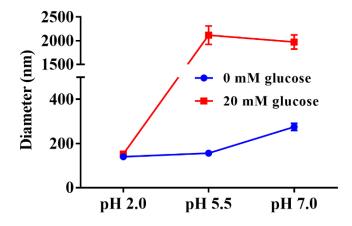
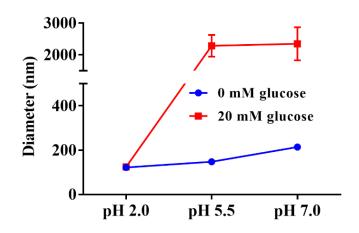
Supporting Information for

A Combinative Assembly Strategy Inspired Reversibly Borate-Bridged Polymeric Micelles for Lesion-Specific Rapid Release of Anticoccidial Drugs

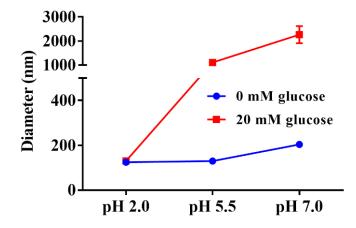
Hao Cheng^{1,#}, Huaqing Zhang^{1, #}, Gujun Xu¹, Jin Peng¹, Zhen Wang¹, Bo Sun², Djamila Aouameur¹, Zhechen Fan¹, Wenxin Jiang¹, Jianping Zhou^{1, *}, Yang Ding^{1, *}

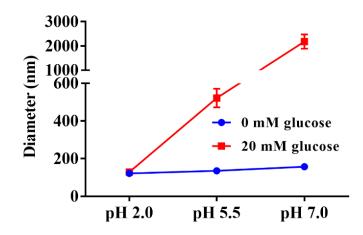

¹State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China

²Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA


[#]Hao Cheng and Huaqing Zhang contributed equally to this work

*Corresponding authors. E-mail: zhoujianp60@163.com (J. Zhou); dydszyzf@163.com (Y. Ding)


Supplementary Figures


Fig. S1 Diameter variations of $S_{0.1}P_{1.0}CS/DIC$ micelles at pH values of 2.0, 5.5 and 7.0, with the presence and absence of glucose (20 mM). Data are expressed as mean±SD, n=3

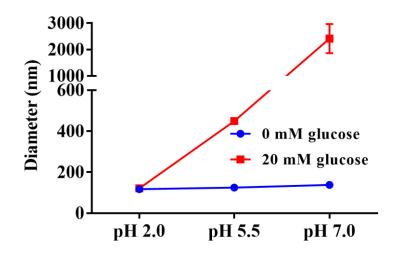

Fig. S2 Diameter variations of $S_{0.1}P_{1.5}CS/DIC$ micelles at pH values of 2.0, 5.5 and 7.0, with the presence and absence of glucose (20 mM). Data are expressed as mean±SD, n=3

Fig. S3 Diameter variations of $S_{0.2}P_{1.5}CS/DIC$ micelles at pH values of 2.0, 5.5 and 7.0, with the presence and absence of glucose (20 mM). Data are expressed as mean±SD, n=3

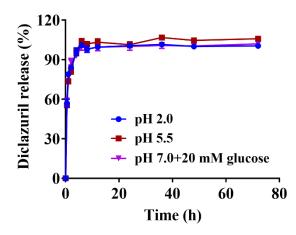


Fig. S4 Diameter variations of $S_{0.5}P_{1.5}CS/DIC$ micelles at pH values of 2.0, 5.5 and 7.0, with the presence and absence of glucose (20 mM). Data are expressed as mean±SD, n=3

Fig. S5 Diameter variations of $S_{1.0}P_{1.5}CS/DIC$ micelles at pH values of 2.0, 5.5 and 7.0, with the presence and absence of glucose (20 mM). Data are expressed as mean±SD, n=3

Nano-Micro Letters

Fig. S6 Free DIC release profile from the dialysis bag at different pH values of 2.0, 5.5, and in the presence of glucose (20 mM) at pH 7.0. Data are expressed as mean \pm SD, n=3

Table S1 Graft ratio of PBA moieties in P_x CS copolymers, where *x* is the ratio of PBA molecules to CS monomers. Data are presented as mean \pm SD, n = 3

Type of P_x CS	PBA: CS (n/n)	Graft ratio (%)	
P _{0.5} CS	0.5	11.93 ± 1.56	
$P_{1.0}CS$	1.0	35.13 ± 3.89	
$P_{1.5}CS$	1.5	40.45 ± 2.14	
P _{2.0} CS	2.0	41.38 ± 3.24	

Table S2 Graft ratio of SA moieties in $S_y P_{1.0}CS$ copolymers, where y is the ratio of SA moieties to PBA molecules. Data are presented as mean \pm SD, n = 3

