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HIGHLIGHTS

• Various synthetic methods for the synthesis of  NiCo2O4 nano-/microstructures in bare, doped, and composite/hybrid forms are reviewed.

• Currents status and development prospects of  NiCo2O4 nano-/microstructure-based electrochemical biosensors for bioanalytes such 
as glucose, urea, and  H2O2, along with condition governing the electrochemical biosensor parameters, are summarized.

• Also provide an insight into the key challenges and future perspectives about point-of-care monitoring of bioanalytes using  NiCo2O4 
nano-/microstructure-based biosensors.

ABSTRACT Non-enzymatic biosensors based on mixed transition metal oxides are 
deemed as the most promising devices due to their high sensitivity, selectivity, wide 
concentration range, low detection limits, and excellent recyclability. Spinel  NiCo2O4 
mixed oxides have drawn considerable attention recently due to their outstanding advan-
tages including large specific surface area, high permeability, short electron, and ion 
diffusion pathways. Because of the rapid development of non-enzyme biosensors, the 
current state of methods for synthesis of pure and composite/hybrid  NiCo2O4 materials 
and their subsequent electrochemical biosensing applications are systematically and 
comprehensively reviewed herein. Comparative analysis reveals better electrochemi-
cal sensing of bioanalytes by one-dimensional and two-dimensional  NiCo2O4 nano-/
microstructures than other morphologies. Better biosensing efficiency of  NiCo2O4 as 
compared to corresponding individual metal oxides, viz. NiO and  Co3O4, is attributed 
to the close intrinsic-state redox couples of  Ni3+/Ni2+ (0.58 V/0.49 V) and  Co3+/Co2+ 
(0.53 V/0.51 V). Biosensing performance of  NiCo2O4 is also significantly improved 
by making the composites of  NiCo2O4 with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes 
(single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO,  Co3O4, 
 SnO2,  MnO2; and metals like Au, Pd, etc. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-
structured  NiCo2O4 are also highlighted. Finally, some drawbacks and future perspectives related to this promising field are outlined.
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1 Introduction

Recently, spinel single-phase binary metal oxides containing 
two metal cations such as manganese cobaltate  (MnCo2O4) 
[1], zinc cobaltate  (ZnCo2O4) [2, 3], nickel ferrite  (NiFe2O4) 
[4], copper manganate  (CuMn2O4) [5], copper cobaltate 
 (CuCo2O4) [6], cobalt manganate  (CoMn2O4) [7], nickel 
cobaltate  (NiCo2O4) [8] have attracted widespread attention 
from researchers worldwide due to their invariably better 
electrochemical properties as compared to individual metal 
oxides or a mixture of metal oxides. The excellent electro-
chemical performances of these single-phase binary metal 
oxides are attributed to the synergetic effects of properties 
of the individual metal oxide components [9]. Among vari-
ous such single-phase binary metal oxides,  NiCo2O4 is con-
sidered to be the best one as it possesses at least two times 
higher electronic conductivity as compared to correspond-
ing individual metal oxides, viz. NiO and  Co3O4 along with 
intrinsic-state redox couples of  Ni3+/Ni2+ (0.58 V/0.49 V) 
and  Co3+/Co2+ (0.53 V/0.51 V) [10–12]. Other key features 
are the exhibition of variable but sufficiently stable oxidation 
states by Ni  (Ni2+,  Ni3+) and Co  (Co2+,  Co3+,  Co4+) and very 
high conductivity of 500 S  cm−1 [13, 14].

Many transition metals, rare earth metals, non-metal-
doped  NiCo2O4, and conjugated polymer-modified  NiCo2O4 
materials have been reported in the literature with versatile 
applications. N- and P-doped  NiCo2O4 with oxygen vacan-
cies have been explored for electrochemical performance 
for supercapacitors, electro-catalyst for  O2 and  H2 evolu-
tion reaction [15–18], and anodic material for lithium-ion 
batteries [19]. Lin et al. [20] explored S-doped  NiCo2O4 
nanosheet arrays as the efficient and bifunctional electrode 
for overall water-splitting reactions. Compared with non-
metal-doped  NiCo2O4, transition metal and rare earth metal-
doped  NiCo2O4 are considered superior due to the latter’s 
excellent electrical conductivity. Zn- and Fe-doped  NiCo2O4 
showed electrocatalytic properties for oxygen evolution reac-
tions and remarkable capacitive properties in asymmetric 
supercapacitors [21–23]. Ma et al. [24] synthesized highly 
porous hierarchical spinel Mn-doped  NiCo2O4 nanosheets 
for high-performance anodes in lithium-ion batteries. Xia 
et al. [25] used Au–NiCo2O4 nanomaterials supported on 
3D hierarchical porous graphene-like material as electro-
catalyst for oxygen evolution reaction. Among the rare earth 
metal oxides,  CeO2 is reported to be an excellent dopant for 

 NiCo2O4 nanomaterials [26, 27]. Carbonaceous and polymer 
composite/hybrid  NiCo2O4 nano-/microstructures are also 
found suitable for their potential applications in superca-
pacitors [28], fuel cells [29], Li-ion batteries [30], electro-
catalyst for oxygen reduction reaction and oxygen evolution 
reaction [31], photo-detector [32], optoelectronic devices 
[33], perovskite solar cells [34], gas sensors [35–37] and 
biosensors [38, 39].

Facile, low-cost and eco-friendly synthetic methods lead 
to varieties of low dimensional nano-/micro-structured 
morphologies with excellent porosity and specifically large 
surface area, opportunities to synthesize composite/hybrid 
and ease of electrode fabrications for end-user applica-
tions. Spinel  NiCo2O4 is a p-type semiconductor in which 
Ni occupies octahedral sites while Co is distributed in both 
octahedral and tetrahedral sites [13] (Fig. 1a, b). It shows a 
face-centered cubic arrangement and belongs to Fd3m space 
group with lattice constant ao = 8.269 Å [40].

Electrochemical sensing through miniaturized sensors 
based on nano-/micro-structured materials has taken over 
the conventional, expensive, laborious sensing techniques 
like lateral flow immunoassay, liquid chromatography, capil-
lary electrophoresis, enzyme-linked immunosorbent assay, 
chemiluminescence, sequential injection analysis, gas chro-
matography–mass spectrometry and fluorescent methods 
[43–48]. Electrochemical biosensors can be categorized into 
amperometric and potentiometric sensors [49]. The amper-
ometric biosensing involves a change in current response 
due to electrochemical redox reactions of the analytes when 
a potential is applied between the working and reference 
electrodes while the potentiometric biosensing makes use of 
ion-selective electrodes to transduce the biological reactions 
into a measurable electrical signal [43, 50].

Among the main classes of biosensors, the non-enzymatic 
biosensor is considered to be better, faster, and more con-
venient as compared to an enzymatic biosensor that involves 
complicated and multi-step enzyme immobilization pro-
cesses and high specificity of the enzymes. Also, due to pH 
and temperature sensitiveness, the enzyme-based biosensors 
are highly unstable as enzymes undergo denaturation lead-
ing to biological inactivity beyond physiological conditions 
[51–53]. Nanomaterials not only provide high-density cata-
lytic sites for the electro-oxidation or electro-reduction in the 
biomarkers but also provide large surface area for adsorption 
of biomarkers and facilitate an appropriate path for electron 
transport for electrochemical activity [54–56]. Since the 
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crucial part in electrochemical biosensors is the modified 
electrode, much attention has been devoted to modulate the 
electrocatalytic behavior of the  NiCo2O4 as electron media-
tor by engineering its composition, structure, specific sur-
face area, and redox properties.

