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Abstract Three-dimensional (3D) flower-like Co–Al lay-

ered double hydroxide (Co–Al-LDH) architectures com-

posed of atomically thin nanosheets were successfully

synthesized via a hydrothermal method in a mixed solvent

of water and butyl alcohol. Owing to the unique hierar-

chical structure and modification by butyl alcohol, the

electrochemical stability and the charge/mass transport of

the Co–Al-LDHs was improved. When used in superca-

pacitors, the obtained Co–Al-LDHs deliver a high specific

capacitance of 838 F g-1 at a current density of 1 A g-1

and excellent rate performance (753 F g-1 at 30 A g-1 and

677 F g-1 at 100 A g-1), as well as excellent cycling

stability with 95% retention of the initial capacitance even

after 20,000 cycles at a current density of 5 A g-1. This

work provides a promising alternative strategy to enhance

the electrochemical properties of supercapacitors.

Keywords Co–Al layered double hydroxides (Co–Al-

LDHs) � Nanosheets � 3D hierarchical architectures � Butyl
alcohol � Supercapacitors

1 Introduction
To meet the increasing demand for clean energy tech-

nologies, many energy storage and conversion devices,

such as fuel cells, batteries, and supercapacitors, have been

developed [1–5]. Compared with other chemical energy
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storage devices, supercapacitors have attracted extensive

attention owing to their fast charge/discharge rate, high

power density, and long cycle lifetime [6–10]. Up to now,

carbon-based capacitors have been widely studied due to

their cost-effectiveness and excellent rate and cyclic stability

[6]. However, the relatively low capacitance (\300 F g-1)

cannot meet the demand for high energy density.

It has been reported that pseudocapacitive transition

metal oxides/hydroxides possess high capacitances derived

from their reversible faradic reactions [11–14]. Layered

double hydroxides (LDHs), which are made up of posi-

tively charged brucite-like layers with an interlayer region

containing charge compensating anions and solvation

molecules, are promising electrode materials for superca-

pacitors due to the synergistic effects of bi-metal cations,

such as reciprocal activation [15, 16]. However, the

migration of metal cations can be limited by other cations,

which can suppress the aggregation and growth of the

active materials [17, 18]. Co–Al-LDHs with divalent Co2?

ions and trivalent Al3? ions are one of the most commonly

studied LDHs because of their excellent electrochemical

properties [19–21]. However, the specific capacitance, rate

capability, and stability are usually poor because of the

limited conductivity and the re-stacking of 2D nanosheets

[22, 23]. Compositing with highly conductive substrates,

such as Ni foil or carbon materials, is considered an

effective method to improve the performance of Co–Al-

LDHs. For example, the porous Co–Al-LDHs/GO (GO,

graphene oxide) nanocomposite exhibits a specific capac-

itance of 1043 F g-1 at 1 A g-1 [24]. H-OH intercalated

Co–Al-LDHs on Ni foil shows a capacitance of 1031 F g-1

at 1 A g-1 and an ultrahigh rate capability with 66%

capability retention at 100 A g-1 [25]. However, the

cycling stability of LDHs is usually less than 5000 cycles

(Table S1), which is far from the practical demand of

100,000–200,000 cycles. Therefore, the stability of Co–Al-

LDHs is the most prominent problem to overcome.

In general, active materials for electrodes with larger

surface areas show higher capacitances and stabilities.

Two-dimensional (2D) monolayer LDH nanosheets with

extremely large surface areas can be prepared by a top-

down method, in which LDH nanoplates are first prepared

and then exfoliated in liquid medium by ultrasonic treat-

ment [26]. However, the nanosheets prefer to re-stack to

reduce the surface free energy, which is detrimental to the

capacitance and stability of the electrodes. It has been

accepted that three-dimensional (3D) hierarchical struc-

tures composed of 2D nanosheets are more stable than 2D

nanosheets [27, 28]. The unique structure is beneficial to

charge and mass transport and the mitigation of volume

change during the charge/discharge process [29]. Further-

more, 3D hierarchical structures can supply more points to

connect the conductive matrix in the electrodes, which can

provide more electron paths and suppress the separation of

active materials [30–32]. On the other hand, the stability of

the layered compounds can be improved by modification

with organic compounds because they can intercalate and/

or adsorb into the layers to reduce the surface energy

[33–36] and further prevent the re-stacking of nanosheets

[37]. For example, Xiao et al. found that MoS2/PEO

[poly(ethylene oxide)] nanocomposites had high reversible

capacities with long-term reversibility because the incor-

poration of PEO can stabilize the disordered structure of

MoS2 [38].

