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Abstract Two-dimensional (2D) materials have attracted extensive interest due to their excellent electrical, thermal,

mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap

has limited its applications in electronic devices. Transition metal dichalcogenide (TMDC), another kind of 2D material,

has a nonzero direct band gap (same charge carrier momentum in valence and conduction band) at monolayer state,

promising for the efficient switching devices (e.g., field-effect transistors). This review mainly focuses on the recent

advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2D-

TMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review

describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.

Keywords 2D materials � TMDC layers � Charge carrier mobility � Field-effect transistor � Heterostructure � Charge carrier
scattering

1 Introduction

Discovery of graphene has diverted the interest of

researchers toward a new family of nanomaterials known

as 2D materials. Unique properties of 2D materials have

been widely utilized for diverse applications such as

catalysis, supercapacitors, energy storage devices, and

high-performance sensors. Besides graphene, transition

metal dichalcogenides (TMDCs) and layered oxide mate-

rials are also parts of 2D materials family. 2D materials

have shown promising properties in the application of

electronic devices [1, 2]. Semiconductor behavior of 2D

materials (e.g., MoS2) makes them promising materials for

field-effect transistors (FETs). The FET fabricated from 2D

materials will not only exhibit improved performance, in

terms of fast processing rate and low power consumption,

but also allow further reduction in device dimensions

which is the need for the fabrication of next-generation

electronic devices. In recent years, many efforts have been

made to review the research on the synthesis, characteri-

zation of single- and few-layered 2D materials including

their electronic, magnetic, optical and mechanical proper-

ties as well as applications [3–9]. Furthermore, some

reviews focused on the utilization of 2D materials in a

variety of applications such as flexible and transparent

electronic, optoelectronic devices [10–15], energy conver-

sion and storage [16, 17], hydrogen generation [18], and

gas sensors [19]. It is well known that most 2D layered

materials exist in a bulk state. These materials have layered

structure and weak interlayer van der Waals force holding

these layers together. Layered structure makes it possible to

achieve monolayer or a few layers of 2D materials by

mechanical exfoliation. On the other hand, in-plane atoms

are connected with strong covalent bonds [1, 20]. Hence,

monolayer 2D materials possess two-dimensional features
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in the lateral x–y direction and quantum confinement in the

third dimension, which makes these materials unique from

their bulk counterparts. One of the features is high carrier

mobility, which is essential for high-speed transistors. For a

high-performance transistor, good ohmic contact, higher

carrier mobility, and appropriate band gap (*1 eV) are the

basic requirements [12]. Graphene, the most extensively

studied 2D material, has exhibited very high carrier

mobility (*2 9 105 cm2 V-1 s-1) at the temperature of

5 K [21]. However, it is not suitable for logic applications

due to its zero band gap, resulting in very small on/off ratio

(\10) at ambient temperature. In order to improve its on/

off ratio, the opening of band gap has been proposed.

However, engineering the band gap up to *400 meV will

lead to a decrease in the mobility to less than 200 cm2 -

V-1 s-1. Similarly, p-type device, based on the graphene

nanoribbons, demonstrates a band gap opening due to the

various edge (armchair or zigzag) structures resulting in very

high on/off ratio of *106 and extremely low charge carrier

mobility of *100–200 cm2 V-1 s-1, as compared to other

members of graphene family. However, these devices have

shown the subthreshold slope (SS) of*210 mV per decade,

which is not desirable and ideal. It needs to be*60 mV per

decade at room temperature [22]. In contrast to graphene,

TMDCs, such as MoS2 (1.8 eV), WS2 (2.1 eV), MoTe2
(1.1 eV), and WSe2 (1.7 eV), have desirable band gap

[12, 23, 24]. MoS2 is one of the most promising materials for

logic devices such as metal–oxide–semiconductor field-ef-

fect transistors (MOSFETs) due to its tunable band gap, high

on/off ratio and relatively cheap price. The band gap of

monolayer MoS2 has been reported to be 1.8 eV earlier.

However, recent work demonstrates it has a direct band gap

of 2.5 eV, while its bulk counterpart has an indirect band gap

of 1.2 eV [25–28]. Being a relatively large band gap mate-

rial, experimentally, MoS2 only shows low carrier mobility

of *1 cm2 V-1 s-1 without high-k dielectric gate material

[29], whereas the mobility can reach*150 cm2 V-1 s-1 at

300 K with HfO2 as the top-gate layer [30–33]. In addition,

theoretical calculation based on density functional theory

has indicated that the mobility of MoS2 can reach

400 cm2 V-1 s-1 [34] at room temperature. More recently,

another type of 2D material, black phosphorus, has been

predicted to have a hole mobility of 10,000–26,000 cm2

V-1 s-1 [35], and experimentally, a mobility of

1000 cm2 V-1 s-1 has been achieved [36], showing very

promising potential for electronic devices [37].

In this review, we mainly focus on the recent develop-

ment of the charge carrier mobility in 2D TMDC materials

and the challenges for achieving high mobility as well as

high current on/off ratio simultaneously, which are essen-

tial for 2D TMDC-based electronic devices. We also give

an introduction of 2D materials (including TMDCs) and

their synthesis using different approaches. Finally, this

review describes the possible methodology and future

prospective to enhance the charge carrier mobility for

electronic devices.

2 2D Materials

Recent advancements in science and technology have

unveiled the new prospects and put the mankind on the

foundation of the newly developed field named as nan-

otechnology. This technology has enabled us to conduct

research and work in the domain up to nanometer scale,

resulting in the technologies which were never possible

earlier. These technologies include cancer therapy based on

nanoparticles, nanocomposites and innovative medicine,

high-performance nanoelectronics, and highly sensitive

sensors [38–41]. Evolution of nanotechnology has also

introduced the distinguished class of low-dimensional

systems such as zero-dimensional (0D, i.e., nanoparticles),

one-dimensional (1D, i.e., nanowires), two-dimensional

(2D, i.e., graphene), and three-dimensional (3D, i.e., bulk

materials). The low-dimensional system plays an important

role in classifying the nanomaterials, as the dimension of

the material will not only define the atomic structure but

also the properties of the nanomaterials [42].

In 2004, Geim and Novoselov [43] obtained a layered

structure by mechanical exfoliation using scotch tape,

which is later called graphene. The discovery of graphene

has opened a new area of research—2D materials. These

materials have shown many excellent properties widely

used for energy, sensors, catalysis, electronic devices,

spintronic devices as well as biomedical applications [3].

The discovery of graphene has triggered the research

interest toward other two-dimensional materials, such as

silicene, black phosphorus, transition metal dichalco-

genides (TMDCs), and layered oxide materials. One of the

most important features of these 2D materials is the high

mobility of the carriers due to their quantum confinement

in the third dimension, which is promising for the appli-

cations of electronic devices, such as transistors [1, 2].

As described previously, graphene has exhibited very

high carrier mobility [21]. However, it is unsuitable for the

applications in transistors since materials used to make

transistors have to be able to switch current on and off to

create logic circuits. Different from graphene, MoS2, one

of the TMDCs, has a direct band gap in monolayer struc-

ture, which makes it possible to tune the carriers transport

in an electronic device, thus realizing the device functions.

