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Abstract In the present study, chitosan and polyvinyl alcohol (PVA) were blended with different concentrations of

sodium montmorillonite (Na?MMT) clay solution by a solvent casting method. X-ray diffraction and transition electron

microscope results show that the film properties are related to the co-existence of Na?MMT intercalation/exfoliation in the

blend and the interaction between chitosan–PVA and Na?MMT. 5-Fluorouracil (5-FU) was loaded with chitosan–PVA/

Na?MMT nanocomposite films for in vitro drug delivery study. The antimicrobial activity of the chitosan–PVA/Na?MMT

films showed significant effect against Salmonella (Gram-negative) and Staphylococcus aureus (Gram-positive), whereas

5-FU encapsulated chitosan–PVA/Na?MMT bio-nanocomposite films did not show any inhibition against bacteria. Our

results indicate that combination of a flexible and soft polymeric material with high drug loading ability of a hard inorganic

porous material can produce improved control over degradation and drug release. It will be an economically viable method

for preparation of advanced drug delivery vehicles and biodegradable implants or scaffolds.

Keywords Biopolymer � Chitosan–PVA/Na?MMT � Montmorillonite � 5-Fluorouracil � Drug release � Antimicrobial

activity

1 Introduction

In the past few decades, drug delivery systems have been of

great interest and resulted in many efforts to realize the

effectiveness and targeted drug delivery tendency as well

as to reduce the associated side effects. Controlled drug

delivery system is necessary in order to develop new nano-

medicines. Thus, the carriers used for drug release are

generally biodegradable polymers [1] and hard inorganic

porous matrices [2]. In recent past, biodegradable polymer

attracted much attention owing to its potential applications

as a carrier in drug delivery systems.

Chitosan is a semi-crystalline and linear polysaccharide

composed of (1–4)-2-acetamido-2-deoxy-b-D-glucan (N-

acetyl D-glucosamine) and (1-4)-2-amino-2-deoxy-b-D-

glucan (D-glucosamine) units. It is not widely present in the

environment but can be easily obtained from the partial

deacetylation of a natural polymer chitin [3]. The

deacetylation degree of chitosan provides valuable infor-

mation regarding to the number of amino groups (–NH2)

along the chains and it can be measured as the ratio of D-

glucosamine to the sum of D-glucosamine and N-acetyl D-

glucosamine. For a chitosan, the deacetylated chitin must

have at least 60 % of D-glucosamine residues [4] and

controlled by chemical hydrolysis under harsh alkaline

conditions or enzymatic hydrolysis in the presence of

particular enzymes among of chitin deacetylase [5]. The

presence of amino groups in the chitosan structure differ-

entiates the chitosan from chitin and allows this polymer to

have several unique properties. Undoubtedly, the amino
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groups of the D-glucosamine residues might be protonated,

when it is soluble in aqueous acidic solutions (pH\ 6).

Whereas the applications of chitin are tremendously lim-

ited due to its weak solubility in water or other organic

solvents. Interestingly, the aqueous acidic solubility of

chitosan is pH dependent, permitting its processability

under warm conditions, which opens the door for many

applications, particularly in the field of pharmaceutical and

cosmetics [3]. This polysaccharide has been extensively

studied in the field of biomaterials because of its

biodegradability, biocompatibility, and biological proper-

ties. Among various polymer development processes,

polymer blending is one of the most economical and rapid

ways to innovate novel materials with vital properties and

it has made great scientific and commercial progresses [6].

Polyvinyl alcohol (PVA)-based nanocomposites are one

of the familiar polymer composites that have been used in

various biomedical applications (implants, artificial organs,

contact lenses, drug delivery devices, wound dressings,

etc.) due to its good biocompatibility behavior [7–11].

There are numerous methods available for crosslinking

PVA chains to synthesize PVA composites, including bulk

mixing with crosslinking agents such as glutaraldehyde

(GA), freezing–thawing cyclic process [12], as well as

electron beam irradiation [13].

