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Abstract The paper reports the fabrication of Zn-doped TiO2 nanotubes (Zn-TONT)/ZnO nanoflakes heterostructure for

the first time, which shows improved performance as a photoanode in dye-sensitized solar cell (DSSC). The layered

structure of this novel nanoporous structure has been analyzed unambiguously by Rutherford backscattering spectroscopy,

scanning electron microscopy, and X-ray diffractometer. The cell using the heterostructure as photoanode manifests an

enhancement of about an order in the magnitude of the short circuit current and a seven-fold increase in efficiency, over

pure TiO2 photoanodes. Characterizations further reveal that the Zn-TONT is preferentially oriented in [001] direction and

there is a Ti metal-depleted interface layer which leads to better band alignment in DSSC.
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1 Introduction

The ability to fine tune the optoelectronic and transport

properties of the metal oxide semiconductors nominates

them as promising candidates for chemical gas sensing,

photocatalysis, energy conversion, and storage applications

[1]. Among the metal oxide semiconductors, TiO2 and ZnO

have been studied extensively in the recent years owing to

their exceptional characteristics such as high stability, low-

cost fabrication, nontoxicity, and excellent photoelectro-

chemical properties [2–5]. Nevertheless, these pure metal

oxides individually exhibit relatively low energy conver-

sion efficiencies because of the limited photoresponse

range and the fast recombination rate of the generated

charge carriers [6–9].

These drawbacks of the pure metal oxide semiconduc-

tors have led researchers to explore the heterostructures

using TiO2 and ZnO. These heterostructures exhibit good

stability because of the good compatibility between TiO2

and ZnO and similar band alignments [2]. Also, TiO2/ZnO

heterostructures are expected to act as better photoanodes

on account of the combination of the very high reactivity of

TiO2 and large binding energy of ZnO [10, 11].

Several attempts are being made to fabricate

heterostructures based on nanostructures of TiO2 and ZnO

such as TiO2 nanotube/ZnO nanorod composite, ZnO-

coated TiO2 nanotubes, and branched ZnO nanorod/TiO2

nanotube arrays due to the high surface-to-volume ratio

attainable [12–17]. It has been found that the presence of

ZnO prevents the fast recombination of the photogenerated

charge carriers with the dye molecules in dye-sensitized

solar cells because of the slightly higher band gap of the

ZnO compared to the TiO2 [18, 19]. The extension of the

photoresponse range and enhanced mobility of the charge

carrier can also be expected from these heterostructures.

In the present work, heterostructure of ZnO nanoflakes

partially covering the Zn-doped TiO2 nanotube (Zn-TONT)

was fabricated for the first time. The layer of ZnO nano-

flakes is expected to increase the dye absorption and the Zn

doping of TiO2 nanotubes tends to increase their electrical

transport properties. The improved performance of a dye-

sensitized solar cell (DSSC) with Zn-TONT/ZnO nanoflake

heterostructure instead of pure TONT as photoanode is also

demonstrated.

2 Experimental Methods

The Zn-TONT/ZnO nanoflake heterostructure was fabri-

cated by a two-step method (Fig. 1). In the first step, well-

aligned and uniform TONT were fabricated on titanium

foil by electrochemical anodization [20]. In the second

step, Zn doping and tailoring of ZnO nanoflakes on the Zn-

TONT were done using a three-electrode system, where

TONT was used as the working electrode, platinum rod as

counter electrode, and Ag/AgCl as reference electrode

(3 M KCl electrolyte), with 0.1 M ZnSO4 in ionized water

as the solution for doping. A negative voltage pulse of

1–2.5 V was applied to the working electrode for duration

of 2–10 s to trigger the doping process.
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The detailed analysis of the Zn-TONT/ZnO nanoflake

heterostructure was performed using X-ray diffractometer

(XRD), field emission scanning electron microscopy

(FESEM), Rutherford backscattering spectroscopy (RBS),

and X-ray photoelectron spectroscopy (XPS). The current

density–voltage (J–V) data of the DSSC were carried on a

Solar Simulator (NEWPORT) under the standard solar

conditions.