Among the 2D materials, currently, TMDCs have attracted

more and more interest due to their natural abundance and

unique/diverse properties. The generalized chemical for-

mula for TMDCs is MX2, where M represents the transi-

tion metal (typically Ti, Zr, Hf, Mo, W, Nb, Re, V, and Ni)
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of group 4–10 [26, 44] and X is a chalcogen (S, Te, and Se)

[45]. Presently, more than 40 different TMDCs combina-

tions have been reported [28, 46–48] and they have shown

distinctive properties. In TMDCs, M (transition metal)

layer sandwiched between two (02) X (chalcogen) atomic

layers. Different atomic arrangements can generate the

octahedral (tetragonal, T) and trigonal prismatic (hexago-

nal, H) structure of the 2D TMDCs. In H-phase TMDC,

hexagonal symmetry can be observed from a top view and

X-M-X arrangement is considered to be the monolayer, in

which each M atom is covalently bonded to the six X atoms

[49], whereas T-phase has a trigonal arrangement of the

chalcogen (X) atoms on the top and shows the hexagonal

structure of chalcogen atoms from a top view [50]. Among

both, the 2H phase of 2D TMDCs is stable in air [51].The

stability of mono or few layer TMDC is of the vital

importance due to its layer dependent properties [52]. The

conductivity of 1T MoS2 phase is 10
7 times better than 2H

MoS2 phase [53]. Due to the tunable band gap, quantum

confinement and surface effects, monolayer 2D TMDCs

(MoS2, WS2) exhibit strong photoluminescence (PL) and

large exciton binding energy [54]. Besides the TMDCs,

two-dimensional oxides have also been extensively inves-

tigated. Two-dimensional oxides include micas and layered

oxides, such as MoO3 [55] and WO3 (micas) [56], TiO2,

MnO2, V2O5, TaO3, and RuO2 [28, 57–61]. These oxides

have also shown very promising properties for a variety of

applications.

The family members of 2D graphene, TMDCs, and

oxide materials are shown in Table 1. Gray color shows the

monolayer fabricated by exfoliation. These 2D materials

can be categorized in several ways in terms of their elec-

trical, mechanical and transport properties, as they possess

excellent and unique mechanical, thermal, optical, and

Table 1 2D materials family [1, 9, 20, 29, 42, 66–70]

Graphene Family

Graphene 
(Stable in Air at 300K) 

BCN
(Stable in Air at 300K) 

Flourographene 
(Stable in Air at 300K) 

Grahene Oxide
(Stable in Air at 300K) 

2D Chalcogenides 

Semiconducting 
dichalcogenide:

MoS2, WS2, MoSe2, 
WSe2 

(Stable in Air at 300K) 

Semiconducting 
dichalcogenide:

MoTe2(2H), 
WTe2(2H), ZrS2, 

ZrSe2 
(Stable in Air)

Metallic 
dichalcogenide:

NbSe2, NbS2, TiS2, 
NiSe2 and so on
(Stable in Inert Cond)

Layered 
Semiconductor 

beyond 
dichalcogenides:
GaSe, GaTe, InSe, 
Bi2Se3 and so on 
(Stable in inert Cond)

2D Oxides 

Micas, BSCCO
(Stable in Air at 300K) 

MoO3, WO3
, 

Layered Cu oxides
(Stable in Air)

TiO2,MnO2,V2O5, 
TaO3,RuO2
and so on 

(Stable in Air at 300K) 

Perovskite-type: 
LaNb2O7,(Ca,Sr)2Nb3O

10, Bi4Ti3O12, 
Ca2Ta2TiO10 and so on 

(Stable in Air at 300K) 

Hydroxides: 
Ni(OH)2, Eu(OH)2

and so on 
(Stable in Air at 300K) 

Others
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electronic properties [62–65] which have the potential to

replace current silicon-based semiconductor devices in the

future.

2.1 Classification of 2D Materials

For a better understanding of properties and its applica-

tions, 2D materials can be categorized in following three

classes.

2.1.1 Layered van der Waals Solids

The most common type of 2D material is the layered van

der Waals solid which has strong in-plane covalent or ionic

bond and weak interlayer van der Waals bonding. This

weak out-of-plane bonding allows the extraction of mono

or few layers of 2D materials from their bulk counterpart

through mechanical or liquid exfoliation. The dimensions

of these materials in the lateral direction are up to a few

micrometers and are less than 1 nm in thickness. TMDCs,

especially MoS2, MoSe2, and WS2, are the well-studied

materials. Besides those materials described afore, pre-

sently there are more than 40 different combinations of 2D

layered TMDCs (X-M-X) reported [46, 47]. The transition

metal, presenting in TMDCs, occupies trigonal prismatic or

octahedral coordinates and forms the hexagonal structure

[71]. Besides TMDCs, there are some other members of

layered van der Waals solids as well, such as Sb2Te3 [72],

vanadium oxide [73], and h-BN [74] etc.

2.1.2 Layered Ionic Solids

In this type of 2D materials, charged polyhedral layer is

present between two layers of halide or hydroxide layers

and these layers are held together via electrostatic force

between them. Ion exchange liquid exfoliation or ion

intercalation can be used to exfoliate the mono or few

layered 2D materials. Typical layered ionic materials

exfoliated from ion exchange methods are KCa2Nb3O10

[75], RbLnTa2O7, K2Ln2Ti3O10 [75], and La0.9Eu0.05Nb2
O7 [76].

2.1.3 Surface-Assisted Non-Layered Solids

This type of 2D nanostructure materials is synthesized by

making the layers artificially stacked on a substrate with

arbitrary angles [77]. The methods to synthesize these

materials include epitaxial growth and chemical vapor

deposition. Silicene is a typical example of this class.

However, its instability at ambient condition is the real

challenge to make it feasible for the application in elec-

tronic applications [78, 79]. Ge/Ag (100) and Ag(111)

[80, 81], TiO2 [82] and MgO/Mo (001) [83], and Al2O3/

SiO2 [84] are the examples of surface-assisted non-layered

solids.

2.2 Synthesis Techniques for 2D Materials

2D materials can be synthesized by following techniques:

2.2.1 Micromechanical Exfoliation

This process was first discovered by Geim and Novoselov

in 2004 [43], and the monolayer graphene was achieved

[85], in which parent bulk material was peeled off by

micromechanical force of the scotch tape and placed on the

surface of the photoresist. This cleavage is possible due to

the weak interlayer van der Waals forces. Monolayers of

NbSe2 [29], MoS2 [29, 86], and WS2 [87] are some of the

examples obtained by this process besides graphene.

Despite being the fast and cost-effective process,

micromechanical exfoliation is not an industrial-level

production of monolayer materials since most of the flakes

are smaller than 20 lm in diameter. In addition to the

monolayer, a few layers or very thick layers can also be

achieved at the same time. On the other hand, because of

the absence of chemical interaction, monolayer obtained by

this process is highly crystalline and its structural integrity

can be maintained. This monolayer has shown good sta-

bility at ambient conditions up to the months’ exposure

[29, 88].

2.2.2 Liquid Exfoliation

In contrast to mechanical exfoliation, which is a low yield

method, liquid exfoliation is capable of producing the

mono or few layers of 2D materials at a large scale. Mono

or few layers of Bi2Te3, TaSe2, MoSe2, MoTe2, BN, WS2,

and MoS2 can be easily obtained by this method

[1, 89–91]. This method can be categorized into four dif-

ferent forms such as oxidation, intercalation, ion exchange,

and ultrasonic cleavage.

