Supporting Information for

Arrayed Cobalt Phosphide Electrocatalyst Achieves Low Energy Consumption and Persistent H₂ Liberation from Anodic Chemical Conversion

Kai Zhang^{1, 4}, Gong Zhang², Qinghua Ji², Jiuhui Qu^{2, 3}, Huijuan Liu^{1, 2, *}

¹State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China

²Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China

³Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China

⁴University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

*Corresponding author. E-mail: <u>hjliu@rcees.ac.cn</u> or <u>hjliu@tsinghua.edu.cn</u> (Huijuan Liu)

Supplementary Figures

Fig. S1 (a) XRD and (b) SEM images of pristine Co foam (CF)

Fig. S2 The SEM images of (**a**) Zn-Co hydroxide nanoarrays and (**b**) phosphatized Zn-Co hydroxide nanoarrays on CF

Fig. S3 SEM images of CoP at (**a**) low and (**b**) high magnifications. (**c**) STEM and corresponding elemental mapping of pure CoP. (**d**) TEM and (**e**) HRTEM of pure CoP

Fig. S4 N2-adsorption/desorption curves of porous Co2P/CoP NAs and pure CoP

Fig. S5 (a) XRD pattern of the as-prepared samples. (b) SEM images of the Co₂P/CoP-1 sample. SEM images at (c) low and (d) high magnifications for the Co₂P/CoP-2 sample. (e) TEM and (f) HRTEM of the Co₂P/CoP-2 sample. (g) The corresponding STEM and elemental mapping of the Co₂P/CoP-2 sample. We prepared the CoP nanoarrays with different molar ratio of Co to Zn (8 to 1 and 4 to 1) using the same method as the synthesis of Co₂P/CoP NAs (molar ratio of Co to Zn (2 to1)). The obtained Co₂P/CoP samples with the molar ratio of Co to Zn (8 to 1 and 4 to 1) are denoted as Co₂P/CoP-1 and Co₂P/CoP-2, respectively

Fig. S6 (a) XRD pattern of the as-obtained samples. SEM images at (b) low and (c) high magnifications for the CoP sample obtained at annealing temperature of 300°C. (d) The corresponding STEM and elemental mapping of CoP-300. SEM images at (e) low and (f) high magnifications for the Co₂P/CoP sample obtained at annealing temperature of 500 °C. We prepared the CoP nanoarrays at different phosphorated temperature (300 and 500 °C) using the same method as the synthesis of Co₂P/CoP NAs

Fig. S7 (a) XPS survey scan spectrum and high-resolution XPS spectra of (b) Zn and (c) P for pure CoP and Co₂P/CoP NAs

Fig. S8 Structural and morphological characterization of the Co₂P/CoP NAs after long-time reaction. Comparison of High resolution XPS spectra of (**a**) Co and (**b**) P. (**c**) EDX mapping images of Co, O, and P and the corresponding EDX analysis of the Co₂P/CoP NAs after reaction

Fig. S9 (a) Galvanostatic charge/discharge curves for pure CoP at different current densities in 1.0 M KOH. (b) Areal capacitance of pure CoP and Co₂P/CoP NAs as a function of the current densities based on charge/discharge curves

Fig. S10 The CV curves of Co-based samples obtained under (**a**) different ratio of Zn to Co and (**b**) various temperature in 1 M KOH electrolyte at different scan rates. The obtained Co_2P/CoP samples with the molar ratio of Co to Zn (8 to 1 and 4 to 1) are denoted as Co_2P/CoP -1 and Co_2P/CoP -2, respectively. Charge/discharge curves of Co-based samples obtained under (**c**) different ratio of Zn to Co and (**d**) various temperature in 1 M KOH electrolyte at various current densities. The obtained Co_2P/CoP samples with the various temperature of 300°C and 500°C are denoted as CoP-300 and Co₂P/CoP-500, respectively

Fig. S11 (a) EDX analysis and (b) ICP-MS of the Co₂P/CoP NAs

Fig. S12 Polarization curves of Co-based samples obtained under (**a**) different ratio of Zn to Co and (**b**) various temperature in 1 M KOH electrolyte. The obtained Co₂P/CoP samples with the molar ratio of Co to Zn (8 to 1 and 4 to 1) are denoted as Co₂P/CoP-1 and Co₂P/CoP-2, respectively. The obtained Co₂P/CoP samples with the various temperature of 300°C and 500 °C are denoted as CoP-300 and Co₂P/CoP-500, respectively

Fig. S13 (a) Capacitive current at 0.24 V *vs*. RHE as a function of scan rate for Co₂P/CoP NAs and CoP. Cyclic voltammograms (CV) for (b) Co₂P/CoP NAs and (c) CoP with different rates from 10 to 120 mV s⁻¹ in the potential range of 0.14-0.34 V *vs*. RHE. The C_{dl} could be obtained according to the equation: $C_{dl} = I_c/v$, where C_{dl} , I_c , and v are the double-layer capacitance (mF cm⁻²) of the electroactive materials, charging current (mA cm⁻²), and scan rate (mV s⁻¹), respectively.

