NF‑C/Ni(OH)S

Thiourea was dissolved into ethanol to prepare 1 M solution. 
The solution was dropped into the NF with 100 μL  cm−2 and 
then the NF dried at 60 °C for 30 min. The NF clamped on 
the power clamps was passed a current of 5 A in the argon 
glove box for about 10 s and then soaking in water overnight.

2.1.4  Preparation of Comparative Samples

In order to prove the formation processing of NF-C/CoS/
NiOOH, a series of comparative samples were prepared. The 
sample NF-5A was prepared by same as NF-C/CoS/NiOOH 
without the dropping of the cobalt–thiourea coordination 
complex solution. The sample NF-C/CoS/NiOOH-5 min was 
prepared by only changing the soaking time to 5 min. The 
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Fig. 1  a Synthesis strategy of NF-C/CoS/NiOOH. b Schematic illustration for preparation of NF-C/CoS/NiOOH. SEM of c1 NF-precursor, c2 
NF-C/CoS and c3 NF–NF-C/CoS/NiOOH
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sample NF-cobalt oxide was prepared by same as NF-C/
CoS/NiOOH with only cobalt–ethanol solution. The sam-
ples named NF-C/CoS/NiOOH-3A, NF-C/CoS/NiOOH-7A, 
NF-C/CoS/NiOOH-10A were prepared by only changing the 
current from 5 to 3, 7, and 10 A without other changes in the 
synthesis of NF-C/CoS/NiOOH.

2.2  Materials Characterization

The microstructure, energy-dispersive X-ray spectroscopy 
(EDS), and element distribution mapping were character-
ized by scanning electron microscopy (SEM, JSM-7800F), 
transmission electron microscopy (TEM, JEOL-2100F). 
Raman spectra were measured using Edinburgh RM5 
with the excitation laser line at 532 nm. Light microscopy 
images were characterized by using SOPTOP-BH200m. 
X-ray photoelectron spectra test was performed on a sci-
entific ESCALAB 250 instrument. The temperature evo-
lution during the synthesis of NF-C/CoS was performed 
using an ImageIR8355BB high-speed thermal imaging 
camera.

2.3  Electrochemical Measurement

Electrochemical measurements were taken in a three-
electrode system on an electrochemical workstation (CH 
Instruments 660E) at room temperature in 1 M KOH solu-
tion. NF-C/CoS/NiOOH, NF-C/CoS and NF (0.5 × 2 cm2) 
were used directly as the working electrode. A graphite rod 
was used as the counter electrode and saturated calomel 
electrode (SCE) was used as the reference electrode. 10 mg 
 IrO2 and 10 mg Pt/C were dispersed, respectively, into 965 
μL isopropyl alcohol and 35 μL Nafion solution (5%) with 
30 min sonication. NF-Pt/C and NF-IrO2 were prepared 
by loading powder ink (200 μL) onto NF. Alkaline overall 
water splitting measurement was taken in a two-electrode 
system by using bifunctional NF-C/CoS/NiOOH as both 
anode and cathode in 1 M KOH. The measured potentials 
were normalized to reversible hydrogen electrode (RHE) 
based on the Nernst equation:

All the polarization curves were tested at a scan 
rate of 5  mV  s−1. All the polarization curves and 

(1)E(RHE) = E(SCE) + 0.059 × pH + 0.24.

chronopotentiometry curves were corrected for iR losses. 
Electrochemical impedance spectroscopy (EIS) were 
measured in a frequency from  105 to 0.01 Hz at 1.526 V 
(OER) vs RHE, − 0.173 V (HER) vs RHE and 1.72 V 
(overall water splitting). The Faraday efficiency of OER 
and HER on NF-C/CoS/NiOOH was tested and analyzed 
by using gas chromatograph (GC) with gas-tight H-cell. 
Employ a GC, equipped with a combination of molecular 
sieve 5 A (2 m × 4 mm), Porapak-N (2 m × 4 mm), and 
Porapak-N (3 m × 4 mm), for  O2 and  H2 gas products anal-
ysis during OER and HER test. A thermal conductivity 
detector was used to quantify  H2 and  O2 concentration. 
Chronopotentiometry curves were tested at 10, 20, and 
50 mA cm−2 for 10, 5, and 2 min, respectively. The gas 
was collected with syringe with good sealing performance 
for testing in GC. The calculation of Faraday efficiency 
is the ratio of actual gas production to theoretical gas 
production.