Nowadays increased attention has been focused on drug

intercalated smectites, particularly montmorillonite (MMT)

pharmaceutical grade mineral clay [14, 15]. MMT has

cation exchange capacity, good adsorption capacity, large

specific surface area, and drug-carrying ability. It is

hydrophilic and highly dispersible in water and can aid in

the synthesis of a wide variety of hydrophilic and proto-

nated organic molecules, which can be released in con-

trolled fashion by replacement with other types of cations

in the drug release processes [16–18]. Therefore, MMT is a

good delivery carrier of hydrophilic drugs due to its high

aspect ratio and can afford mucoadhesive ability for the

nanoparticles to cross the gastrointestinal barrier [19, 20].

So far, MMT has been used as a controlled release system

and proved to be nontoxic by hematological, biochemical

and histopathological analyses in rat models [21]. It is also

utilized as a sustained release carrier for various thera-

peutic molecules, such as 5-fluorouracil (5-FU) [22], ser-

traline [23], vitamin B1 [14, 15], promethazine chloride

[24], and buspirone hydrochloride [25].

5-FU is an effective chemotherapy option available for

the treatment of colorectal cancer [26, 27], stomach cancer

[27], breast cancer [28], brain tumor [29, 30], liver cancer

[31], pancreatic cancers [32–34], and lung cancer [35–38].

It is a pyrimidine analog that restrains the biosynthesis of

deoxyribonucleotides for DNA replication through con-

straining thymidylate synthase activity, resulting to thy-

midine exhaustion, incorporation of deoxyuridine

triphosphate into DNA and subsequently causing cell death

[39–41]. However, 5-FU has limitations, such as short

biological half-life due to rapid metabolism, non-uniform

and incomplete oral absorption owing to metabolism by

dihydropyrimidine dehydrogenase [42–45], toxic side

effects on bone marrow and gastrointestinal tract, and non-

selective action against healthy cells [46]. For successful

cancer treatment, overcoming the toxic side effects on bone

marrow is highly essential, which might possibly be

achieved by the control release of the drug by intercalated

in the clay interlayer and biopolymeric systems.

However, no report is available in the literatures for

combination of biodegradable polymer chitosan–PVA and

Na?MMT for controlled release of 5-FU. In this study, we

have tried to develop a biodegradable and biocompatible

polymer to control drug release properties with pharma-

ceutical grade MMT in order to produce oral and controlled

drug delivery formulations for 5-FU. Being a highly

hydrophilic drug molecule, it is very difficult to encapsu-

late high amount of 5-FU within the hydrophilic polymer

matrix. Therefore, in the present study, the modified sol-

vent casting method has been developed to entrap sub-

stantial amount of drug in the synthesized formulations.

The schematic representation of the process is shown in

Fig. 1.

2 Experimental

2.1 Materials

High molecular weight chitosan (viscosity of between 800

and 2000 cps), PVA (96 % hydrolysed, molecular weight

85,000–145,000, and the degree of deacetylation higher

than 75 %), and 5-FU (99 %) were sourced from Sigma-

Aldrich (South Africa). GA, sodium chloride (NaCl),

sodium hydroxide (NaOH), silver nitrate (AgNO3), acetic

acid (CH3COOH), and de-ionized water were supplied by

Merck. Na?MMT was supplied as powder by Southern

Clay Products, Inc. (Texas, USA). The Department of

Microbiology (SRM University, India) provided the stan-

dard cultures of the organisms. All the chemicals and

reagents were used without further purification. Double-

distilled water was used for the preparation of all solutions.

2.2 Solutions Preparation

50 mL of chitosan solution (1 % wt/v in acetic acid) and

50 mLof PVA solution (1 %wt/v inwater) (1:1)weremixed

together in a 250 mL beaker and stirred at room temperature

until a homogeneous solution was obtained. Then, different

amounts of Na?MMT (1–5 wt%) nanoparticles were added

to abovemixture and stirring was continued for a further 6 h.
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Before casting, 1 mL of 2 % GA solution in water (a cross-

linking agent) was added under stirring at room temperature.

