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Abstract The mechanism for the formation of double-layer vertically aligned carbon nanotube arrays (VACNTs) through

single-step CVD growth is investigated. The evolution of the structures and defect concentration of the VACNTs are

tracked by scanning electron microscopy (SEM) and Raman spectroscopy. During the growth, the catalyst particles are

stayed constantly on the substrate. The precipitation of the second CNT layer happens at around 30 min as proved by SEM.

During the growth of the first layer, catalyst nanoparticles are deactivated with the accumulation of amorphous carbon

coatings on their surfaces, which leads to the termination of the growth of the first layer CNTs. Then, the catalyst particles

are reactivated by the hydrogen in the gas flow, leading to the precipitation of the second CNT layer. The growth of the

second CNT layer lifts the amorphous carbon coatings on catalyst particles and substrates. The release of mechanical

energy by CNTs provides big enough energy to lift up amorphous carbon flakes on catalyst particles and substrates which

finally stay at the interfaces of the two layers simulated by finite element analysis. This study sheds light on the termination

mechanism of CNTs during CVD process.

Graphical Abstract The mechanism for the formation of double-layer vertically aligned carbon nanotube arrays

(VACNTs) through single-step CVD growth was investigated. The growth of the second CNT layer lifts the amorphous

carbon coatings on catalyst particles and substrates.
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1 Introduction

Carbon nanotubes (CNTs) have been widely investigated

since the report by Iijima in 1991 [1], due to their unique

structures and superior properties [2–6]. The practical

application of CNTs depends on the development of
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synthesis approaches. Most CNT production, which is

mainly unorganized CNTs and has limited properties, is

currently mainly utilized in bulk composite materials and

thin films. In contrast, organized CNT architectures, such

as horizontally aligned CNT arrays [7–14] and vertically

aligned CNT (VACNT) arrays, have superior properties

which promise new functionalities and applications

[15, 16]. In a VACNT array, all the CNTs are perpendic-

ular to the surface and aligned very well, forming a forest-

like structure. Due to their unique structures, VACNTs

have been suggested for applications in energy-absorbing,

thermal management, highly specular absorbing, electro-

magnetic shielding coatings, super strong fibres, novel

nano-composites, desalination membranes, and high-per-

formance electrodes [17–28].

The main technique to grow VACNTs is chemical vapour

deposition (CVD). CVD is considered as the most advanta-

geousmethod for the synthesis ofVACNTs due to the fact that

the growth condition can be easily controlled, and the CVD

process can be integrated into the standard lithographic

methods, which is suitable for chip fabrication. Typically, the

CNTs in aVACNTarray, if using a predepositedmetal film as

the catalysts, are continuous from the bottom to the top.

However, the growth of multilayer VACNTs, in which the

CNTs are not continuous, has also been reported [18, 29, 30].

Stacked multiple layers of VACNTs formed through multi-

step CVD processes were reported by Ajayan et al. [30].

Multilayer aligned CNTs were also synthesized by Martine

et al. using an aerosol-assisted catalytic CVD process [29].

Multilayer VACNTs have diverse applications such as

acting as composite reinforcements, p-n junctions for

electronic devices, and allowing the fabrication of complex

multilayer nanotube structures [31]. However, for practical

applications, single-step CVD methods, which are simple

and cost effectively compared to multisteps, are preferred.

Zhang et al. reported the growth of double-layered VACNT

arrays via single-step CVD method [18]. Although it was

proposed that the growth of the double-layered VACNTs

by single-step CVD should originate from the deactivation

and reactivation of the catalysts, experimental evidence

and better understanding on the mechanism are still lacked.

This work systematically investigated the evolution of the

structure of VACNTswith the growth duration and proposed

the mechanism for the formation of double-layered

VACNTs through single-step CVD. There are amorphous

carbon flakes between the top and the bottom CNT layers,

which should be responsible for the termination of the first

CNT layer. Besides, by controlling the growth parameters,

the height of the bottom layer in the double-layered

VACNTs can reach millimetre scale. These results shed new

light on the termination of growth of CNTs and the formation

mechanisms of multilayer VACNTs via single-step CVD.

2 Methods

VACNTs were grown in a quartz tube furnace via CVD

method. Si wafers coated with silicon oxide (*1 lm) were

used as substrates. A thin layer of Fe (*2 nm) supported

with Al2O3 (*10 nm) was used as the catalysts. The fur-

nace temperature was ramped to 750 �C in 10 min with

flow of Ar (140 sccm) and H2 (20 sccm). Then C2H4 (35

sccm) was introduced as the carbon source for the growth

of CNTs. Growth time of 15, 30, 60, and 120 min were

applied to obtain different samples. The growth was ter-

minated by turning off C2H4 gas and cooling down the

furnace under the protection of H2 and Ar.

