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Abstract This paper reviews the original achievements and advances regarding the field effect transistor (FET) fabricated

from one of the most studied transition metal dichalcogenides: two-dimensional MoS2. Not like graphene, which is

highlighted by a gapless Dirac cone band structure, Monolayer MoS2 is featured with a 1.9 eV gapped direct energy band

thus facilitates convenient electronic and/or optoelectronic modulation of its physical properties in FET structure. Indeed,

many MoS2 devices based on FET architecture such as phototransistors, memory devices, and sensors have been studied

and extraordinary properties such as excellent mobility, ON/OFF ratio, and sensitivity of these devices have been ex-

hibited. However, further developments in FET device applications depend a lot on if novel physics would be involved in

them. In this review, an overview on advances and developments in the MoS2-based FETs are presented. Engineering of

MoS2-based FETs will be discussed in details for understanding contact physics, formation of gate dielectric, and doping

strategies. Also reported are demonstrations of device behaviors such as low-frequency noise and photoresponse in MoS2-

based FETs, which is crucial for developing electronic and optoelectronic devices.
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1 Introduction

TMDCs (MoSe2, MoTe2, WS2, and WSe2, etc.) are well

studied layered materials with sizable bandgap, which can

be changed from bulk to layered form (indirect to direct

transition), thus resulting in unique physical properties that

are expected to be employed in future semiconducting

devices [1, 2]. In particular, molybdenum disulfide (MoS2),

which is conventionally prepared by scotch tape technique

and chemical vapor deposition (CVD) method, has been a

subject of great interest for several decades due to its in-

teresting electronic and optical properties in its layered

form, nanostructure and other architectures [3–12].

Numerous studies worldwide have studied how to apply

this promising material in next-generation electronic and

optoelectronic devices such as resonators [13], phototran-

sistors [14], chemical sensors [15], photodetectors [16],

amplifiers [17], and batteries [18, 19]. Specially, control-

lable valley polarization of MoS2 layered material suggests

its potential in valleytronic devices [20, 21]. Being an ex-

ample of the simplest form of layered MoS2, monolayer

MoS2 has been under intensive investigation, in contrast to

graphene [22], another monolayer of carbon, which re-

mains immature due to its gapless characteristic. Several

research groups have also investigated nanostructures of

MoS2 in fabricating MoS2 devices, including nanosheet

and nanoribbon transistors [23–25]. Bandgap of MoS2
layered structure varies from 1.2 eV for indirect bandgap to

1.9 eV for direct bandgap [26], playing a critical role in the

development of future semiconductor devices, esp.

X. Tong � E. Ashalley � F. Lin � Z. M. Wang (&)

Institute of Fundamental and Frontier Sciences, University of

Electronic Science and Technology of China, Chengdu 610054,

People’s Republic of China

e-mail: zhmwang@gmail.com

H. Li � Z. M. Wang

State Key Laboratory of Electronic Thin Films and Integrated

Devices, University of Electronic Science and Technology of

China, Chengdu 610054, People’s Republic of China

123

Nano-Micro Lett. (2015) 7(3):203–218

DOI 10.1007/s40820-015-0034-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-015-0034-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-015-0034-8&amp;domain=pdf


optoelectronic devices. Since the first investigation of

single-layer MoS2-based transistor and MoS2-based FET

structure has become an important issue in electronic and

optoelectronic devices evolution, additional knowledge in

this respect is necessary for enhancing the performance of

MoS2-based FET in future electronic and optoelectronic

devices.

2 MoS2-Based FETs Engineering

2.1 Contact Engineering

MoS2-based FET has been demonstrated to exhibit high

ON/OFF ratio exceeding 108, suggested hundreds of mo-

bilities and low subthreshold swing at room temperature,

indicating its potential employment in future electronic

devices [27, 28]. However, due to the obstacle of contact

resistance in achieving high-performance circuit [29], it is

essential to study the contact engineering as well as in-

trinsic properties of MoS2-based FET to approach roadmap

of prospective applications of MoS2 and other 2D TMDCs.

Choosing various contact metals with different work

function is critical in fabricating MoS2-based FETs, low

contact resistance is expected and able to form lower

Schottky barrier at MoS2-metal interface, thus allowing

high performance in MoS2-based FET [30, 31]. Utilizing

low work function metal scandium (Sc) as contact metal

have realized a low contact resistance and high carrier

injection n-type MoS2-based FET, which is demonstrated

to largely eliminate the effect of contact resistance, thus

reaching relatively high mobility up to 700 cm2 (V s)-1 in

a high-k dielectric environment (will be discussed later)

[32].