The solution was transferred immediately into Petri dishes

(10 mm 9 10 mm) and dried at room temperature. The

formed cross-linked chitosan–PVA/Na?MMT films were

washed with double-distilled water for neutralization and

dried at room temperature [47, 48].

2.3 Swelling Studies

Swelling studies were carried out according to the report of

Vimala et al. [48]. The dried pre-weighed films were

equilibrated in 250 mL phosphate buffer (pH 7.4) at 25 �C
for 24 h and then water up-take of the films was measured

for every 30 min using an analytical balance. The swelling

ratio (Q) of the films was calculated using Eq. 1,

Q ð%Þ ¼ Ws �Wd

Wd

� 100; ð1Þ

where Ws is the weight of the swollen film at different time

intervals and Wd is the weight of the dry film.

2.4 Characterization

Bruker D8 advanced refractometer X-ray diffraction

(XRD) was used to determine the intercalation or exfolia-

tion (or both) of nanocomposite films. Transition electron

microscope (TEM) images were recorded using a Tecnai F

12 JEOL-JEM 2100 at an accelerating voltage of 15 kV.

The morphologies of the bio-nanocomposite films were

observed by scan electron microscopy (SEM, JEOL

FESEM JSM-7600F) equipped with energy-dispersive

X-ray spectroscopy. Fourier transform infra-red (FTIR)

spectroscopy measurement was carried on Perkin-Elmer

UATR two using diamond Zn/Se plate. Small amount of

sample was pressed on a Zn/Se plate and the spectra were

recorded over a range of 550–4000 cm-1. Thermal studies

of the films were carried out using TGA 7 instrument

(Perkin-Elmer) at a heating rate of 10 �C min-1 under a

constant nitrogen flow of 20 mL min-1.

2.5 5-Fluorouracil Loading and Encapsulation

Efficiency

5-FU was loaded into the chitosan–PVA/Na?MMT

nanocomposite films by the swelling method. The films

(100 mg) were allowed to swell in 40 mL 5-FU solution

(5 mg 5-FU, 8 mL acetone and 12 mL distilled water) for

24 h at 25 �C. The loading efficiency of 5-FU in the

nanocomposite films was determined spectrophotometri-

cally [39, 48]. The drug-loaded films were placed in 50 mL

phosphate buffer solution and stirred vigorously for 4 days

in order to extract the drug from the films. The solution was

filtered and assayed using UV spectrophotometer at fixed

kmax value of 266 nm. The results of the drug loading and

encapsulation efficiency were calculated using Eqs. 2 and

3, respectively.

Drug releasing

5-fluorouracil release NC 5-fluorouracil loaded NC

5-fluorouracil
loadingnanocomposites (NC)

O

F
HN

O N
H

Clay platelets

Chitosan (CS)

Clay-chitosan
solution

Clay/CS/PVA
solution

PVA
stirring casting

Fig. 1 Schematic representation for the formation of 5-FU loaded chitosan/PVA–Na?MMT nanocomposites
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Drug loading ð%Þ

¼ Weight of drug in film�Weight of the film

Weight of the film
� 100;

ð2Þ

Encapsulation efficiency ð%Þ ¼ % actual loading

% theoretical loading
� 100:

ð3Þ

2.6 Release of 5-FU

For the control release studies of 5-FU from the loaded

nanocomposite films, known weights were placed in a

measured volume (50 mL) of 7.4 pH phosphate buffer

solution at room temperature and the released amount of

5-FU was determined at different time intervals by

recording the absorbance of the release medium using the

UV–vis spectrophotometer [48]. The recorded absorbance

was then related to the amount of 5-FU released using a

calibration plot. The absorption of the solutions of 5-FU

was measured at kmax value of 266 nm.

