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Abstract Photoelectrochemical (PEC) water splitting using solar energy has attracted great attention for generation of

renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar

energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photo-

generated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst

nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO2

nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon

resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/CdS/CGSe electrodes were developed as

photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen contin-

uously for more than 10 days. Further, in the Z-scheme system (Bi2S3/TNA as photoanode and Pt/SiPVC as photocathode at

the same time), a self-bias (open-circuit voltage Voc = 0.766 V) was formed between two photoelectrodes, which could

facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new

hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed.

Keywords Photoelectrochemical water splitting � Nanostructures � Reaction system � Heterojuction � Hybrid systems

1 Introduction

The energy consumption nowadays to maintain modern

lifestyle of mankind mainly relies on primary fossil fuels

such as oil, coal, natural gas, etc. However, the fossil

fuels are suffering from accelerated depletion and

bringing about serious environmental issues and threats

to global climate. It is a mission of international scale to

explore and utilize alternative energy to compensate for

the consumption of fossil fuels and mitigate the corre-

sponding climate changes. Among various alternative

energies, hydrogen has been considered as a promising

candidate to solve aforementioned problems because it is

a source of green and renewable energy. There are a

variety of strategies for hydrogen production, such as

electrolysis, thermal water splitting, cracking of petro-

leum, hydrocarbon reforming, etc. However, these tech-

niques are either costly or rely on fossil fuels. In 1972,

Fukushima and Honda discovered photoelectrochemical

(PEC) water splitting in which hydrogen and oxygen

were released, respectively, from titanium dioxide (TiO2)

photoelectrode and Platinum (Pt) counter electrode under

ultraviolet (UV) light irradiation [1], revealing the

potential of solar energy water splitting to produce
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sustainable hydrogen. This discovery stimulated great

interest to explore effective photoelectrode materials for

solar energy hydrogen generation via solar energy water

splitting which is not only a clean process but also stores

solar energy in hydrogen [2–4]. However, the widespread

application of PEC water splitting still demands great

efforts in the discovery of effective photocatalysts and

coating process.

In comparison with photocatalytic water splitting using

heterogeneous powder semiconductors, PEC water splitting

possesses great advantages in (i) the external or self-bias

voltage can suppress recombination of photogenerated

charge carriers and thus improve the separation and

transfer of excited electron–hole pairs of the photocata-

lysts; (ii) hydrogen and oxygen can be easily separated via

collection at different photoelectrodes; (iii) semiconductor

films are coated on the conductive substrates, which favors

scale up for industrial application in the future; and (iv)

last, but not the least, it does not need stirring, so it con-

sumes less power relative to powder photocatalytic water

splitting systems [2, 5]. In practice, the performance of

PEC water splitting system is dominated by the properties

of the semiconductor photocatalysts that harvest solar

energy for hydrogen generation.

Various effective UV-light-responsive photocatalysts

have been well established [6, 7], although most of them

suffer from photocorrosion and are not active under

visible light which accounts for 45 % energy of solar

spectrum, nearly an order of solar energy in UV region.

In the recent decades, designing visible-light-driven

photocatalysts for water splitting represents a major

mission for photocatalytic water splitting to maximize the

solar energy conversion and storage. For instance, the

metal sulfides have been found as a class of efficient

photocatalysts but require sacrificial agents to reduce

photocorrosion [8–12]. (Oxy) nitride semiconductors

recently emerged as new type of phototcatalysts for

visible-light-responsive photocatalytic water splitting [13–

15], whereas they can respond to short-wavelength visi-

ble light with rather low solar energy conversion effi-

ciency. Fortunately, the hybrid photocatalyst systems

have demonstrated enhanced water splitting efficiency,

which, however, require dedicated design and alignment

of the corresponding photocatalytic materials [6].

In this study, we briefly overviewed the recent

research advances in the field of hydrogen evolution from

PEC water splitting, addressing the different PEC water

splitting systems and corresponding electrode materials.

Key issues and challenges involved in PEC water split-

ting systems and potential solutions were highlighted via

the comparison of various photoelectrode materials and

nanostructures.