Kaustav Banerjee et al. have proposed a comprehensive

study of contact metals (In, Ti, and Mo) of MoS2-based

FETs. Generally, carrier injection is suppressed due to the

formation of tunnel barrier by 2D MoS2 at the MoS2-metal

interface. Meanwhile, to date, no appropriate contact metal

can form ohmic contact with MoS2, resulting in the for-

mation of Schottky barrier at MoS2-metal interface. To

reduce both the Schottky barrier and contact resistance of

MoS2 FET, metal In performs well to some degree but

creates a large tunnel barrier; in contrast, tunnel barrier is

barely observed when using Pd as the contact metal to

MoS2 [33]. Furthermore, employing metal Ti as contact

metal can lead to a lower Schottky Barrier. However, it is

still able to reduce the injection of electrons and the un-

stable properties of Ti also limit its high performance in

MoS2 FETs [34].

To overcome the difficulties mentioned above, Kaustav

Banerjee et al. propose an effective method to utilize Mo as

contact metal and fabricate Mo (10 nm)/Au (100 nm)

source/drain contacts on the Al2O3/Si substrate to achieve

1-layer and 4-layers MoS2 FETs [35]. As illustrated in

Fig. 1, the drain-source current (Ids) versus back-gate

voltage (Vbg) curves (blue for log scale, black for linear) for

1-layer and 4-layers MoS2 FETs are shown in Fig. 1a,

exhibiting evident n-type property with ON/OFF ratio ex-

ceeding 103 (under condition of 0.1 V drain-source voltage

(Vds)). Figure 1b describes the Vbg (ranging from -40 to

30 V) and corresponding contact resistance (Rcontact),

channel resistance (Rchannel), and total resistance (Rtotal) of

4-layers MoS2 FET under the condition of Ids = 0.1 lA.
Compared with the contact resistance of Ti contact [36]

(*80 kX lm) and Ni/Au contact [31] (*4.5 kX lm)

MoS2 FET, the contact resistance of Mo contact MoS2 FET

is much lower (*2 kX lm), manifesting more potential

for high-performance digital circuit. In addition, Fig. 1c, d

illustrates the output characteristics (Ids vs. Vds) of 1-layer

and 4-layers MoS2 FETs with an inconspicuous Schottky

contact, the black arrow denotes the increasing Vbg (from-

30 to 30 V). Moreover, pinch-off saturation is not available

for these MoS2 FETs, but velocity saturation is suitable for

use of as-fabricated device, which is suggested by DI in

Fig. 1c, d. To summarize, Mo contact multilayer MoS2
FETs possess low contact resistances (*2 kX lm), high

ON-currents (271 lA lm-1 at Vds = 8 V), and reasonable

mobilities (*27 cm2 (V s)-1), exhibiting more potential

applications in high performance digital devices than

monolayer MoS2 FETs.

For most of the contact metals, Fermi level pinning

close to the conduction band of MoS2 leads to limitation of

hole injection, further detrimentally impact the realization

of high-performance p-type MoS2 FET. Marcio Fontana

et al. have demonstrated that Pd contact metal was avail-

able to form p-type MoS2 three-contact devices [37].

However, it depends a lot on large gate fields of these

devices, which facilitates the decrease of Schottky barrier

height in external electric field. Herein, Steven Chuang

et al. introduced MoOx (x^3) as contact metal fabricated

on MoS2 FET, which exhibits p-type behavior, demon-

strating that the MoOx is an efficient hole injection layer to

MoS2 [38]. As a high work function material (6.6 eV) [39],

MoOx is regarded as a promising candidate for hole in-

jector of MoS2. In this experiment, Steven Chuang et al.

fabricated 30 nm Pd/30 nm MoOx contact on 260 nm

SiO2/Si substrate and successfully achieve p-type MoS2
FET. The schematic architecture and optical image of as-

fabricated FET are shown in Fig. 2a. Figure 2b exhibits Ids
versus gate-source voltages (Vgs) characteristics, different

drain voltages (Vd) in red curve (-0.4 V) and blue curve

(-1.5 V) are measured, and locus of circle and solid line

denotes experimental and simulated results, respectively.

Figure 2c shows Ids versus Vds characteristics and Vgs along

the arrow varying from 0 to 15 V with a 2.5 V step are
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concerned. Figure 2d displays the band diagram of as-

fabricated p-type FET for the ON/OFF state. The MoS2
FET with MoOx contact is demonstrated presenting evident

p-type characteristics with on-current (Ion)/off-current

(Ioff) *104, manifesting expected hole contact of MoOx

electrode to the valence band. More importantly, this work

leads to the exploration in high work function materials

employed as alternative metal contacts to realize high-

performance MoS2-based FETs.

