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Highlights

• MemBrain is a fully automatic online tool for transmembrane protein structure prediction, which is able to predict the

irregular half-transmembrane helix.

• MemBrain’s theoretic predictions provide timely and important clues for further wet-lab experiments.

Abstract Membrane proteins are an important kind of

proteins embedded in the membranes of cells and play

crucial roles in living organisms, such as ion channels,

transporters, receptors. Because it is difficult to determinate

the membrane protein’s structure by wet-lab experiments,

accurate and fast amino acid sequence-based computa-

tional methods are highly desired. In this paper, we report

an online prediction tool called MemBrain, whose input is

the amino acid sequence. MemBrain consists of specialized

modules for predicting transmembrane helices, residue–

residue contacts and relative accessible surface area of

a-helical membrane proteins. MemBrain achieves a

prediction accuracy of 97.9% of ATMH, 87.1% of AP,

3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-

Contact obtains 62%/64.1% prediction accuracy on train-

ing and independent dataset on top L/5 contact prediction,

respectively. And MemBrain-Rasa achieves Pearson cor-

relation coefficient of 0.733 and its mean absolute error of

13.593. These prediction results provide valuable hints for

revealing the structure and function of membrane proteins.

MemBrain web server is free for academic use and avail-

able at www.csbio.sjtu.edu.cn/bioinf/MemBrain/.
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1 Introduction

Significant advancement of sequencing technologies has

resulted in an explosion of protein amino acid sequences in

various databases such as the UniProt (as shown in Fig. 1).

However, due to the difficulties of wet-lab experiments, the

gap between the numbers of known sequences and their

corresponding experimentally solved structures keeps

growing [1]. Thus, the development of the fast and accurate

computational approaches for predicting structures from

the amino acid sequences has attracted more and more

attention. Membrane proteins constitute approximately

30% of the proteins in both prokaryotic and eukaryotic

genomes [2], due to the crucial functions of them, and more

than 60% current drug targets are membrane proteins [3].

The 3D structures of membrane proteins will provide

important insights for membrane protein-orientated drug

design. For instance, the binding mechanisms of membrane

protein-drug ligand can be modeled with the 3D structures.

However, solving membrane protein structures through the

wet-lab experiments is extremely difficult. The reason is

that membrane proteins usually have one or more trans-

membrane segments, which are very hydrophobic making

the chances for crystallization of membrane proteins small

[4, 5]. In such a case, computational bioinformatics algo-

rithms are highly desired, which will provide fast and

accurate membrane protein structure predictions.

For the past 10 years, we are developing an online

predictor named MemBrain (as shown in Fig. 2) that can

predict a-helical membrane protein structure [6–8]. Cur-

rently, this predictor consists of the following three func-

tional modules:

1.1 MemBrain-TMH: Transmembrane a-Helical

Segment (TMH) Prediction

A TMH is a segment of residues along the sequence which

spans the membrane. The prediction of TMHs is labeling

the residue positions of inside/outside membrane. A large

portion of the membrane proteins are transmembrane pro-

teins, which have one or multiple hydrophobic transmem-

brane segments. Transmembrane proteins have two types:

a-helical and b-barrels proteins. The former proteins are

the major membrane proteins and the latter one only

account for *30% in membrane proteins. We also devel-

oped a method for predicting spanning segments for b-

barrels [9]. One of the important steps for the membrane

protein structure prediction is to identify the transmem-

brane segments from the amino acid sequence, e.g., TMH.

The initial methods of TMH structure prediction employed

the amino acid hydrophobicity analysis; later, benefitting

from the rapid expansion of structural database, machine

learning methods have been widely applied to automati-

cally learn the rules for classifying the TMH residues from

the solved structures (training samples). Such TMH

topology structure predictors include HMM-based

approach like TMHMM [10], SVM-based methods like

SVMtm [11], the OET-KNN-based MemBrain [6], etc. The

prediction of irregular half TMHs is a challenging topic in

the transmembrane TMH predictions. In our MemBrain-

TMH model, the multi-scale modeling and dynamic

threshold approach are incorporated to improve its pre-

diction performance.