To date, many reviews have been reported for the applica-
tions of  NiCo2O4 nano-/micro-structured materials includ-
ing Li-ion batteries [10], supercapacitors [11, 57], fuel cells 
[58], and electro-catalyst for oxygen reduction, oxygen and 
hydrogen evolution reactions [59, 60]. The applications of 
the  NiCo2O4-based non-enzymatic biosensors are aimed not 
only at the extension of the spectrum of target bioanalytes 
but also at the improvement in the biosensor performance in 
terms of sensitivity, selectivity, detection limits, long-term 
stability as well as reusability. Many new synthetic strate-
gies and techniques have been developed for the fabrication 
of  NiCo2O4-based non-enzymatic biosensors, but they are 
rarely summarized. Hence, it is an appropriate time to go 
through the periodical progress of  NiCo2O4-based non-enzy-
matic biosensors. This review covers the crystal structure of 
the spinel  NiCo2O4, various synthetic strategies employed 
for the synthesis of nano-/micro-structured  NiCo2O4, elec-
trochemical biosensing toward biomarkers such as glucose, 
 H2O2, and urea, through the fabrication of modified elec-
trodes. Various factors affecting the morphologies and bio-
sensing parameters of the nano-/micro-structured  NiCo2O4 
are also reviewed.

2  General Biosensing Mechanism

Two types of strategies are generally involved in the elec-
trochemical biosensing of biomarkers, i.e., enzyme based 
and enzyme-free [61, 62]. An enzymatic biosensor operates 
on three main components which include sensitive recogni-
tion element, signal transducer element, and data evalua-
tion component [63–66]. Enzymes, antibodies, and nucleic 
acid are generally used as recognition components. Glucose 
oxidase and glucose dehydrogenase for glucose [67, 68], 
horseradish peroxidase for  H2O2 [69], urease for urea [70], 
laccase and polyphenol oxidase for rutin [71], tryptophan 
oxidase for tryptophan [72], etc. act as sensitive recognition 
elements. The function of the signal transducer is to convert 
chemical changes into detectable and readable electronic 
signals which are finally transferred to the data evaluation 
component. Recent developments in the field of nanotech-
nology and nanoscience reveal the excellent efficiencies of 
the nanostructured materials as signal transducers. Biosen-
sors based on nanostructured materials as artificial biorecep-
tors are used for early detection and diagnosis of diseases 
through the estimation of the levels of biomarkers [73–75]. 
The signal transducer behavior of the nanomaterials mainly 
depends upon the electrochemical redox properties, surface-
to-volume ratio, crystal structure and phase, morphology, 
and the presence of some other conducting matrices along 
with the nanostructured materials [76–78]. In contrast, 
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Fig. 1  a Crystal structure of  NiCo2O4. Reproduced with permission from Ref. [41]. Copyright © 2014 Elsevier B.V. b  NiCo2O4 cubic spinel. 
Reproduced with permission from Ref. [42]. Copyright © 2013 American Chemical Society
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in enzyme-free biosensors, nanostructured materials are 
used as signal transducers as well as sensitive recognition 
elements.

Electrochemical biosensors are mainly based on the out-
put electrical signals changes incurred from either the oxida-
tion or the reduction of the target bioanalyte on the surface 
of the transducer (Fig. 2) [79–81]. These redox reactions are 
catalyzed by signal transducer enzymes and nanostructured 
materials in enzyme-based and enzyme-free biosensors, 
respectively. The strength of the electrical signals is signifi-
cantly affected by the concentrations of target bioanalytes, 
temperature, pH, and the presence of the interfering species 
[82–85].

3  Synthesis of Nano‑/Micro‑Structured 
 NiCo2O4

3.1  Hydrothermal/Solvothermal Method

Hydrothermal synthesis involves heterogeneous reac-
tions in an aqueous medium within a temperature range of 
100–200 °C and high pressure. To achieve these conditions, 

the reaction is usually carried out in Teflon-lined sealed steel 
autoclaves. Alkali metal hydroxide or  NH3 is added to con-
vert the precursor metal salts into their respective hydroxides 
at basic pH conditions [86, 87]. An initial nucleation phase 
is followed by the directed crystal growth along appropriate 
crystal planes. The morphology, surface, and the structural 
features of the materials synthesized through hydrothermal 
method depend upon the conditions like temperature, pH of 
the solution, concentration of the precursor, nature of the 
solvent, and the presence of the templates [88].  NiCo2O4 
nano-/microstructures of various shapes and morphologies 
have been prepared hydrothermally. Nano-/micro-structured 
 NiCo2O4 of morphologies such as urchin shaped [89], coral-
like [90], core–ring-structured nanoplatelets [91], porous 
coral-like nanospheres [36], hollow nanospheres [92], nano-
spheres [93], urchin-like spheres [94], mesoporous nano-
particles [95], mesoporous nanoneedles [96, 97], 3D net-
work-like mesoporous nanostructures [98], 3D hierarchical 
tremella-like, flower-like, urchin-like and pine needle-like 
[99], nanoflakes [100], nanowalls [101], etc. are reported.

Ni and Co precursor salt solutions with molar atomic ratio 
of 1:2 are taken during hydrothermal growth since Ni and 
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Co atoms are present in the 1:2 atomic ratio. Liu et al. [94] 
used 1 mmol Ni(NO3)2·6H2O and 2 mmol Co(NO3)2·6H2O 
solution to prepare urchin-like  NiCo2O4 spheres. Yang 
et  al. [102] mixed 1 mmol of Ni(CH3COO)2·4H2O and 
2  mmol of Co(CH3COO)2·4H2O for the preparation of 
 NiCo2O4 nanospheres. Yu et  al. [96] used 0.5  mmol 
Ni(NO3)2·6H2O, 1 mmol Co(NO3)2·6H2O for the synthe-
sis of  NiCo2O4 mesoporous nanoneedles. Zhu et al. [98] 
mixed 0.225 mmol of Ni(CH3COO)2·4H2O and 0.45 mmol 
of Co(CH3COO)2·4H2O for the synthesis of 3-D network-
like mesoporous nanostructures. For the initial formation 
of binary metal hydroxides or metal carbonate hydroxides, 
reagents like  NH3, urea, NaOH,  NH4HCO3,  NH4F, hexam-
ethylenetetramine (HMTA) [103], diethylene glycol (DEG), 
cetyltrimethylammonium bromide (CTAB) [104], sodium 
dodecyl sulfate (SDS) [105], poly(diallyldimethylammonium 
chloride) (PDDA) [106], glycine [107], methyl glycerate 
[108], and ethylene glycol are added in the reaction mixture. 
The combination of some polar solvents such as ethanol, 
ethanol, propanol, ethylene glycol, and acetone along with 
water has also been found to facilitate the morphological 

characteristics [109]. Water:polar solvent ratio also signifi-
cantly affects the growth mechanism. In Fig. 3a–d, different 
morphologies for the  NiCo2O4 nanostructures are shown 
for water:ethanol ratios 1:0, 3:1, 1:1, and 1:3. More porous, 
denser, and thinner sheets were formed for the synthesized 
3D flower-like  NiCo2O4 nanostructures as the composition 
of ethanol was increased.

In the hydrothermal growth, the temperature is also a 
key factor in controlling the morphology of the nanostruc-
tures. Urchin- and sheaf-like  NiCo2O4 nanostructures were 
synthesized by Umeshbabu et al. [104] using CTAB as a 
surfactant under hydrothermal conditions at 120  °C and 
200  °C temperatures, respectively. Different morphologies 
were attributed to different degrees of crystal splitting and 
anisotropic crystal growth at different growth temperatures 
[110]. Further, the temperature also affects the magnitude 
of the van der Waals forces, hydrogen bonding, hydrophobic 
attraction, crystal field attraction, and intrinsic crystal con-
traction which subsequently control the Ostwald ripening 
process [111, 112].

Fig. 3  FESEM image of  NiCo2O4 samples using water: ethanol ratios a 1:0, b 3:1, c 1:1, and d 1:3. Reproduced with permission from Ref. 
[109]. Copyright © 2017 Elsevier B.V.
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Nayak et  al. [89] mixed Ni(NO3)2·6H2O and 
Co(NO3)2·6H2O salts in a 1:2 atomic ratio along with urea 
which produced  OH− ions in the reaction mixture according 
to Eqs. 1–3.