At the same time, MoS2-based FETs are also supposed

to be employed into applications of spintronics, which are

usually fabricated by ferromagnetic contacts, thus forming

the MoS2/ferromagnetic interface. Again, Schottky barrier

is demonstrated to exist at this interface [40], hindering the

spin injection of electrons. To reduce the Schottky barrier

and investigate future spin transport of MoS2-based

devices, thin MgO layer, an additional tunnel barrier is

utilized in single-layer MoS2 FET (Co contact), which re-

sults in the large decrease (about 84 %) of Schottky barrier

[41]. Based on this investigation, Saroj Prasad Dash et al.

further introduce TiO2 tunnel barrier in multilayer MoS2
FET (Co contact) to tune the contact resistance, which

performs well and leads to a large increase of on-state

current and mobility. Moreover, the channel conductance

and magnetoresistance can be controlled by applying dif-

ferent gate voltages, which increase the possibilities for

employment of MoS2 and other TMDCs for prospective

applications of spintronics [42].

To study the intrinsic properties and estimate the quality

of contact metals in MoS2-based FETs, four-terminal

measurement is more important compared with two-ter-

minal measurement [43, 44]. Toward this effort, N.
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R. Pradhan et al. fabricated the MoS2-based FET with

approximate 20 layers MoS2, 300 nm silicon dioxide, and 8

Au contacts, and then, four-terminal measurement was

used to study the intrinsic properties of MoS2-based FET,

which could measure the effective mobility regardless of

the impact of contact resistance at MoS2-metal interface.

Compared with the past work by Peide D. Ye et al. [31],

which was almost the same condition of as-fabricated FET,

they found a large increase (*1 order of magnitude) of as-

fabricated device in mobility (*300 vs. *28 cm2

(V s)-1). In addition, Pablo Jarillo-Herrero et al. demon-

strated that Hall measurement was able to nearly eliminate

the contact resistance as well and Luis Balicas investigated

another TMDC FET, i.e., the MoSe2 FET and found that

the Hall mobilities (*250 cm2 (V s)-1) was higher than

previously two-terminal measurement (*150–200 cm2

(V s)-1) [45, 46]. That is, four-terminal measurement is

vital in investigating intrinsic properties of MoS2-based

FETs and estimating the quality of contact metals. Future

studies about MoS2-based FETs, even TMDCs devices

should pay more attention to the four-terminal

measurement.

In addition, Heung Cho Ko et al. utilized graphene as

the electrodes for MoS2-based FET, which was also

demonstrated to effectively reduce the Schottky barrier at

MoS2/grapheme interface [47]. It is worth mentioning that

Manish Chhowalla et al. proposed a novel method to re-

duce the contact resistance of MoS2-based FETs, they

primarily considered two phases of MoS2: metallic 1T

MoS2 and semiconducting 2H MoS2, later fabricated 1T

MoS2 for electrodes and 2H MoS2 nanosheets for channel

material in FET, and then, a very low contact resistance

reaching 200–300 X lm was achieved under none gate

bias, resulting in a high ON/OFF ratio exceeding 107,

subthreshold swing (95 mV/decade) and 85 lA lm-1

drive currents values [48].
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2.2 Dielectric Formation

To achieve high-performance MoS2-based FETs, the for-

mation of high-k gate dielectric is important. For example,

Madan Dubey et al. fabricated the MoS2 FET with and

without a high-k Al2O3 dielectric, and then, measurements

of mobilities indicated an increase of 6.0–16.1 cm2 (V s)-1

[49]. In studies of Saptarshi Das et al. which was discussed

above, they similarly introduced the high-k Al2O3 dielec-

tric, thus resulting in the increase of mobilities from 184 to

700 cm2 (V s)-1 [32]. Moreover, both theoretical and ex-

perimental studies show that high-k HfO2 dielectric is able

to effectively enhance the performance of MoS2-based

FETs [27, 50, 51]. High-k gate dielectric is suggested to

reduce the Coulombic scattering, which improves the

electronic properties of channel in MoS2-based FETs [52].

Generally, considering the uniformity and controllable

thickness of the material to deposit, atomic layer deposition

(ALD) technology is an effective method to deposit high-

k gate dielectric. However, high-quality gate dielectric is

difficult to deposit on 2DMoS2 by ALD, which attributes to

the absence of dangling bonds and other active elements at

the surface. Toward this effort, PeideD.Ye et al. investigated

the deposition of high-k Al2O3 on MoS2 by ALD; they uti-

lized water and trimethylaluminum (TMA) as precursor and

lowered the temperature of substrate down to 200 �C, which
successfully resulted in the formation of 10 nm uniform

Al2O3 dielectric on MoS2 by physical adsorption [53].