2 Working Principle of Photoelectrochemical
Water Splitting

Loaded with semiconductor photocatalysts, the conductive

electrode substrates can bemetal plates, silicon substrates, or

glass coated with conductive layers, such as fluorine-doped

tin oxide (FTO) and indium tin oxide (ITO) [16–19]. In PEC

water splitting system, the free energy change (DG) is

237.2 kJ mol-1 for converting onemolecule of H2O–H2 and

1/2 O2 under standard condition. When a photoelectrode is

immersed in an electrolyte solution, electron transfer takes

place between the semiconductor and the electrolyte solution

so that the Fermi level is equilibratedwith the redox potential

of electrolyte solution [15]. With n-type semiconductors as

working photoanodes, for example, as shown in Fig. 1,

photoexcited holes on the semiconductors would oxidize

water and produce oxygen, while electrons are transferred to

the counter electrode to generate hydrogen. Sometimes, an

external voltage is needed to compensate for the potential

deficiency, which can also accelerate the separation of

excited charges. The electrolytes are essential in the PEC

system for charge transfers, which usually are NaOH, Na2-
SO4, etc. [20, 21]. Some sulfides and organic agents can also

serve as electrolytes [19, 22]; where there is no oxygen

evolution, as water oxidation potential is more positive than

the oxidation potential of these materials.

3 Semiconductors Systems for PEC Water
Splitting

Different semiconductor systems for PEC water splitting

and their PEC performance are shown as in Table 1. They

can be classified into three groups: (1) photoanode, (2)

photocathode, and (3) Z-scheme system for PEC water

splitting.
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Fig. 1 The schematic setup of PEC water splitting system
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3.1 Photoanode and Anodic Semiconductors

In the PEC water splitting setup, photoanode usually

comprises n-type semiconductors coated on conductive

substrates [15, 19]. Under light illumination, photoexcited

holes accumulate on the surface of the photoanode semi-

conductors and are consumed in oxidation reactions, while

electrons are transferred to a counter electrode via an

external circuit as shown in Fig. 2 [15]. From the

electrochemical potential point of view, the valence band

edge of the photocatalysts should be more positive than the

oxygen evolution potential enabling the photoanode to

generate oxygen. As one of the significant advantages of

PEC, external voltage bias may be applied to compensate

for the potential deficiency and accelerate the separation of

excited charge carriers, although zero bias is desirable once

the PEC systems become well aligned with suitable semi-

conductor materials. Starting with traditional TiO2

Table 1 Different photoelectrodes and their photoelectrochemical performance

Photoelectrode Photocurrent

(mA cm-2)

Experimental condition Reference

TiO2-xCx nanotube array 1.0 0 V versus Ag/AgCl, 1 M KOH(aq), 2500 W Xe lamp (100 mw cm-2),

[420 nm

35

N-doped TiO2 nanotube arrays 0.182 0 V versus calomel electrode, 0.01 M Na2SO4 (aq), 250 W halogen lamp,

[400 nm

36

S-doped TiO2 nanotube arrays 0.41 0.1 V versus SCE, 0.1 M Na2SO4 (aq), 50 W fiber optic illuninator,

[400 nm

37

Au nanoparticle-decorated TiO2

nanowire electrodes

1.49 0 V versus Ag/AgCl, 1 M NaOH(aq), white-light illumination (100 mW

cm-2)

40

Au decorated ZnO nanowire

arrays

1.5 1 V versus RHE, 0.5 M Na2SO4 (aq), 300 W Xe lamp (100 mW cm-2),

[420 nm

42

CdTe/TiO2 0.44 0 V versus Ag/AgCl, 0.6 M Na2S (aq), 300 W Xe arc lamp

(6.0 W cm-2[400 nm

43

CdS/TiO2 5.6 0 V versus Ag/AgCl, 0.1 M Na2S (aq), 300 W Oriel solar simulator (100

mW cm-2)

46

Bi2WO6/TiO2 0.014 1 V versus Ag/AgCl, 0.5 M Na2SO4 (aq), 300 W Xe lamp,[420 nm 47

CdS/TiO2/WO3 1.6 0 V versus Ag/AgCl, 0.05 M Na2S (aq), 300 W Xe lamp,[495 nm 50

Hydrogen-treated TiO2

nanowire arrays

1.97 -0.6 V versus Ag/AgCl, 1 M NaOH(aq), 150 W Xe lamp (100 mW

cm-2)