Fig. S14 EIS of the Co₂P/CoP NAs and CoP samples

Fig. S15 (a) Time dependence of potential for the Co_2P/CoP NAs at the constant anodic current densities of 10 mA cm⁻² and 20 mA cm⁻² in two different electrolytes. (b) Stability measurement by recording the polarization curves for the Co_2P/CoP NAs after 2000 CV scans under basic condition

Fig. S16 Structural and morphological characterization of the Co_2P/CoP NAs after HER reaction. **a** XRD pattern of the Co_2P/CoP NAs after HER reaction. Comparison of High resolution XPS spectra of (**b**) Co and (**c**) P. (**d**) SEM image, (**e**) TEM image and HRTEM image of the Co_2P/CoP NAs after HER reaction

Fig. S17 Top view of the schematic models of pure CoP (111) and the optimized $Co_2P(111)/CoP(111)$. Blue balls: Ni; pink balls: P

Fig. S18 Calculated absorption energy of H₂O on the surface of Co₂P/CoP and CoP

Fig. S19 Top (left) and side (right) view of the schematic models of (**a**) the optimized $Co_2P(111)/CoP(111)$ and (**b**) pure CoP (111) with H* adsorbed on their surfaces

Fig. S20 Charge density difference plot at the $Co_2P(111)/CoP(111)$ interface; the yellow and light blue regions represent electron accumulation and depletion, respectively. Blue balls: Ni; pink balls: P

Fig. S21 (**a**) XRD pattern of NiSe. (**b-c**) TEM and HRTEM images with the element mapping of NiSe electrode (**d**). (**e-f**) High-resolution XPS spectrum of Se 3d and Ni 2p for the NiSe electrode

Fig. S22 CV curve of NiSe/NF under alkaline conditions

Fig. S23 Total driven voltages of (a) pure CoP and (b) Co_2P/CoP NAs electrode to support the current density of 10 mA cm⁻² in 1.0 M KOH

Fig. S24 Photo profiles of the H_2/O_2 generation in Steps 1(a) and 2 (b), where it is observed that H_2 and O_2 are produced on the HER (**a**) and OER (**b**) electrodes

Fig. S25 Chronopotentiometry data (potential versus time) of batch-reactors using (**a**) pure CoP or (**b**) Co₂P/CoP NAs electrode. Chronopotentiometry curves were recorded at a current density of 20 mA cm⁻². [(Voltage of Step 1) = (Potential of Co charge) – (Potential of HER); (Voltage of Step 2) = (Potential of OER) – (Potential of Co discharge)]. Voltages for H₂ production (Step 1) and O₂ production (Step 2) are respectively labelled using the blue and indigo lines. Chronopotentiometry data (potential versus time) of HER electrode, mediator electrode, and OER electrode are labelled using the gray, green and red lines, respectively.

Fig. S26 Structural and morphological characterization of the NiSe after reaction. Comparison of High resolution XPS spectra of (**a**) Ni and (**b**) Se. (**c**) EDX mapping images of Ni, O, and Se and the corresponding EDX analysis of the NiSe after reaction

Fig. S27 Raman spectra of Co_2P/CoP NAs before and after OER or AOR electrolysis. AOR, ammonium oxidation reaction

Fig. S28 (a) Galvanostatic charge/discharge curves for the Co_2P/CoP NAs electrode at different current densities in NH₃ containing solution. (b) Plots of areal capacitance versus current density of Co_2P/CoP NAs in two electrolytes. (c) CV curves of Co_2P/CoP NAs at a scan rate of 5 mV s⁻¹ in two electrolytes

Fig. S29 Comparison of the curves of HER (blue line) and CV (green line) of Co₂P/CoP NAs as well as AOR (yellow line) of NiSe electrodes under alkaline-ammonia conditions

Fig. S30 Driving voltages with different step-time to support the current density of 10 mA cm⁻² in (**a**)1.0 M KOH and (**c**) NH₃ containing solution. The driving voltages with different step-time to support the current density of 20 mA cm⁻² in (**b**)1.0 M KOH and (**d**) NH₄⁺ containing solution. (**e**) Comparison of total driving voltage (Step 1 + Step 2) to achieve benchmark current density in two electrolytes. The total driving voltages can be calculated via the average driving voltages of Step 1 + Step 2

Fig. S31 Cyclic charge-discharge performance of Co₂P/CoP NAs at the current density of 50 mA; inset: corresponding first and last ten cycles showing retention of 98.9% charge storing ability even after 200 cycles

