Supporting Information for

Solvent-Free Synthesis of Ultrafine Tungsten Carbide Nanoparticles Decorated Carbon Nanosheets for Microwave Absorption

Yunlong Lian¹, Binhua Han¹, Dawei Liu¹, Yahui Wang¹, Honghong Zhao¹, Ping Xu¹, Xijiang Han^{1, *}, Yunchen Du^{1, *}

Yunlong Lian and Binhua Han contributed equally to this work.

¹MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China

*Corresponding authors. E-mail: <u>yunchendu@hit.edu.cn</u> (Yunchen Du); <u>hanxijiang@hit.edu.cn</u> (Xijiang Han)

Supplementary Figures

Fig. S1 Survey XPS spectra of different tungsten carbide/carbon composites

Nano-Micro Letters

Fig. S2 Low-magnification TEM images of a WCC-2, b WCC-4, c WCC-6, and d WCC-8

Fig. S3 XRD pattern of the final product of WCC-2 after TG measurement

Nano-Micro Letters

Fig. S4 The local amplification of G band in Raman spectra of different tungsten carbide/carbon composites

Fig. S5 a Real parts and **b** imaginary parts of relative complex permeability of different tungsten carbide/carbon composites

Fig. S6 Dielectric loss tangents of different tungsten carbide/carbon composites

Fig. S7 The curves of ε_r " *vs.* ε_r ' (Cole–Cole semicircles) of **a** WCC-2, **b** WCC-4, **c** WCC-6, and **d** WCC-8

Fig. S8 RL curve of WCC-6 with the thickness of 1.34 mm

Fig. S9 RL curves and dependence of matching thickness (t_m) on matching frequency (f_m) of **a**, **e** WCC-2, **b**, **f** WCC-4, **c**, **g** WCC-6, and **d**, **h** WCC-8.

Fig. S10 Frequency-dependent attenuation constants (α) of different tungsten carbide/carbon composites

The values of α can be calculated by the following equation:

$$\alpha = \frac{\sqrt{2\pi f}}{c} \sqrt{(\mu_r'' \varepsilon_r'' - \mu_r' \varepsilon_r')} + \sqrt{(\mu_r'' \varepsilon_r'' - \mu_r' \varepsilon_r')^2 + (\mu_r' \varepsilon_r'' + \mu_r'' \varepsilon_r')^2}$$

Fig. S11 a Relative complex permittivity, **b** dielectric loss tangent, **c** delta map, and **d** RL map of WCC-10