However, reaction of precursors in low temperature could

further lead to the impurities resided in as-deposited high-

k film, which limited its electronic properties [54]. To

overcome it, Hyoungsub Kim et al. introduced oxygen

plasma treatment in deposition of Al2O3 and HfO2 on mul-

tilayer MoS2 by the same method of ALD; they used X-ray

photoelectron spectroscopy (XPS) analysis and found that

oxygen plasma-treated MoS2 formed Mo-oxide layer at its

surface, which is demonstrated to improve the quality of as-

grown high-kAl2O3 andHfO2 dielectric. This work indicates

the promising of plasma-treated ALD method in formation

of high-k gate dielectric on MoS2-based FET [55].

Deposition of high-k Al2O3 on ultraviolet-ozone (UV-

O3)-treated MoS2 has also been studied. Uniform high-

k Al2O3 film was achieved due to the removal of con-

taminations and the formation of slight S–O bonds at the

MoS2 surface. It is necessary to mention that UV-O3 expo-

sure did not break the Mo–S bonds and was a non-disruptive

method to achieve high-quality Al2O3 dielectric deposition.

The surface of UV-O3-treated MoS2 is also demonstrated to

be a suitable layer for controllable deposition of uniform and

ultrathin Al2O3 (*4 nm), which is more practical in MoS2-

based FET technology [56]. In addition, Lanxia Cheng et al.

investigated the ALD deposition of Al2O3 dielectric on

MoS2 by precursors of TMA/H2O and TMA/O3 and studied

the properties of two types of as-deposited thin films. They

claimed that O3 was an important factor in high-quality ALD

deposition, which resulted in the deposition of uniform,

lower thickness (*5 nm) of dielectric layer without the S–O

bonds generation at MoS2 surface and the improvement of

growth rate [57].

The formation of high-k dielectric is critical for MoS2-

based FETs technology, and the nature of no dangling

bonds at the surface of 2D MoS2 allows discovering suit-

able precursors and pretreatments for ALD deposition,

which is relatively effective in gate dielectric deposition.

Lowering the temperature of substrate to achieve physical

adsorption can lead to uniform high-k dielectric layer de-

position, but it is limited by essential clean surface of MoS2
and hard to control the parameters of deposition. Oxygen

plasma-treated MoS2 surface is also demonstrated to form

high quality, uniform dielectric layer, but this method is

regarded as destructive. These two methods are not very

practical in MoS2-based FETs as the formation of unifor-

mity layer can be achieved only when the thickness is

enough (about 10 nm), which limit the scaling down of

FET. In contrast, UV-O3 exposure and O3 precursor are

non-destructive and able to deposit ultrathin dielectric layer

(*5 nm), which are expected in gate dielectric formation

of MoS2-based FETs and other TMDCs-based FETs.

2.3 Doping Strategies

Appropriate doping is another effective method to achieve

high-performance MoS2-based FETs, which is demon-

strated to strongly affect the contact resistance of MoS2
FET instead of utilizing different contact metals, such as

n-type doping from polyethyleneimine (PEI) molecules on

multilayer MoS2-based FET [58]. Ultrathin MoS2 limits the

doping methods (ion implantation, etc.) employed in other

semiconductors, leading to the exploration of novel doping

methods in MoS2-based FET technology.

Cesium Carbonate (Cs2CO3) has been employed to dope

monolayer MoS2 FET [59], resulting in stable n-type doping

and largely enhance the electron concentration in monolayer

MoS2 (about 1 order of magnitude). Potassium has also been

demonstrated to achieve degenerate n-doping of MoS2 FET

in vacuum, indicating the essential of degenerate doping in

high-performance MoS2 FET [60]. However, the unstable

nature of Potassium limits its practical application. Herein,

Daisuke Kiriya et al. proposed a doping strategy based on

benzyl viologen (BV) [61], as illustrated in Fig. 3. Figure 3a

depicts the schematic diagram of BV doping on trilayer

MoS2 FET and the as-fabricated FET was put into the BV

solution for 12-h doping; transfer characteristics of as-fab-

ricated MoS2-based FET with and without doping are com-

pared and shown in Fig. 3b. Before BV doping, the ON/OFF

of MoS2 FET mainly depends on Vgs (ranging from -40 to
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40 V) and the Ids is about 2 9 10-5 A (Vgs = 40 V), fol-

lowing that BV doping indicates the less dependence of Vgs

and the increase of Ids, which demonstrates the effective

doping of BV method. Raman spectroscopy measurement is

shown in Fig. 3c, depicting a red shift and realization of high

electron density. Moreover, Fig. 3d shows that the as-doped

FET is put into toluene and corresponding transfer charac-

teristics with different time, which is promising for tuning

the dopants density. This work represents an effective n-type

doping method, which also reduces the contact resistance

and improves the performance of MoS2-based FET.

Elements from halogen family are promising in doping

MoS2. Toward this effort, chloride (Cl) molecular has been

utilized to dope MoS2 FET by Lingming Yang et al. [62].