3 Results and Discussion

Figure 1 shows typical side-view SEM images of the

VACNTs grown with different time. It is clearly observed

that different growth time led to VACNTs with different

heights and morphologies. The height of VACNTs was

increased almost linearly from the height of 868.9 lm for

15 min, the height of 1.6–1.9 mm for 30 min, and then to

the height of 3.1 mm for 60 min. However, the linear

growth broke down when the growth duration lasted for

120 min, which resulted a height of 4.6 mm. This indicates

that the growth rate can remain for a certain time then it

decreases with elongated time. As shown in (Fig. 1a), the

sidewall of VACNTs grown by 15 min is continuous.

However, as shown in Fig. 1b, c, for the growth time of

30 min, there are both of one layer of VACNTs and dou-

ble-layer VACNTs produced, indicating that 30 min is a

critical growth time point for the formation of the second-

layer VACNTs during the process. Figure 1d, e shows that

the VACNTs grown through 60 and 120 min are both

double-layer VACNTs. It is clearly illustrated that the

height of the top layer is in the range of 1.3–1.6 mm, and

the height of the bottom layer is continuously increasing

with the increase of growth time. The morphology of

VACNTs grown by CVD method is known to be signifi-

cantly affected by the growth conditions, such as the pre-

cursors, catalysts, and gas pressure [32]. It has been

previously reported that double-layered carbon nanotube

arrays could be formed through one-step CVD for growth

time longer than 3 h. Although the growth time reported

here is obviously shorter than the reported 3 h, the height

of the bottom layer in our obtained VACNTs is much

larger than the previously reported ones [18], indicating a

faster growth rate resulted from the optimized process

parameters in this work. The CNTs in this study are mainly

multiwalled CNTs, as shown in the transmission electron

microscope (TEM) image (Fig. 1f).
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A series of Raman spectra of the double-layer VACNTs

were recorded when the laser spot was focused on the

sidewall of VACNTs and moving along the axial direction

of CNTs. Raman spectra were collected under ambient

atmosphere using a 633 nm laser. The step size was

300 lm and the diameter of the laser spot was *1 lm. It

is well known that Raman G-band and D-band are the two

main bands for multiwalled CNTs. G-band indicates the

level of graphitized carbon and D-band demonstrates dis-

ordered amorphous carbon [33]. The intensity ratio of

G-band to D-band (IG/ID) could be used to study the quality

of the CNTs. The variation of IG/ID along the axial direc-

tion of the VACNTs was studied. Figure S6 provides the

typical Raman spectrum data in the Supplementary Infor-

mation, and Fig. 2 shows the decreasing of the intensity of

IG/ID in both the top and the bottom layer with the growth

of CNTs. However, a sharp increase of IG/ID across the

interlayer was apparent. The decreasing of the intensity of

IG/ID suggests that the concentration of amorphous carbon

or defects decreases [18]. The decreasing of IG/ID of both

the top layer and the bottom layer corresponds to the

deactivation of catalyst particles as the growth time

increases. The sharp increase of IG/ID at the interface of the

two layers indicates that the bottom layer is a new VACNT

layer.

The interface between the top layer and the bottom layer

of a VACNT array was further characterized by SEM, as

shown in Fig. 3. The interfaces were not flat and uniform.

In the enlarged SEM image (Fig. 3b), it can be seen that

there are some flakes with size of several micrometres at

the interface. The top end of the bottom layer VACNTs is

connected to the flakes. The bottom end of some top layer

CNTs is also connected with the flakes. An attempt was

made to separate the top and the bottom CNT layers by

pulling the two layers toward opposite directions with

nippers. Figure 3c, d demonstrates the fractured interfaces,

indicating that the CNTs in the VACNTs are not continu-

ous since the two layers could be separated at the interface.

It is also showed that the CNTs at the interface are curlier

than the other parts of VACNTs.

Electron microprobe was used to analyse the chemical

element on the interface of the double-layer VACNTs.

Elements of C, O, Al, and Fe, which are involved in our

CVD process, are qualitatively analysed through one-line

scan across the interface. Figure 4 shows that the contents

of O, Al, and Fe are all below the detection limit while only

the content of C is high, indicating the absence of these

elements at the interface. It is obviously that the flakes at

the interface are composed of pure carbon without trace of

metal, indicating that the metal catalyst layer stays on the

substrate during the whole process. This is in consistent

with the base-growth mode of VACNTs [18].