Ni2+ and  Co2+ on reaction with these  OH− ions formed 
Ni–Co bimetallic hydroxide  [NiCo2(OH)6] which were 
finally converted into  NiCo2O4 nanoneedles after crys-
tal growth and calcinations. However, according to some 
reports, in the presence of urea, metal carbonate hydrox-
ides are initially formed instead of bimetallic hydroxides 
(Eqs. 4–7) [113].

(1)CO(NH2)2 + H2O → 2NH3 + CO2

(2)NH3 + H2O → NH4OH

(3)NH4OH → NH+

4
+ OH−

(4)CO2+OH
−
→ HCO−

3
→ H++CO2−

3

(5)2Ni2+ + CO2−
3

+ 2OH−
→ Ni2(CO3)(OH)2

(6)2Co2+ + CO2−
3

+ 2OH−
→ Co2(CO3)(OH)2

Even ethanol as the solvent can also initiate the forma-
tion of metal carbonate hydroxides. Two-dimensional porous 
 NiCo2O4 nanodisks were synthesized by a low-temperature 
hydrothermal method by Jain et al. [114] (Eqs. 8, 9). Fig-
ure 4 proposes the initial formation of  Ni2(CO3)(OH)2 and 
 Co2(CO3)(OH)2. Subsequent hydrothermal treatment in 
basic medium followed by calcination at 500 oC formed 
two-dimensional porous  NiCo2O4 nanodisks. 

The nature of alkali source, capping agent, and other addi-
tives significantly affects the morphology of the  NiCo2O4 
nanostructures. Wang et  al. [99] reported tremella-like 
 NiCo2O4 nanostructures in the presence of HMTA, which 
transformed into flower-like nanostructures when  NH4F was 
also added along with HMTA. However, when HMTA was 
replaced with urea, urchin-like and pine needle-like  NiCo2O4 
nanostructures were formed, respectively, in the absence and 
presence of  NH4F additive [99]. HMTA is hydrolyzed to 
produce  NH3 which finally produces  OH− ions as stated ear-
lier in this section (Eq. 10).

(8)C2H5OH + 3H2O → 2CO2 + 6H2

(9)CO2 + H2O → H2CO3 → 2H+ + CO2−
3

(10)(CH2)6N4 + 6H2O → 4NH3 + 6HCHO
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Copyright © 2018 Elsevier B.V.

(7)Ni2
(

CO3

)

(OH)2 + 2Co2
(

CO3

)

(OH)2 + O2 → 2NiCo2O4 + 3CO2 + 3H2O



Nano-Micro Lett.          (2020) 12:122  Page 7 of 52   122 

1 3

It was suggested that the  F− ions released from  NH4F 
stimulate the initially formed nanosheets and nanoneedles 
to produce more active sites to further activate nucleation, 
more mass loading of active material per unit area, firm 
binding between the active material, and hence more crystal 
growth [115–117]. The possible set of reactions elaborating 
the role of  F− ions released from  NH4F is shown as follows 
[118] (Eqs. 11–13).

(11)Co2+ + Ni2+ + 2F− → CoF+ + NiF+

(12)CoF+ + NiF+ + OH−
→ CoF(OH) + NiF(OH)

(13)
4CoF(OH) + 2NiF(OH) + O2

Annealing
⟶ 2NiCo2O4 + 6HF

Further, different concentrations of the  NH4F also stimu-
lated the initially formed nanostructures to acquire more ver-
satile morphologies. For 3, 9, and 12 mmol concentrations of 
 NH4F, various morphologies of the  NiCo2O4 nanostructures 
are shown in Fig. 5. With an increase in concentration from 
3 to 9 mmol, aggregation of the neighboring nanosheets 
occured. Further increase in concentration to 12 mmol, 
rhombus-shaped architectures were formed [117].

Deng et al. [119] prepared novel urchin-like peapoded 
 NiCo2O4@C nanostructures as a bifunctional catalyst for 
the water-splitting reaction. A three-phase process was pro-
posed which included the initial hydrothermal synthesis of 
nanoneedles self-assembled microsphere followed by coat-
ing with polymerized glucose as green carbon source onto 
 NiCo2O4 microsphere. The final stage was the calcination 

Fig. 5  FESEM images representing the effect of concentration of  NH4F on the morphologies of  NiCo2O4 nanostructures: a–c 3 mmol  NH4F; 
d–f 9 mmol  NH4F; g–i 12 mmol  NH4F. Reproduced with permission from Ref. [117]. Copyright © 2014 Elsevier Ltd.
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of the coated  NiCo2O4 microsphere under  N2 atmosphere 
to give urchin-like peapoded  NiCo2O4@C. The fabrication 
process of urchin-like peapoded  NiCo2O4@C is pictorially 
demonstrated in Fig. 6.

Still another way of engineering the morphology, poros-
ity, and growth of the crystals along the particular oriented 
crystal planes of the nanomaterials, is the use of non-aque-
ous solvents. The modified method is named as solvothermal 
instead of hydrothermal. Solvents with different solubilities 

and polarities can significantly affect the degree of super-
saturation, the diffusion rates of the chemical species to 
the surface of the growing crystals, the interfacial surface 
energy, etc. [120, 121]. Fu et al. [122] synthesized 1D porous 
 NiCo2O4 microrods (using metal acetate salts) (Fig. 7a) and 
microspheres (using metal nitrate salts) (Fig. 7b) in aqueous 
and isopropanol media, respectively, under similar condi-
tions of temperature and reaction time. In 1:1 ethanol:water 
medium, spindle-like hierarchical architectures composed 

Precursor

Polymerized glucose

Hydrothermal
method

Urea Hydrothermal
method

Annealing
process

Ni-Co
precursor

Intermediate
product

Urchin like peapoded
NiCo2O4@C

H2O

H2
HER

O2

OH−

OER

Co(NO3)2
Ni(NO3)2

Fig. 6  Schematic diagram of the process of urchin-like peapoded  NiCo2O4@C. Reproduced with permission from Ref. [119], Copyright © 
2017 Elsevier B.V.

Fig. 7  FESEM images of  NiCo2O4 architectures prepared solvothermally using different solvents a water, b isopropanol, c 1:1 ethanol: water, d 
pure ethanol, and e diethylene glycol. Reproduced with permission from Ref. [122]. Copyright © 2017 American Chemical Society
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of closely packed microplates aligned along one direction 
with sizes of 3–5 μm were formed (Fig. 7c). In pure ethanol 
microspheres composed of nanosheets, interweave together 
with an average diameter of 8 μm were formed (Fig. 7d). 
However, in diethylene glycol, irregular aggregates with 
sheet-like structures were synthesized (Fig. 7e).

Wang et al. [123] in an interesting stepwise hydrothermal 
growth synthesized layers of  NiCo2O4 nanosheets on the sur-
face of  NiCo2O4 nanocones precursor to give highly ordered 
3D hierarchical  NiCo2O4@NiCo2O4 core–shell nanocone 
arrays on nickel foams (Fig. 8). Different morphologies 
were engineered by controlling the reaction time and the 
temperature during stepwise hydrothermal growth. Further, 
 NiCo2O4 nanocones arrays on Ni foam were synthesized 
in the absence of HMTA while the  NiCo2O4 nanosheets 
growth on  NiCo2O4 nanocones was guided by the presence 
of HMTA.