52

N-doped ZnO nanowire arrays *0.15 0.5 V versus NHE, 0.5 M NaClO4 (aq), white light source (100 mW

cm-2)

56

WO3/BiVO4 0.8 0.5 V versus NHE, 0.5 M Na2SO4 (aq), chopped white light (100 mW

cm-2)

58

FeOOH 10 0.55 V versus RHE, 1 M Na2CO3 (aq), 150 W Xe arc lamp (100 mW

cm-2),[400 nm

60

IrO2�nH2O/TaON *3.75 0.6 V versus Ag/AgCl,, 0.1 M Na2SO4 (aq), chopped visible light 65

IrO2-loaded Ta3N5 3.6 0.6 V versus Ag/AgCl, 0.1 M Na2SO4 (aq), 300 W Xe lamp,[400 nm 67

TiO2 nanoarrays sensitized with

CdS quantum dots

3.98 0 V versus Ag/AgCl, 1.0 M KOH (aq), 300 W Xe lamp (100 mW cm-2),

[420 nm

68

Pt–In2S3/CuInS2 -17.5 to -7.0 0 V versus RHE, 0.1 M Na2SO4 (aq), 300 W Xe lamp 74

Pt–CdS/CuGaSe2 -3.2 0 V versus RHE, 0.05 M Na2HPO4(aq) ? 0.05 M NaH2PO4(aq), 150 W

Xe lamp

18

p–n Cu2O homojuction -0.2 0 V versus NHE, 0.5 M Na2SO4 (aq), 500 W Xe lamp 79

Pt/ZnO, Al2O3, TiO2/Cu2O -7.6 0 V versus RHE, 1 M Na2SO4 (aq), 500 W Xe lamp (100 mW cm-2),

visible light

80

Photoanode: TiO2 0.2 0 V versus Ag/AgCl, 1 M NaOH(aq), 500 W Xe lamp 83

Photocathode: CaFe2O4

Photoanode: WO3 0.02 3 M H2SO4(aq), 250 W Oriel tungsten–halogen quartz lamp (200 mW

cm-2)

84

Photocathode: GaInP2

Photoanode: Bi2S3/TNA 1.6 0 V versus Ag/AgCl, 0.25 M Na2S ? 0.125 M Na2SO3, Xe lamp (100

mW cm-2),[400 nm

19

Photocathode: Pt/SiPVC
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photoanode, this section highlights the recent advances in

photoanodes composed of one-dimensional (1D) TiO2 and

various hybrid photoanode systems (Fig. 3).

Titanium dioxide (TiO2) is the most attempted n-type

semiconductor for PEC water splitting due to its low cost,

and better chemical and optical stability [23–26]. Among

various nanostructured TiO2, 1D titanium dioxide nanotube

arrays (TNAs) have gained much attention due to their

intrinsic large surface area and unidirectional flow of

charges [24, 27]. TNA can be easily fabricated via

anodization of metal titanium foil or plate with great

potential for large-scale application [24, 27–29]. 1D TiO2

nanowire arrays were also coated on transparent conduct-

ing oxide (TCO)-coated glass through a mild hydrothermal

reaction [30]. The photoconversion efficiencies of N719

dye-sensitized solar cells fabricated with the 1D nanowire

arrays can be up to 5.02 %, which is much higher than

those fabricated with the simple TiO2 powders. Titanium

dioxide itself shows low photoelectrochemical activity

since it is not responsive to visible light due to wide

bandgap (*3.2 eV). In order to enhance the visible light

absorption, researchers have developed various strategies

including doping TiO2 with metal or non-metal,

construction of heterojunction, and hydrogenation, or cre-

ation of structural vacancies [31–33]. Doping with metal

or/and non-metal (C, N, S, B, etc.) was started in the early-

twenty-first century as an effective solution to narrow the

bandgap of TiO2 for enhancing PEC efficiency [6, 34–39].