3 Results and Discussion

The FESEM surface images of the pure TONT and Zn-

TONT/ZnO nanoflakes are shown in Fig. 2. Figure 2a

indicates that the pure TONT formed by electrochemical

anodization possesses an approximate inner diameter of

100 nm, wall thickness of 16 nm, and thickness of 6.9 lm.

The side view of the as-formed aligned nanotubes is shown

in the inset of Fig. 2a. Sponge-like ZnO nanoflakes

(Fig. 2b) appear on the surface of TONT when doping was

done for a short time of*2 s, and partially cover the top of

the tubes upon annealing, as seen in the inset of Fig. 2b.

More detailed layered structures of both pure TONT and

the heterostructure were studied using RBS of 2.97 MeV a
particles, a technique that can effectively bring out the at.%

composition and thickness of different layers through

SIMNRA fitting [21]. The RBS spectrum of pure TONT

fitted with SIMNRA shows a structure of *7 lm TiO2 as

the top layer and a Ti metal substrate as the bottom layer

(Fig. 3a). The spectrum from the Zn-TONT/ZnO structure

suggests four layers (Fig. 3b), with a partial coverage by

ZnO flakes at the top surface and a slightly Ti-depleted

layer at the interface of the heterostructure. Partial cover-

age of ZnO flakes is simulated by superposing weighted

models of ZnO-covered Zn-TONT and ZnO-uncovered Zn-

TONT. The thickness of the ZnO flakes assuming *14 %

coverage of the top, is around 22 nm and the Zn-TONT

beneath the ZnO layer consists of[3 lm with a Zn doping

at.% of 2.7 ± 0.4. Between the TONT layer and the ZnO

layer, the Ti-depleted layer (Ti: 25.3 ± 1.3 %) has a
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Fig. 1 Schematic of the fabrication of Zn-TONT/ZnO nanoflake heterostructure
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Fig. 2 FESEM images of a top view of undoped TONT, and side view of undoped TONT (inset). b Top view of Zn-TONT/ZnO nanoflake

heterostructure, and top view of the heterostructure after annealing at 500 �C (inset)
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thickness of 320 ± 30 nm. The fourth and last layer is the

Ti metal substrate with infinite thickness.

RBS confirms that during the doping step, in addition to

the formation of ZnO nanoflakes on top, a small percentage

of Zn was doped into the TONT, the adsorption has led to a

preferential orientation of the nanocrystallites in the tube

on annealing. This phenomenon has been discussed in

detail elsewhere [22]. The 3 % Zn doping of the TiO2

nanotubes was confirmed by taking the XPS of the

heterostructure after removing the top ZnO nanoflake layer

by dipping in 1 M HCl for one hour. The inset of Fig. 4

shows the detailed spectrum of the titanium, oxygen, and

zinc, respectively.

The crystallinity of the annealed pure TONT and Zn-

TONT/ZnO nanoflake heterostructure characterized by

XRD (Fig. 5) reveals that the pure TONT (Fig. 5a) consist

of (101), (004), (200), and (105) planes with preferential

orientation along (101) plane (JCPDS 89-4203). Contrary

to this observation, the TONT in the heterostructure

(Fig. 5b) shows preferential orientation along (004) plane.

This strong preferential orientation has been interpreted on

the basis of the Zn-assisted minimization of the surface

energy of (004) plane [22].

When Zn is doped into the tubes and then annealed, the

amorphous TONT break up into crystallites and Zn gets
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Fig. 3 RBS of a pure TONT (areal thickness of 1.1 9 1019 atoms cm-2), and b Zn-TONT/ZnO nanoflake heterostructure (Layer 1 areal

thickness of 1.5 9 1017 atoms cm-2, Layer 2 areal thickness of 2.9 9 1018 atoms cm-2, and Layer 3 areal thickness of[3 9 1019 atoms cm-2)
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Fig. 4 XPS of the Zn-TONT with 3 % zinc doping
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preferentially adsorbed on the higher surface energy

(0.90 J m-2) facets {001} which possess more adsorption

ability. The Zn adsorption reduces the surface energy of the

facet, resulting in the enhancement of the surface area,

until the differential adsorption ability of that facet gets

weaker and further adsorption and growth are impeded.