Herein, 3D hierarchical Co–Al-LDHs were fabricated in

a rationally designed reaction system. Owing to the unique

hierarchical structures composed of atomically thin

nanosheets and the modification by butyl alcohol, the

electrochemical stability and the charge/mass transport of

the 3D Co–Al-LDH architectures were improved. When

used in supercapacitors, high specific capacitance and good

cycling stability were achieved.

2 Experimental Section

2.1 Synthesis of 3D Hierarchical Co–Al-LDHs

In a typical procedure, Co(NO3)2�6H2O (2.4 mmol,

0.698 g) and Al(NO3)3�9H2O (0.8 mmol, 0.3 g) were dis-

solved in 40 mL deionized water and 40 mL butyl alcohol

and stirred for 30 min. Then, 0.384 g of urea and 15 mg of

citric acid trisodium salt dehydrate were added and further

stirred for another 30 min. Next, the mixtures were sealed

in a 100-mL Teflon-lined steel autoclave and hydrother-

mally treated at 120 �C for 12 h. After being cooled to

room temperature naturally, the samples were filtered and

washed with deionized water and ethanol several times and

then freeze-dried (5 9 10-2 mbar at T B -46 �C) for 24 h

to obtain the 3D Co–Al-LDHs. For comparison, 2D Co–Al-

LDHs were prepared using deionized water as the solvent,

and zero-dimensional (0D) Co–Al-LDHs were prepared

using butyl alcohol as the solvent under similar reaction

conditions.

2.2 Material Characterization

The crystal structure and phase were characterized on an

X-ray powder diffractometer (XRD, Shimadzu-6000) and

X-ray photoelectron spectrometer (XPS, VG Scientific

ESCLAB 220iXL). The size and morphology of the as-

synthesized products were determined by a transmission

electron microscope (TEM, JEOL-1200) and field emission

scanning electron microscope (FESEM, JEOL, JSM-

7401F) with an accelerating voltage of 5 kV. Atomic force

microscopy (AFM) measurements were collected on a
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Multimode atomic force microscope (Veeco Instruments,

Inc.). Typically, a freshly diluted ethanol solution of the

NiFe-LDH samples was ultrasonically treated and then

deposited onto a clean mica wafer by drop-casting. The

nitrogen adsorption–desorption measurement was con-

ducted on a Micromeritics ASAP 2010 analyzer, and the

specific surface areas of samples were determined by

Brunauer–Emmett–Teller (BET) analysis. FT-IR spectra

were recorded on a PerkinElmer Spectrum 100 Fourier

transform infrared spectrometer using KBr pellets.

2.3 Electrochemical Measurements

The electrochemical experiments were performed using a

standard three-electrode configuration with the as-synthe-

sized sample electrode as the working electrode, platinum

as the counter electrode, and Hg/HgO as the reference

electrode. The electrolyte was a 2 mol L-1 aqueous KOH

solution. The working electrodes were prepared as follows:

75 wt% active materials were mixed with 7.5 wt% acet-

ylene black, 7.5 wt% KS-6, and 10 wt% polyvinylidene

fluoride in NMP. The slurry was pressed on Ni foam

(2 cm 91 cm 9 1 mm) and dried at 80 �C under vacuum

for 6 h. Each working electrode contained approximately

1 mg of active material. CV and galvanostatic charge/

discharge tests were performed on an electrochemical

workstation (Zahner Zennium CIMPS-1, Germany) in the

potential range of 0–0.55 V and 0–0.45 V, respectively.

Electrochemical impedance spectroscopy (EIS) was carried

out by applying a 5 mV amplitude over a frequency range

of 0.01 Hz to 100 kHz at open circuit potential.

3 Results and Discussion

The crystal structure of the 3D Co–Al-LDHs calculated by

the XRD pattern are shown in Fig. 1a. The diffraction

peaks located at 11.3�, 22.8�, 35.0�, 39.3�, 46.4�, 61.1�, and
62.4� correspond to the (003), (006), (012), (015), (018),

(110), and (113) facets, respectively, implying the obtained

LDH product has a rhombohedral structure [39]. The XRD

patterns (Fig. S1a, b) of the obtained 2D Co–Al-LDHs and

0D Co–Al-LDHs show similar structures. SEM images

(Figs. 1b, S2a, b) clearly show the 3D hierarchical struc-

ture built up of nanosheets. TEM and HRTEM images

(Fig. 1d) further reveal the ultrathin nature with a thickness

of approximately 1.6 nm, which can also be confirmed by

AFM measurements (Fig. S2c, d). 2D nanosheets with a

thickness of approximately 2.5 nm (2D Co–Al-LDHs) and

nanospheres with an overall size of approximately 50 nm
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Fig. 1 a XRD pattern, b SEM image, c TEM image, and d HRTEM image of the as-prepared 3D Co–Al-LDHs
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(0D Co–Al-LDHs) were formed when the mixed solvent

was replaced by deionized water or butyl alcohol, respec-

tively (Fig. S1c–f). To evaluate the formation of 3D Co–Al-

LDHs, the XRD patterns and SEM images of the products

prepared at different reaction times are shown in Fig. S3.