2.7 Antimicrobial Activity

The antibacterial activity of the nanocomposites was

investigated by a disk method and the standard procedure

was described elsewhere [49]. Nutrient agar medium was

prepared by mixing peptone (5.0 g), beef extract (3.0 g),

and sodium chloride (NaCl, 5.0 g) in 1000 mL distilled

water and the pH was adjusted to 7.0. Finally, agar (15.0 g)

was added to the solution. The agar medium was sterilized

in an autoclave at a pressure of 6.8 kg m-2 (15 lbs) for

30 min. This medium was transferred into sterilized Petri

dishes in a laminar air flow chamber (Microfilt Laminar

Flow Ultra Clean Air Unit, Mumbai, India). After solidi-

fication of the media, bacteria (Salmonella, Staphylococcus

aureus, Streptococcus mutants and Escherichia coli) (50

lL) culture were spread on the solid surface of the media.

Over the inoculated Petri dish, one drop of gel solution

(20 mg/10 mL distilled water) was added using a 10 lL tip

and the plates were incubated for 48 h at 37 �C.

3 Results and Discussion

The physical status of Na?MMT and chitosan–PVA in the

synthesized chitosan–PVA/Na?MMT nanocomposite was

studied with the help of XRD. The characteristic diffraction

peak of pristine Na?MMT is appeared at 7.2�, corre-

sponding to the (001) plane with a d-spacing of 12.1 Å (see

Fig. 2a). An decrease in the intensity of the (001) plane

along with a shift in the 2h value from 7.2� to 7.0� was

observed in the case of chitosan–PVA/Na?MMT

nanocomposites (1 wt% clay; see Fig. 2b). The hump in the

background from 18� to 24� is due to the presence of a

polymer within the chitosan–PVA/Na?MMT nanocom-

posites. According to Bragg’s law, a shift in 2h value from

higher diffraction angle to lower diffraction angle is

indicative of an increase in d-spacing [14, 15, 25]. The d-

spacing data from 12.1 to 14.4 Å are given in Table 1. The

increase of 2.15 Å is attributed to the co-existence of

intercalation/exfoliated of chitosan–PVA within the Na?-

MMT. This is further supported by the HRTEM image (see

Fig. 3) in which the presence of expanded and uniformly

spaced Na?MMT layers in the chitosan–PVA is shown

clearly. These results confirm that the Na?MMT resides in

or entered into the chitosan–PVA matrices [50].

The TEM image of nanocomposite (5 wt% Na?MMT) is

illustrated in Fig. 3. The images show typical morphology

of layered materials, in which the dark lines correspond to

Na?MMT clay layers, while bright areas represent the

chitosan–PVA polymer matrices. As seen in Fig. 3, the

interlayer distance of clay was obviously enlarged, fol-

lowing the addition of the mixture of chitosan–PVA

polymers. Moreover, as seen from the higher magnification

image (100 nm), layered silicates were exfoliated and

uniformly dispersed in chitosan–PVA polymer matrices at

nano-level and it is supported from the XRD patterns.

SEM images of the nanocomposite films are shown in

Fig. 4. As seen in the figure, the surface roughness of the

films was enhanced by increasing the Na?MMT content.

Furthermore, there is a uniform surface roughness observed

for 5 wt% Na?MMT films. The possible reason is that the

polycation ability of the matrix was attracted to the nega-

tive ability of clay and resulted in a physical bond (hy-

drogen bond) form between them. Such exfoliated structure

was confirmed in above XRD measurements and it was

also observed by Rhim et al. [49].

FTIR spectroscopy depicted in Fig. 5 was used to

identify the chemical groups of polymers. From the spec-

trum of neat chitosan, the absorption peaks around the

wave number of 3900 and 1405 cm-1 could be ascribed to

the stretching and bending vibrations of the –NH or –OH

groups. The peaks around 905 and 1560 cm-1 correspond

to saccharide structure [51]. However, in the case of

Na?MMT, the four types of vibrations are exhibited at

3640, 1668, 997, and 516 cm-1 and they are ascribed to

Si–O and OH bonds, which is in good agreement with other

report [50]. The spectra of the nanocomposite films include

major characteristic peaks of chitosan, PVA, and Na?-

MMT. The peak around 3320 cm-1 is relevant to the

overlapping of the –NH and –OH stretching vibrations in

chitosan and PVA. Major absorptions at 425 and 524 cm-1

were observed in the spectra of pure Na?MMT and chi-

tosan–PVA/Na?MMT 1–5 %, while these peaks are absent
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in the spectrum of neat chitosan–PVA films (not included

here). These results is an evidence of the presence of

Na?MMT nanoclays inside the chitosan–PVA matrices.