There will be no further reduction in the surface energy of

the {001} facets, and hence it does not go below the sur-

face energy (0.44 J m-2) of {101} facets. During the

stacking of the crystallites, the comparatively higher

energy {001} facets connect each other and hence the

{001} surfaces faces the tube up. The XRD peaks observed

at 34.4� and 36.6� confirm the formation of the ZnO layer

on the top of TONT (JCPDS-79-0205).

The performance comparison of the TONT and the

heterostructure Zn-TONT/ZnO nanoflake in DSSC appli-

cation was done by fabricating both type of cells, one with

TONT and the other with Zn-TONT/ZnO nanoflake

heterostructure as the photoanode, and platinum-coated

FTO as the front electrode. After dye sensitization of the

photoanode with N719, a redox electrolyte was sandwiched

between the photoanode and the front electrode for the

regeneration of the dye molecules (Fig. 6a).

The J–V data of the DSSC are depicted in Fig. 6c. The

J–V characteristics of the DSSC (Fig. 6c) using Zn-TONT/

ZnO nanoflake heterostructure and the Zn-doped TONT

after removing the top ZnO nanoflake layer are compared

with that of DSSC using the as-prepared TONT. While the

improvement in the open circuit voltage (Voc) with the

heterostructure DSSC is only about 70 mV than that with

pure TONT, the short circuit current for the heterostructure

(ISc *4 mA) is about an order of magnitude higher on

comparison with the pure TONT (Isc *0.6 mA). The Voc

and Isc of DSSC with Zn-doped TONT show a slight

increase *30 mV and 0.6 mA, respectively. This has

produced a considerable increase ([7 times) in the effi-

ciency of the heterostructure cell over the pure TONT-

based cell, fabricated and operated under the same condi-

tions, while the efficiency of DSSC with Zn-doped TONT

over that of pure TONT is *2 times. The result shows that

although efficiency is slightly increased in the DSSC using

Zn-TONT in comparison with that using pure TONT, the

DSSC fabricated with Zn-TONT/ZnO nanoflake

heterostructure shows still a significant enhancement when

compared to either of them. Hence, it can be concluded that

the improved performance is due to the combined effect of

ZnO nanoflake and preferential [001] orientation of the

anatase TONT, where the effect of ZnO nanoflakes is more

prominent than the orientation effect. The results empha-

size the significance of TONT/ZnO photoanodes over pure

TONT photoanodes, for improved DSSC performance.

The improvement in the efficiency of DSSC could be

explained based on the more effective processes of carrier

production and transport in the heterostructure-based

DSSC whose band alignment is illustrated in Fig. 6b. In

TONT-based DSSC, when the solar radiation falls on the

dye molecules through the transparent platinum FTO

window and the electrons from the HOMO (highest

occupied molecular orbital) of the N719 dye are excited to

the LUMO (lowest unoccupied molecular orbital), the

photogenerated electrons are injected into the conduction

band of the TONT and are collected by the Ti metal back

contact. In this process, there is a large possibility for the

charge recombination of the electrons in the conduction

band of the TONT and holes present in the HOMO of the

dye, which may reduce the efficiency of the device. In the

Zn-TONT/ZnO nanoflake heterostructure-based DSSC, the

presence of ZnO nanoflakes (band gap *3.37 eV with

conduction band and valence band positioned slightly

above that of the corresponding bands in TONT) on the top

of the TiO2 nanotubes (band gap *3.2 eV) decreases the

recombination rate of the electrons owing to the small

energy barrier created by them [19, 23]. In addition, ZnO

lattice was reported to provide electron mobility almost 3

times larger compared to the TONT which facilitates faster

transport of the generated electrons to the back metal

contact [18]. This increased mobility thus acts as an

additional factor that further reduces the recombination rate

of the photogenerated charge carriers. This synergetic

property of Zn-TONT/ZnO nanoflakes in promoting
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efficient separation of carriers may be the reason for

improved solar cell efficiency.

4 Conclusion

In conclusion, a clear picture of the layered structure,

morphology, and crystallinity of the Zn-TONT/ZnO

heterostructure was gained using RBS, SEM, and XRD.

The advantage of using heterostructures of the Zn-TONT/

ZnO nanoflake heterostructure in a DSSC constructed by a

cost-effective and highly reproducible method was ana-

lyzed. This layered heterostructure shows enhanced DSSC

efficiency over the pure TiO2 nanotubes.
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