Few layer MoS2 is immersed into 1, 2 dichloroethane

(DCE) over 12 h and then fabricated in MoS2 FET; n-type

doping is elucidated by change of Fermi level, which is

measured by XPS at the surface before and after doping.

More importantly, the contact resistance of as-fabricated

FET is reduced to a very low value (0.5 kX lm) after Cl

molecular doping, thus resulting in a high drain current

(460 mA mm-1). In addition, WS2 FET is also doped by

the same method and even more effective than MoS2 FET,

indicating that the Cl molecular doping is available in other

TMDCs.

Doping strategies are significant in MoS2-based FETs

and other TMDCs-based devices, and proper doping

methods are expected in FET fabricated from ultrathin
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semiconducting materials. Note that, doping methods of

2D materials are still immature; studies are essential to

explore stable, effective, and controllable doping strategies,

which are practical and convenient in future nanoelectronic

and optoelectronic devices.

3 Low-Frequency Noise (LFN) Analysis in MoS2-Based

FETs

The low-frequency noise (LFN) has been demonstrated as a

limiting factor in high-performance electronic devices [63]

and is generally called 1/f noise or flicker noise, which is

first discovered in 1925 [64]. LFN determines the

minimum value of signal level in electronic devices and

circuits, affecting the realization of scaling down and lower

power consumption in future circuits [65, 66], showing that

it is necessary to study the LFN in MoS2-based FETs as

this 2D layered material has been widely utilized for the

fabrication of ultrascaled FET [67] and integrated circuits

[68]. Analysis of LFN (measure the fluctuations of mobility

conductivity or fluctuation of FET channel induced by

carrier trapping or de-trapping) can help evaluate the

quality of MoS2 FET [69]. Furthermore, for practical usage

of MoS2 FET analog and digital electronic devices, it is

necessary to reach the minimum requirement of LFN [70,

71].

Toward this effort, the LFN of bilayer MoS2 FET has

been studied in details by Xie et al. [72]. The MoS2 FET is

fabricated by a 1.2-nm-thick MoS2 (bilayer) thin film on a

300 nm SiO2/highly doped n-type Si substrate with 30-nm

Ti/100-nm Au film as electrodes. The corresponding noise

characteristics are measured and a new model of under-

standing the LFN in bilayer MoS2 FET was proposed.

Different from 3D materials, the results exhibit a longer

trap decay time in 2D materials with van der Waals bond

(MoS2). Based on this model, an annealing is processed

toward this bilayer MoS2 FET. Figure 4a shows the Ids
versus Vgs characteristics (Vgs ranging from -20 to 40 V)

at Vds = 3 V of this FET, the red locus of points represents

the curve after annealing under condition of no threshold

voltage (VT), and black locus of points represents the curve

before annealing(VT = 15 V), respectively. Figure 4b ex-

hibits the noise measurements (Vgs ranging from -20 to

40 V) before and after annealing at Vds = 3 V. A re-

markable movement of noise peak to lower Vgs after
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annealing was observed, indicating that the decrease of trap

density (annealing process) can effectively reduce the LFN

in as-fabricated MoS2 FET.

While 1/f noise has been investigated in monolayer [73]

and bilayer MoS2 FET, study of LFN in multilayer MoS2
FET is essential for its optimization. In order to achieve

these goals, Kwon et al. [74] have investigated the LFN in

multilayer MoS2 FET, which is architectured with a 40–50-

nm MoS2 thin-film channel layer, 10 nm Ti/300 nm Au

contact, and SiO2 on p-type silicon substrate. They studied

the LFN behavior 1/fc of as-fabricated MoS2 FET, where

the c is an exponent associated with distribution of traps.

With the increase of gate voltage (VG), the trap in as-fab-

ricated FET will be filled and c will decrease and be stable

at a value of 0.95. In contrast to the dominance of mobility

fluctuation noise mechanism in monolayer MoS2 FET [73],

the dominance of noise mechanism in as-fabricated mul-

tilayer MoS2 FET is demonstrated to be the carrier number

fluctuation. Moreover, they found LFN characteristics of

multilayer MoS2 FET are better than monolayer MoS2
FET, which attributes to its lower Hooge parameter related

to the level of LFN. In addition, Renteria et al. [75] studied

the relative contribution of channel and contact for LFN in

multilayer MoS2 FET and demonstrated that the main

mechanism of LFN is carrier number fluctuation, as de-

picted by Kwon et al. Moreover, they proposed a com-

parison of as-fabricated multilayer MoS2 FETs before and

after aging. Figure 5 shows the noise spectral density be-

fore and after aging. It has been observed that the channel

noise of MoS2 FET increased more than one order of

magnitude after aging, but the increase of contact noise is

very few. Thus, the phenomenon is mainly caused by the

aging of the MoS2 channel rather than the aging of contact.