Graphene oxide can be synthesized with an oxidation

method by treating graphite flakes with potassium per-

manganate or potassium chlorate and nitric acid or sulfuric

acid or their mixture [92–94]. The addition and dispersion

of epoxide functional groups or –OH in a polar solvent and

subsequent sonication result in exfoliated graphene oxide.

This method is also known as Hummers method or modi-

fied Hummer method [94, 95]. An oxidative form of liquid

exfoliation is most suitable for layered materials possessing

low reduction potential.

The intercalation technique is equally applicable to

TMDCs and graphene. In this method, interlayer force

decreases due to the intercalation of ionic or organic
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molecules, which results in a decrease in energy required

for exfoliation [96, 97].

Another technique to obtain a single- or few-layered 2D

material by liquid exfoliation is ultrasonic cleavage. In this

technique, parent bulk material consisting of layers with

weak interlayer bonding is ultrasonicated for 1–3 h after

dispersion in a suitable solvent. In this process, cavitation

bubbles are developed in the solvent due to high-energy

ultrasonic waves [98]. The exfoliation of layers is possible

due to the pressure released by the burst of cavitation

bubbles. Subsequently, centrifugation is applied to separate

the crystals. Figure 1a–c represents the schematic diagram

of the above-mentioned forms of liquid exfoliation. Due to

the complexity and destructive nature of liquid exfoliation

method, layered 2D nanostructure material cleaved by

mechanical exfoliation remains the favorite choice in the

research community [9].

2.2.3 Chemical Vapor Deposition (CVD)

CVD is known as a bottom-up technique allowing the

synthesis of 2D layers at a large scale with uniform

thickness, which is promising for optoelectronics and

electronic devices. Synthesis of MoS2 2D nanostructured

sheets by CVD on an oxidized silicon substrate is one of

the recent developments. Generally, there are two ways for

the fabrication of monolayer 2D materials. MoS2 as an

example, first, in a so-called two-step bottom-up technique,

(a)

(c)

(d)

(e)

N2

S
Substrate

MoO3

(b)

Furnace

Intercalation

A
gi

ta
tio

n

Exchange

Exchange

A
gi

ta
tio

n

Time
Good solventTime

Poor solvent

Sonication

dip-coating 1st anneal
Ar/H2
1 Torr
500 °C

1 h

Ar or Ar + S
500 Torr
1000 °C
30 min

2nd anneal

transfer

on sapphire on SiO2/Si
on SiO2/Si(NH4)2MoS4

solution

MoS2

1 cm

1 cm

Fig. 1 Schematic representation of the variation in liquid exfoliation process: a intercalation, b ion exchange, and c ultrasonic exfoliation. a–
c Reprinted from Ref. [98] with permission from Copyright 2013, AAAS. d Schematic representation of the CVD process. e Schematic

representation of large-area MoS2 nanosheet synthesis via dip and anneal technique. Reprinted with permission from Ref. [101], Copyright 2012,

American Chemical Society
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a thin layer of metallic Mo is evaporated by an e-beam

evaporation system. The Mo layer then reacts with sulfur

vapors, generated by heating the elemental sulfur above its

melting temperature. This reaction occurs at 750 �C lead-

ing to the formation of monolayered MoS2 [99]. This

method can yield MoS2 with a thickness more than three

layers. Second, a so-called one-step bottom-up technique is

used for the synthesis of the atomically thick MoS2
nanosheets. In this approach, pure S and MoO3 powders are

put in a CVD system. The mixture is heated to 650 �C.
Then, the atomic layer of MoS2 will be grown on the Si

substrate, which is covered with the rGO (reduced gra-

phene oxide) for MoS2 layers growth. The rGO acts as a

catalyst and the seed to enhance the growth of MoS2 layers

[100], as shown in Fig. 1d. By this approach, MoS2
monolayer with a thickness of 0.72 nm has been obtained.

Furthermore, large-area MoS2 nanostructured sheets can be

obtained by dip coating of (NH4)2MoS4 (ammonium

thiomolybdate) dissolved in DMF (dimethylformamide) on

silicon or silicon dioxide substrate [100, 101]. Figure 1e

shows the pictorial representation of this approach. After

the (NH4)2MoS4 solution is dipped onto the substrate, the

substrate is annealed under Ar/H2 atmosphere at 500 �C for

1 h. Then, the substrate is subsequently performed the

second annealing at 1000 �C for 30 min under Ar or Ar?S

atmosphere [101]. MoS2 2D layer nanosheets are then

obtained. X-ray diffraction (XRD), atomic force micro-

scope (AFM), and transmission electron microscopy

(TEM) analysis indicate that the layers grow and overlap

each other without interlayer chemical bonding. Besides

MoS2, other 2D materials such as TiS2 [102], VSe2 [103],

WSe2 [104], WS2 [105], and MoSe2 [106] were also pro-

duced using CVD technique.

In addition, thermally decomposed (BN)3H6 (borazine)

or (ClBNH)3 B-trichloroborazine can be used to fabricate

the layered BN on transferred metal surfaces, e.g., Rh, Pd,

Ru, Ni, and Pt, through an ultrahigh-vacuum CVD tech-

nique at a temperature above 700 �C [107–109].

2.2.4 Van der Waals Epitaxial Growth on a Substrate

This technique is similar to the CVD method. The only

difference is that the substrate used in van der Waals epi-

taxial method also acts as a seed crystal. A variety of

layered 2D nanostructured sheets can be synthesized by

this method, such as MoS2, GaSe, h-BN, and hexagonal Si

[107, 110–112].

Hexagonal Si is one of the examples achieved by this

method. Si superstructures were deposited on Ag (001)

substrate by heating the Si single crystal in ultrahigh vac-

uum using direct current. However, low-energy electron

diffraction (LEED), scanning tunneling microscopy

(STM), and XRD analysis indicated that there are two

kinds of superstructures in the deposited layer [113]. Ini-

tially, a monolayer of Si nanostructure p (3 9 3) was

formed. Subsequently, complex structure p (7 9 4) was

observed. Direct current deposition formed the atomic

thick Si nanoribbons on Ag (110) substrate. The atoms in

Si nanoribbons were arranged in a honeycomb structure

[114, 115]. Minor distortion was produced by the Si

nanostructure on Ag substrate. Similar to that of hexagonal

Si, monolayered Ge was also obtained by van der Waals

epitaxial growth method on Ag (110) and Ag (111) sub-

strates [116], whereas, due to the high solubility of Ge in

Ag, the tetramers structure of Ge on Ag substrate leads to a

larger distortion than that of Si [116].

Large-area 2D nanostructured materials, which are dif-

ficult to obtain via liquid and mechanical exfoliation, may

be synthesized by van der Waals epitaxial growth method.

However, the structure and properties of the 2D materials

fabricated by this method are critically dependent on the

orientation of the substrate and its chemistry. Moreover, in

respect of future applications, this method is not suit-

able for the commercial applications, as it requires high

vacuum and high temperature leading to high cost.

