Supplementary Information for

Thermo-Electrochemical Cells Based on Carbon Nanotube Electrodes by

Electrophoretic Deposition

Weijin Qian⁺, Mingxuan Cao⁺, Fei Xie, Changkun Dong*

Institute of Mirco-Nano Structure & Optoelectronics, Wenzhou University, Wenzhou 325035,

People's Republic of China

⁺Two authors contributed equally to this work

*Corresponding author. E-mail: dck@wzu.edu.cn

Tel: +86-577-86689067, Fax: +86-577-86689011

Fig. S1 Power versus Voltage between the two test electrodes. The distance between electrodes was 5 cm, the temperature difference was 50 $^{\circ}$ C.

Table S1 Comparison of the performance	es of TECs based on MWNTs electrodes
--	--------------------------------------

Electrodes	$j_{\rm sc}$ (A m ⁻²)	$\frac{P_{\rm max}}{({\rm W~m^{-2}})}$	η _r (%)	References
MWNTs	45.2	0.82	0.9	this paper
MWNTs	85	1.8	1.4	Ref. 1

Note: The TEC performances from this work were not better than the results reported by Hu et al., mainly due to the higher thermal resistance

Reference

 R.C. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. **10**(3), 838-846 (2010). doi:10.1021/nl903267n