Supporting Information for

Electrochemical Impedance Analysis of Biofunctionalized Conducting Polymer modified Graphene-CNTs Nanocomposite for Protein Detection

Shobhita Singal^{1,2}, Avanish K Srivastava¹, Rajesh^{1,2,*}

¹CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India

²Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India

*Corresponding author.E-mail: rajesh_csir@yahoo.com

Raman Spectra of G-MWCNT Hybrid

Figure S1 shows the acquired Raman spectra of the hybrid on copper foil. The D peak is observed at 1358 cm⁻¹, arising due to the presence of structural disorder such as grain boundaries, in the G-MWCNT hybrid. The second peak is the G peak, observed at 1588 cm⁻¹, corresponds to the C-C bond stretching vibration in the graphitic plane. The third common peak, commonly referred as 2D peak appears due to the second order vibrations of the C-C bond and provides information about the two dimensional graphitic stacking of the carbon material.

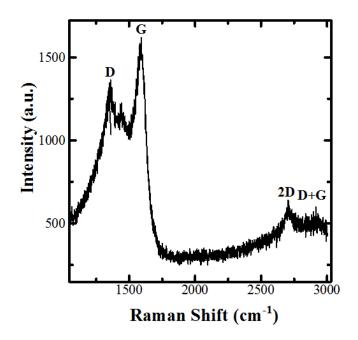


Fig. S1 Raman spectra of G-CNTs hybrid on a Cu foil

The electroactive surface area of G-CNTs hybrid film both before and after the electrodeposition of copolymer film was calculated using Randles-Sevcik equation:

$$I_{\rm p} = 2.69 \times 10^5 \, AD^{1/2} n^{3/2} v^{1/2} C$$

where n = 1, is the number of electrons participating in the redox reaction, *A* is the electroactive surface area (cm²), $D = 6.70 \times 10^{-6}$ cm² s⁻¹, is the diffusion coefficient of $[Fe(CN)_6]^{3-}$ in solution, C = 0.002 M corresponds to the concentration of the redox probe $(K_3[Fe(CN)_6])$, and *v* is the scan rate of the potential perturbation (V s⁻¹). The electroactive surface area for G-CNTs and polymer modified G-CNTs hybrid film were found to be 16.1×10^{-5} and 14.5×10^{-5} cm².