2.2.5 Hydrothermal Synthesis

Hydrothermal method is defined as the crystallization of

substance from organic or aqueous solution at high vapor

pressure and temperature. Due to extreme conditions, this

method is only suitable for those precursors which can

withstand these harsh conditions. 2D layered nanostruc-

tured materials have been successfully synthesized by this

approach. Single-layered MoSe2 and MoS2 nanostructures

were obtained through chemical reaction of Se/S with

(NH4)6Mo7O24�4H2O (ammonium molybdite) in hydrazine

monohydrate solution at a temperature of 150–180 �C for

48 h [117]. Furthermore, the single-step solvothermal

reaction of hydrazine and (NH4)2MoS4 on GO, in C3H7NO

(N, N-dimethylformamide) solution has produced the 3 to

10 layered MoS2 flakes [118].

Besides the synthesis of the MoS2 mono and few layered

2D nanostructures, other 2D materials have also been

fabricated by the hydrothermal approach. Transition metal

(groups IV and V) chalcogenides 2D nanostructures have

been synthesized from metal chloride in oleylamine [119].

In this process, chalcogen sources such as elemental sele-

nium, sulfur, or compound CS2 are employed. When sulfur

is used as the source, irregular shape and poor crystallinity

of TMDC is obtained which is mainly due to the highly

reactive radical formation. In contrast, better crystallinity

can be achieved when using elemental Se as the source

[119]. When CS2 is employed initially, H2S is generated

followed by its reaction with metal precursor, resulting in

the formation of metal disulfide 2D layered crystals with

50 Page 6 of 23 Nano-Micro Lett. (2017) 9:50

123



variable lateral size in (001) plane. This growth is due to

the low surface energy of this particular plane compared to

(010) and (100) planes.

Besides the synthesis of TMDCs, this method has a

potential to synthesize the 2D nanostructured sheets of

hydroxides or metal oxides such as nanoribbons of VO2,

which can be obtained by hydrothermal reduction in V2O5

in the presence of GOIt and is promising for applications in

Li-ion batteries as a cathode [73]. Characterization tech-

niques such as STM, X-ray photoelectron spectroscopy

(XPS), and high-resolution transmission electron micro-

scopy (HRTEM) have shown good composition control

and crystal structure of 2D nanostructure materials syn-

thesized by this approach.

2.3 Properties and Applications of 2D Materials

The layered materials in which one dimension is restricted

to a single layer are called 2D materials. In 2D materials,

the increment in excitation energy leads to an increase in

the density of states [120], resulting in different properties

with different sizes and shapes of the quantum confined 2D

materials. 2D materials exhibit dissimilar properties than

their bulk counterpart and demonstrate the shape- and size-

dependent properties, which make them suitable for a

variety of nanoapplications [121].

2D layered nanomaterials have electron confinement and

the layers are in close contact by van der Waals force, which

results in a minimization of the interlayer interaction. Large

surface-to-volume ratio allows altering the properties

through surface treatments such as chemical functional-

ization [122]. Moreover, 2D materials can also be synthe-

sized as dispersed nanoflakes, which can retain their

properties similar to the monolayers. In addition, these

nanoflakes can be mixed with other materials to form

nanocomposites, which have been widely used for energy

applications [89, 123, 124]. Highly conductive nature cou-

pled with large surface area, excellent chemical stability,

and flexibility make 2D materials as suitable candidates for

the applications of energy storage and conversion [16]. 2D

materials can also be utilized in fuel cells due to their

photocatalytic properties [125]. Moreover, anodes made

from graphene have shown enhanced cyclic lithium storage

capacity (specific capacity of 460 mAh g-1), which can be

utilized in the flexible battery devices [126–128]. 2D

materials have also shown promising properties for super-

capacitors. Recently, supercapacitors made from multilay-

ered reduced graphene oxide have demonstrated a high

specific capacity of 394 lF cm-2 [129].

Graphene has given rise to high charge carrier mobility,

chiral properties of the mobile carriers, and high thermal

conductivity [3]. Charge carriers in graphene can be well

described by Dirac equation rather than the Schrödinger

equation [130, 131]. It is well known that graphene is a

gapless semiconductor. High symmetry of honeycomb

lattice protects the zero gap of single-layer crystal. How-

ever, the band gap of bilayer graphene can reach up to

250 meV by the application of a transverse electric field

and the band gap is tunable by an electric field [132].

Besides electric field effect, strain can also alter the low-

energy band structure of layered 2D materials. For exam-

ple, the band gap of a single- and bilayered MoS2 decreases

linearly with strain at the rate of *45 and *120 meV/%,

respectively [133, 134]. Furthermore, magnetic field also

has a strong impact on electronic properties of 2D materials

[43, 135, 136]. Charge carrier sign of 2D nanostructure

materials can be modified by the application of electrical

field allowing its utilization in high-mobility p–n junction

transistors and complementary metal oxide semiconductor

(CMOS) technology. Defect-free high-quality crystal up to

micron scale [137] is the main reason for achieving high

charge carrier mobility due to scattering free movement of

electrons [138]. Therefore, 2D materials are very popular

in the design of nanoelectronic devices such as field-effect

transistors (FET) due to their high charge carrier mobility,

high on/off current ratios, and low power consumption.

FET composed of pristine graphene exhibits very high

electron mobility (200,000 cm2 V-1 s-1) [21] but lacks in

on/off ratio. In contrast, some 2D materials such as MoS2
(TMDC) exhibit variable band gap (1.2 eV, indirect to

2.5 eV, direct from bulk to a single layer) [26–28, 139].

Indirect-to-direct transition of band gap from bulk to the

single-layered 2D material is due to the upshift of the

indirect band gap induced by strong quantum confinement

effect in a single layer [26]. This intrinsic large band gap of

such single-layered 2D material gives rise to 108 on/off

ratio and *150 cm2 V-1 s-1 electron mobility at 300 K

for transistor application [30–33]. Furthermore, due to

quantum limitations, channel thickness of\5 nm cannot

be achieved in Si-based devices, as it reduces the carrier

mobility significantly due to scattering generated by sur-

face roughness [140]. Thus, two-dimensionality of TMDCs

gives the advantage of dangling bonds free, fully termi-

nated surface [13]. In comparison with Si transistors, it

demonstrates 105 times less power consumption [30].

Similar to TMDC, 2D phosphorene has also shown

promising results for transistor applications [141]. In

addition, mechanical strains and electrical field both have

significant influences on the band structure of 2D nanos-

tructured materials, which makes them suitable candidates

for sensor applications. High mobility results in highly

sensitive conductivity (to electrostatic perturbation) of 2D

materials due to the possible generation of carriers on the

surface via photo (light)-effects [142]. This property makes

these materials potential candidates for high-gain pho-

todetector application such as optical communications,
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optoelectronic devices, and biomedical imaging. 2D

materials can also be used as the nanogenerators [6] which

convert the biomechanical energy, induced by the human

body motion, into the electrical signal. This property makes

them promising for biosensor and body implanted device

applications [6, 143]. 2D materials can absorb a large range

of the electromagnetic spectrum (infrared to ultraviolet)

[144] allowing their utilization in high-performance pho-

tonics and optics [145]. Atomic layer graphene can be used

for ultrafast photonics application due to its wavelength

independent ultrafast saturable absorption [146]. 2D topo-

logical insulators (e.g., Bi2Se3) have the potential to be

utilized for nonlinear optics applications at high-power

regime (low absorption and high nonlinear phase) [147].

