Supporting Information for

Formamidinium Lead Bromide (FAPbBr₃) Perovskite Microcrystals for Sensitive and Fast Photodetectors

Fengying Zhang^{1, 2}, Bin Yang², Kaibo Zheng³, Songqiu Yang², Yajuan Li², Weiqiao Deng^{2, *}, Rongxing He^{1, *}

¹Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China

²State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China

³Department of Chemical Physics and NanoLund Chemical Center, Lund University P.O. Box 124, 22100 Lund, Sweden

*Corresponding authors. E-mail: dengwq@dicp.ac.cn (Weiqiao Deng); herx@swu.edu.cn (Rongxing He)

Supplementary Figures

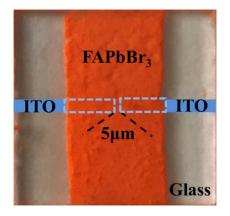


Fig. S1 Schematic diagram of FAPbBr3 microcrystalline deposited photodetector

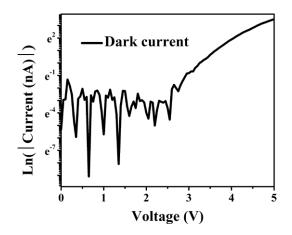
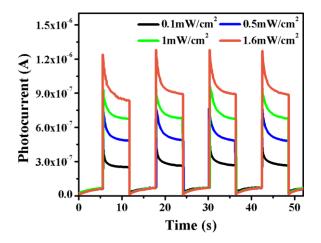
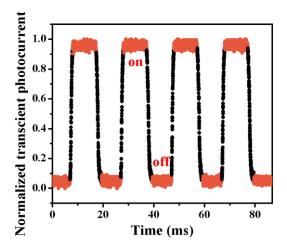
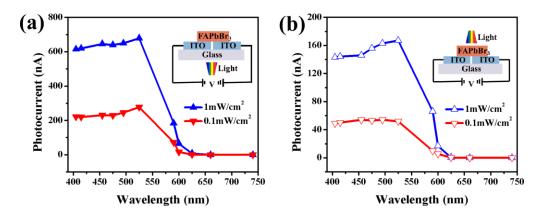


Fig. S2 Current-voltage characteristic of FAPbBr3 microcrystalline photodetector in the dark

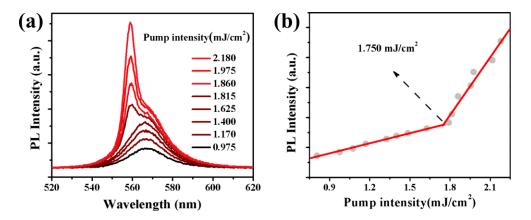

Fig. S3 Transient photocurrent of the photodetector measured at bias voltages of 5V with changed incident light power of 495 nm

Fig. S4 Response time of FAPbBr₃ MCs photodetector with periodic irradiation of 400 nm monochromatic light

Fig. S5 Photocurrent of FAPbBr₃ photodetector under different incident light power (1 and 0.1 mW cm⁻²) upon **a** bottom illumination and **b** top illumination

Fig. S6 a Pump intensity-dependent PL spectra and **b** integrated PL intensity versus pump intensity for FAPbBr₃ MCs film under the irradiation of 800 nm