Type of S _y P _{1.0} CS	SA: PBA (n/n)	Graft ratio (%)
S _{0.1} P _{1.0} CS	0.1	4.57 ± 1.16
$S_{0.2}P_{1.0}CS$	0.2	14.56 ± 3.58
$S_{0.5}P_{1.0}CS$	0.5	21.31 ± 2.79
$S_{1.0}P_{1.0}CS$	1.0	25.05 ± 4.18

Table S3 Graft ratio of SA moieties in $S_yP_{1.5}CS$ copolymers, where *y* is the ratio of SA moieties to PBA molecules. Data are presented as mean \pm SD, n = 3

Type of $S_y P_{1.5} CS$	SA: PBA (n/n)	Graft ratio (%)
S _{0.1} P _{1.5} CS	0.1	4.14 ± 0.93
S _{0.2} P _{1.5} CS	0.2	10.68 ± 2.76
$S_{0.5}P_{1.5}CS$	0.5	16.67 ± 2.63
$S_{1.0}P_{1.5}CS$	1.0	17.01 ± 3.32

Table S4 Characterization of series of DIC-loaded micelles. Data are presented as mean \pm SD, n = 3. *p < 0.05 and ***p < 0.001

Samples	Size (nm)	PDI	DL (%)	EE (%)
SPCS/DIC	124.1 ± 0.9	0.092 ± 0.008	$13.4\pm1.16^{*}$	74.3 ± 4.2 ***
PCS/DIC	139.5 ± 1.1	0.153 ± 0.013	8.97 ± 1.59	59.1 ± 4.3

Table S5 Pharmacokinetics parameters following a single oral administration (15 mg/kg of
DIC) of DIC suspension and SPCS/DIC micelles. Data are presented as mean \pm SD, n = 6. *p
< 0.05 and ****p < 0.0001 as compared to DIC suspension

Parameters	Unit	DIC suspension	SPCS/DIC
AUC _{0-t}	µg∙mL⁻¹h	140.40 ± 7.07	$236.10 \pm 28.69*$
C _{max}	µg∙mL⁻¹	8.90 ± 1.20	7.50 ± 0.63
T _{max}	h	0.48 ± 0.03	$8.25 \pm 0.35^{****}$
t _{1/2}	h	64.56 ± 10.55	$85.85 \pm 7.59*$
CL	$mL \cdot (h \cdot g)^{-1}$	0.063 ± 0.0034	$0.041 \pm 0.0026 *$

Table S6 Body weight determined at the initial and the end of the experiment, and relative body weight gain (%), feed conversion ratio (FCR). Data are expressed as mean \pm SD, n=10

Groups	Body weight		Weight	Relative	Feed conversion ratio (FCR)
	Before challenge (g)	After challenge (g)	gain (%)	body weight gain (%)	
Negative control	95.8 ± 5.7	173.3 ± 13.8	81	100	3.06
Positive control	96.4 ± 4.8	138.2 ± 14.3	43	53	5.42
SPCS/DIC (H)	92.8 ± 7.6	154.5 ± 9.2	67	82	3.63
SPCS/DIC (M)	94.7 ± 5.9	163.0 ± 27.6	72	89	3.66
SPCS/DIC (L)	93.9 ± 7.0	151.4 ± 16.1	61	76	4.02
PCS/DIC	96.4 ± 7.2	153.9 ± 21.6	60	74	3.88
DIC	96.3 ± 5.8	141.0 ± 17.9	46	57	4.92

Table S7 Bloody faeces counted during 5-7 days after challenge with Eimeria tenella. Data are expressed as pooled bloody faeces from 10 chicks in each group

G	Days af	ter challenge	TT (111 1 C	
Groups	5	6	7	Total bloody faeces
Negative control	0	0	0	0
Positive control	11	6	6	23
SPCS/DIC (H)	6	3	3	12
SPCS/DIC (M)	5	5	3	13
SPCS/DIC (L)	4	6	7	17
PCS/DIC	4	6	6	16
DIC	6	8	5	19

	Inte	estinal l	lesion ra	inks		
Groups	0	1	2	3	4	- Lesion scores (mean \pm SD)
Negative control	8	0	0	0	0	0.00 ± 0.00
Positive control	5	1	2	0	0	0.62±0.92
SPCS/DIC (H)	7	1	0	0	0	0.12±0.35
SPCS/DIC (M)	7	1	0	0	0	0.12±0.46
SPCS/DIC (L)	6	1	1	0	0	0.38±0.46
PCS/DIC	5	3	0	0	0	0.37±0.35
DIC	5	0	2	0	0	0.51±0.71

Table S8 Intestinal lesions examined at 8 days after challenge with Eimeria tenella. Data are expressed as mean \pm SD, n=10

 $\label{eq:tables} Table \ S9 \ Grade \ estimation \ of \ coccidiostats \ according \ to \ ACI \ values$

ACI	>180	160-180	120-160	<120
Grade of coccidiostats	Highly effective	Moderately effective	Inefficient	Invalid