Few-layered 2D TMDC materials or MoS2 nanoplatelets

possess nonlinear optical properties and can potentially be

used in laser photonic devices [148]. Black phosphorus is

also a promising nonlinear optical material. Thin films of

black phosphorus can be used in developing ultrafast

photonic devices [149]. 2D materials have very low

absorbance value (\10%) and high conductivity, making

them suitable for flexible and transparent electronic

applications such as liquid crystal devices and solar cells

[150, 151].

Along with the extraordinary electrical and photonic

properties, 2D materials also display excellent mechanical

properties. The 2D material, such as graphene, is very

flexible and has demonstrated 200 times higher breaking

strength than steel [152]. Hence, it can be used to reinforce

the polymers. Furthermore, its membrane can also be used

in nonlinear electromechanical systems due to its extraor-

dinary flexibility and ultrathin nature [153].

3 Field-Effect Transistors

3.1 Introduction

In general, the transistor is a device which controls the flow

of the electrical charge carriers across a semiconductor

material by which it is fabricated. Field-effect transistors

(FETs) are the particular class of transistors in which semi-

conductor material is used as a channel. The current carrier

density and conductivity of a semiconductor channel are

controlled by an applied voltage resulted from the regulated

current flow passing through it by a supply. Both ends of the

channel connected to the input supply are denoted as the

source and drain terminals. The terminal which is responsi-

ble for controlling the conductivity and current flow through

the channel, upon the application of the potential, is knownas

a gate terminal, as shown in Fig. 2.

The basic principal of the FET is not new and was first

described by J.E. Lilienfeld in a patent of 1925. The

development of electronic devices was made possible after

the theoretical description of the concept related to FET,

given by Shockley in 1952 [154]. The general field-effect

transistors can be categorized into two major classes,

junction FET (JFET) and metal oxide semiconductor FET

(MOSFET), also known as an insulated gate FET (IGFET),

as shown in Fig. 3. In the era of 1970–1980, the invention

of a MOSFET has led to the revolution of the electronic

circuits and the development of the microprocessors,

resulting in the powerful portable calculators and com-

puters. FET has a variety of applications such as protection

devices, amplifiers, switches, current limiters, oscillators,

mixers, and voltage-controlled resistors.

3.2 Potential of 2D Materials in FET

Developments and advancements in materials have led to

the exponential decrease in dimensions of the metal oxide

semiconductor FET for over four past decades. This

shrinking of size is the evidence of Moor’s law prediction.

These advancements not only scale down the size of sili-

con-based MOSFET but also enable it to perform even

faster compared to its ancestors. However, this miniatur-

ization and fast processing are possible at the cost of high-

power consumption. This high-power requirement is due to

the short-channel effect which arises in the MOSFET

having a dimension less than 50 nm and makes the gate

control weaken over the channel current. This results in

disability of the gate to completely switch ‘‘off’’ the current

through the channel [155]. This flow of unwanted leakage

current, at the ‘‘switch off’’ state of MOSFET device, gives
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rise to the high-power consumption and overheating

problems. Further miniaturization of MOSFETs has been

restricted due to the aforesaid challenges. To mitigate these

complications and have better gate control to completely

prevent the current flow through the device at ‘‘off’’ state,

different approaches such as multiple gates [155] and high-

k dielectric gate layer [156] have been investigated.

However, tunneling field-effect transistor (TFET), another

type of FET, in which carrier transport is due to the inter-

band tunneling, can also show high Ion/Ioff with a low

supply voltage which is attributed to the subthreshold slope

(SS) \60 mV per decade [157, 158]. The potential of

TFETs was first realized through the theoretical simula-

tions [159, 160]. In addition, the research community is

also looking for the alternate materials to complement or

replace silicon technology. This brings the focus of

researchers toward atomically thick mono or few layered

2D materials having unique characteristics appropriate for

the future electronic devices, such as high mobility,

transparency, and flexibility [161, 162]. The diverse prop-

erties of 2D materials, such as atomically thick body,

robust nature, quantum confinement effect, high mobility,

high switching efficiency, and tunable band gap, may result

in the further scaling down of the device dimensions cou-

pled with comparatively reduced short-channel effects

[12, 21, 26, 30, 139]. In 2013, theoretical study, based on

quantum transport simulations, shows promising results for

reduction in channel length to *10 nm [163]. Recently,

experimental results, of U-shape MoS2 FET with 10 nm

channel length, have demonstrated excellent short-channel

behaviors [164].

As described previously, 2D materials such as graphene

and TMDC were fabricated from their bulk form due to the

layered structure, which is held by a weak van der Waals

force [1, 20] although good ohmic contact, higher carrier

mobility, and band gap (*1 eV) are the basic requirements

for any material to be used in logic applications such as

MOSFET, cost-effective large-scale synthesis of the

material, and its compatibility with CMOS technology are

also of great importance [165]. Moreover, 2D TMDCs also

possess large relative effective mass for electrons (*0.5)

and holes (*0.66) compared to Si (*0.29) [166] which

results in reduced source–drain tunneling component in

case of TFETs [167]. Researchers are still working hard to

search new high-performance 2D materials or improve the

current 2D materials for the requirements. In the past

decade, significant progress has been achieved in the field

of 2D layered materials for the state-of-the-art electronic

nanodevices. However, there is still no 2D material meet-

ing all the requirements for the high-performance 2D-based

electronic device. For example, graphene shows very high

mobility [21] but lacks in switching efficiency (\10) at

ambient temperature. On the other hand, MoS2 has high

Ion/Ioff ratio (*108) [30] due to its relatively large band

gap [26–28, 139] but has low electron mobility [30–32]

compared to graphene. Many research works have shown

that the number of the layers has a profound influence on

the performance of electronic devices and the properties of

layers can also be affected by the substrate or another 2D

layered material coupled with them. Therefore, to form a

heterostructure from two kinds of 2D materials, such as

graphene and MoS2, may be employed to achieve and Ion/

Ioff ratio simultaneously [4, 168]. Along with the aforesaid

essential properties, thermal conductivity and heat dissi-

pation are also of vital importance for the realization and

thermal management of the high-quality electronic device.

The theoretical and experimental studies of the thermal

behavior of 2D TMDCs, despite being the promising

materials for FET applications, are still limited as com-

pared to graphene and h-BN [169–173]. However, thermal

properties of monolayer MoS2 (2D TMDC) differ from

one-atom thin graphene layer due to its sandwich structure

[174]. The thermal conductivity is mainly dominated by

the phonons contribution rather than electrons [174].

Recently, theoretical investigations revealed the thermal

conductivity of MoS2 is 1.35 [175], 6 [176] or

23.2 W m-1 K-1 [174] in different reports, which is lower

in the magnitude than that of graphene. Moreover, exper-

imental studies of MoS2 with a few layers have corrobo-

rated the thermal conductivity of 1.59 [177] and

52 W m-1 K-1 [178] at room temperature. Complete

understanding of the thermal properties, of MoS2
(TMDCs), is crucial for the future state-of-the-art elec-

tronic device applications.

Along with the experimental research, semiconductor-

based FET modeling and simulation serve as a bridge

between manufacturers and designers [179, 180] and pro-

vide essential tools to explore the fundamental properties

of 2D TMDCs for the device applications [181]. Various

softwares (such as PHILIPAC, SLIC, and SPICE) are

available to model and investigate the devices [182, 183].

These compact models for TMDC-based FETs are vital to

study the device behaviors with computational efficiency

and accuracy without loss of the physical insights [184].