3  Results and Discussion

3.1  Morphology and Structure Characterization

The cobalt–thiourea coordination complex on NF exhibited 
the color of purple and became black after power-up (Fig. 
S1). The evolution curve of the highest temperature on NF 
during the synthesis processing of NF-C/CoS indicates that 
the highest temperature of Joule-heating was about 450 °C 
and the cooling rate was about 100 °C  s−1 (Fig. S2). The 
scanning electron microscopy (SEM) and optical micro-
graphs of the cobalt–thiourea coordination complex on NF 
indicated evenly distributed on NF which was beneficial to 
the uniform formation of C/CoS (Figs. 1c1 and S3).

The SEM images of NF-C/CoS showed that carbon-coated 
CoS nanoparticles grew on the surface of NF (Figs. 1c2 and 
S4a, b). And then the microstructure of NF-C/CoS/NiOOH 
transforms to hierarchical nanosheets on the surface of C/
CoS nanoparticles after soaking treatment of NF-C/CoS in 
water (Figs. 1c3 and S4c, d). The energy-dispersive X-ray 
spectroscopy (EDS) demonstrated that both NF-C/CoS and 
NF-C/CoS/NiOOH had C, N, O, S, Co, Ni, and the ratio 
of Co and S was almost 1: 1 (Fig. S5a, b). Besides, NF-C/
CoS/NiOOH showed a sharp increase in oxygen content 
compared with NF-C/CoS demonstrating the formation of 
NiOOH by water soaking treatment. The microstructure of 
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C/CoS was irregular particles proved by transmission elec-
tron microscopy (TEM) image in Fig. 2a. The high-reso-
lution transmission electron microscopy (HRTEM) image 
showed crystalline CoS with about 2 nm carbon layer on the 
surface of CoS marked by red line and the FFT inverse image 
showed (101) plane of CoS with lattice distance of 0.255 nm 
(Fig. 2b). Also, the selected area electron diffraction (SAED) 
pattern proved that the phase of the irregular particles was 
crystalline CoS with four obvious diffraction rings corre-
sponding to (100), (101), (102), and (110) of CoS, respec-
tively (Fig. 2f) [18]. The elemental mapping showed that 
the particles were mainly composed of Co and S as well as a 
small amount of C, N, O (Fig. 2g). The microstructure of C/
CoS/NiOOH was core–shell heterostructure with CoS nano-
particles as the core and C/NiOOH hierarchical nanosheets 
as the shell (Fig. 2c, d). The SAED patterns indicated that 
the main crystalline phase of C/CoS/NiOOH was still CoS, 
and the crystalline phase of nanosheets was NiOOH with 
low crystallinity corresponding to four diffraction rings 
with (101), (210), (310), and (202) of NiOOH, respectively 
(Fig. 2f). The HRTEM image showed that the nanosheets 
contained the amorphous area and the crystalline area which 
was NiOOH proved by FFT inverse image (Fig. 2e). The 
elemental mappings indicated that the irregular particles 
were still CoS and hierarchical nanosheets coated on the 
CoS included C, N, O, and Ni in which the signal of Ni 
and O was strong (Fig. 2h). Moreover, the nanosheets were 
mainly composed of Ni, O and a small amount of C, N, 
Co, S demonstrating the formation of NiOOH with doped 
Co and N-, O-, S-doped carbon (Fig. S6). The samples of 
NF-C/CoS and NF-C/CoS/NiOOH showed complex element 
composition and structure so that we take the main struc-
ture of each part to name in order to simplify the naming 
of samples. In general, the structure of NF-C/CoS was thin 
carbon-coated CoS nanoparticles and the structure of NF-C/
CoS/NiOOH was C/NiOOH nanosheets on the surface of 
CoS nanoparticles.

