Supporting Information for

Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO Modified In₂S₃ Nanosheet Arrays by Atomic Layer Deposition

Ming Li^{1,2}, Xinglong Tu^{1,3}, Yunhui Wang⁴, Yanjie Su^{1,*}, Jing Hu¹, Baofang Cai¹, Jing Lu^{3,*}, Zhi Yang¹, Yafei Zhang^{1,*}

¹Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

²State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China

³National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China

⁴College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China

*Corresponding authors. E-mail: yanjiesu@sjtu.edu.cn (Yanjie Su), jinglu2004@163.com (Jing Lu), yfzhang@sjtu.edu.cn (Yafei Zhang)

Supplementary Figures and Tables

Fig. S1 Optical image of In_2S_3 NSAs grown on FTO glass substrate

Fig. S2 a XRD pattern of In_2S_3 NSAs compared to that of the FTO substrate. **b** The typical EDS spectrum of In_2S_3 NSAs

Fig. S3 a Absorbance, b energy band gap determination, c LSV curve and d amperometric *I-t* curve at 1.23 V_{RHE} under chopped AM 1.5G illumination for the ZnO thin film with thickness of 50 nm

Fig. S4 LSV curves under chopped AM 1.5G illumination of the $In_2S_3/ZnO-x$ NSAs

Fig. S5 a Absorbance and b energy band gap determination of In₂S₃ NSAs

Photoanodes	Morphology	Photocurrent	IPCE	Reference
In ₂ S ₃ /ZnO-50	NSAs	1.64 mA cm ⁻² (1.5 $V_{\rm RHE}$)	27.64% @380nm (1.23 V _{RHE})	This work
In ₂ S ₃ /ZnO	NSAs	0.35 mA cm^{-2} (1.2 V _{RHE})	10.26% @380nm (1.23 V _{RHE})	[34]
Zr-doped In ₂ S ₃	nanoflakes	1.1 mA cm ⁻² (1.3 $V_{\rm RHE}$)	2.5% @400nm (1.2 V _{RHE})	[23]
MoS ₂ -In ₂ S ₃	nanoplates	~1 μ A cm ⁻² (0.5 V_{RHE})	/	[24]
In_2S_3	nanoflakes	$37 \ \mu A \ cm^{-2}$ (1.3 V_{RHE})	/	[25]
In_2S_3	nanobelts	10 μ A cm ⁻² (1.3 V_{RHE})	/	[25]
Co-doped In ₂ S ₃	nanosheets	1.17 mA cm ⁻² (1.5 $V_{\rm RHE}$)	46% @450nm (1.5 V _{RHE})	[26]

Table S1 PEC performance of 2D nanostructured In₂S₃-based photoanodes

Table S2 Energy levels of the $\rm In_2S_3$ and ZnO layers determined using UPS and UV-Vis absorption spectra, the data come from the ZnO layer for $\rm In_2S_3/ZnO-5$

Sample	$E_{\rm L}$ (eV)	$E_{\rm H}({ m eV})$	$E_{\rm F}({ m eV})$	$E_{\rm VBM}$ (eV)	$E_{\rm CBM}({\rm eV})$	Eg (eV)
In_2S_3	2.40	17.30	3.92	6.32	3.87	2.45
ZnO	2.53	18.37	2.85	5.38	2.17	3.21
In ₂ S ₃ /ZnO	2.52	18.07	3.15	5.67	2.46	/