Metal doping and non-metal doping can lead to the conduct

band and the valence band increases of acceptor, respec-

tively, which narrowed the bandgap of the photocatalysts

and make the photocatalysts respond to visible light. Park

et al. prepared carbon-doped TiO2 nanotube arrays with

high aspect ratios. The total photocurrent was more than 20

times higher than that with a P-25 nanoparticulate film

under white-light illumination [35]. Recently, surface

plasmon resonance has been applied in PEC water splitting

with extend light absorbance in the entire UV–Visible

region [40–42]. Surface plasmon resonance is an intrinsic

property of metal nanoparticles, in which the oscillation

frequency is highly sensitive to the metal size and shape as

well as the dielectric constant of the surrounding environ-

ment. For instance, Au nanoparticle-decorated TiO2

nanowire electrodes showed the largest photocurrent gen-

eration at 710 nm and enhanced photoactivity across the

entire UV–Visible region, which is due to the excitation of

surface plasmon resonance of Au [40].

Modifying TiO2 nano-semiconductor with second nano-

semiconductor of lower bandgap to form heterojunction

represents another promising route to harvest visible light.

The second nano-semiconductor serves as a photosensitizer

and builder for internal electric field across the interface.

The internal potential bias significantly promotes the

excited electrons and holes’ separation and transportation

across the interface of the dual photocatalysts, leading to

reducing recombination. For instance, TiO2 nanotube

arrays (TNAs) were always modified with p-type CdTe and

Cu2O semiconductors [43–45]. TiO2 is n-type semicon-

ductor. CdTe and Cu2O are p-type semiconductors. Thus,

p–n junctions can be formed between them, respectively,

which facilitate the separation of the excited electrons and

holes. Some heterojunctions can enhance the

e–

e–
e–
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H+/H2

h+

O2/H2O

Photoanode Counter electrode

1.
23

V

Fig. 2 Semiconductors coated on substrate as photoanode for PEC

water splitting [15]

Fig. 3 SEM images of titanium dioxide arrays [29, 34]
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photoelectrochemical properties because of the overlap-

ping in band gaps between two different photocatalysts,

which could favor the charge carrier transfer and separa-

tion. Typical examples are the ones illustrated in Figs. 4, 5.

The conduction band (CB) of catalyst A (Bi2WO6) is more

negative than the one of catalyst B (TiO2); therefore, the

excited electrons from catalyst B (TiO2) can be quickly

transferred to catalyst A (Bi2WO6). The valance band (VB)

of catalyst A (Bi2WO6) is more positive than the one of

catalyst B (TiO2), and the excited holes from catalyst A

(Bi2WO6) can be quickly transferred to catalyst B (TiO2).

As a result, the excited electrons and holes can be separated

and transferred quickly for efficient water splitting. This

technique has been extensively applied in enhancing the

photoelectrochemical performance of TiO2 through modi-

fication using visible-light responsive semiconductors such

as CdS, Bi2WO6, Rh-doped SrTiO3, etc. [46–49].

The above examples are related to binary hybrid systems

for PEC water splitting. It should be noted that the CdS–

TiO2–WO3 ternary hybrid system for PEC water splitting

has also been reported recently [50]. The cascaded elec-

trons are transferred from CdS to TiO2 to WO3 through the

interfacial potential gradient in the ternary hybrid

conduction bands. The maximum photocurrent density of

the ternary hybrid is up to 1.6 mA cm-2 (at 0 V Ag/AgCl)

under visible light irradiation, which is much higher than

those of bare CdS and any binary hybrids.

Oxygen vacancy technique has often been applied to

enhance the performance of TiO2 for PEC water splitting in

recent years [51]. Oxygen vacancies can be produced

through hydrogen treatment [51, 52]. It can also be gen-

erated by annealing metal oxide under oxygen-deficient

conditions [53]. In comparison with the hydrogen treatment

method, this approach eliminates the potential influence of

hydrogen impurities. The PEC performance of TiO2 elec-

trodes can be enhanced by controlling the introduction of

oxygen vacancies, which as shallow donors can signifi-

cantly improve electrical conductivities of TiO2 nano-

semiconductors.

Besides TiO2, many other metal-oxide photocatalysts

such as BiVO4, WO3, ZnO, etc. have invariably been

attempted to be coated on substrate as photoanodes for

PEC water splitting [17, 54–57]. External voltage is needed

when BiVO4 or/and WO3 photoanodes are applied for PEC

water splitting. This is because their conduct bands are

more positive than the potential of hydrogen evolution.