The Raman spectra only showed the signal of CoS on 
NF-C/CoS and NF-C/CoS/NiOOH indicating that the 
phase of CoS remained stable after soaking treatment in 
water, and a small amount as well as low crystalline of C 
and NiOOH (Fig. 3a) [19]. The existence of C, N, O, S, 
Co, and Ni on NF-C/CoS and NF-C/CoS/NiOOH could 
also be proved by the X-ray photoelectron spectroscopy 
(XPS) survey spectra in Fig. 3b. Moreover, the signal 
strength of O on NF-C/CoS/NiOOH increased compared 

to NF-C/CoS demonstrating the increase in O after soak-
ing treatment in water. The high-resolution C 1 s spectrum 
of NF-C/CoS and NF-C/CoS/NiOOH could be deconvo-
luted into four individual component peaks correspond-
ing to C=C/C–C (284.6 eV), C–N/C–S (285.1 eV), C–O 
(286.9 eV), and O=C–O (288.3 eV) showing the N-, S-, 
O-doped carbon (Fig. 3c) [20]. The high-resolution N 1 s 
spectrum of NF-C/CoS and NF-C/CoS/NiOOH could be 
proved the formation of pyridinic N (398.9 eV) and pyr-
rolic N (400.0 eV), as shown in Fig. 3d [21]. The high-
resolution O 1 s spectrum could be deconvoluted into three 
peaks for NF-C/CoS corresponding to C=O (531.8 eV), 
C–O/–OH (531.2 eV), and Co–O (529.7 eV), but no signal 
of Co–O could be found in NF-C/CoS/NiOOH (Fig. 3e). 
The signal strength of C–O/–OH increased showing the 
formation of NiOOH with –OH [22]. In addition, the sig-
nal of Co–O disappeared after soaking treatment in water 
which was proposed that Co–O came from the bonding of 
cobalt on the surface of CoS and O on the carbon, and the 
formation of NiOOH led to the disappearance of Co–O. 
The high-resolution spectrum of S 2p clearly reflected 
that both NF-C/CoS and NF-C/CoS/NiOOH had Co–S 
and C–S–C corresponding to CoS- and S-doped carbon 
(Fig. 3f) [23]. Importantly, NF-C/CoS/NiOOH showed sig-
nal peaks of  SOx because of the bonding of S in CoS and 
O in  H2O. The high-resolution spectrum of Co 2p clearly 
reflected that both NF-C/CoS had  Co2+ as well as  Co0 and 
NF-C/CoS/NiOOH only had  Co2+ that  Co2+ came from 
CoS mainly and Co between the surface of CoS and carbon 
showed  Co0 due to the reduction of carbon (Fig. 3g) [24]. 
The high-resolution spectrum of Ni 2p clearly reflected 
that NF-C/CoS had the signal peaks of  Ni0,  Ni2+, and  Ni3+ 
that  Ni0 came from NF and  Ni2+ as well as  Ni3+ could 
come from doped Ni in CoS (Fig. 3h) [25, 26]. And then 
NF-C/CoS/NiOOH had the signal of  Ni0 and  Ni3+ corre-
sponding to NF and NiOOH, respectively.

3.2  Analysis of Formation Mechanism

It was an interesting phenomenon that NiOOH nanosheets 
grew spontaneously by soaking treatment in water com-
pared with other synthesis methods of nanosheets on 
NF such as hydrothermal method and electrodeposition 
method. Here, we made a simple analysis and specula-
tion on the growing mechanism of NF-C/CoS/NiOOH. As 
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shown in Fig. 4, the cobalt–thiourea coordination complex 
on NF converted to doped carbon-coated CoS by Joule-
heating that N-, O-, S-doped carbon came from thiourea 
and  CH3COO–. Meanwhile, nickel on the surface of NF 
was activated to form metastable nickel by cobalt–thiourea 
coordination complex and Joule-heating. Figure S7 demon-
strates that there was no formation of nanosheets on NF-5A 
indicating that bare NF by only Joule-heating was not acti-
vated indicating the necessity of cobalt–thiourea coordi-
nation complex for the spontaneous growing of NiOOH 
nanosheets. When only cobalt acetate solution was added 
into NF, the as-prepared sample NF-cobalt oxide showed 
a little cobalt oxide on NF indicating that the activation 
of nickel was mainly caused by thiourea (Fig. S8). In fact, 
the  S2− of CoS had strong reducibility and instability in 

water so that S on the surface of CoS could bond with O in 
water proved in Fig. 3f. In addition, the metastable nickel 
on the surface of NF reacted with water led to the forma-
tion of NiOOH. Moreover, the O which came from water 
on the surface of CoS became the anchors of NiOOH sus-
tained growing to led to the final formation of C/NiOOH 
coated on the surface of CoS. Figure S9 shows that the 
nanosheets of NF-C/CoS/NiOOH-5 min had formed indi-
cating the instantaneity of NiOOH formation. Furthermore, 
Fig. S10a shows that the crystalline CoS would not form 
when the current is not high enough (3 A), but it could 
activate the NF to a certain extent, resulting in a small 
number of nanosheets. Figure S10b, c demonstrates that 
NF-C/CoS/NiOOH could be also prepared when the cur-
rents were 7 and 10 A higher than 5 A, but the NF would 