3.2  Templated Solution Growth Method

The morphology, size, shape, and surface area of nanostruc-
tures can be designed through template-based synthesis to 
produce nanostructures with controlled physical, chemi-
cal, electrical, and electronic properties essential in nota-
ble applications and are also quite different from those of 
the bulk materials. Generally, three stages, viz., template 

preparation, directed synthesis of the desired material using 
the template, and the template removal, are described in the 
overall growth process of nanostructures [124]. The chemi-
cal nature, structure, concentration, and growth temperature 
are some of the important environmental factors affecting 
the growth of nanomaterials. Template-based methodolo-
gies are reported in the literature which govern the synthe-
sis of  NiCo2O4 nanomaterials with versatile morphologies 
including nanospheres, hollow spheres, nanocages, hollow 
submicron spheres, hollow irregular octahedra-like cages, 
flower-like nanostructure, microspheres with highly ordered 
mesoporous structures, nanowires, etc. With the develop-
ment of new methods for synthesizing mesoporous binary 
 NiCo2O4 metal oxides, the combination of template method 
with other methods such as hydrothermal/solvothermal, 
sol–gel has been widely used. In one such study, Ren et al. 
[125] prepared mesoporous  NiCo2O4 microspheres using a 
mesoporous silica (KIT-6) template. The KIT-6 template 
was added into the metal nitrate precursor solution prepared 
in ethanol. The schematic illustration of the formation of 
mesoporous  NiCo2O4 microspheres is shown in Fig. 9a. 
The high porosity of the synthesized mesospheres was 
ascertained by FESEM and TEM images (Fig. 9b, c). The 
template was finally removed by etching with 2 M NaOH 
solution [125].

Yuan et al. [126] utilized silica spheres as hard tem-
plates prepared by the modified Stöber method [127], for 

NiCo2O4 nanocone

NiCo2O4@NiCo2O4NiCo2O4@NiCo2O4 precursor

NiCo2O4 precursor

(ii)(i)

Ni foam

Co2+

Ni2+ Urea

(iii)

(iv)

(v)

500 nm

Fig. 8  Schematic illustration for the formation of highly ordered 3D hierarchical  NiCo2O4@NiCo2O4 core–shell nanocones arrays on nickel 
foams. Reproduced with permission from Ref. [123], Copyright © 2018 Elsevier B.V.
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the synthesis of hierarchical mesoporous hollow  NiCo2O4 
submicron spheres with uniform size and mesoporous tex-
tual property. These submicron spheres were composed 
of ultrathin nanosheets with a thickness of a few nanom-
eters. The NaOH solution was used for the in situ removal 

of silica spheres. Dopamine—a biomolecule containing 
amine functional groups is capable of self-polymerize 
under alkaline conditions. It forms a layer of the polydo-
pamine which attracts various metal ions including  Co2+ 
and  Ni2+ cations due to strong electrostatic interactions. 

(a)

Meso SiO2
(KIT-6)

NiCo2O4@KIT-6 Meso NiCo2O4

RemoveFilled with

Co2+, Ni2+ templates

(c)(b)

500 nm 100 nm

Fig. 9  a Schematic illustration of the formation of mesoporous  NiCo2O4 microspheres, b high-magnification FESEM image, and c TEM image 
of the mesoporous  NiCo2O4 microspheres. Reproduced with permission from Ref. [125]. Copyright © Authors

Co2+

Ni2+

H2O + ROH
NH

4 NO
3

Dopamine 

+
NH4NO3

30 h, 80 °C
D0.5-1.5NiCo2O4

D-free NiCo2O4

5 µM

5 µM

Fig. 10  Schematic illustration of the synthesis of dopamine-free and dopamine-NiCo2O4 nanostructures. Reproduced with permission from Ref. 
[128], Copyright © 2016 American Chemical Society
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Further, the alkalinity of the medium results in the forma-
tion of –OH–Ni–OH–Co–OH– complex networks. This 
property has been explored for the synthesis of  NiCo2O4 
nanostructures by Veeramani et al. [128]. FESEM images 
shown in Fig. 10 are demonstrating the effect of dopa-
mine on the morphology of the  NiCo2O4 nanostructures. 

Flower-like dopamine derived  NiCo2O4 nanostructures 
were formed.

In another significant strategy, Xiong et al. [129] used 
mollusk shell-based macroporous carbon material (MSBPC), 
as a template to grow  NiCo2O4 nanowires hydrothermally 
(Fig. 11a, b). The MSBPC was obtained from mollusc shells 

Fig. 11  FESEM images of a MSBPC, b  NiCo2O4 nanowires grown on MSBPC. Reproduced with permission from Ref. [129]. Copyright © 
2014 American Chemical Society. c TEM image of  SiO2@RF spheres, d TEM image of  NiCo2O4 nanoflakes grown on  SiO2@RF spheres. 
Reproduced with permission from Ref. [130]. Copyright © 2018 Elsevier B.V. e FESEM image of micron-sized  NiCo2O4 pompon. Reproduced 
with permission from Ref. [132]. Copyright © 2019 Elsevier B.V. f FESEM image of  NiCo2O4 hollow submicron spheres. Reproduced with per-
mission from Ref. [133]. Copyright © 2015 Elsevier B.V.
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by removing calcium carbonate crystal and other biomac-
romolecules by acid treatment and carbonization. It was 
observed that there was uniform and dense growth of the 
 NiCo2O4 nanowires on the inner walls of MSBPC channels. 
The average length of the  NiCo2O4 nanowires was about 
1.5 µm. Li et al. [130] reported the synthesis of composite 
C@NiCo2O4 hollow microspheres via a two-step strategy 
of hard template-induced hydrothermal synthesis followed 
by calcination.  SiO2@RF (resorcinol–formaldehyde resin, 
RF) sphere was used as a hard template, whereas HMTA 
was used as precipitant. The template  SiO2@RF was syn-
thesized via a one-pot sol–gel process under alkaline condi-
tion using an alcohol–water mixed solvent [131]. The  SiO2 
core was removed by treating the prepared material with 
2 M NaOH at room temperature for 12 h. The  SiO2@RF 
template was having a core–shell structure with an aver-
age diameter of 350 nm (Fig. 11c). The  NiCo2O4 nanoflakes 
were grown and assembled on the carbon surface of the 
 SiO2@RF spheres (Fig. 11d). Recently, novel micron-sized 
 NiCo2O4 pompon was prepared by templated growth using 
polyvinylpyrrolidone (PVP) non-ionic polymer and cati-
onic surfactant CTAB as co-template [132]. Columbic and 
coordinative forces between template, co-template, and the 
metal ions help to form a stable “hairball” structure which 
finally was converted into a micron-sized pompon-like prod-
uct on annealing (Fig. 11e). In contrast, in the absence of 
co-template CTAB, mesoporous  NiCo2O4 hollow submi-
cron spheres with a uniform diameter of 400–500 nm were 
obtained through a soft template method assisted by PVP 

(Fig. 11f). Further, in the absence of even PVP, solid sub-
micron spheres were obtained [133].

Qi et al. [131] also used RF microspheres as templates for 
the synthesis of  NiCo2O4 hollow microspheres with tunable 
shell numbers and shell thickness. The shell numbers were 
controlled by adjusting the solvent ratio (DI water: ethyl-
ene glycol) and heating ramp rate, whereas the shell thick-
ness and porosity were controlled by adjusting the metal 
ion concentrations (Fig. 12). For total molar concentrations 
of  Ni2+ and  Co2+ of 0.05 and 0.1 M, thin and thick shells, 
respectively, were formed.  NiCo2O4 hollow microspheres 
with double and triple shells were formed at a heating ramp 
rate of 2 and 5 °C min−1, respectively, in EG as a solvent. 
With the increase in the ramp rate, the increased temperature 
gradient of the infused RF microspheres along the radial 
direction favors the separation of adjacent  NiCo2O4 lay-
ers and the infused RF cores, thereby transforming double 
shell to triple shells [134]. Furthermore, EG prevents the 
formation of the metal aqua ions, and thus, the penetration 
of the metal ions into RF microspheres is accelerated which 
is essential for the formation of multi-shell  NiCo2O4 hollow 
microspheres [135, 136]. Additionally, the final calcination 
process also results in some adhesion force in the outward 
direction and the contraction force by decomposition of the 
inner core which segregates the outer  NiCo2O4 shell and the 
inner infused RF [131].