1.2 MemBrain-Contact: Residue–Residue Contact

Map Prediction

When two residues are close enough in the space (e.g.,

\8 Å), they are generally acknowledged as ‘contact.’ The

contact map prediction is to generate a 2D map marking

the contacted residue pairs. Although the TMH structure

predictions can help figuring out the general structure

topology of a-helical membrane protein, it is not enough to

build the 3D structure of a membrane protein. The residues

contact map provides spatial constraints for constructing

tertiary structure models of TMH proteins, which has

recently been a hot topic in protein structure prediction

[12–15]. The existing methods for predicting residue–

residue contacts of a-helix proteins and TMH–TMH

interactions from the primary sequences can be generally

divided into two categories: (1) machine learning-based

methods, (2) statistical-based coevolution mining methods.

Our results show that these two branches of methods highly

complement each other [7]. The machine learning-based

engines need the training process and highly depend on the

distributions of training dataset. Hence, the prediction

outputs of machine learning-based models have higher

preference to match the distribution of the training set,

resulting in a relatively lower generalization and coverage

of the predictions. Training process is not needed in the

coevolution mining methods, which align the query

sequence against a large protein sequence pool to calculate
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Fig. 1 The gap between known protein sequences and structures is

rapidly expanding
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the residue pair potential coevolution score. And because

such statistical approaches are unsupervised methods, they

will have predictions of wider coverage, but with higher

false positives at the same time. Our MemBrain model is a

consensus predictor of the two branches of engines, so its

prediction accuracy is higher than a single independent

model.

1.3 MemBrain-Rasa: Residue Relative Solvent

Accessibility Surface Area (Rasa) Prediction

In a 3D structure, some residues are buried into the internal

core making them hard to be reached by other ligands. The

relative solvent accessibility is a quantitative measurement

of the visibility of the residues in a structure. Although

many computational methods have been developed to

predict the residues’ Rasa in soluble proteins [16, 17],

relatively few approaches are available for the membrane

proteins. The reason is that the solved membrane protein

structures are much fewer than the soluble proteins, making

the training samples difficult to collect. The module of

MemBrain-Rasa software is a combination of machine

learning-based engine and the segment template-based

module, which can solve the prediction preference problem

caused by the pure machine learning-based model.

2 MemBrain Prediction Functions

2.1 MemBrain-TMH: Prediction of TMHs

in Membrane Proteins

Accurate TMH prediction is a long-term interest in trans-

membrane protein structure prediction. At the very

Fig. 2 A screenshot of the submission interface of MemBrain web server (www.csbio.sjtu.edu.cn/bioinf/MemBrain/)
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beginning of methodology development in this problem,

motivated by the fact that transmembrane residues are

usually highly hydrophobic, average hydrophobic scores

were used for detecting the hydrophobic segments. Later,

more studies have revealed that this task is much more

complicated than initially thought. For instance, very short

(\10 residues) and very long ([35 residues) irregular TMH

helices have been found and some loop regions linking the

neighboring TMH segments can be very short (e.g., *2

residues). These structure complexities have posed signif-

icant difficulties for prediction methodology development.

In our MemBrain-TMH module (as shown in Fig. 3) [8],

two typical strategies are adopted to enhance the TMH

predictions.

2.1.1 Multi-scale Predictors Modeling

The input features are amino acid evolution information

from optimized sliding windows with different lengths. We

built a profile for a query sequence with L residues by the

position specific scoring matrix (PSSM) implemented by

PSI-BLAST [18] program. The PSSM contains amino acid

evolutionary information from multiple sequence align-

ment searching against the SWISS-PROT database [19].

The profile has L rows and 20 columns, where the ith row

represents the probabilities of the ith residue in the protein

sequence being mutated to 20 native residues during the

evolution process. The sequence evolution knowledge

encoded in the PSSM helps to remove the potential noise

caused by mutations.

Considering the irregular lengths of the TMH, we

designed the multi-scale model with different sliding win-

dow sizes. The size of the sliding window for extracting

input feature has a great impact on the prediction outcome. If

the sliding window is too small, the prediction accuracy

would suffer from the loss of neighborhood sequence

information; on the contrary, if it is too large, much redun-

dant information will be included especially for the cases of

short TMHs. We tried different lengths of windows for

fusing the global and local sequence parameters, and at last

we combined two window sizes to minimize the bias induced

by a single window size, i.e., W = 13 and W = 15. This

strategy makes current MemBrain approach capable of

predicting half TMHs or tight turns shorter than 15 residues.