Before the industrial-level production of the integrated

circuits of FET based on TMDCs, the study of devices

using the compact model is of prime importance. Compact

model for analyzing these devices differs from Si-based

devices because of the Fermi–Dirac statistics and density

of states’ effects on the capacitance [185–187]. Recently,

many researchers have shown interest in developing the

compact model for TMDC-based FETs. Each compact

model has its own significance. For example, one model is

based on capacitive network, which considers drift com-

ponent but ignores trap effects [188]. Whereas, another

model has more focus on the subthreshold region of the
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device [189]. One of the models is developed to simplify

the current and surface potential calculations with the help

of the Boltzmann statistics [190]. Later on, the model is

developed, for double-gate FETs, based on Fermi–Dirac

statistics which involves implicit equations but excludes

the trap effects [187]. The research work in [191] demon-

strates the compact model, which also considered the

Fermi–Dirac statistics with drift–diffusion transport. These

models were developed to explore the behavior of the

TMDC channel-based FETs.

3.3 Applications of 2D TMDC Materials

in MOSFET

Metal oxide semiconductor field-effect transistors (MOS-

FETs) currently are the main components of any logic

devices, and each digital circuit is composed of many logic

gates. Any material chosen to be used in the fabrication of

logic devices needs to satisfy some basic requirements such

as low conductance at off condition to minimize the

standby power consumption, high on/off switching ratio

from 104 to 107, and higher mobility of charge carrier for

swift operation [192]. Large band gaps (1.2–2.5 eV) of

bulk, few- or single-layered MoS2 make it a suitable can-

didate to provide high switching ratio with low off-state

power consumption [27, 28, 30]. Because of high switching

ratio and large band gap, MoS2 being the potential candi-

date has been extensively studied for its application in the

logic device. In this review, we will focus on MoS2-based

FET as an example. Initially, low charge carrier mobility of

0.5–3 cm2 V-1 s-1, which is not sufficient for logic devi-

ces, was reported [29]. Subsequently, mechanically exfo-

liated nanopatches of MoS2 exhibited a high on/off ratio

[105 and charge carrier mobility in tens of cm2 V-1 s-1

[193]. High switching on/off ratio of 108, charge carrier

mobility higher than *60 cm2 V-1 s-1, and subthreshold

swing of 74 mV per decade (increase in gate voltage

required to change the drain current by one decade. Here

decade represents the 10 times increment in drain current)

were reported in top-gated MoS2-based FET at room

temperature [30–32]. Subthreshold swing gives the quali-

tative and quantitative analysis of Ion/Ioff. A lower value of

subthreshold swing for FET will result in higher Ion/Ioff and

better switching behavior. At room temperature, the ideal

subthreshold value is 60 mV per decade [13]. Similarly,

monolayered MoS2 FET has also shown on/off ratio of 108

and charge carrier mobility of *150 cm2 V-1 s-1 at

300 K once dielectric HfO2 was used as the gate layer

[30–33, 194] (Fig. 4).

MoS2 showed low power consumption when high-k di-

electric gate layer in top-gated configuration was used.

Besides the high performance in FET, photoresponsivity in
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the range of 100–680 nm and ultrasensitivity of

880 A W-1 at a wavelength of 561 nm was observed in

monolayered MoS2 photodetectors [195]. The excellent

optical properties of MoS2 make it a potential material for

the applications in video recording, optoelectronics, light

sensing, and biomedical imaging applications [195–197].

Besides MoS2, WSe2, a p-type TMDC, is also equipped

with the set of properties required for the device applica-

tions, such as considerable bulk indirect and monolayered

direct band gap (1.2–1.65 eV) [198, 199]. FET based on

bulk WSe2 exhibited promising room-temperature hole

(charge carrier) mobility of *500 cm2 V-1 s-1 [200].

However, it lacked in on/off current ratio ([10). Bulk

nature of WSe2 results into large ‘‘OFF’’ state current

which is not desirable for the efficient FET applications. In

contrast, mechanically exfoliated single-layered WSe2-

based p-type FET has shown the hole mobility of

*250 cm2 V-1 s-1 with the enhanced on/off current ratio

([106) and ideal subthreshold slope of *60 mV per dec-

ade, as shown in Fig. 5 [199]. Moreover, p-type FET fab-

ricated from CVD grown monolayer WSe2 has

demonstrated the hole mobility of *90 cm2 V-1 s-1 with

an appropriate on/off current ratio of 105 [198, 201].

Similarly, MoTe2-based FETs show the ambipolar

response. Both n- and p-type material can be synthesized

by controlling the growth method [202]. Theoretical cal-

culations have depicted the room-temperature mobility of

MoTe2-based FET is of *200 cm2 V-1 s-1 [203]. How-

ever, the recent experimental works for three-layered

MoTe2 device with Ti contacts have presented charge

carrier mobility of 7 9 10-2 and 2 9 10-2 cm2 V-1 s-1

for holes and electrons, respectively [204, 205], whereas, in

another work, a similar MoTe2 device with Au contacts has

shown improved mobility of 16.5 cm2 V-1 s-1 with on/off

current of 107 [204].

Regarding the current research of TMDCs on FET,

charge carrier mobility is the main focus. The impurities

presented in mono or few layered MoS2 material lead to

screening effect, which influences the dielectric environ-

ment on charge carrier mobility. The large dielectric

constant of the gate layer will increase the capacitive

coupling between top gate and back gate which in return

stimulates the charge carrier mobility by 10–50 times

[194]. If only silicon/silicon dioxide is used as the sub-

strate without high-k dielectric gate layer in mono or few

layered MoS2-based FET, charge carrier mobility of about

10 cm2 V-1 s-1 can be obtained at room temperature.

Hence, the low mobility is due to the poor interface

between Si/SiO2 and MoS2 [206, 207]. This interface

problem including surface defects, the concentration of

charged impurities, local charge distribution, and trapped

charges in the substrate results in coulomb scattering and

low charge carrier mobility. The use of high-k dielectric

materials, such as hafnium dioxide (HfO2) [30–32] or

alumina (Al2O3) [208] as top gate, has increased the

charge carrier mobility to *150 and 500 cm2 V-1 s-1,

for monolayer and bulk MoS2, respectively, due to the

screening effect. Besides the influences of high-k dielec-

tric gate layer and channel material (MoS2) characteris-

tics, charge carrier mobility has been underestimated due

to the presence of Schottky barriers between metallic

contacts and MoS2 single or few layers [194, 209]. The

reduction in resistance between the contacts and thinning

of Schottky barrier results in an enhancement of charge

carrier mobility from 100 to 220 cm2 V-1 s-1 [210].

Theoretical calculations based on density function theory

suggested that the carrier mobility of MoS2 at room

temperature could reach 400 cm2 V-1 s-1 [34]. These

results suggest that MoS2 is a promising material for

future electronics.
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4 Current Challenges in 2D Materials Device
Application

Experimentally demonstrated charge carrier mobility of the

mono or few layered MoS2 is much lower than that of

theoretical prediction of 410 cm2 V-1 s-1 [34]. 2D mate-

rials possess large surface area making charge carrier

mobility more sensitive to the external (e.g., trapped

charged impurities, interface quality, and adsorbates from

ambient air) and internal (lattice defects) factors

[206, 207]. An experimental result of charge carrier

mobility depends on the measurement condition/method

and sample quality. Other factors including channel

thickness, measuring temperature, annealing, Schottky

barrier, dielectric environment, and carrier density (n) play

an important role in achieving high charge carrier mobility

devices.