The 2D Co–Al-LDH nanoplates were formed when the

reaction time was 2 h, and they gradually changed into self-

assembled 3D Co–Al-LDHs built up of nanosheets with

increasing reaction time. The morphological evolution from

the 2D LDH to the 3D LDH nanostructure follows co-pre-

cipitation, dissolution, and recrystallization processes.

Furthermore, the selective adsorption of butyl alcohol on

the {001} facets of LDH can minimize the surface energy to

form and stabilize the atomically thin LDH nanosheets

[33–36]. The interactions of butyl alcohol adsorbed on the

surface of the LDH nanosheets can also help form 3D

microspheres by the self-assembly of atomically thin

(mono-/bi-layers) LDH nanosheets.

N2 adsorption–desorption isotherms of 3D Co–Al-

LDHs, 2D Co–Al-LDHs, and 0D Co–Al-LDHs are shown

in Fig. 2a. The mesoporous size of 3D Co–Al-LDHs is in

the range of 3–10 nm (inset in Fig. 2a). Moreover, the

specific surface area of the 3D Co–Al-LDH hierarchical

structure is 152 m2 g-1, and the total pore volume is

0.52 cm3 g-1, which are much higher than those of the

other samples (Table S2) and previously reported results

[40–42]. Figure 2b depicts the FT-IR spectra of all sam-

ples. The broad adsorption peak at 3465 cm-1 is attributed

to O–H stretching modes of interlayer water molecules and

H-bonded OH groups. The weak peak at 1640 cm-1 cor-

responds to the bending mode of water molecules. The

strong peaks at 1358 and 766 cm-1 belong to the m3
vibrational and bending modes of CO3

2-, respectively [43].

The weak absorption peaks in the range of 800–500 cm-1

correspond to the lattice vibrations of the M–O and O–M–

O (where M = Co, Al) groups [44]. The faint peaks at

2980 and 1055 cm-1 (Fig. S4) in the spectra of 3D Co–Al-

LDHs and 0D Co–Al-LDHs belong to C–H and C–C or

alkoxy groups (blue dashed line in Fig. 2b), indicating the

presence of organic molecules (butyl alcohol) in the sam-

ples prepared in mixed solvent or butyl alcohol. No such

peaks are detected in the spectrum of 2D Co–Al-LDHs

prepared in water, further supporting the existence of butyl

alcohol in 3D Co–Al-LDHs and 0D Co–Al-LDHs.

The XPS spectrum of 3D Co–Al-LDHs shown in Fig. 3a

indicates the presence of Co, Al, O, and C. The high-res-

olution XPS spectrum of Co (Fig. 3b) displays the spin–

orbit splitting of Co 2p into Co 2p1/2 (797.2 and 803.1 eV)

and Co 2p3/2 (780.9 and 786.6 eV), suggesting the coex-

istence of Co2? and Co3? [45]. Additionally, the C 1 s

peak can be separated into to five peaks centered at 284.6,

285.3, 286.4, 288.2, and 289.4 eV, which may be attributed

to sp2 C, sp3 C, C–O, C=O, and O=C–O, respectively,

derived from the adsorbed organic molecules and CO3
2-

groups (see Fig. 3c). The peak at 74.2 eV in the fine

spectrum of Al 2p is related to the Al3? species in the form

of Al–OH [46].

The electrochemical energy storage performances of the

obtained samples were studied by a three-electrode cell in

the potential range of 0–0.55 V with 2 M KOH aqueous

solution as the electrolyte. The specific capacitance of an

electrode can be calculated using the following Eq. 1:

CSP ¼ I � t=ðDV � mÞ; ð1Þ

where I, t, DV, and m stand for the constant current density

(A g-1), the discharge time (s), the potential (V), and the

mass of the electroactive material, respectively. Cyclic

voltammetry (CV) curves at various scan rates are shown

in Fig. 4a. The symmetrical oxidation–reduction peaks at

different scan rates imply the high electrochemical

reversibility of 3D Co–Al-LDHs. The specific capacitances

of the 3D-Co–Al-LDHs are 838, 813, 801, 792, 783, 780,

753, 732, 715, and 677 F g-1 at 1, 2, 5, 10, 15, 20, 30, 50,

70, and 100 A g-1 (see Fig. 4b), which are higher than the
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values of the most often reported carbon-based Co–Al-

LDH composites [23–25, 41, 47–49] (Fig. 4c; Table S1).