According to the above observations, we proposed the

mechanism for the growth of double-layered VACNTs via
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Fig. 1 Side-view SEM images of VACNTs obtained by different

growth time. a 15 min (868.9 lm in height). b 30 min (1.6 mm in

height). c 30 min (1.9 mm in height and the height of the top layer is

1.5 mm) d 60 min (3.1 mm in height and the height of the top layer is
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Fig. 2 Variation of intensity ratio of G/D-band (IG/ID) of Raman

spectra along the vertical direction of a double-layer VACNT array
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single-step CVD method, which is illustrated in Fig. 5. At

the beginning of the growth process, carbon source (C2H4)

is pyrolysed into carbon fragments through the high-tem-

perature treatment, which could be absorbed on the surface

of the metal catalyst particles (Fe particles). It is well

known that the growth of CNTs with metal catalysts in a

CVD process usually obeys vapour–liquid–solid (VLS)

mechanism [34, 35]. The process could be divided into

three stages: absorption of carbon fragments in vapour

phase on the catalyst nanoparticle surfaces, diffusion of

carbon atoms in the melted catalyst nanoparticles, and

extrusion of CNTs from the metal nanoparticles [36, 37].

With the prolonged growth, the quality of active positions

on catalyst particles will degrade, even though the feeding

rate of carbon precursor is fixed [38–42]. Hence, with the

growth time increasing, both the top layer and the bottom

layer demonstrate increased defects and degraded qualities

since increased amorphous carbon will accumulate on the

surface of catalyst surfaces. The results are consistent with

the Raman spectroscopy characterization. Eventually, the

growth of VACNTs is terminated after deceleration of

growth rate due to the deactivation of catalyst particles

while fixing the carbon source supply.

Amorphous carbon flakes deposited on the surfaces of

catalyst particles, and Al2O3 substrate will be formed on

the bottom of the first layer of VACNTs when the growth

of the first layer is terminated, as proved by the results of

Electron microprobe. After termination of the growth, the

carbon source and the forming gas including hydrogen is

continuing aerating. Hydrogen could etch the accumulated

carbon on the surface of catalyst nanoparticles randomly

[43] and bring carbon source gas into catalyst particles

again, turning the deactivated particles into reactivated.

Therefore, the catalyst particles function again for the

growth of the second VACNT layer, leading to the nucle-

ation and the elongation of the second layer of VACNTs.

The extrusion of the new CNT layer is required to release

enough mechanical energy to overcome the adhesion

energy between amorphous carbon flakes and catalyst/

Al2O3 substrate and then lift the amorphous carbon flakes

up, leading to the existence of the carbon flakes at the

interface of the top and the bottom CNT layers.

Finite element analysis (FEA) was used to simulate

lifting process of amorphous carbon flakes by the extrusion

of the second VACNTs growth in the Supplementary

Information. Through FEA, it is estimated that 225 nN is

Fig. 3 a SEM image showing the interface between the top layer and the bottom layer of a double-layer VACNT array. bMagnified SEM image

of (a). c SEM image showing the facture interface between top layer and bottom layer for double-layer VACNTs after pulling test with nippers.

d Magnified SEM image of the interface
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the maximum force requested for a CNT to lift up the

amorphous carbon film in the same system. It is previously

reported that a CNT could bear about 500 nN compression

stress during growth, demonstrating our lifting process

reasonable in this system [44]. In contrast, the catalyst

particle will stay on the surface of the substrate. In the

experiments, when the growth time is 15 min, the catalyst

is not totally deactivated and no termination of growth

happens. However, for growth time of 30 min, both one-

layered VACNTs and double-layered VACNTs were

observed, indicating the termination and the precipitation

of the second-layer CNTs happens at around 30 min

growth in the process.

4 Conclusions

In summary, we investigated the evolution of the structure

of VACNTs with growth time and studied the mechanism

for the growth of double-layered VACNTs via single-step

CVD process. SEM characterization showed that the ter-

mination of the first CNT layer and the precipitation of the

second CNT layer happened at around 30 min. Raman

spectroscopy analysis showed that the top layer and the

bottom layer have similar decreasing quality from the top

to the bottom, which indicates that both layers experienced

the process of degradation of catalyst particles. Interest-

ingly, as shown by SEM and element analysis, there are

carbon flakes at the interface of the two CNT layers. Based

on all these observations, a mechanism is proposed, which

includes the deactivation of catalyst by accumulation of

amorphous carbon, the termination of growth of the first

CNT layer, the reactivation of catalyst particles by

hydrogen gas, and the precipitation and growth of second

CNT layer while lifting the amorphous carbon flakes up.

The release of mechanical energy by CNTs provides big

enough energy to lift up amorphous carbon coatings on

catalyst particles and substrates simulated by finite element

analysis. This work helps to get a better understanding of

the growth termination of CNTs during a CVD process and

may be valuable for the mass production of VACNTs.

Besides, the structures of the carbon flakes at the interfaces

may benefit the construction of novel three-dimensional

carbon structures.
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