This new phenomenon can be utilized in MoS2-based FET

and other TMDCs- based FETs in terms of the optimization

in channel implementation.

In addition, MoS2-metal contacts of MoS2-based FETs

are also demonstrated to impact LFN [76]. The vacuum

annealing strongly increases the transparency of contacts in

FET, thus resulting the decrease of LFN. To conclude, LFN

has been investigated in MoS2-based FETs, indicating the

related factors are trap density, channel, and contact, which
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should be concerned for future circuits based on MoS2 and

other 2D TMDCs.

4 Optical Properties of MoS2-Based FETs

TMDCs have been widely fabricated in P–N junction de-

vices, heterostructures, and phototransistors due to the

outstanding photovoltaic effect [2, 77, 78]. Particularly,

MoS2-based FETs have already been demonstrated to show

a strong photoresponse [79]. To comprehensive study the

optical properties of MoS2-based FETs, the number of

MoS2 layers is concerned; herein, Jonghwa Eom et al. in-

vestigated layer-dependent MoS2 FETs (monolayer, bi-

layer, and multilayer) and measured the photocurrent

response under different Vds by using a 220 nm deep ul-

traviolet (DUV) light [80]. In Fig. 6, photocurrent (Iph) of

monolayer, bilayer, and multilayer MoS2 FETs was mea-

sured in air (under the condition of Vds = 0.5, 2.0, 5.0 V

and VG = 0) and illustrated in Fig. 6a–c, respectively.

Figure 6d summarizes the results from Fig. 6a–c as a

function of Vds (0–5 V). They observed that monolayer and

bilayer MoS2 FET exhibited a smaller value of photocur-

rent than multilayer MoS2 FET, which mainly attributed to

a narrower bandgap and higher density of states in multi-

layer MoS2 FET. After turning off the light, relaxation time

of photocurrent response was also measured in monolayer,

bilayer, and multilayer MoS2 FETs; again, the smaller

bandgap of multilayer MoS2 resulted in a shorter relaxation

time in multilayer MoS2 FET. This work suggested that

multilayer MoS2 FET was more promising than few layer

MoS2 FET in photovoltaic applications, and as discussed

above, multilayer MoS2-based FET with graphene elec-

trode not only reduced the Schottky barrier height at

MoS2/grapheme interface, but shows a 74 % optical

transmittance (wavelength ranging from 400 to 800 nm),

which is promising for transparent devices [47].

The photocurrent of MoS2 FET is always a significant

topic to discuss. Cho et al. [81] have studied the decay of

photocurrent in MoS2 FET; they fabricated the multilayer

MoS2 nanosheet FETs and measured the decrease of pho-

tocurrent before and after turning off the UV light. Figure 7

illustrates the photocurrent measurements at different at-

mosphere in the same Vds (0.1 V), and two constant of

decay time s1 and s2 are also shown in Fig. 7. Figure 7a

exhibits the photocurrent measurement under 3.3 9 10-4

Torr vacuum condition (shadow region represents on-state

UV light). Figure 7b–d exhibits the measurements under

oxygen condition of 1.4 Torr, 0.98 9 101 Torr, and

2.2 9 102 Torr. With the increase of oxygen pressure,

photocurrent decreases faster, which is attributed to the

charge trapping at the associated oxygen defect sites on

MoS2 surface. In addition, they measured the decrease of

photocurrent under different gate-bias stresses and found
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that when the gate-bias stress was negative, the decrease of

photocurrent became slower and vice versa. Further study

revealed that this phenomenon was caused by the increase

of charge trapping (oxygen site) on MoS2 interface as well

[82]. Moreover, resonant plasmonic nanoshells have also

been deposited to fabricate MoS2 FET, which is demon-

strated to be capable for the enhancement of photocurrent

and photoluminescence [83].

As discussed above, regarding the transient time con-

stant, isolated MoS2 FET manifested its potential in opto-

electronics, which could reach magnitude of millisecond.

However, Feng Wang et al. have investigated the optical

properties of MoS2-WS2 heterostructure and the ultrafast

dynamics of hole transfer and found a remarkable rise time

shorter than 50 fs, which is demonstrated to hold large

promising in future optoelectronic applications [84]. Based

on this novel investigation, Su-Huai Wei et al. fabricated

MoS2-WS2 heterostructure-based FET, which was

demonstrated to possess high ON/OFF ratio exceeding 105

and high photoresponsivity reaching 1.42 A W-1 [85].

The photoresponse of MoS2-based FETs shows promis-

ing for prospective applications of optoelectronics, com-

paredwith few layerMoS2;multilayerMoS2 is demonstrated

to manifest better performance in photocurrent generation.