The swelling ability of antibacterial nanocomposite

films plays a significant role in their wound healing

capacity and antibacterial activity in their biomedical

applications due to their high water clenching capacity

[48]. They can further absorb a significant amount of the

wound exudates by swelling in fast curing of the wound.

Figure 6a shows the swelling capacity as a function of time

of the nanocomposite films developed in this study. The 5

wt% Na?MMT film shows the highest swelling capacity

than other films. This may be due to the intermolecular

interaction between water molecules in clay galleries and

the lone pair electrons of –NH2 and –OH groups present in

chitosan–PVA chains.

Drug release behavior of chitosan–PVA/Na?MMT films

was also studied in PBS solution of pH 7.4. Figure 6b

shows the % cumulative drug release behavior of the

nanocomposites. It can be observed that the loading effi-

ciency increases with increasing clay content from 1 to 5

wt% (see Table 2). This excessive increase of encapsula-

tion may be attributed to the cationic nature of 5-FU (–NH

group turn into –NH? while dissolving in water) in the

nanocomposites, which could enhance the interaction of
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Fig. 2 XRD patterns of Na?MMT and chitosan–PVA/Na?MMT nanocomposite films with Na?MMT ranging from 1 to 5 wt%

Table 1 XRD data of Na?MMT and chitosan/PVA–Na?MMT

nanocomposite films

Specimen IDs 2h (�) d-spacing (Å)

Na?MMT 7.25 12.1

1 wt% clay 7.05 12.5

2 wt% clay 6.95 12.7

3 wt% clay 6.78 12.9

4 wt% clay 6.42 13.8

5 wt% clay 6.12 14.4

Fig. 3 TEM images of an intercalated/exfoliated chitosan–PVA/Na?MMT nanocomposite (4 wt% Na?MMT)
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5-FU with negatively charged Na?MMT and chitosan–

PVA polymer matrices, resulting in high encapsulation

efficiency [52]. Therefore and correspondingly so, the

release efficiency of 5-FU from nanocomposite films also

increases with increasing the clay content.

However, in order to support above statements, we

compare the SEM morphology of nanocomposite films

before and after drug release. As shown in Fig. 7, 5-FU-

loaded film shows very smooth surface, which may be due

that 5-FU entered and sit on between clay galleries. In

contrast, after the drug release from nanocomposite, very

clear holes appear on the surface of the matrix. This is an

evidence that 5-FU was released in a control manner from

matrix.

TGA curves of selected samples are shown in Fig. 8. It

can be seen that Na?MMT shows 10 % weight loss below

100 �C due to the loss of water molecules. The

nanocomposite films have higher thermal response than

those of the neat chitosan, PVA or blended film. The onset

temperature for decomposition shifts towards higher tem-

peratures as the clay loading increases. This is because the

presence of the clay immobilizes the polymer chains and

Fig. 4 SEM images of chitosan–PVA/Na?MMT nanocomposite films with different Na?MMT contents
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Fig. 5 FTIR spectra of neat chitosan, Na?MMT, and chitosan–PVA/

Na?MMT nanocomposite films with different Na?MMT contents
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free radicals formed during the degradation process (thus

slowing down this process), or the presence of clay hinders

the diffusion of volatile products through the nanocom-

posites (thus retarding the mass loss from the nanocom-

posites during degradation [53]). The increase in the

thermal stability can also be attributed to the restricted

thermal motions of the polymer chains inside the clay

galleries [54].

