Supporting Information for

Engineering Mesoporous Structure in Amorphous Carbon Boosts

Potassium Storage with High Initial Coulombic Efficiency

Ruiting Guo¹, Xiong Liu¹, Bo Wen¹, Fang Liu¹, Jiashen Meng¹, Peijie Wu¹, Jinsong Wu¹, Qi Li^{1, *}, Liqiang Mai^{1, 2, *}

¹State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China

²Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, People's Republic of China

*Corresponding authors. E-mail: <u>qi.li@whut.edu.cn</u> (Qi Li); <u>mlq518@whut.edu.cn</u> (Liqiang Mai)

S1 Diffusion Coefficients Calculation

The K^+ diffusion coefficients were calculated by using the equation based on Fick's second law [S1]:

$$\mathbf{D} = \frac{4}{\pi\tau} \left(\frac{n_B V_M}{S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2$$

where D is the K⁺ diffusion coefficient, τ is the current pulse time (s), n_B is the amount of substance, V_M is the molar volume of the active material, and S is the area of the electrodes. ΔE_S is the potential difference of two adjacent steady-states and ΔE_{τ} is the potential change due to the pulse current.

S2 Supplementary Figures and Tables

Fig. S1 (a) TEM image of preheated Zn(Ac)₂/PVA. (b, c) TEM and HRTEM images of ZnO@C

Fig. S2 SEM images of (**a**) preheated Zn(Ac)₂/PVA and (**b**) untreated Zn(Ac)₂/PVA after immersing in deionized water for 24 h

Fig. S3 (a) XPS survey spectrum and (b) high-resolution Zn 2p XPS spectrum for meso-C sample

Fig. S4 STEM-EDX mappings of (**a**) meso-C and (**b**) micro-C, and corresponding EDX spectra of (**c**) meso-C and (**d**) micro-C

Fig. S5 SEM images and the corresponding diameter distributions (insets) of (**a**) meso-C and (**b**) micro-C nanowires

Fig. S6 (a) XRD patterns and (b) Raman spectra of meso-C and micro-C

Fig. S7 Galvanostatic charging/discharging profiles of (a) meso-C and (b) micro-C tested at 0.1 A g^{-1}

Fig. S8 TEM images of (a) meso-C and (b) micro-C after long-term cycling at 1 A g⁻¹

Fig. S9 Ex situ SAED patterns of meso-C (a) after discharging to 0.01 V and (b) charging to 3 V

Fig. S10 Contribution of the surface process at 0.4 mV s⁻¹ for (a) meso-C and (b) micro-C samples

Fig. S11 (a) Electrochemical impedance spectroscopy curves for fresh cells at OCV (V vs. K^+/K). (b) The equivalent circuit used to fit the original data

Fig. S12 (a, b) GITT curves of the discharging and charging processes, respectively

Fig. S13 Regional GITT potential response with time

Table S1 STEM-EDX mapping elemental atomic components of meso-C and micro-C samples

Samples	Element content (at.%)			
	С	0	Zn	
meso-C	99.71	0.29	0.00	
micro-C	99.02	0.89	0.00	

Table S2 K-storage performance comparison of meso-C anode in this work with other reported carbonaceous anodes

Samples	Current density (mA g ⁻ 1)	Capacity after cycling (mAh g ⁻¹)	Cycle number	ICE (%)	References
Hollow interconnected neuron- like carbon	140	250	150	72.1	[S2]
Hard-soft composite carbon	279	200	200	67	[\$3]
S doped RGO-600	50	361	50	65	[S4]
Graphite	93	255	2000	64	[S5]
Ordered mesoporous carbon	50	257.4	100	63.6	[S6]
Sulfur-grafted hollow carbon spheres	200	300	250	51.4	[S7]
N CNFs	25	248	100	49	[S8]
SMCF@CNTs	279	193	300	48	[S9]
N/O dual-doped carbon network	50	303	50	47.1	[S10]
Graphitic carbon nanocage	55.8	212	100	40	[S11]
CNF-O	279	160	300	35	[S12]
NCNTs	50	254.7	300	24.4	[S13]
Porous carbon nanofiber	200	211	1200	24.1	[S14]
N-doped hollow carbon	200	225.4	1000	16	[S15]
Graphitic nanocarbon	200	189	200	15.5	[S16]
meso-C nanowires	100	231	250	76.7	This work

Supplemenary References

[S1] Z. L. Jian, Z. Y. Xing, C. Bommier, Z. F. Li, X. L. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201670017

- [S2] D. -S. Bin, X. -J. Lin, Y. -G. Sun, Y. -S. Xu, K. Zhang et al., Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140(23), 7127-7134 (2018). https://doi.org/10.1021/jacs.8b02178
- [S3] Z. L. Jian, S. Hwang, Z. F. Li, A. S. Hernandez, X. F. Wang et al., Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 27(26), 1700324 (2017). https://doi.org/10.1002/adfm.201700324
- [S4] J. L. Li, W. Qin, J. P. Xie, H. Lei, Y. Q. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415-424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
- [S5] L. Fan, R. F. Ma, Q. F. Zhang, X. X. Jia, B. G. Lu, Graphite anode for potassium ion battery with unprecedented performance. Angew. Chem. Int. Ed. 58(31), 10500-10505 (2019). https://doi.org/10.1002/anie.201904258
- [S6] W. Wang, J. H. Zhou, Z. P. Wang, L. Y. Zhao, P. H. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- [S7] J. Ding, H. L. Zhang, H. Zhou, J. Feng, X. R. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
- [S8] Y. Xu, C. L. Zhang, M. Zhou, Q. Fu, C. X. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- [S9] C. Shen, K. Yuan, T. Tian, M. H. Bai, J. -G. Wang et al., Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS Appl. Mater. Interfaces 11(5), 5015-5021 (2019). https://doi.org/10.1021/acsami.8b18834
- [S10] J. F. Ruan, Y. H. Zhao, S. N. Luo, T. Yuan, J. H. Yang et al., Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dualdoped carbon network. Energy Storage Mater. 23, 46-54 (2019). https://doi.org/10.1016/j.ensm.2019.05.037
- [S11] B. Cao, Q. Zhang, H. Liu, B. Xu, S. L. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- [S12] R. A. Adams, J. -M. Syu, Y. P. Zhao, C. -T. Lo, A. Varma, V. G. Pol, Binderfree N-and O-rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl. Mater. Interfaces 9(21), 17872-17881 (2017). https://doi.org/10.1021/acsami.7b02476

- [S13] P. X. Xiong, X. X. Zhao, Y. H. Xu, Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 11(1), 202-208 (2018). https://doi.org/10.1002/cssc.201701759
- [S14] X. X. Zhao, P. X. Xiong, J. F. Meng, Y. Q. Liang, J. W. Wang, Y. H. Xu, High rate and long cycle life porous carbon nanofiber paper anodes for potassiumion batteries. J. Mater. Chem. A 5(36), 19237-19244 (2017). https://doi.org/10.1039/c7ta04264g
- [S15] W. X. Yang, J. H. Zhou, S. Wang, W. Y. Zhang, Z. C. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605-1612 (2019). https://doi.org/10.1039/c9ee00536f
- [S16] W. L. Zhang, J. Ming, W. L. Zhao, X. C. Dong, M. N. Hedhili et al., Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641