The MemBrain also employs a powerful machine learning

technique, the optimized evidence-theoretic K-nearest

neighbor (OET-KNN) algorithm, which will output a

propensity of residue belonging to TMH segments. The final

obtained TMH propensity is averaged over the results of

lengths 13 and 15 for each residue along the sequence.
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Fig. 3 The pipeline of MemBrain for predicting transmembrane a-helices. For a query sequence, we generate the position specific scoring

matrix as input features by searching against SWISS-PROT database using the PSI-BLAST tool. The OET-KNN algorithm is employed as the

classifier with fused different sizes of sliding window for extracting features. Median filter is applied to smooth the profile of predicted

probabilities. Finally, the dynamic threshold is effectively used to optimize the results of prediction
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2.1.2 Dynamic Threshold Decision

For a query sequence, a plot of predicted TMH propensity

scores gives an overview of the residue-specific TMH

propensity. In order to optimize the accuracy, we adopt the

median filter technique to smooth the predicted TMH

propensity profile for reducing noise and avoid the burr

phenomena. The final TMHs are determined by the

smoothed propensity plot. A threshold will be needed for

classifying them into TMHs or non-TMHs, i.e., if the

predicted scores of residues are higher than the threshold,

they are predicted as TMH residues. A fixed threshold is

often used for this purpose, which may be problematic for

segmenting two TMHs linked by short loops.

Many high-resolution membrane protein 3D structures

have shown that two adjacent TMHs could often be con-

nected by very short loops, e.g.,\2 residues. In such cases,

the predicted TMH propensity scores corresponding to the

short loop residues will also be very high due to the sliding

window technique used for extracting features. Taking

W = 13 as an example, if the short loop is composed by 2

residues, then 11 residues belong to TMH in the window

making the TMH features dominate for loop residues.

Therefore, the contiguous TMH segments linking with

short loops or tight turns are often misclassified as a long

one. This indicates that the optimal threshold for defining

two TMHs separated by long loops is very different from

the threshold required for identifying TMHs separated by

short loops. To solve this problem, we exploit the dynamic

threshold strategy for identification of TMHs from the

propensity scores. First, we set an initial threshold as 0.4,

i.e., residues with propensity greater than or equal to 0.4

are considered as TMH. Second, we gradually increase the

initial value of T with step size of 0.05 up to find the plot

valley to decide whether we need to split the initial seg-

ments into two by a set of pre-learned rules. The results

show that the dynamic threshold method not only improves

the localization prediction of THM residues, but also

enhances the correct number of TMH predictions.

2.2 MemBrain-Contact: TMH–TMH Residue

Contact Map Prediction

Based on the determined TMHs, the prediction of TMH–

TMH residue contacts can provide crucial spatial con-

straints for accurately modeling tertiary structures of
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Fig. 4 The pipeline of MemBrain-Contact for predicting TMH–TMH contact map. We extract the TMH locations and topologies from protein

database to build the training dataset. The coevolved mutation analysis by PSICOV using multiple sequence alignment generated by PSI-BLAST

and machine learning-based algorithm outputs are combined to generate the final predictions
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membrane proteins [15, 20]. The MemBrain-Contact pre-

diction module is constructed by combining statistical

machine learning algorithms and biological residue

coevolution analysis from multiple sequence alignments as

shown in Fig. 4 [7]. The machine learning-based prediction

algorithm was implemented by applying multiple random

under-samplings so that strong diversities can be produced

via different learning methods in various spaces. The

coevolved mutation scores from multiple sequence align-

ments were generated by PSICOV algorithm [12].

Fusing the coevolution-based engine and machine

learning-based engine is a typical advantage of MemBrain-

Contact module. We found that these two engines highly

complement to each other. The coevolution-based engine

does not need the training process, which is an unsuper-

vised approach and hence can result in a wide coverage of

predictions but with relatively high false positives. The

machine learning-based engine is a supervised learning

approach, whose outputs are dependent on the training

samples, and hence has a relatively low coverage of pre-

dictions. The combination of the two approaches will not

only improve the prediction coverage but also reduce the

false positives, resulting in an overall performance

improvement.