In addition to templates of organic origin, inorganic metal 
oxides have also been reported as template materials for the 
synthesis of  NiCo2O4 nano-/microarchitectures [137]. Lv 

Thick shell

Thin shell

Infused RF Single

Water to ethylene glycol

2 °C/min Ethylene glycol

2 °C/min to 5 °C/min

Double Triple shell

NiCo2O4

NiCo2O4

Ni2+

Co2+

Fig. 12  Pictorial representation for the formation of  NiCo2O4 hollow microspheres with tunable numbers and shell thickness. Reproduced with 
permission from Ref. [131]. Copyright © 2016 Elsevier B.V.
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et al. [138] synthesized hollow  NiCo2O4 octahedral nanoc-
ages via a  Cu2O-templated strategy in combination with a 
coordination reaction. Uniform  Cu2O octahedral crystals 
were prepared by reducing a copper-citrate complex solu-
tion with ascorbic acid in the presence of PVP. Initially, 
amorphous (NiCox)O(OH) was deposited onto the  Cu2O 
octahedral crystals through a precipitation method.  Cu2O 
octahedral crystals were etched according to a “coordinat-
ing etching and precipitating” (CEP) using  Na2S2O3 as 
coordinating etchant [139] (Eqs. 14, 15). After that, the 
product was annealed at 400 °C for 2 h to get the hollow 
 NiCo2O4 nanocages. In a similar study, Huang et al. [140] 
reported the synthesis of highly porous  NiCo2O4 hollow 
nanospheres through a polycrystalline  Cu2O-templated 
route based on “coordinating etching and precipitating” 
process. The excellent electron transfer capability, large 
specific surface area, and intrinsic redox couples of  Ni2+/
Ni3+ and  Co2+/Co3+ ions, and superior electrocatalytic 
activity of  NiCo2O4 hollow nanospheres were explored for 
glucose sensing by cyclic voltammetry and electrochemi-
cal impedance spectroscopy.  NiCo2O4 hollow nanosphere-
modified glassy carbon electrode (GCE) exhibited a high 
sensitivity of 1917 μA mM−1 cm−2, linear dynamic ranges 
of 0.01–0.30 mM and 0.30–2.24 mM, and very low detec-
tion limit of 0.6 μM (S/N = 3). Solid CuO octahedral is also 
reported as template materials for the synthesis of hollow 
octahedra-like  NiCo2O4 cages. However, CuO templates 
can be simply removed by dissolving with a diluted  NH4OH 
solution [141].

Yang et al. [142] reported  NiCo2O4 hollow nanorods pre-
pared by the sacrificial template-accelerated acid hydrolysis 
of ZnO (Eq. 16).

3.3  Sol–gel Method

The sol–gel process represents the chemical conversion of 
the liquid “sol” to the network “gel” phase, subsequently 
post-treatment into solid metal oxides with microcrystalline 
ultrafine particles. It is superior to other methods because it 

(14)Cu2O + S2O
2−
3

+ H2O → Cu2(S2O3) + 2OH−

(15)S2O
2−
3

+ H2O ↔ HS2O
−

3
+ OH−

(16)ZnO + 2H+
→ Zn2+ + H2O.

can better control the texture and surface properties of syn-
thesized nanomaterials. The sol–gel method for the synthesis 
of nanomaterials is affected by numerous factors including 
pH, temperature, nature of solvent, growth time, agitations 
time, presence of capping agents, template, etc. With the 
consideration of these factors and potential applications, 
many protocols have been used to design materials of dif-
ferent sizes and features, including nano-, micro-, meso-, 
and macro-materials. To get excellent porosity and conduc-
tivity for potential electrochemical applications, the addi-
tion of polymers stuffs such as PVP [143], organic solvents/
additives like propionic acid [144], citric acid [145, 146], 
N,N-dimethylformamide (DMF) [147], and epoxides like 
propylene oxide [148, 149], during the post-annealing pro-
cess is suggested. Significantly the additive/metal ion molar 
ratio is very important in controlling the pore size and pore 
volume. Traditional use of  SiO2 is avoided as its addition 
decreases the conductivity and limits the connection of the 
film with conducting substrate in thin film forms of  NiCo2O4 
[143]. In a typical sol–gel method, the  NiCo2O4 spinel oxide 
was prepared by mixing appropriate amounts of metal salt 
precursors along with citric acid. The resulting solution 
was magnetically stirred at 80  °C for 2 h to get a gelati-
nous matrix. Finally, the matrix was calcined at 550  °C for 
5 h to get the desired product [146]. Citric acid was also 
used as a chelating ligand for the synthesis of highly porous 
coral-like crystalline  NiCo2O4 nanoparticles with submicron 
sizes via a facile sol–gel method in  H2O-DMF mixture as 
solvent [147]. Liu et al. prepared nanoporous  NiCo2O4 thin 
films deposited on ITO glass. The precursor solutions for 
 NiCo2O4 nanospheres were prepared via a sol–gel method 
in glacial acetic acid and ethanol as solvents, and ethylene 
glycol and CTAB were used as a viscosity modifier template, 
respectively [150]. Thus, the sol–gel process is a proven and 
important method for preparing  NiCo2O4 nanoparticles.

3.4  Co‑precipitation Method

Better stoichiometric control and high purity of the metal 
oxide nanomaterials can be easily achieved through the 
coprecipitation method which involves simultaneous precipi-
tation from a homogeneous solution of two or more cations. 
Simultaneous occurrence of nucleation, growth, coarsen-
ing, Ostwald ripening, and aggregation dramatically affect 
the size, morphology, and properties of the metal oxide 
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nanoparticles. The technique has been applied for the syn-
thesis of  NiCo2O4 nanomaterials.  NiCo2O4 hexagonal nano-
structures were prepared by Bhagwan et al. [151] using Ni 
and Co chlorides and 6 M KOH as the precipitating agent. 
The schematic illustration for the formation of  NiCo2O4 hex-
agonal is shown in Fig. 13a. It was suggested that the strong 
alkaline environment in the growth solution caused nickel 
and cobalt ions to precipitate and nucleate together, forming 
nickel–cobalt hydroxide which was subsequently converted 
into  NiCo2O4 hexagonal after calcination at 300  °C. Liang 
et al. [152] reported hierarchical  NiCo2O4 nanosheets@hal-
loysite nanotubes (Fig. 13b). The initial formation of NiCo 
precursor@halloysite nanotubes was assisted by HMTA and 
dehydrated citric acid trisodium salt.

A stepwise co-precipitation template free method was 
designed by Chen et al. [153] for the synthesis of hier-
archical urchin-like  NiCo2O4 hollow nanospheres. Urea-
assisted mesoporous urchin-like  NiCo2O4 nanostructures 
were prepared by Jadhav et al. [154] by an easy, viable, 

and cost-effective co-precipitation method. Yu et al. [155] 
explored the structure-stabilizing properties of PVP, which 
can bind the metal ions through electrostatic interaction 
with the –N and/or C=O functional groups, for the forma-
tion of Ni–Co precursor particles with tetragonal prism-
like shapes by a modified coprecipitation method. The 
yolk–shell Ni–Co oxide nanoprisms with a highly porous 
interior core structure consisting of numerous polycrystal-
line primary particles were obtained finally after anneal-
ing. Other stabilizing and precipitating agents like ethylene 
glycol (EG) [156], urea [157], NaOH,  NH4OH,  NH4HCO3, 
 H2C2O4 [158, 159] and  NaHCO3 [153] are reported in the 
literature. Organic stabilizers such as EG are supposed to 
form a protective layer around the particle surface through 
interactions with hydroxyl groups preventing the aggre-
gation. Moreover, EG also acts as a bidentate chelating 
ligand for solvated metal ions [160]. Another important 
factor that controls the morphology, shape, and size of 
the nanoparticles is the pH of the reaction medium during 
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Fig. 13  a Schematic representation for the synthesis of hexagonal  NiCo2O4 nanosheets, Reproduced with permission from Ref. [151]. Copy-
right © 2019 Elsevier Ltd. and b hierarchical  NiCo2O4 nanosheets@halloysite nanotubes via co-precipitation method. Reproduced with permis-
sion from Ref. [152]. Copyright © 2014 American Chemical Society



Nano-Micro Lett.          (2020) 12:122  Page 15 of 52   122 

1 3

coprecipitation. Wan et al. [159] observed the change in 
morphology of the  NiCo2O4 precursors from the cubic to 
the fibrous along the axial direction. The fibrous morphol-
ogy was maintained at a still higher pH value of 8.4; how-
ever, the aspect ratio was increased (Fig. 14a–d). A dynamic 
equilibrium was suggested to exist between metal ammoni-
ated complexes and the coprecipitation of  Ni2+ and  Co2+ as 
their oxalates.