Antimicrobial activity of Na?MMT-containing chi-

tosan–PVA films were tested against Salmonella, S. aureus,

E. coli and S. mutants. Figure 9 shows the characteristic

test results of nanocomposite films by a disk-diffusion

method. The antimicrobial activity determined by the

diameter of the growth inhibition zone was dependent on

the test nanocomposite film. The tests on all samples were

repeated using four other microorganisms. Generally, chi-

tosan and chitosan/Na?MMT nanocomposite films did not

show clear microbial inhibition zones [49], whereas chi-

tosan–PVA/Na?MMT nanocomposite films exhibited dis-

tinctive microbial inhibition zones against two test

microorganisms (Salmonella and S. aureus) in the disk

method. It is well known that chitosan itself has
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Fig. 6 a Swelling capacity of chitosan–PVA/Na?MMT nanocomposite films with different Na?MMT contents. b 5-Fluorouracil release profile

from nanocomposite films with different Na?MMT contents

Table 2 Drug loading

efficiency of chitosan/PVA–

Na?MMT nanocomposite films

Specimen IDs Weight of

the film (mg)

Weight of drug in

film (mg)

% Drug loading

efficiency

1 wt% clay 100 135 35

2 wt% clay 100 141 41

3 wt% clay 100 153 53

4 wt% clay 100 158 58

5 wt% clay 100 165 65

mlifdesaelerUF-5(b)mlifdedaolUF-5(a)

Fig. 7 SEM images of chitosan/PVA–Na?MMT nanocomposites film before and after 5-FU release
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antimicrobial activity due to its cationic property [49]. This

apparently different result for chitosan film is mainly due to

the limits of detection of antimicrobial activity when using

the disk method [49]. The appearance and size of the clear

zone in the disk method are mainly dependent on the ratio

of disk area and size of contact area, inoculum, and type of

solid medium. Of interest, Na?MMT-incorporated

nanocomposite film exhibited antimicrobial activity against

the two bacteria, Salmonella and S. aureus, but did not

show any antimicrobial activity against S. mutants and

E. coli. Therefore, the present nanocomposite films

exhibited antimicrobial activity against Gram-positive and

Gram-negative bacteria. Furthermore, in the present study,

the addition of Na?MMT to the formulations slightly

condensed the antimicrobial effect of the nanocomposite

films. This may be ascribed to the high cross-linking level

of chitosan–PVA/Na?MMT nanocomposites that inter-

cepts the diffusion of the 5-FU drug through the agar

medium. On the other hand, weak inhibition of S. aureus

growth was observed by 5 wt% clay loading nanocom-

posite film, having higher concentration of Na?MMT that

is maybe due to higher rate of 5-FU drug diffusion. This is

in good agreement with the data mentioned in the drug

release section, indicating formulations with high clay

content exhibited higher rate of drug release in the disso-

lution medium than those with low content of clay [50, 55].

4 Conclusions

Bio-nanocomposite films-based chitosan–PVA/Na?MMT

were developed by a simple solution casting technique. It

was found that the biodegradable polymer was successfully

intercalated into clay galleries. Drug loading efficiency of

chitosan–PVA/Na?MMT films increases with increasing

clay content and higher clay content exhibited higher rate

of drug release. Compared with chitosan and chitosan/

Na?MMT nanocomposite films which did not show clear

microbial inhibition zones, chitosan–PVA/Na?MMT

nanocomposite films showed distinctive microbial inhibi-

tion zones against two test microorganisms and exhibited

antimicrobial activity against Gram-positive and Gram-

negative bacteria. The present study is useful in developing

novel antimicrobial agents for applications in wound

burns/dressing, antimicrobial packaging, and prevention/
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Fig. 8 TGA curve of Na?MMT and chitosan/PVA–Na?MMT

nanocomposite films with different Na?MMT contents

(a) salmonella (b) s. aureus

Control Control
1 wt% clay

1 wt% clay

5 wt% clay 5 wt% clay
3 wt% clay 3 wt% clay

Fig. 9 Antibacterial activity of chitosan/PVA–Na?MMT nanocomposite films against a Salmonella and b Staphylococcus aureus
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treatment of infections due to the control release ability. In

addition, the chitosan–PVA/Na?MMT nanocomposite

films are a promising material for the development of new

membranes for waste water treatment.
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