(a) (b) (c)

(d)

(g)

(h)

(e) (f)

Fig. 2  a TEM of NF-C/CoS. b HRTEM of NF-C/CoS (inset: FFT inverse pattern). c–d SEM of NF-C/CoS/NiOOH. e HRTEM of NF-C/CoS/
NiOOH (inset: FFT inverse pattern). f SAED patterns of Fig. 2 a, c, and d, respectively. g HADDF image and elemental mapping of NF-C/CoS. 
h HADDF image and elemental mapping of NF-C/CoS/NiOOH
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be too brittle to used practically when the current was too 
high. According to the above data analysis, in general, 
the driving force of nanosheets structure generation was 
the activated metastable nickel, metastable nickel reacted 
with  H2O to form NiOOH nanosheets, and sulfur–oxygen 
bonding on the surface of CoS could induce the NiOOH 
nanosheets growing continually.

3.3  Electrocatalytic Performances

We proved that the activation of nickel was due to the 
instantaneous thermal effect of Joule-heating and the 
cobalt–thiourea coordination complex in which thiourea 

plays an important role. Therefore, we also prepared NF-C/
Ni(OH)S with nanosheets structure by the same Joule-heat-
ing synthesis and soaking treatment in water for thiourea 
on NF. There were some similarities in the formation, mor-
phology, and structure for NF-C/CoS/NiOOH and NF-C/
Ni(OH)S. It could be proved that the carbon was N-, O-, 
S-doped carbon and the amorphous Ni(OH)S was and doped 
by a little Co in NF-C/Ni(OH)S (Figs. S13–S16). However, 
there were fewer nanosheets structure and no core–shell het-
erostructure in NF-C/Ni(OH)S compared with NF-C/CoS/
NiOOH.

The self-supporting electrocatalysts based on NF prepared 
by the Joule-heating and water soaking treatment could be 
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Fig. 3  a Raman spectrum of NF-C/CoS and NF-C/CoS/NiOOH. b XPS survey spectra of NF-C/CoS and NF-C/CoS/NiOOH. c C 1 s, d N 1 s, e 
O 1 s, f S 2p, g Co 2p, h Ni 2p of NF-C/CoS and NF-C/CoS/NiOOH
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directly applied to measure the electrochemical performance 
of OER and HER. The electrochemical performances of 
OER were evaluated in a three-electrode cell by linear sweep 
voltammetry (LSV) shown in Fig. 5a. NF-C/CoS/NiOOH 
exhibited good OER performance with a low overpotential 
of 296 mV at 10 mA cm−2 compared with bare NF (442 mV) 
and NF-C/Ni(OH)S (319 mV). In addition, NF-C/CoS/
NiOOH showed good OER performance with a low over-
potential of 361 mV at high current density (100 mA cm−2) 
indicating superior reaction thermodynamics compared 
with NF-C/Ni(OH)S (449 mV). The electrocatalysts based 
on NF exhibited a semicircle intersecting with the X-axis of 
Nyquist plots corresponding to the charge transfer resistance 
(Rct) and solution resistance (Rs), respectively. The Rs related 
to the impedance of electrolyte depending on Nyquist plots 
intersection with the X-axis, and the Rct related to the current 
exchange defined by the Butler–Volmer equation depending 
on the arc diameter of semicircles on Nyquist plots reflecting 
the intrinsic resistance of electrocatalysts [27]. NF-C/CoS/
NiOOH possessed the smallest Rct of 3.5 Ω showing a low 