The improved reversibility and rate capability of the 3D

Co-Al-LDHs are derived from its abundant active sites and

pores in the 3D hierarchical structure, which can further

provide accessible pathways for electrolyte and facilitate

the transport of ions from the liquid to the LDH. As shown

in Fig. 4d, the 3D Co–Al-LDH electrode has a constant

capacitance of 801 F g-1 in the initial 100 cycles at

5 A g-1, and maintains stable retentions of 99, 98, and

97% after every 100 cycles at 10, 15, and 20 A g-1,

respectively. Furthermore, the 3D Co-Al-LDH electrode

also exhibits long-term cycling stability and can still retain

approximately 95% of the initial capacitance even after

20,000 cycles (Fig. 4e). The similar potential response of

each charge–discharge curve also indicates the high

reversibility of the charge–discharge process (inset in

Fig. 4e).

To further understand the effects of the unique structure

on the electrochemical performance of 3D Co–Al-LDHs,

the CV and galvanostatic charge–discharge curves of 2D

Co–Al-LDHs and 0D Co–Al-LDHs were also determined,

and the results are shown in Figs. S5 and S6. From Fig. S6,

one can see that the 0D Co–Al-LDH nanoparticles had an

initial capacitance of only *250 F g-1, while 3D Co–Al-

LDHs and 2D Co–Al-LDHs had initial capacitances of

*800 F g-1. The same initial capacitance of 3D and 2D

Co–Al-LDHs is due to the similar 2D atomically thin

structure. As shown in Fig. 5a, the capacitance of 2D Co–

Al-LDHs decreases rapidly to 450 F g-1 (only 44% of the

original value) after 5000 cycles at 5 A g-1 due to the re-

stacking of 2D nanosheets, while 3D Co–Al-LDHs retains

93% of the initial specific capacitance (from 801 to

745 F g-1) and 0D Co–Al–LDHs retains almost 100%.

The difference is related to the dispersion solution; that is,

2D Co–Al-LDHs were prepared in water, whereas 3D Co–

Al-LDHs and 0D Co–Al-LDHs were prepared in mixed

solvent or butyl alcohol. The surface of the 3D and 0D Co–

Al-LDHs are modified by organic molecules, as supported

by the FT-IR (Fig. 2b) and XPS (Fig. 3) spectra. The

organic molecules adsorbed at the surface reduce the sur-

face energy and improve the stability of the electrode

materials [32–36]. EIS spectra of the electrodes were taken

before and after the cycling process (Fig. 5b, c). High

charge transfer and diffusion resistance were observed in

0D Co–Al-LDHs, which therefore led to poor capacitance.

Nearly the same diffusion resistance was observed in 3D

Co–Al-LDHs, whereas it became larger after the cycling

process in 2D Co–Al-LDHs. The changes in diffusion

resistance indicate that the 3D LDH structure can
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effectively prevent the re-stacking of 2D nanosheets, which

further results in the unique cycling stability of the

obtained 3D Co–Al-LDHs.

The high performance of the 3D Co–Al-LDH material

can be ascribed to its unique 3D hierarchical structure.

First, the atomically thin building units with thicknesses of

approximately 1.6 nm (152 m2 g-1) can provide a large

amount of electrochemically active sites to result in high

capacitance. Additionally, the 3D hierarchical structures

can prevent the re-stacking of nanosheets, and the surface

modification of organic molecules can enhance the stability

of 3D Co–Al-LDHs (Figs. S7, S8), leading to long-term

cyclic stability. Furthermore, the pores in the 3D hierar-

chical structure are readily accessible for electrolyte,

facilitating the transport of ions from the liquid to the

active surface of the LDH. Finally, the 3D hierarchical

structure can also supply more points to connect the con-

ductive matrix in the electrode, which is beneficial to the

conductivity and rate capability of the electrodes.

4 Conclusion

A facile synthetic route was developed to directly prepare

3D hierarchical Co–Al-LDHs composed of atomically thin

nanosheets. The as-obtained hierarchical Co–Al-LDHs

show a high specific capacitance of 801 F g-1 at 5 A g-1,

excellent rate performance with a capacitance of 677 F g-1
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at 100 A g-1, and good cycling stability with only 5%

decline after 20,000 cycles. Such excellent performance is

derived from its atomically thin building units modified by

organic molecules and its unique 3D hierarchical structure.

This work may provide a promising alternative strategy to

prepare other LDHs with enhanced electrochemical prop-

erties for supercapacitors.
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