The post-annealing temperature is also an important fac-
tor for controlling the morphology of the  NiCo2O4 spinel 
structures. The homogeneous dark blue-colored suspension 
which was obtained by mixing the metal nitrates and NaOH 
solution was initially evaporated under rotation and reduced 
pressure conditions by a cost-effective rotary evaporation 
method. Hexagonal column-like mesoporous loose archi-
tectures and hexagonal dense blocks were obtained at 200 
and 400  °C calcination temperatures, respectively (Fig. 15) 
[161].

3.5  Electro‑Deposition

Electro-deposition is considered a very useful, versatile, 
and flexible tool for the deposition of dendritic hierarchical 
structures, thin and thick films, nanosheet, nanofoil, nano-
tubes, nanowires, and many well-ordered transition metal 
oxides on conducting surfaces. Potentiostatic, galvanostatic, 
and pulse plating are the three main techniques employed for 
electro-deposition [162, 163]. The basic principle of electro-
deposition involves three steps, viz. preparation of a metal 
ions precursor solution, co-electro-deposition, and final ther-
mal decomposition [164]. Recently, this technique has also 
been used for the preparation of  NiCo2O4 spinel structures 
for various applications, including supercapacitors, anode 
materials for Li-ion batteries, gas sensors, biosensors, etc. 
Wu et al. [165] deposited nanostructured cauliflower-like 
 NiCo2O4 film through galvanostatic electro-deposition 
combined with annealing treatment (Fig. 16). Galvanostatic 

Fig. 14  FESEM images  NiCo2O4 precursor powders prepared at a pH = 3, b pH = 7, c pH = 8 and d pH = 8.4. Reproduced with permission from 
Ref. [159]. Copyright © 2018 Elsevier Ltd.
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electro-deposition was performed using a three-electrode 
compartment comprising a stainless steel disk as a working 
electrode. An Ag/AgCl saturated with KCl and a platinum 
plate were used as the reference and counter electrodes, 
respectively. Hydroxide-SiO2 template transformed nano-
flakes to cauliflower-like  NiCo2O4 nanoparticles. Under 
cathodic potential, the generated  OH− ions catalyzed the 
sol–gel process for the formation of  SiO2. The generated 
 OH− ions facilitated the formation of Ni(OH)2 and Co(OH)2. 

Heat treatment of the deposited at 250 °C in air for 2 h con-
verts the metal hydroxides into  NiCo2O4 films.

Wang et al. [166] reported the electro-deposition of the 
nickel/cobalt/zinc ternary alloy layer on ultrafine nickel wire. 
Removal of the zinc by dealloying with NaOH solution fol-
lowed by oxidation at the atmospheric environment resulted 
in mesoporous  NiCo2O4 film on the surface of ultrafine 
nickel wire. Zhao et al. [167] grew  NiCo2O4 nanosheet 
networks on carbon cloth through a simple cathodic 
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ε

Fig. 15  Schematic illustration of the synthesis of hexagonal mesoporous structured  NiCo2O4 (HMS-NCO) and  NiCo2O4 calcined at 400  °C 
(NCO-400). Reproduced with permission from Ref. [161]. Copyright © 2018 Elsevier Ltd and Techna Group S.r.l.
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electro-deposition process followed by post-annealing at 
300  °C in an air atmosphere for 120 min. The average mass 
loadings for  NiCo2O4 nanosheet networks grown on car-
bon cloth at different electro-deposition times 200, 400, and 
600 s were 0.4, 0.6, and 0.9 mg cm−2, respectively. The NO−

3
 

ions from the metal salts were reduced to NO−

2
 and NH+

4
 ions 

at the cathode. This reduction also resulted in the formation 
of  OH− ions which combined with the  Ni2+ and  Co2+ to form 
amorphous binary metal hydroxide  NiCo2(OH)6 nanosheet 
networks [168]. Post-annealing transforms the  NiCo2(OH)6 
into  NiCo2O4 nanosheet networks [57, 169] (Eqs. 17–20).

The dissolution of the ions decreases near the electrode 
due to the formation of the  OH− ions and an increase in pH 

(17)NO−

3
+ H2O + 2e− → NO−

2
+ 2OH−

(18)NO−

2
+ 6H2O + 6e− → NH+

4
+ 8OH−

(19)Ni2+ + 2Co2+ + 6OH−
→ NiCo2(OH)6

(20)NiCo2(OH)6 +
1

2
O2 → NiCo2O4 + 3H2O

near the electrode is observed. Since the solubility constants 
of Ni(OH)2 (8.2 × 10−16) and Co(OH)2/3 (2.5 × 10−16) are 
very low and comparable, their simultaneous precipitations 
occur which finally gives  NiCO2(OH)6 [170, 171]. Rama-
doss et al. [169] electrodeposited highly porous and binder-
free 3D flower-like  NiCo2O4/Ni nanostructures on Ni wire 
and explored their supercapacitor applications (Fig. 17a). 
The high porosity of the nanostructures was attributed to 
the presence of  H2 bubbles produced by hydrogen evolu-
tion reaction during electro-deposition. Furthermore,  H2 
bubbles also acted as a template for the construction of a 
3D flower-like  NiCo2O4/Ni with dendritic walls on the Ni 
wire. Nanoforest hierarchical composites  Co3O4@NiCo2O4 
nanowire arrays were synthesized by Zhang et al. [172]. 
 Co3O4 nanowires were initially grown on Ni foam through a 
facile hydrothermal method. After that,  NiCo2O4 was elec-
trochemically deposited in the  Co3O4 nanowires to avoid 
the conventional aggregation (Fig. 17b). Mirzaee et al. 
[173] proposed a two-step method involving initial electro-
deposition followed by thermal treatment at 300 °C with 
a ramping rate of 1 °C min−1 to form flower-like arrays 
of  NiCo2O4 on electrochemically reduced graphene oxide 

Ni 3D-Ni 3D-NiCo2O4/Ni

(b)

(a)

ED
ED:

Co2+ & Ni2+

300 °CH2 bubble
template

iii

Ni foam

Ni wire 3D-Ni 3D-NiCo2O4/Ni

Co3O4 oCsAWN 3O4@NiCo2O4 NWAs

Fig. 17  a Electrodeposited 3D flower-like  NiCo2O4/Ni nanostructures on Ni-wire. Reproduced with permission from Ref. [169], Copyright 
© 2016 The Royal Society of Chemistry. b Schematic representation of the formation of nanoforest hierarchical composites  Co3O4@NiCo2O4 
nanowire arrays. Reproduced with permission from Ref. [172]. Copyright © 2013 Elsevier Ltd.
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(ERGO) which itself was deposited on nickel–nickel oxide 
foam.

