Supporting Information for

2D MOF Nanoflake-Assembled Spherical-Micro-Structures for Enhanced Supercapacitor and Electrocatalysis Performances

Huicong Xia¹, Jianan Zhang^{1,2,*}, Zhao Yang¹, Shiyu Guo¹, Shihui Guo³, Qun Xu^{1,*}

¹College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China

²Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 30071, People's Republic of China

³State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China

*Corresponding authors. E-mail: zjn@zzu.edu.cn, qunxu@zzu.edu.cn

Tel.: 86-15890185257

Fig. S1 a SEM images of ZIF-67. **b** TEM images of Ni/Co-MOF nanoflakes. **c** TEM images of Ni-MOF nanoflakes. **d** TEM-EDS mapping of Ni-MOF nanoflakes, and **e** TEM-EDS mapping of ZIF-67

Fig. S2 XPS spectra of Ni/Co-MOF nanoflakes

Fig. S3. **a** CV of as-prepared ZIF-67 eletrodes at different scan rates. **b** CV of as-prepared Ni-MOF nanoflakes eletrodes at different scan rates. **c** Galvanostatic charge/discharge curves of ZIF-67 at various current densities. **d** Galvanostatic charge/discharge curves of Ni-MOF nanoflakes at various current densities

Fig. S4 Galvanostatic charge/discharge curves of Ni/Co-MOF nanoflakes supercapacitor before and after 2000 and 3000 cycles measured at 2 A g^{-1}

Fig. S5 Electrochemical impedance spectra measured in the frequency range of 10 mHz to 100 kHz at the open circuit voltage -0.1V with an alternate current amplitude of 5 mV. Inset: Equivalent circuit for the electrode-solution interface. $C_{\rm I}$, double-layer capacitance. The Faradic impedance includes $Z_{\rm w}$ (the Warburg impedance) and $R_{\rm ct}$ (the charge-transfer resistance). $R_{\rm s}$, spreading resistance

Fig. S6 a, b RDE polarization curves at different rotation speeds. Scan rate: 10 mV s⁻¹. **c, d** Koutech-Levich plots at various potentials

Table S1 Comparison of the capacities	of Ni/Co-MOF with the recently reported MOF based materials

Sample	Electrolyte solution	Test Condition	Specific Capacitance (F g ⁻¹)	Resistance (ohm)	Ref.
Ni/Co-MOF	1.0 M LiOH	0.5 Ag^{-1}	530.4	~4.0	This work
Co-MOF	1.0 M LiOH	0.5 A g^{-1}	230.5	-	23
N-doped Zn-MOF	6.0 M KOH	$0.1 \mathrm{A g^{-1}}$	285.8	~6	48
ZIF-67	0.5 M H ₂ SO ₄	20 mV s ⁻¹	238	-	49
Co-MOF	6 M KOH	1 A g ⁻¹	321	~5.23	50