Heterojunction can be applied to improve their photo-

electrochemical performance. For example, nanostructured

WO3/BiVO4 heterojunction is prepared for PEC water

splitting as shown in Fig. 6 [58]. BiVO4 layer was coated

on WO3 nanorod array by spin coating. The charges can be

quickly separated and transferred due to the energy dia-

gram of WO3/BiVO4 heterojunction. Because of excellent

properties of graphene oxides for electron transfer, they

have often been used to improve the photoelectrochemical

properties of semiconductors in recent years [59]. And

some metal hydroxides such as FeOOH (Fig. 7), NiOOH,

and layered double hydroxide (LDH) have been reported as

effective photoanode materials for PEC water splitting

because the alignment reduced interface recombination at

the junction between them and semiconductors, and created

a more favorable Helmholtz layer potential drop at the

semiconductor/electrolyte junction [16, 60, 61], which

provides a hint for searching new materials in the field of

PEC water splitting.

Owing to their narrow bandgap, some n-typemetal sulfide

[62–64] and oxynitride [65–67] photocatalysts can respond

to visible light with long wavelength and appropriate band

levels for water splitting, and therefore are chosen as pho-

toanode materials for PEC water splitting in order to make

better use of solar energy. CdS (Fig. 8) and other sulfides are

often used in photoanodes as sensitizer for PEC water

splitting [68]. However, the sulfides are not stable because of

photocorrosion, which can be reduced by adding sacrificial

agents [69]. Tantalum oxynitrides also show visible light

absorption with long wavelength—yet they are not

Substrate
Catalyst B

Catalyst A

CB

VB
VB

CB

e−

h+

h+

e−

Fig. 4 The overlapping in band gaps between two different photo-

catalysts and the electron-trap mechanism

TiO2Bi2WO6

CB

VB

hv

reduction

oxidation

e−

h+ h+

Fig. 5 Schematic interfacial electron transfer between TiO2 and

Bi2WO6 [47]
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stable and the intensity of absorption is low. Therefore,

different techniques such as modification with cocatalysts,

heterojunction, etc., have been developed to reduce the

photocorrosion and enhance the PEC properties [66–68].

3.2 Photocathode and Cathodic Semiconductors

Photocathode usually comprises p-type semiconductor coated

on conductive substrates in the PECwater splitting system.As

shown in Fig. 9, under light illumination, water is reduced on

the surface of semiconductor, while water is oxidized on the

counter photoelectrode. From the electrochemical potential

point of view, the conduction band edge of the photocatalysts

shouldbemorenegative than the hydrogen evolutionpotential

enabling the photocathode to generate hydrogen. Compared

with the reports of n-type semiconductor photoanodes, there

are fewer reports based on p-type semiconductor as photo-

cathodes for PEC water splitting [70–77].
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Fig. 6 The diagram of BiVO4/WO3 heterojunction and electron transport process [58]
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Cu2O is a typical p-type semiconductor used as photo-

electrode for PEC water splitting, while it readily gets

degraded due to self-reduction by photogenerated elec-

trons. WO3/Cu2O p–n junctions have been synthesized to

reduce the self-reduction of Cu2O and enhance the PEC

properties [77]. In addition, p–n homojunctions have also

been prepared to improve their PEC performance [78, 79].

Colleen et al. [78] fabricated p–n Cu2O homojunction solar

cells by electrochemically depositing an n-Cu2O layer on a

p-Cu2O layer as shown as in Fig. 10. The intrinsic doping

levels of the prepared p-Cu2O and n-Cu2O layers were very

low, and they made Ohmic junctions with Cu metal. The

best cell performance (an n of 1.06 %, a VOC of 0.621 V,

an ISC of 4.07 mA cm-2, and a fill factor of 42 %) was

obtained, which was better than other p–n Cu2O homo-

junctions. Paracchino et al. reported that Cu2O photocath-

ode, as shown in Fig. 11, which was protected against

photocathodic decomposition in water by nanolayer of Al-

doped zinc oxide and titanium dioxide and activated for

hydrogen evolution with electrodeposited Pt nanoparticu-

lates, showed photocurrents of up to -7.6 mA cm-2 at a

potential of 0 V versus the reversible hydrogen electrode at

mild pH [80].