electronic transport barrier in contrast with bare NF (105.0 
Ω) and NF-C/Ni(OH)S (14.0 Ω) (Fig. S17a). Moreover, the 
smaller Tafel slope of NF-C/CoS/NiOOH (52.9 mV  dec−1) 
than bare NF (137.07  dec−1) and NF-C/Ni(OH)S (111.46 
 dec−1) indicated its superior OER reaction kinetics and 
high charge transfer coefficient (Fig. 5b). The ECSA inves-
tigated by double-layer capacitance (Cdl) showed that the 
Cdl of NF-C/CoS/NiOOH (198.1 mF  cm−2) was higher than 
NF-C/Ni(OH)S (8.5 mF  cm−2) suggesting higher density of 
catalytical active sites on OER (Figs. 5c and S18a, b). Figure 
S19a shows the chronopotentiometry curve of NF-C/CoS/
NiOOH on OER indicating great stability of OER with an 
increase of 12 mV after 40,000 s. It was the high activity of 
NiOOH nanosheets and core–shell heterostructure of C/CoS/
NiOOH that led to the great OER performance of NF-C/
CoS/NiOOH. Meanwhile, N-, O-, S-doped carbon provides 
catalytic active sites and fast electron transfer route to some 
extent. The nanosheets of NiOOH induced and braced by 
CoS nanoparticles on NF-C/CoS/NiOOH could provide 
more active site for OER compared with NF-C/Ni(OH)S 

Fig. 4  Schematic diagram of the formation mechanism of NF-C/CoS/NiOOH
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in which the C/Ni(OH)S nanosheets were only on the sur-
face of NF. In addition, the synergy of NiOOH and CoS 
core–shell heterostructure could improve the OER activity 
compared with the homogeneous phase of C/Ni(OH)S.

The electrochemical performances of HER were evaluated 
in a three-electrode cell by LSV shown in Fig. 5d. NF-C/
CoS/NiOOH exhibited good HER performance with a low 
overpotential of 170 mV at 10 mA cm−2 compared with 
bare NF (347 mV) and NF-C/Ni(OH)S (221 mV) which was 
similar as the measurement of OER. Moreover, NF-C/CoS/
NiOOH showed good HER performance with a low over-
potential of 294 mV at high current density (100 mA cm−2) 
compared with NF-C/Ni(OH)S (365  mV). NF-C/CoS/
NiOOH also showed the smallest Rct of 12.3 Ω similar to 
the EIS result of OER compared with bare NF (105 Ω) and 
NF-C/Ni(OH)S (14.9 Ω) demonstrating faster electronic 
transport on HER measurement (Fig. S17b). The small-
est Tafel slope of 120.96 mV  dec−1 was shown on NF-C/
CoS/NiOOH indicating its superior HER reaction kinetics 
and high charge transfer coefficient in contrast with bare 
NF (201.96 mV  dec−1) and NF-C/Ni(OH)S (144.26 mV 
 dec−1) in Fig. 5e. Higher Cdl of NF-C/CoS/NiOOH (211.0 
mF  cm−2) than NF-C/Ni(OH)S (16.8 mF  cm−2) indicating 

its higher density of catalytical active sites on HER (Figs. 5f 
and S18c, d). Figure S19b shows the chronopotentiometry 
curve of NF-C/CoS/NiOOH on HER that the overpoten-
tial of HER was 184 mV after 40,000 s. Similar to the test 
result of OER, NF-C/CoS/NiOOH showed better HER 
performance than bare NF and NF-C/Ni(OH)S because of 
the high activity of NiOOH nanosheets and core–shell het-
erostructure of C/CoS/NiOOH. The nanosheets structure 
of NF-C/CoS/NiOOH can maintained after OER and HER 
(Figs. S21–S25). NF-C/CoS/NiOOH exhibited CoOOH 
nanosheets and NiOOH nanosheets after OER. NF-C/
CoS/NiOOH exhibited S-doped Co(OH)2 nanosheets and 
Ni(OH)2 nanosheets.

SEM, EDS, element distribution, and XPS were used to 
characterize NF-C/CoS/NiOOH after OER test and HER 
test for 10 h (Figs. S20–S24). NF-C/CoS/NiOOH exhib-
ited CoOOH nanosheets and NiOOH nanosheets after 
OER. NF-C/CoS/NiOOH exhibited sulfur-doped Co(OH)2 
nanosheets and Ni(OH)2 nanosheets. The carbon doped by 
N, S, O still exists on nanosheets.