Supplementary Table

Table S1 Comparison of the HER performance for the Co₂P/CoP NAs catalyst with other reported electrocatalysts in alkaline electrolytes

		Tafel	Overpotential (mV)		
HER Catalysts	Electrolyte	slope (mV	10 mA	100 mA	Refs.
		dec^{-1})	cm ⁻²	cm ⁻²	
Co ₂ P/CoP NAs	1 M KOH	57	40	160	This
					work
CoP/CoMoP	1 M KOH	33	34	94	[S1]
CoSe ₂ NP	1 M KOH	42.1	139	184	[S2]
S:CoP	1 M KOH	79	109	185	[S3]
$Ni_{2(1-x)}Mo_{2x}P$	1 M KOH	46.4	72	162	[S4]
Cu NDs/Ni ₃ S ₂ NTs	1 M KOH	76.2	132	/	[S5]
TiO ₂ @Ni ₃ S ₂	1 M KOH	69	112	177	[S6]
MoNi ₄ /SSW	1 M KOH	40	/	63	[S7]
CoP/NiCoP	1 M KOH	88	133	210	[S8]
Cr-Co ₄ N NR	1 M KOH	38.1	21	99	[S9]
CMS/Ni	1 M KOH	48.2	/	217	[S10]
P-Fe ₃ O ₄	1 M KOH	41.9	42	138	[S11]
Ni ₃ N-NV	1 M KOH	37	64	218	[S12]
N-Co ₂ P	1 M KOH	51	34	/	[S13]

Nano-Micro Letters						
B,N:Mo ₂ C@BCN-3	1 M KOH	62	100	198	[S14]	
Ni ₂ P/NiTe ₂	1 M KOH	80	62	143	[S15]	
PW-Co ₃ N NWA	1 M KOH	40	41	/	[S16]	
CoP/Ni5P4/CoP	1 M KOH	58	71	140	[S17]	
N-NiCo ₂ S ₄	1 M KOH	41	37	/	[S18]	
MoO ₂ -FeP@C	1 M KOH	48	103	196	[S19]	

Table S2 Bader charge analysis and their differences to purely ionic models (ΔQ)

Sample	Atoms	Bader electrons	ΔQ
CoP(111)	Co ₁	8.68	-0.32
	\mathbf{P}_1	5.30	0.30
	Co ₁	8.60	-0.40
$C_{a} D(111)/C_{a} D(111)$	Co ₂	8.75	-0.25
C02P(111)/C0P(111)	\mathbf{P}_1	5.35	0.35
	P ₂	5.41	0.41

 Table S3 Comparison of our redox mediator for gas separation with reported gas separation systems with redox mediators

Redox mediator	Electrolyte	Separated gas	Current density (mA cm ⁻²)	Average cell voltage (V)	Refs.
Co ₂ P/CoP NAs	1 М КОН	H2/O2	10	1.69	_
			20	1.88	This work
	1 M KOH + 1 M NH3	H2/N2	10	1.55	
			20	1.73	
Ni(OH)2	1 M KOH	H ₂ /O ₂	20	1.98	[S20]
			5	2.10	[S21]
Ni0.9C00.1(OH)2	5 М КОН	H ₂ /O ₂	10	1.44	- [S22]
			50	1.50	
Na _{0.44} MnO ₂	1 M KOH (step	H ₂ /Cl ₂	10	2.37	[\$23]
	1) / Saturated NaCl (step 2)		20	2.51	
PTPAn	0.5 M H ₂ SO ₄	H ₂ /O ₂	1.66	1.65	- [S24]
			33.3	2.22	
РТО	0.5 M H ₂ SO ₄	H ₂ /O ₂	1.66	1.66	- [\$25]
			16.6	1.87	

Supplementary References

- [S1]X. Huang, X. Xu, X. Luan, D. Cheng, CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 68, 104332 (2020). https://doi.org/10.1016/j.nanoen.2019.104332
- [S2]D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe₂ nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. **136**, 4897-4900 (2014). https://doi.org/10.1021/ja501497n
- [S3]M. A. R. Anjum, M. S. Okyay, M. Kim, M. H. Lee, N. Park, J. S. Lee, Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noblemetal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy 53, 286-295 (2018). https://doi.org/10.1016/j.nanoen.2018.08.064
- [S4]L. Yu, I. K. Mishra, Y. Xie, H. Zhou, J. Sun, J. Zhou, Y. Ni, D. Luo, F. Yu, Y. Yu, S. Chen, Z. Ren, Ternary Ni_{2(1-x)}Mo_{2x}P nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy 53, 492-500 (2018). https://doi.org/10.1016/j.nanoen.2018.08.025
- [S5]J. X. Feng, J. Q. Wu, Y. X. Tong, G. R. Li, Efficient hydrogen evolution on Cu nanodots-decorated Ni₃S₂ nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. **140**, 610-617 (2018). https://doi.org/10.1021/jacs.7b08521
- [S6]S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang, Y. Wang, J. Wu, X. Wang, H. J. Fan, X. Xia, J. Tu, High-index-faceted Ni₃S₂ branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. **11**, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
- [S7]V. R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C. Y. Jung, S. C. Yi, Corrosion and alloy engineering in rational design of high current density electrodes for efficient water splitting. Adv. Energy Mater. 10, 1904020 (2020). https://doi.org/10.1002/aenm.201904020
- [S8]Y. Lin, K. Sun, S. Liu, X. Chen, Y. Cheng, W. C. Cheong, Z. Chen, L. Zheng, J. Zhang, X. Li, Y. Pan, C. Chen, Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 9, 1901213 (2019). https://doi.org/10.1002/aenm.201901213
- [S9]N. Yao, P. Li, Z. Zhou, Y. Zhao, G. Cheng, S. Chen, W. Luo, Synergistically tuning water and hydrogen binding abilities over Co₄N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 9, 1902449 (2019). https://doi.org/10.1002/aenm.201902449

