Supporting Information for

Nanostructured Graphene Surfaces Promote Different Stages of Bone Cell Differentiation

F.F. Borghi^{1,2,3}, P.A. Bean², M.D.M. Evans², T. van der Laan^{4,5}, S. Kumar^{4,5}, K. Ostrikov^{1,4,5,*}

¹Plasma Nanoscience, School of Physics, The University of Sydney, Sydney NSW 2006, Australia

²CSIRO Manufacturing, PO Box 52 North Ryde NSW 2113, Australia

³Brazilian Centre for Physics Research (CBPF), Rua Dr. Xavier Sigaud - 150, Urca, Rio de Janeiro RJ, CEP 22290180, Brazil

⁴School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4000, Australia

⁵CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield NSW 2070, Australia

*Corresponding author. E-mail: Kostya.Ostrikov@qut.edu.au (K. Ostrikov)

Supplementary Figures

Fig. S1 SEM images of the HGL sample prior the transfer from copper, produced with high hydrogen content, shows similar nanostructures to CNW. Image \mathbf{a} shows visible edges perpendicular to the copper foil that collapse during the transfer process and form the horizontal graphene film \mathbf{b} .

Fig. S2 SEM images of the CNW sample prior the transfer from copper, produced with low hydrogen content. Image \mathbf{a} shows dense edges perpendicular to the copper foil that stays during the transfer process to the coverslips \mathbf{b} .

Fig. S3 SEM images at a low magnification of **a** the CNW and **b** HGL samples showing similar amounts of proliferating cells.