In addition to these,  NiCo2O4 architectures of versatile 
morphologies have been electrochemically deposited on a 
variety of conducting surfaces. Some of these include hon-
eycomb-shaped  NiCo2O4 on carbon cloth [174], ultrathin 
 NiCo2O4 nanosheets on three-dimensional interwoven 
nitrogen-doped carbon nanotubes [175], ultrathin porous 
 NiCo2O4 nanosheet arrays on flexible carbon fabric, 3D 
vertically aligned carbon nanotubes/NiCo2O4 core/shell 
structures [176], hybrid composite Ni(OH)2@NiCo2O4 on 
carbon fiber paper [177], 3D hierarchical  NiCo2O4@MnO2 
hybrid nanomaterial on stainless steel mesh [178], free-
standing bowl-like  NiCo2O4 on carbon fiber paper [179], 
network-like holey  NiCo2O4 nanosheet arrays on Ni foam 
[180],  NiCo2O4@ carbon nanofibers [181], and many more.

3.6  Combustion Method

Combustion synthesis, also referred to as self-propagating 
high-temperature synthesis is one of the most versatile, con-
vinced, convenient, cost-effective, and fast method for the 
synthesis of nanomaterials. It involves a thermally induced 
redox reaction between precursor salt as oxidizers and an 
organic fuel [182–184]. Glucose, fructose, tartaric acid, 
sucrose, glycine, citric acid, hydrazine, urea, and oxalic acid 
are generally used as organic fuels. However, if metal oxa-
late or acetate salts are used, the combustion process can be 
directly conducted in the absence of fuel [185]. Byproduct 
gases like  CO2,  H2O,  N2, oxides of N  (NOx) and S  (SOx), 
etc. are evolved during the combustion process [186]. The 
release of these gases promotes the expansion of the product 
and rapid fall in temperature after the reaction ceases. This 
provides a solid product with a high degree of porosity and 
good dispersibility [187]. As compared to solid-state com-
bustion, liquid phase combustion synthesis has proved to be 
the most suitable one as oxidizers and fuel are well dissolved 
in aqueous or alcoholic solutions [188]. Ni(NO3)2·6H2O, 
Co(NO3)2·6H2O (in 1:2 molar ratio) as oxidizers and tartaric 
acid as fuel were dissolved in acidified 2-methoxy ethanol 
solution. The resulting solution was combusted at 250 °C 
for 1 h to prepare  NiCo2O4 nanoparticles [189]. Sucrose 
assisted combustion of the Ni and Co nitrates also resulted 
in  NiCo2O4 nanoparticles when the combustion process was 
carried out at 350 °C for 6 h [190]. The oxalate precursors 

were directly decomposed into  NiCo2O4 powders by heating 
in an air ambient atmosphere at 320 °C for 10 h [185]. Citric 
acid assisted combustion at 400 °C for 4 h resulted in highly 
porous  NiCo2O4 nanomaterials [191]. Urea-assisted com-
bustion was processed at 400 °C for 2 h in ethyl acetate as a 
solvent [192]. In each case, a viscous gel is obtained initially 
by heating the reaction solution at low temperature followed 
by auto-ignition resulting in the formation of highly fluffy 
mass which is finally calcined at high temperature. Direct 
calcination of the metal nitrate salts in the presence of alkalis 
without any fuel has also been reported for the synthesis of 
the  NiCo2O4 nanorods [41].

Though it is a fast and low-cost method for the synthesis 
of  NiCo2O4 powders, it suffers from some major drawbacks 
including less control over morphological uniformity and 
particle size, the simultaneous formation of a variety of crys-
tal phases, the formation of highly agglomerated structures, 
complex and uncertain growth mechanism, and critically 
very low possibilities of formation of a versatile and wide 
range of morphological structures as those of in hydrother-
mal and other solution methods.

3.7  Electro‑Spinning Method

Many electrospun carbonaceous materials such as carbon 
nanofibers, single-walled carbon nanotubes, multi-walled 
carbon nanotubes, etc. prepared from oxidation and carboni-
zation of polymers like PVP, PAN, PVA have been used as 
templates for the growth and deposition of  NiCo2O4 nano-
structures with versatile morphologies. In one synthetic way, 
there is simultaneous growth of  NiCo2O4 nanostructures and 
electro-spinning of template material [193, 194]. In another 
strategy,  NiCo2O4 nanostructures are grown through other 
synthetic methods like hydrothermal, sol–gel, coprecipita-
tion, etc. on pre-electrospun carbonaceous templates [39]. 
Electro-spinning setup comprises a high-voltage system, 
spinneret, and collector which results in the formation of 
continuous nanofibers with diameters ranging from nanom-
eter to micrometer [195–197]. The deposition of  NiCo2O4 
nanostructures on these carbonaceous materials not only 
improves the electrical and electronic properties but also 
enhances the thermal, mechanical and chemical stabilities 
which are the important prerequisite characteristics for the 
biosensing and other applications. The composition of the 
precursor solution, presence of additives like templates and 
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capping agents, modification in the electro-spinning setup, 
post-annealing, electrospun voltage are some of the major 
factors which control the thickness, porosity, and morphol-
ogy of the deposited  NiCo2O4 films. Lai et al. [198] through 
electro-spinning, co-deposition, redox deposition fabricated 
 NiCo2O4-doped carbon nanofiber@MnO2 nanosheet and 
nanorod hybrid membranes. Busacca et al. [199] prepared 
 NiCo2O4/carbon nanofibers composites and investigated 
their oxygen evolution reaction in alkaline electrolyte. Metal 
acetate salt precursor in a molar ratio 1:2 was mixed in PAN 
(as carbon source) and DMF. The electrospun layer was 
thermally oxidized at 270 °C in air for 30 min followed by 
subsequent carbonization at 900 °C for 1 h under a helium 
gas flow. Li et al. [193] fabricated porous one-dimensional 
 NiCo2O4 nanostructures via a single-spinneret electro-
spinning method. Stoichiometric amounts of Ni and Co 
nitrates were homogeneously mixed in a solution prepared 
by dissolving PVP in ethanol and N,N-dimethylformamide. 
Metallic precursor concentration: PVP (M: PVP) ratio was 
significant in determining the morphologies of the electro-
spun one-dimensional  NiCo2O4 nanostructures. For 0.44:1, 
0.61:1, and 0.87:1 M: PVP ratios,  NiCo2O4 nanofibers, 
nanotubes, and nanobelts were formed. The versatility in 
morphologies was attributed to the fast water evaporation 
and burning off of PVP during annealing. Guan et al. [194] 
synthesized spinel  NiCo2O4 nanofibers with diameters of 
50–100 nm through electro-spinning of the PVA/cobalt ace-
tate/nickel acetate composite precursor followed by anneal-
ing at high temperatures ranging from 400 to 800 °C. Liu 
et al. [39] demonstrated the surfactant-assisted hydrothermal 
uniform growth  NiCo2O4 nanoneedle on electrospun carbon 
nanofiber (ECF) and explored their glucose sensing proper-
ties non-enzymatically. ECF film was prepared through ini-
tial electro-spinning and subsequent oxidation and carboni-
zation of PAN (Fig. 18a–c). Xu et al. [200] instead of PAN 
used PVP as a carbon source to produce  NiCo2O4 nanotubes. 
These nanotubes were used as scaffolds for hydrothermal 
growth of  MnO2 nanosheets for the additional improvement 
in electronic conductivity and electrochemical activity for 
supercapacitor applications (Fig. 18d–f). Copolymers like 
poly (acrylonitrile-co-methylhydrogen itaconate) [201] and 
biobased polymer composites such as PAN/lignin [202] are 
also reported in the literature for the formation of flexible 
carbon nanofibers. The hollow carbon nanofibers were used 
as a template for the hydrothermal growth of  NiCo2O4 with 
uniform dandelion-like morphology consisting of densely 

grown nanoneedle (Fig. 18g, h) [203]. The above discussion 
thus reveals that the proper combination and the composition 
of the polymers can result in the formation of carbonaceous 
materials with versatile structural features with high surface 
area necessary for potential applications.