- [S10] J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: A bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10, 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
- [S11] J. Zhang, X. Shang, H. Ren, J. Chi, H. Fu, B. Dong, C. Liu, Y. Chai, Modulation of inverse spinel Fe₃O₄ by phosphorus doping as an industriallypromising electrocatalyst for hydrogen evolution. Adv. Mater. **31**, 1905107 (2019). https://doi.org/10.1002/adma.201905107
- [S12] H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, Anionmodulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 31, 1901174 (2019). https://doi.org/10.1002/adma.201901174
- [S13] Y. Men, P. Li, J. Zhou, G. Cheng, S. Chen, W. Luo, Tailoring the electronic structure of Co₂P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal. 9, 3744-3752 (2019). https://doi.org/10.1021/acscatal.9b00407
- [S14] M. A. R. Anjum, M. H. Lee, J. S. Lee, Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. ACS Catal. 8, 8296-8305 (2018). https://doi.org/10.1021/acscatal.8b01794
- [S15] Y. Li, X. Tan, H. Tan, H. Ren, S. Chen, W. Yang, S. C. Smith, C. Zhao, Phosphine vapor-assisted construction of heterostructured Ni₂P/NiTe₂ catalysts for efficient hydrogen evolution. Energy Environ. Sci. (2020) DOI: 10.1039/d0ee00666a. https://doi.org/10.1039/D0EE00666A
- [S16] Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Manipulating dehydrogenation kinetics through dual-doping Co₃N electrode enables highly efficient hydrazine oxidation assisting self-powered H₂ production. Nat. Commun. **11**, 1853 (2020). https://doi.org/10.1038/s41467-020-15563-8
- [S17] I. K. Mishra, H. Zhou, J. Sun, F. Qin, K. Dahal, J. Bao, S. Chen, Z. Ren, Hierarchical CoP/Ni₅P₄/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ. Sci. **11**, 2246-2252 (2018). https://doi.org/10.1039/C8EE01270A
- [S18] Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, G. Wang, Electron density modulation of NiCo₂S₄ nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 9, 1425 (2018). https://doi.org/10.1038/s41467-018-03858-w

- [S19] G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Interfacial engineering of MoO₂-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. **32**, 2000455 (2020). https://doi.org/10.1002/adma.202000455
- [S20] L. Chen, X. Dong, Y. Wang, Y. Xia, Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016). https://doi.org/10.1038/ncomms11741
- [S21] A. Landman, H. Dotan, G. E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G. S. Grader, A. Rothschild, Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16, 646-651 (2017). https://doi.org/10.1038/nmat4876
- [S22] H. Dotan, A. Landman, S. W. Sheehan, K. D. Malviya, G. E. Shter, D. A. Grave, Z. Arzi, N. Yehudai, M. Halabi, N. Gal, N. Hadari, C. Cohen, A. Rothschild, G. S. Grader, Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting. Nat. Energy 4, 786-795 (2019). https://doi.org/10.1038/s41560-019-0462-7
- [S23] M. Hou, L. Chen, Z. Guo, X. Dong, Y. Wang, Y. Xia, A clean and membrane-free chlor-alkali process with decoupled Cl₂ and H₂/NaOH production. Nat. Commun. 9, 438 (2018). https://doi.org/10.1038/s41467-018-02877-x
- [S24] Y. Ma, X. Dong, Y. Wang, Y. Xia, Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode. Angew. Chem. Int. Ed. 57, 2904-2908 (2018). https://doi.org/10.1002/anie.201800436
- [S25] Y. Ma, Z. Guo, X. Dong, Y. Wang, Y. Xia, Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis. Angew. Chem. Int. Ed. 58, 4622-4626 (2019). https://doi.org/10.1002/anie.201814625