2.3 MemBrain-Rasa: Relative Accessible Surface

Area Prediction

Prediction of RASA in a-helical transmembrane proteins

provides the relative accessibilities of the residues which

are helpful to 3D structure prediction. In MemBrain-Rasa,

we designed a segment template similarity-based

SVR-based classifier
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Fig. 5 The flowchart of MemBrain-Rasa prediction protocol. For a protein sequence, we extract six kinds of sequential features, which will be

fed into the SVR classifier. We also designed a segment template similarity-based prediction engine for searching similar segments as templates

for the target sequence against a locally constructed structure data pool. The outputs of the two engines are combined together to improve the

prediction of relative accessible surface area
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prediction engine, which is effectively combined with the

machine learning engine to improve the performance. In

order to take the advantage of the solved structures, we

organized a local database of residue relative solvent

accessibility surface area from the protein data bank

(PDB), which is applied to search similar segments as

templates for the target sequence against the local data

pool. The template similarity-based prediction is then fused

with the output of support vector regression (SVR) using a

designed knowledge rule. Figure 5 shows the MemBrain-

Rasa prediction protocol [8].

A typical merit of MemBrain-Rasa is its hierarchical

prediction model by combining supervised SVR model

with a segment template similarity-based approach as the

whole computational framework to deal with RASA pre-

diction problem. The results show that for many long

protein sequences, it is very hard to find homology struc-

ture templates of the full chains. However, when we only

consider short segments, many existing structure templates

can be found, which provide important complement to the

pure machine learning-based predictions.

2.4 Prediction Performance of MemBrain

On a test dataset including 70 helical membrane proteins

consisting of 378 TMHs, MemBrain achieves a prediction

accuracy of 97.9% of ATMH, 87.1% of AP, 3.2 ± 3.0 of N-

score, 3.1 ± 2.8 of C-score, where ATMH denotes the rate

of correctly predicted TMHs, AP denotes the ratio of cor-

rectly predicted proteins (all predicted TMHs are success-

ful), and N-score and C-score are the accuracy scores of

predicted ends of TMH segments.

Two benchmark datasets are used to evaluate the per-

formance of MemBrain-Contact module, i.e., a training

dataset consists of 60 a-helical proteins and an independent

dataset with 21 a-helical proteins. Both of the two datasets

have a sequence identity cutoff at 40% among pairwise

sequence for reducing protein homology similarity redun-

dancy. Their TMH locations and native topologies were

extracted from the databases of TOPDB [21], PDBTM [22]

and OPM [23]. For top L/5 contact predictions, prediction

accuracies are 62%/64.1% on the training and independent

datasets, respectively, where L is the length of sequence.

The experimental results on 13 solved G protein-coupled

receptors have shown that the predictions of MemBrain-

Contact engine have helped increase the TM-score of the

I-TASSER models by 37% in the transmembrane region.

On a benchmark dataset consisting of 52 membrane

proteins composed of 80 chains with pairwise sequence

identity \20% to avoid homology redundancy, the Mem-

Brain-Rasa achieves a Pearson correlation coefficient of

0.733 and mean absolute error of 13.593, which are

significantly enhanced compared to either the machine

learning-based or template-based engines.

3 Conclusions and Future Development

MemBrain is a fully automated online server and is free to

academic use, which is available at http://www.csbio.sjtu.

edu.cn/bioinf/MemBrain/. For a query protein, the user

simply needs to input its amino acid sequence and select

the corresponding prediction functions, and then submit it

to the server. Prediction results will be sent back to the

user’s email address when the task is finished. Usually,

MemBrain is very fast, depending on the length of protein

sequence, and it will automatically send back the results in

5 min of most cases. MemBrain theoretic predictions have

provided useful information to the wet-lab studies of

membrane proteins [24–26].

In the future, we will keep on updating MemBrain to

make it more powerful. One of the potential directions is

developing the deep learning-based modules, which are

expected to be highly complementary to current engines.

Deep learning algorithms represent a new progress in the

statistical machine learning field [27, 28] which is expected

to provide more opportunities for further enhancing the

prediction performance of MemBrain.
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