B-doped Si with the decoration of Pt, has often been

used as a p-type photocathode for PEC water splitting [81,

82], and Pt-modified Si photovoltaic cell (Pt/SiPVC) based

on p–n radial junctions with a p-type Si substrate has also

been reported as an effective photocathode for PEC water

splitting [19]. Si-based photoelectrodes for PEC water

splitting has a potential prospect because of low-cost and

abundant Si resource, while the efficiency should be further

improved.

Recently, copper sulfides or selenides (CuInS2, Cu2-
ZnSnS4, Cu(In, Ga)Se2, etc.) have been reported as effi-

cient p-type photocathodes for PEC water splitting under

visible light [74, 75]. However, they suffered from serious

photocorrosion. Moriy et al. deposited CdS on Cu(In,

Ga)Se2 through chemical bath deposition (CBD) as shown

in Fig. 12 [18]. The photocurrent increased due to the p–n

junctions formed between them, which accelerated the

charge separation. Further, the Pt/CdS/CuGaSe2 electrode

showed a stable photocurrent (about 4 mA cm-2, 0.05 M

Na2HPO4(aq) ? 0.05 M NaH2PO4(aq), pH 7, 150 W Xe

lamp, 0 Vvs RHE) under reductive conditions for more

than 10 days under visible-light irradiation.

3.3 Z-scheme System for PEC Water Splitting

With suitable band structure, n-type semiconductors are

usually used as photoanode and p-type semiconductors as

photocathode for PEC water splitting. It is known that

n-type semiconductor has a Fermi level near the conductor

band (CB) edge and p-type semiconductor has a Fermi

level near the valance band (VB) edge [19]. When n-type

and p-type semiconductors are simultaneously used as

photoanode and photocathode, respectively, (Z-scheme) as

shown in Fig. 13, the mismatching Fermi levels could

produce self-bias which can drive the excited electrons

from photoanode to combine with the excited holes from

photocathode. Meanwhile, water oxidation and reduction

take place over the photoanode and photocathode, respec-

tively. In the Z-scheme systems, the self-bias would act as

an extra driving force for carriers’ charge transfers and

transportation while their performance is still governed by

the materials and the competition between chemical reac-

tion and recombination.

Ida et al. constructed a PEC water splitting using p-type

CaFe2O4 as photocathode and n-type TiO2 as photoanode

Counter electrode Photocathode

e−

e−

h+

CB

VB

H+/H2

e−

O2/H2O
1.

23
 V

Fig. 9 Semiconductors coated on substrates as photocathode for PEC

water splitting [15]

Fig. 10 SEM image of a p–n Cu2O homojunction [78]

Cu2O

FTO
Au

Pt
TiO2

ZnO:Al

Fig. 11 Schematic representation of the electrode structure of the

surface-protected Cu2O electrode [80]
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[83]. As shown in Fig. 14, under illumination without

external voltage, hydrogen and oxygen were produced

from photocathode and photoanode, respectively, with a

short-circuit current of about 200 lA cm-2. However, this

system is not responsive to visible light because TiO2 only

responds to ultraviolet light. A PEC cell [84] made up of

WO3 photoanode and p-GaInP2 photocathode has been

reported, both of which are responsive to visible light.

However, the conduct band edge of WO3 (about 0.25 V vs.

NHE) is more positive than the valance band of p-GaInP2
(about 0 V vs. NHE), which restricts the charge transfer

from photoanode to photocathode via external circuit.

Furthermore, the WO3 films show relatively poor charge

separation properties and weak visible-light absorbance.

Thus, this PEC cell cannot split water till enough light

intensity is applied. TiO2 itself could not respond to visible

light. Zeng et al. used Bi2S3-decorated TiO2 nanotube

arrays as photoanode and Pt-modified Si photovoltaic cell

(Pt/SiPVC) as photocathode [19]. Both of them could

respond to visible light. As shown in Fig. 15, the conduc-

tion band edge of TiO2 (about -0.05 V vs. NHE) is more

negative than the valance band edge of Pt/SiPVC (about

0.8 V vs. NHE). A self-bias of about 0.85 V is formed

between two photoelectrodes for efficient spontaneous

hydrogen evolution and electricity generation under visible

light irradiation. However, this system for PEC water

splitting needs to be added with sacrificial agents. Thus, an

efficient Z-scheme system consisting visible-light respon-

sive photocatalysts for PEC water splitting without addi-

tion of sacrificial agents needs to be developed.