Moreover, plasma-treated, novel nanostructured, and

heterostuctured MoS2 are expected to fabricate high-per-

formance MoS2-based FETs.

5 MoS2-Based FETs Applications

5.1 Applications of MoS2-Based FETs in Sensors

Due to the planar, atomic thin structure, possibility of large

scale preparation, high surface-to-volume ratio and
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suggested bandgap, MoS2-based FET has been studied in

sensor applications. Toward this effort, high-sensitivity pH

sensor with reasonable range (3–9) and selectivity

biosensor for protein detection (available at 100 femto-

molar concentration) have been achieved by MoS2-based

FET [86]. Similarly, for label-free biosensors, MoS2
nanosheet is promising and fabricated in FET, which ex-

hibits high sensitivity in detecting cancer biomaker [87].

The as-fabricated FET is employed in liquid phase to se-

lectively detect prostate-specific antigen (PSA) (cancer

biomaker) by the change of drain current. That is, this

method is potential for facilitating the development of

cancer diagnostics in earlier time.

For gas sensor, Liu et al. [88] have focused on the

Schottky-contacted CVD grown monolayer MoS2 FET.

They fabricated the MoS2 FETs with 5 nm Ti/50 nm Au

metal contact; the schematic diagram and optical image of

MoS2 FETs are shown in Fig. 8a, b, respectively. Figure 8c

exhibits the Ids versus Vds output characteristics of as-fab-

ricated FET, and transfer characteristics (Ids vs. Vbg) is il-

lustrated in Fig. 8d, manifesting the n-type characteristic,

which corresponds to the n-type electronic property of

MoS2 semiconductor [89]. Note that, there exists a

Schottky barrier (SB) in as-fabricated MoS2 FET-based

sensor (Fig. 8c). Later, they investigated the sensitivity and

the mechanism of as-fabricated FET for detecting two

poisonous gases: NO2 and NH3. Generally, conductance

(resistance) change is measured to reflect performance of

sensing and total resistance of as-fabricated FET is ex-

pressed as follows:

R ¼ Rchannel þ Rcontact ð1Þ

In this equation, Rchannel is only related to carrier concen-

tration, but Rcontact is related to both carrier concentration and

the Schottky barrier height. The relationship is exponential,

thus indicating that the Schottky barrier is a key factor in

sensitivity. With a conductance change larger than 20 and

40 %, the sensitivity of thisMoS2 FET-based chemical sensor

can reach 20 parts per billion (ppb) for NO2 and 1 parts per

million (ppm) forNH3, respectively. This detection limit is the

lowest gas concentration detected compared with the other

experiments: Li et al. [90] used multilayer MoS2 film FET to

detect NO (detection limit *800 ppb) and Late et al. [91]

presented a detection limit of several hundred ppm for both

NH3 and NO2 using atomically thin-layeredMoS2 transistors.

Moreover, Liu et al. found part of MoS2 devices exhibiting

more Ohmic contact, but the little conductance change

(\5 %)upon exposure toNO2 at concentrations up to 400 ppb

further manifests that Schottky barrier modulation plays a

more important role in these MoS2 FET-based sensors. That

is, it is realizable to modulate the Schottky barrier contact of

MoS2-based FET sensor and achieve higher performance at

the sub-ppb level.

Moreover, in monolayer MoS2-based FET sensor, sen-

sitivity of detecting triethylamine (TEA) can be enhanced

by illumination [92] as illustrated in Fig. 9. DG stands for

the decrease of initial conductance (G0) of FET when ex-

posed to TEA, the calculated DG/G0 is the sensitivity. The

black line represents that the light is on and red line for off

state, showing the increase of sensitivity with longer time

(about 1 order of magnitude), which may attributes to the

enhancement of conductivity under illumination. Conve-

nient way of fabricating MoS2-based FET sensor is ex-

pected, which is significant in practical applications [25].

In addition, Lee et al. fabricated the sensor without di-

electric layer on multilayer MoS2 FETs, which possess

hydrophobic interface that serves as novel non-dielectric

layer, thus resulting in the improvement of sensitivity [93].

With the nature of 2D structure, MoS2-based FET sensors

should be studied further to explore higher sensitivity,

lower cost, more effective biosensors, and chemical gas

sensors, which are potential for next-generation medical

diagnosis of cancer, environment monitoring, and food

safety.

5.2 Applications of MoS2-Based FETs in Memory

Devices

Multibit memory devices have attracted much attention and

investigations, which are generally fabricated by organic

semiconductor materials [94], nanostructure materials [95],

and phase-change materials [96]. It is significant to explore

a novel convenient method to fabricate multibit memory.