The influence of channel thickness on carrier mobility

was ascertained when mechanically exfoliated MoS2 and

NbSe2 demonstrated 0.5–3.0 cm2 V-1 s-1 charge carrier

mobility, which is lower than their bulk counterparts [29].

Lee et al. [211] also showed the reduction in carrier

mobility with the decrease in thickness placed on different

substrates (SiO2 and h-BN). One- to 5-layered MoS2 dis-

played charge carrier mobility varying from 10 to

50 cm2 V-1 s-1 [212]. The possible reasons for the

thickness dependence are coulomb scattering and the

Schottky barrier between channel and electrode contacts

[213]. Moreover, in recent work, Hall mobility of *1000

and *34,000 cm2 V-1 s-1 is reported for single- and six

(6)-layered encapsulated MoS2 devices, respectively, at a

temperature below 5 K [214]. Just like the channel thick-

ness, measuring or operating temperature has a significant

effect on carrier mobility. High temperature ([100 K)

enhances the lattice phonon scattering which tends to have

an adverse effect on carrier mobility of 2D TMDCs.

Consequently, the theoretically predicted charge carrier

mobility of 410 cm2 V-1 s-1 at room temperature

[34, 215], limited by phonon scattering, has never been

achieved experimentally for single-layered MoS2 [216].

Similar behavior has also been reported for MoSe2 with a

few layers [217]. At low temperatures, high field-effect

mobility (*1000 and *34,000 cm2 V-1 s-1) of single-

and six-layered MoS2 has been reported [214, 216].

Moreover, charge carrier density (n) also plays a vital role

in electronic properties of 2D TMDCs materials. MoS2 has

shown electronic phase transition (metal to insulator) with

an increase in charge carrier density [218, 219], whereas

medium range charge carrier density is essential for the

transistor applications. In this range, an increase in charge

density may have two outcomes. First, high charge density

is favorable for increasing carrier mobility by suppressing

the interfacial impurity potential. Second, high carrier

density tends to increase the carrier energy which may

result in reducing carrier mobility [212].

Interfacial Schottky barrier, between the channel semi-

conductor and metal electrodes, reduces the charge carrier

mobility by inducing resistance in carrier transfer. This

unwanted effect can be minimized by employing four-ter-

minal measurement method [220]. Formation of the

Schottky barrier is due to the difference in energy levels

between the semiconductor and electrode materials.

Schottky barrier height is directly proportional to the

energy-level difference of two coupled materials [221].

Barrier height can be reduced by making contact between

n-type semiconductor and low work function metals or p-

type semiconductor and high work function metal. More-

over, the Schottky barrier is tunable by varying the FET

gate bias. Initially, this variation was considered to be the

switching mechanism of FETs [222]. Later, the depen-

dence of barrier height on channel thickness was reported.

In thicker flakes, the barrier height is much smaller than

that of monolayered 2D TMDCs materials [223]. It is due

to the influence of band gap of semiconductor channel on

the Schottky barrier. Thinner (\5 layers) MoS2 possesses

larger band gap which results in higher barrier height and

contact resistivity than bulk MoS2 [220]. Barrier height

between Au and MoS2 varies from 0.3 to 0.6 eV with a

decrease in the number of MoS2 layers from 5 to 1 [220].

Hence, charge carrier mobility can be improved by opti-

mizing the metal/semiconductor contact. Furthermore,

minimum electrode length needs to be identified in order to

obtain better charge transferring efficiency [220]. Channel

length (in appropriately annealed samples), however, does

not affect the MoS2 device performance [220]. In addition,

some studies have shown that the presence of ultrathin

TiO2 [224] or MgO [225], between MoS2 and ferromag-

netic metal, reduces interfacial Schottky barrier height.

Scattering in semiconductor channel is one of the rea-

sons for the reduced charge carrier mobility. The scattering

may be induced by lattice phonons due to the high-k

dielectric environment, charged impurities, and interfacial

phonons. At room temperature, bulk MoS2 has exhibited

the electron mobility ranging from *150 to 500 cm2

V-1 s-1 [30–33, 208]. However, if the monolayers of

MoS2 fabricated by mechanical exfoliated are transferred

on SiO2 to make a device, the carrier mobility then drops

down to 0.1–10 cm2 V-1 s-1 [29]. High charged impurity

density (N) gives rise to coulomb scattering which can be

screened with the use of high-k dielectric material, leading

to the increase in electron mobility at low temperatures

[219]. In FETs made of 2D TMDC materials, charged

impurities (coulomb) are present at the interface between

dielectric and 2D channel. These charged impurities have a
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scattering potential which induces the scattering in 2D

FETs [226–228]. The source of charged impurities includes

chemical residues, adsorbates introduced during device

fabrication, and contaminated surface, which results in

reduced charge carrier mobility of the 2D TMDC-based

FETs. Theoretical calculations and experimental results

have demonstrated a high rate of coulomb scattering in the

thinner channel with HfO2 or SiO2 as the gate layer [212],

indicating that the top/bottom surface scattering is associ-

ated with channel thickness. As the thickness decreases,

interaction distance between charge carriers and charged

impurities shrinks due to the electrostatic equilibrium. This

shrink in interaction distance results in high scattering

potential and lower charge carrier mobility [212].

Charge carriers can be scattered by lattice phonons

through potential deformation. Adjacent atoms move in

the direction of acoustic phonons but opposite to the

optical phonons. Phonon scattering is proportional to

temperature and increases with the increase in tempera-

ture. Based on theoretical calculations (by the first prin-

cipals calculations) of acoustic/polar phonon scattering

and screening for single-layered MoS2, charge carrier

mobility of *410 cm2 V-1 s-1 has been reported

[215, 229, 230]. However, these calculations did not cater

for the effects of dielectric mismatch and free-carrier

screening. Phonon scattering becomes dominant due to the

presence of high-k dielectric material and leads to a drastic

decrease in electron mobility at room temperature (300 K)

[230]. This phenomenon tends to increase as the thickness

of the semiconductor layer is decreased from bulk to

monolayer. In TMDC materials like MoS2, polar nature of

the chemical bonds gives rise to the dipole moments

between anions and cations. Perturbation of dipole

moment by polar phonons creates an electric field which is

coupled with charge carrier, resulting in low charge carrier

mobility. This phenomenon is called Frohlich interaction

or polar optical phonon scattering [229]. Phonons can be

excited by the charge carriers if the dielectric layer in

FETs supports polar vibrational modes. These phonons are

known as surface optical phonons or remote interface

phonons. At room temperature, scattering due to remote

interface phonons is more dominant in the high-k dielec-

tric environment compared to low k dielectric gate layer

[231, 232].

Besides coulomb and phonon scattering, structural

defects also play a vital role in the degradation of charge

carrier mobility. Structural defects include dislocation,

vacancies, grain boundaries, impurities, and precipitation.