4 Conclusions and Future Perspective

Photoelectrochemical devices comprising of visible-light-

responsive semiconductors have attracted great efforts in

water splitting processes to obtain sustainable hydrogen, in

search of a promising technique to combat the challenges

from global climate change. The prospect of the PEC water

splitting systems were highly limited by the nanostructured

Fig. 12 EDX mapping of CdS/CuGaSe2 sample with chemical bath

deposition for 1 min [18]
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photocatalysts and their device configurations. The most

important issues associated with the PEC devices lay on the

sunlight absorbance, energy loss due to undesirable charge

carrier recombination and photodegradation of the photo-

electrodes. Along with the rapid and great development of

nanomaterial science and semiconductor engineering, sig-

nificant advances have been observed, which shed light on

resolving the aforementioned challenges in the PEC water

splitting in the recent decades, since the discovery of PEC

water splitting by Honda and Fujisma in the 1970s.

Starting from brief introduction of the working mecha-

nism and history of PEC system, this article overviewed the

greatest progress in PEC water splitting systems compris-

ing visible-light-responsive photocatalysts. The advantages

and disadvantages of the emerging photoanodes and pho-

tocathodes were assessed with typical examples, to disclose

the potentially effective strategies to promote the efficiency

and stability of various PEC systems. Special attention was

paid to the TiO2 nanotube arrays and modified TiO2 pho-

toelectrodes, which can be responsive to visible light via

doping with metal and/or nonmetal elements, creating lat-

tice vacancies, and designing heterojunction or Schottky

junctions by means of combining other semiconductors or

nanoscaled metal particles. Such modifications would not

only revise the band structures and energy alignment of

TiO2 photoelectrodes in the PEC electrolyte solution but

also introduce additional drivers that influence photogen-

erated charge carrier’s separation and transfer. On the basis

of advances in TiO2 photoelectrodes and PEC systems,

other visible-light-responsive semiconductor photoelec-

trodes and Z-scheme systems were addressed. Among

those strategies, heterojunctions and homojunctions were

found to be more attractive for single photoelectrode due to

the low cost and broad room to align the energy gradient

across the semiconductor interface.

The recent advances in the photoelectrodes and their

configurations have shed light on resolving the great

challenges in PEC water splitting systems, in which one of

the very promising solutions could be constructing

Z-scheme PEC system involving suitable semiconductor

photoanode and photocathode. With reasonable design, the

photoexcited charge carriers may be quickly separated and

transferred as a result of driven force generated from the

self-bias among the separated photoelectrodes. More

importantly, semiconductor with small bandgap even

responsive to infrared light (heat) could be combined with

the Z-scheme systems to harvest full spectrum sunlight.

However, the Z-scheme PEC system is still in its early

stage and demand further research input due to only limited

report on this thriving configuration. The major obstacles in

the Z-scheme systems are, similar to the normal PEC

system, the efficient (deficient) light harvesting and

(in)stability (due to photodegradation) of the semiconduc-

tors employed in the photoelectrodes.

Resistance photocorrosion is pivotal to realizing long-

term application of PEC water splitting. Although intro-

duction of sacrificial agents may somehow resist photo-

corrosion of the photoelectrodes, configurations of

semiconductor heterojunctions have proven to be more

promising because of their broader manufacturing possi-

bility and low cost. In terms of the heterojunction principle,

the Z-scheme systems may be stable due to the closed

electric circuit involved; however, limited information can

be found from the literature regarding their stability, sug-

gesting greater efforts are still required in this area.

Apparently, there is a significant step to apply PEC water

splitting in hydrogen generation on industrial scale in the

near future. However, spurred by global energy and envi-

ronmental challenge, PEC water splitting is an ideal route

to generate hydrogen with less-adverse impact on climate

change, and hence, industrial-scale application of PEC

water splitting would be the next-door event once the

highly efficient and stable photoelectrodes with visible-

light-response could be developed, where the most

promising PEC system might emerge from the break-

through on Z-scheme system.
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