Toward this effort, Chen et al. [97] have explored an ap-

proach to fabricated MoS2 FET-based 2–4 bit memory

devices. They proposed a plasma-treated way and found

that this plasma-treated MoS2 FET could act as multibit

memory devices as illustrated in Fig. 10. Figure 10a is the

schematic diagram of plasma-treated MoS2 FET, of which

a 15–30-nm MoS2 film served as the active layer with 5 nm

Ti/50 nm Au electrode. The optical image of as-treated

MoS2 FET is shown in Fig. 10b. Herein, D and S are the Ti

electrode and Au electrode, respectively. Figure 10c shows

the transport characteristic curve (IDS (Ids) vs. VG); in ad-

dition, the measurements of retention are given in Fig. 10d,

and it can be seen that the write/read ratio is about 103 after

1 h and 400 after 3 days. Accordingly, a write/read ratio

value of about 64 of the as-fabricated FET aged after

10 years can be inferred, which is still valid for circuit

application. It is further found that the plasma-treated

MoS2 FET is faster in programing than the untreated one in

their experiments. A physical model for explaining the

performance enhancement was proposed as following: The

plasma-treated channel top layer could be separated and

forms an ambipolar charge-trapping layer, allowing the

high-performance non-volatile retention and multibit states
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in this FET. This method is certainly worth considering for

fabrication of nanodevices since it is technically conve-

nient and provides a relatively simple way for realizing

non-volatile memory devices, which also offers an effec-

tive method to scale down current circuit in future

nanoelectronics.

Moreover, MoS2 nanoflakes have been employed as

charge-trapping layer (nano-floating gate) to fabricate or-

ganic nano-floating gate memories (NFGMs) by Kang et al.

[98], which are based on organic (poly (3-hexylthiophene)

(P3HT)) FET. The inserted solution process is convenient

and realized at low temperature to introduce MoS2 nano-

flakes between two dielectric layers: polystyrene (PS) and

poly (methyl methacrylate) (PMMA). The as-fabricated

memory device exhibits multilevel non-volatile memory

nature, as illustrated in Fig. 11. Figure 11a depicts the

endurance of this NFGM, which is more than 102 times

(under the condition of Vd = -5 V and Vg = 0 V). Pro-

graming process and corresponding voltages are shown in

Fig. 11b, and the four voltage steps are from -80 to 80 V

(-80, ?30, ?50, ?80 V). Figure 11c, d illustrates the

retention characteristics by measuring four current levels

(Abs (Id) represents the absolute value of drain current) at

Vd = -5 V and Vg = 0 V with 60 s delay, indicating the

stable retention times after 10 years. This MoS2-based

organic FET is a 2-bit memory device controlled by V and

potential for inexpensive memory devices.

6 Conclusions

In this paper, we have reviewed state-of-the-art approaches

in MoS2 FETs, such as progresses on manufacturing of

MoS2 FETs, MoS2 FET-based memory devices, and MoS2
FET-based sensors. To understanding the contact physics

based on Schottky barrier, different species of metals uti-

lized to achieve high-performance n-type and p-type MoS2
FETs are reviewed, and optimization of ferromagnetic

contact for spintronics applications are discussed too. In-

trinsic properties measured by four-terminal measurements

are highlighted, which is an effective method to estimate

contact quality of MoS2-based FETs. In addition, gate di-

electric formation and doping strategies are studied and

provide guidelines for prospective manufacturing of MoS2-

based FETs.

Low-frequency noise (LFN) analysis was carried out for

studying the performance of MoS2 FETs. FETs made of

bilayer MoS2 present a longer trap decay time. Further

analysis shows that the LFN subjects not only to the phy-

sical properties of the channels but also the behavior of
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contacts in MoS2 FETs. The noise increase in aged MoS2
FETs is caused by aging of the MoS2 channels rather than

the aging of contacts. This phenomenon is significant in

MoS2 as well as in other 2D materials FETs for the opti-

mization of channel implementation.

Photoresponse of MoS2-based FETs are critical and

considered in this review, mainly focusing on the pho-

tocurrent generation with and without illumination. More-

over, MoS2-based FETs are utilized in gas and biological

sensors, showing its high sensitivity and selectivity. MoS2
nanoflakes are fabricated and successfully employed in

organic nano-floating gate memories (NFGMs) as non-

volatile random-access memory (NVRAM), providing an

instance for nanomaterials used in memory devices. The

plasma-treated MoS2 FETs can serve as multibit memory

devices and exhibit excellent storage capacities, suggesting

the significance of plasma in performance improving of

MoS2 electronic devices.

To conclude, MoS2 FETs based on thin-film and nano-

size structures are investigated. Some key optical and

electronic properties of these MoS2 FET devices are unique

and superior than FETs made of conventional semicon-

ductors, thus are suitable for novel electronic and opto-

electronic applications.
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