In a low-quality sample, anion vacancies can act as a strong

scattering source. Studies have shown that CVD grown or

mechanically exfoliated MoS2 possesses high percentages

(0.4%) of sulfur vacancy which affects the charge carrier

mobility [233]. Vacancy repairing of CVD grown single-

layer MoS2 by annealing can improve the charge carrier

mobility up to 45 cm2 V-1 s-1 [234]. Vacancy scattering

is independent of carrier density and weakly depends on

the temperature and channel thickness as these parameters

do not have any direct relation with the defect densities

[235]. Besides vacancy defects, the presence of tilt grain

boundaries may also degrade the charge carrier transport

efficiency [236].

Electron or charge carrier density (n) is also one of the

factors affecting the charge carrier mobility. Although

electron mobility tends to increase with the increase in

electron density, the effect is prominent after the effective

screening of phonon scattering. As the dielectric value of

k increases, electron mobility drastically decreases due to

phonon scattering. Electrons presented in atomically thick

2D mono or few layer nanosheets excite the phonons in the

nearby dielectric material (which supports polar vibrational

modes) at room temperature. Figure 6a [230] demonstrates

the effects of dielectric environment on charge carrier

mobility at two different temperatures of 100 and 300 K. In

both cases, electron density and charged impurity density

are considered equal to 1013 cm-2. The solid line repre-

sents the combined effects of coulomb and phonon scat-

tering on mobility, whereas the broken line shows the

electron mobility while neglecting the effects of phonon

scattering, which indicates a trend to achieve large mobility

at high-k dielectric environment (ee). In this case, mobility

is entirely dependent upon the charged impurity density.

At low temperature, when the phonon scattering is

inactive and negligible, electron mobility can be improved

by decreasing the charged impurity density. If the charged

impurities density is low, low k dielectric is required for

coulomb screening, which will result in less phonon scat-

tering at room temperature [230]. Figure 6b [230] shows

the dielectric constant required against the critical value of

charged impurity density Ncr at room temperature. If

N[Ncr, then the electron mobility highly depends upon

N rather than phonon scattering and vice versa. Figure 6c

[230] represents the charge carrier mobility of a monolayer

MoS2 (phonon limited) at room temperature under different

dielectric environment ranging from free suspension in the

air to high-k dielectric HfO2. It can be inferred from the

plot that the phonon determined mobility decreases with

the increase in dielectric constant of the gate layer. Fig-

ure 6d [230] demonstrates the combined room-temperature

electron mobility in monolayer MoS2 nanosheet against

variable charged impurity densities under various dielectric

environments considering all kinds of scattering mecha-

nisms. The carrier density is fixed to be 1013 cm-2. From

Fig. 6d, one can figure out that the electron mobility is

weakly dependent on the dielectric environment at high

impurity density (1013 cm-2), as shown in the dashed box

in the bottom right corner.
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5 Future Prospective and Conclusion

Aforementioned challenges, regarding the utilization of 2D

nanomaterials in device applications in connection with the

charge carrier mobility, drive us not only to produce the

high-quality (defect- and impurity-free) single-crystal

mono or 2D nanosheets with a few layers but also to think

about searching new materials. This path leads to two

methodologies pertaining to the improvement of charge

carrier mobility by the utilization of existing materials via

special design, such as heterostructure technique or

experimental study of some new materials, which is pos-

sible to have high carrier mobility.

For the first methodology, efforts need to be made to

produce the high-quality and defect-free 2D nanostructure

which contains a minimum level of charged impurity

density. Mechanical exfoliation can produce high-quality

TMDCs. However, the difficulty for large-scale synthesis

with uniformity and reproducibility of samples are the

main limitations of this process. CVD is a method which

has the potential of producing the large-scale high-quality

2D TMDCs or graphene [237, 238]. In order to obtain the

impurity-free high-quality 2D materials, the ultraclean

substrate (flushing of the substrate with acetone and iso-

propanol and subsequently vacuum annealing at high

temperature) and highly pure precursors need to be used. In

addition, the synthesis parameters such as pressure, tem-

perature, and growth time are needed to be optimized,

which are all important to achieve large-scale, high-quality

single-crystal 2D materials [237–239]. Proper procedures

to avoid contamination during 2D material synthesis are

also of importance. For example, the purging of Ar gas

with a very high purity is required to eliminate any chance

of impurity in the samples [240]. Thickness and number of

layers of 2D material can be controlled by controlling the

deposition parameters, such as heating temperature, depo-

sition time, and chamber pressure [238, 241]. Furthermore,

very recent developments have shown that adding a small

amount of O2 in the Ar carrier gas can also suppress the

nucleation and promote the synthesis of MoS2 with a large

area and high quality [239]. In addition, device fabrication

and encapsulation inside Ar-filled glove box will also help

avoid device degradation, possibly due to the presence of

chemical species (e.g., O2 and H2O) in ambient condition

[242].

From the above discussions, charge carrier mobility in

2D materials is primarily dependent on the concentration of

the charged impurities and then on the phonon scattering

due to the dielectric environment at high temperatures.

CVD method has the potential to generate high-quality

large-scale single-crystal 2D nanosheets. MoS2, graphene,

WS2, and MoTe2 high-quality monolayers have been

extensively reported using CVD techniques. Recently, it

has been observed that assembling different 2D materials

into heterostructure may lead to the tuning of electronic

properties [243, 244]. A band gap of 0.1 eV of MoS2 was

achieved after a heterostructure composed of MoS2, and

graphene was formed [243]. Furthermore, heterostructure-
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based FET composed of MoS2 (channel), h-BN (top-gate

dielectric), and graphene (source, drain and top-gate elec-

trodes) has displayed charge carrier mobility of

*33 cm2 V-1 s-1 and on/off current ratio of [106

[214, 245] (Fig. 7a). Besides MoS2, TMDCs p–n junction

(heterostructure) also demonstrates promising results.

Heterostructure of TMDCs, n-MoSe2/p-WSe2, has exhib-

ited the clear rectification with an ideality factor of *2 at

290 K [246]. Similarly, p–n junction of p-WSe2/n-MoS2
(Fig. 7b) has also shown the promising gate tunable recti-

fying electrical characteristics [247–250]. The average

conductance slope of 75 mV per decade at room temper-

ature [250] and ideality factor of 1.2 were observed [251].

However, in recent work, the p–n heterojunction formed by

p-type single-walled carbon nanotubes and n-type mono-

layer MoS2 has also revealed the charge transport behavior

with a forward/reverse current ratio of larger than 104

[252]. In addition, heterostructure made from InAs

(n type)/WSe2 (p type) has displayed the even better rec-

tification with a forward/reverse current ratio larger than

106 and an ideality factor of *1.1 [253].

Secondly, to search and fabricate new materials may be

another possible methodology to achieve high carrier

mobility 2D materials. Recently, 2D material, InSe (metal

chalcogenide)-based heterostructure encapsulated device

has been reported, which demonstrates charge carrier

mobility of *10,000 and *1000 cm2 V-1 s-1 at * 50

and 300 K, respectively [242]. Theoretical calculations

have revealed that some new promising single-layer 2D

TMDC materials may achieve higher mobility than that of

MoS2 [254] as shown in Fig. 8. Certainly, the synthesis of

these high-quality 2D materials is a challenge.
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113. C. Léandri, H. Oughaddou, B. Aufray, J.M. Gay, G. Le Lay, A.

Ranguis, Y. Garreau, Growth of Si nanostructures on Ag(001).

Surf. Sci. 601(1), 262–267 (2007). doi:10.1016/j.susc.2006.09.

030

114. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B.
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