In general, there are three reasons why NF-C/CoS/NiOOH 
showed good electrocatalytic performance. Firstly, there 
were more NiOOH nanosheets in NF-C/CoS/NiOOH duo 
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to the induction of CoS compared with Ni(OH)S nanosheets 
in NF-C/Ni(OH)S. More nanosheets structure can provide 
more electrocatalytic sites, which can be proved in Fig. 5c, 
f. Secondly, Studies showed that NiOOH and sulfide form-
ing core–shell structure or heterostructure can provide high 
OER and HER electrocatalytic activity due to the special 
structure and synergistic effect of NiOOH and sulfide. After 
continuous OER and HER test, CoS gradually transformed 
into CoOOH nanosheets and S-doped Co(OH)2 nanosheets, 
respectively, which still can provide high electrocatalysis 
activity. Finally, there are much carbon doped by N, O, S in 
NF-C/CoS/NiOOH and NF-C/Ni(OH)S due to the pyrolysis 
reaction of cobalt–thiourea coordination complex and thio-
urea. The carbon doped by N, O, S can provide electroca-
talysis activity.

As shown in Fig. S25, the Faraday efficiency results of 
OER on NF-C/CoS/NiOOH were 93.8% (10 mA cm−2), 
97.5% (20 mA cm−2), and 99.1% (50 mA cm−2). The Fara-
day efficiency results of HER on NF-C/CoS/NiOOH were 
95.9% (10 mA cm−2), 98.9% (20 mA cm−2), and 99.2% 
(50 mA cm−2). In general, NF-C/CoS/NiOOH exhibited 
high Faraday efficiency at each current density. The Faraday 
efficiency at high current density is slightly higher than that 
at low current density because a small part of the current 
contributes to the pseudocapacitance at low current density.

As shown in Fig. S26a, NF-C/CoS/NiOOH exhibited a 
good overall water splitting performance with a lower cell 
voltage of 1.71 V than bare NF (2.04 V) and NF-C/Ni(OH)
S (1.81 V) at a current density of 10 mA cm−2. Even though 
the NF-Pt/C//NF-IrO2 showed more excellent overall water 
splitting performance (1.59 V) than NF-C/CoS/NiOOH 
(1.71  V) at 10  mA  cm−2, NF-C/CoS/NiOOH exhibited 
low overall water splitting overpotential (1.96 V) than NF-
Pt/C//NF-IrO2 (1.97 V) at 200 mA cm−2 indicating the great 
overall water splitting performance at high current density. 
NF-C/CoS/NiOOH showed smaller Rct (11.2 Ω) than bare 
NF (278.1 Ω) and NF-C/Ni(OH)S (32.9 Ω) which was simi-
lar to the EIS test results of OER and HER (Fig. S26b). 
Figure S26c shows the chronopotentiometry curve of NF-C/
CoS/NiOOH on overall water splitting test indicating good 
stability with the increase of 74 mV after 50,000 s. Figure 
S26d shows the demonstration of overall water splitting on 
NF-C/CoS/NiOOH with obvious bubbles generation.

4  Conclusions

In summary, we reported a Joule-heating method and water 
soaking treatment to synthesis the nanomaterials based on 
NF as self-supporting electrocatalysts fast and simply for 
overall water splitting. The cobalt–thiourea coordination 
complex on NF converted to carbon-coated CoS on NF by 
Joule-heating that the carbon was N-, O-, S-doped carbon 
and a small amount of Ni was doped into CoS. Notably, 
the nickel on the surface of NF activated by Joule-heating 
and cobalt–thiourea coordination complex led to the spon-
taneous growing of NiOOH nanosheets in water induced by 
CoS so that NF-C/CoS/NiOOH with hierarchical nanosheets 
structure and core–shell heterostructure was prepared. We 
speculated that the driving force of nanosheets structure gen-
eration was the metastable nickel and CoS could induce the 
NiOOH nanosheets growing continually. NF-C/CoS/NiOOH 
as a self-supporting electrocatalyst exhibited good perfor-
mance of OER, HER, and overall water splitting. Our work 
provided a new route to synthesize nanomaterials based on 
NF that offered a new developing direction in the cataly-
sis and energy field compared with traditional synthesis 
methods.
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