Supporting Information for

Metal-Organic Framework-Assisted Synthesis of Compact Fe₂O₃ Nanotubes in

Co₃O₄ Host with Enhanced Lithium Storage Properties

Songlin Zhang¹, Buyuan Guan^{1, *}, Haobin Wu², Xiongwen (David) Lou^{1, *}

¹School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore

²School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

*Corresponding authors. E-mail: <u>xwlou@ntu.edu.sg</u>(Xiongwen (David) Lou); <u>guanbuyuan@ntu.edu.sg</u> (Buyuan Guan)

Supplementary Figures and Tables

Fig. S1 Magnified TEM image of the Fe₂O₃ nanotubes@Co₃O₄ composites

Fig. S2 HRTEM images of a Fe_2O_3 nanotube and b Co_3O_4 host

Fig. S3 N₂ sorption isotherms (inset: pore size distributions) of **a** Fe₂O₃ and **b** Co₃O₄ nanostructures derived from MIL-88B and ZIF-67, respectively

Fig. S4 EDX spectrum of Fe₂O₃ nanotubes@Co₃O₄ composites

Fig. S5 XPS spectra of Fe_2O_3 nanotubes $@Co_3O_4$ composites: **a** survey spectrum, and high-resolution spectra of **b** Fe 2p, **c** Co 2p, and **d** O 1s

Fig. S6 a FESEM and b TEM images of the Fe₂O₃ nanotubes @Co₃O₄ composites after cycling for 80 cycles

Fig. S7 The cycling performance of Fe_2O_3 nanotubes@Co₃O₄ composites and corresponding Coulombic efficiency at the current density of 1.0 A g⁻¹

Fig. S8 Cycling performance of MIL-88B and ZIF-67 derived **a** Fe_2O_3 and **b** Co_3O_4 nanostructures and corresponding Coulombic efficiency at the current density of 0.5 A g⁻¹

Fig. S9 CV curves of Fe₂O₃ nanotubes@Co₃O₄ composites

Fig. S10 A schematic representation of the conversion reaction mechanism in Fe_2O_3/Co_3O_4 electrode materials for lithium ion batteries

Table S1 Electrochemical performance of different Fe ₂ O ₃ , Co ₃ O ₄ , and their composition	te electrodes
---	---------------

Type of materials	Capacity (mAh g ⁻	Rate performance	Loading mass	Reference
Fe ₂ O ₃ @carbon aerogel	¹) 725.6 (0.1 A g ⁻¹)	70.6% from 0.1 to 1 A g ⁻¹	NA	[1]
composite Fe ₂ O ₃ -filled CNTs	565 (0.06 A g ⁻¹)	59.2% from 0.06 to 1.2 A g^{-1}	NA	[2]
Fe ₂ O ₃ nanorods	896 (0.2 A g ⁻¹)	42.9% from 0.2 to 2.4 A g^{-1}	NA	[3]
carbon/Co ₃ O ₄ nanospheres	738 (0.05 A g ⁻¹)	57.3% from 0.05 to 2 A g^{-1}	NA	[4]
Co_3O_4/C nanowires	842.3 (0.5 A g ⁻¹)	26.1% from 0.5 to 8 A $g^{\text{-}1}$	NA	[5]
Co ₃ O ₄ double-shelled hollow spheres	866 (0.178 A g ⁻¹)	57.8% from 0.178 to 1.78 A $g^{\text{-}1}$	NA	[6]
hybrid Co ₃ O ₄ – Fe ₂ O ₃ /C particles	782 (0.0731 A g ⁻¹)	50.5% from 0.0731 to 2.924 A g^{-1}	1.5-2.0 mg cm ⁻²	[7]
Co ₃ O ₄ /Fe ₂ O ₃ branched nanowires	980 (0.1 A g ⁻¹)	NA	1.0-2.0 mg cm ⁻²	[8]
Fe ₂ O ₃ nanotubes@Co ₃ O ₄ composites	726.2 (0.1 A g ⁻¹)	81.3% from 0.1 to 2 A g^{-1}	0.5-0.8 mg cm ⁻²	This work

References

- D. Luo, F. Lin, W. Xiao, W. Zhu, Synthesis and electrochemical performance of α-Fe₂O₃@carbon aerogel composite as an anode material for Li-ion batteries. Ceram. Int. 43, 2051-2056 (2017). https://doi.org/10.1016/j.ceramint.2016.10.178
- [2] W. Yu, P. Hou, L. Zhang, F. Li, C. Liu, H. Cheng, Preparation and electrochemical property of Fe₂O₃ nanoparticles-filled carbon nanotubes. Chem. Commun. 46, 8576-8578 (2010). https://doi.org/10.1039/c0cc02121k
- [3] M. Chen, E. Zhao, Q. Yan, Z. Hu, X. Xiao, D. Chen, The effect of crystal face of Fe₂O₃ on the electrochemical performance for lithium-ion batteries. Sci. Rep. 6, 29381 (2016). https://doi.org/10.1038/srep29381
- [4] N. Jayaprakash, W.D. Jones, S.S. Moganty, L.A. Archer, Composite lithium battery anodes based on carbon@Co₃O₄ nanostructures: Synthesis and characterization. J. Power Sources 200, 53-58 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.018
- [5] P. Zhang, Z. Guo, Y. Huang, D. Jia, H. Liu, Synthesis of Co₃O₄/Carbon composite nanowires and their electrochemical properties. J. Power Sources **196**, 6987-6991 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.090
- [6] X. Wang, X. Wu, Y. Guo, Y. Zhong, X. Cao, Y. Ma, J. Yao, Synthesis and lithium storage properties of Co₃O₄ nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 20, 1680-1686 (2010). https://doi.org/10.1002/adfm.200902295
- [7] I. Sultana, M. Rahman, T. Ramireddy, N. Sharma, D. Poddar, A. Khalid, H. Zhang, Y. Chen, A.M. Glushenkov, Understanding structure–function relationship in hybrid Co₃O₄–Fe₂O₃/C lithium-ion battery electrodes. ACS Appl. Mater. Interfaces 7, 20736-20744 (2015). https://doi.org/10.1021/acsami.5b05658
- [8] H. Wu, M. Xu, Y. Wang, G. Zheng, Branched Co₃O₄/Fe₂O₃ nanowires as high capacity lithium-ion battery anodes. Nano Res. 6, 167-173 (2013). https://doi.org/10.1007/s12274-013-0292-z