3.8  Microwave‑Assisted Method

Microwaves are the electromagnetic radiations having a fre-
quency range between 300 MHz and 300 GHz and a wave-
length range of 1 m–1 mm. Microwave-assisted synthesis of 
nano-/microstructures is superior to the conventional meth-
ods described above because it requires a very short reaction 
duration, is energy efficiency, cost-effectiveness, and gives 
an excellent yield of highly porous materials. Microwaves 
result in volumetric heating as they can penetrate through-
out the volume of reactants [204]. This volumetric heating 
is caused by various types of polarization in the medium, 
including electron polarization, atomic polarization, direc-
tional polarization, and space charge polarization [205]. To 
obtain better morphological results, microwave-assisted 
synthesis of nanomaterials is usually combined with other 
synthetic methods such as sol–gel, co-precipitation, and 
hydro/solvothermal, etc. Recently, the improvement in the 
hydrothermal method in harmony with microwave assistance 
has been studied to synthesize  NiCo2O4 nano-/microstruc-
tures. Other ways of engineering the structural aspects of the 
 NiCo2O4 are the use of a template, capping agents, organic 
solvents, ionic solvents, and addition of other growth addi-
tives. The microwave-assisted hydrothermal method was 
applied by Zhang et al. [206] to prepare  NiCo2O4 double-
shelled hollow spheres with an outer and inner shell thick-
ness of ~ 20 and ~ 70 nm, respectively. A mixture of isopro-
panol and glycerol was used to prepare a reaction solution 
(Fig. 19a). Glycerol molecules were supposed to form a self-
assembled quasi-emulsions in isopropanol that serve as a 
soft template for the growth of Ni–Co double hydroxides. 
In the absence of glycerol, solid microspheres with diam-
eters of ~ 1 µm were formed, demonstrating the templated 
role of glycerol in the synthesis of a double-shelled hollow 
nanostructure (Fig. 19b–d). In the presence of microwaves, 
the reaction mixture is heated due to dielectric loss, which 
significantly accelerates the reaction kinetics. Additionally, 
the presence of microwaves improves uniformity in terms of 
dispersion and size distributions.
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Shanmugavani et al. [207] analyzed the effect of reaction 
times on the morphology of the  NiCo2O4/NiO nanocompos-
ites. The reaction was carried out in the presence of oxalic 
acid at an operating frequency of 2.45 GHz and 800 W 
output power. It was proposed that the initially formed 

nanoparticles are converted into bundled-like structures as 
the reaction time was increased. Recently, Sun et al. [103] 
reported novel porous nanoscale NiO/NiCo2O4 heterostruc-
ture through two-stage calcination of nickel–cobalt bime-
tallic hydroxide precursors (NiCo precursors) which were 
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Fig. 18  a Fabrication procedure of  NiCo2O4/ECF nanohybrids, b FESEM image of ECF and c FESEM image of  NiCo2O4 nanoneedles grown 
on ECF. Reproduced with permission from Ref. [39]. Copyright © 2017 Elsevier B.V. d The fabrication procedure for  NiCo2O4@MnO2 com-
posites, e FESEM image of  NiCo2O4 nanotubes and f FESEM image of  MnO2 nanosheets grown of  NiCo2O4 nanotubes. Reproduced with 
permission from Ref. [200]. Copyright © 2016 Elsevier B.V. g, h Low- and high-magnification FESEM images, respectively, of  NiCo2O4 with 
uniform dandelion-like morphologies. Reproduced with permission from Ref. [203]. Copyright © 2019 Elsevier Ltd.
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initially synthesized using a microwave-assisted hydrother-
mal method in the presence of HMTA and  NH4F. Notably, 
 F− ions were supposed to act as functional template agents. 
Prolonged irradiation significantly affects the morphol-
ogy of  NiCo2O4 materials. When the irradiation time was 
increased from 5 to 40 min, the incompletely self-assembled 
and non-uniform 2D nanosheets are converted into more 
optimized and thickened 3D frameworks with large open 
spaces (Fig. 20a–i).

Nakate et al. [208] prepared nanocrystalline  NiCo2O4 
nanoplates in the surfactant-free environment using metal 
chloride salts precursors through microwave irradiation. 
Gu et al. [209] reported 3D nanosphere-like  NiCo2O4 nano-
structure composed of intertwined 2D ultrathin mesoporous 
nanosheets having large specific surface area 146.5 m2 g−1. 
The reaction solution was exposed to microwaves (power 
560 W) for 6 min. Su et al. [210] reported highly crystal-
line  NiCo2O4 supported on carbon black via a simple, one 

step intermittent microwave heating method avoiding the 
calcination process. However, in a contrary study, Tao et al. 
[211] analyzed the effect of post-annealing temperature on 
the morphologies of the  NiCo2O4. Ni–Co double hydroxide 
was initially prepared through a microwave-assisted method 
using a tertbutanol solution (98%). Flower-shaped morphol-
ogy of the Ni–Co double hydroxide was completely con-
verted into unique coral-like morphology on calcination. As 
the post-annealing temperature was increased from 400 to 
700 °C, individual ultrathin nanosheets shrink to smaller 
nano-sized crystal grains which finally self-assembled to 
form coral-like  NiCo2O4 architectures.

For greener perspectives, ionic solvents like [1-butyl-
3-methylimidazolium][BF4] {[Bmim][BF4]},  [Bmim]
FeCl4, [Bmim]Cl [212], and non-ionic glucose-based poly-
meric surfactant, β-C10Alkyl Poly Glucoside [213] are also 
reported in the literature for the synthesis of  NiCo2O4 archi-
tectures with versatile morphologies.
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Fig. 19  a Pictorial representation of the microwave-assisted hydrothermal synthesis of  NiCo2O4 double-shelled hollow spheres. b FESEM and 
c TEM images of  NiCo2O4 hollow spheres prepared in the presence of glycerol and d FESEM image of the  NiCo2O4 structures prepared in the 
absence of glycerol. Reproduced with permission from Ref. [206]. Copyright © 2017 Springer Nature
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3.9  Spray Pyrolysis Method

In spray pyrolysis technique, an aerosol of various precursor 
components is prepared in suitable solvent and is sprayed 
on the substrate. After that, sequential evaporation of the 
solvent from the surface of the substrate, heating to pre-
cipitate out the solute, high-temperature annealing, forma-
tion of microporous particles, and finally, sintering of solid 
particles is carried out [214].  NiCo2O4 nanostructures with 
morphologies hollow nanosphere [215], hollow micro-
spheres [216], dried plum-like particles [217], yolk–shell 
microspheres [218], nanoaggregates [219], thin films with 
uniform particle distribution size 20–30 nm [220], etc. are 
reported (Fig. 21a–e).

Similar to the electro-spinning method, carbonaceous 
materials such as reduced graphene oxide, carbon nanotubes, 
carbon nanofibers are also mixed in the precursor solution 
to improve the electrochemical properties of  NiCo2O4. Park 
et al. [221] synthesized three-dimensional macroporous 
multi-walled carbon nanotubes microspheres densely loaded 
with  NiCo2O4 hollow nanospheres via spray pyrolysis pro-
cess. The schematic illustration depicting the formation 
mechanism is shown in Fig. 22a. The polystyrene nanobeads 
added in the solution improved the structural uniformity and 
the dispersion of CNT microspheres. The similarity in the 
atomic radii of the Ni and Co ions resulted in the Kirkendall 
diffusion into the outer surface of the where they were oxi-
dized to form  NiCo2O4 (Fig. 22b).

Fig. 20  FESEM images of bimetal Ni-Co-precursors obtained under various microwave-assisted hydrothermal reaction times. a 5  min, b, c 
10 min, d 15 min, e 20 min, f 25 min, g 30 min, h 35 min, and i 40 min. Reproduced with permission from Ref. [103]. Copyright © 2019 Else-
vier Inc.
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4  Biosensor Applications of Nano‑/
Micro‑structured  NiCo2O4

4.1  Glucose Biosensors

Non-enzymatic glucose sensing is considered to be 
a better, fast, and convenient way as compared to the 
enzymatic method since the later is a complicated and 
multi-step process involving immobilization of enzyme 
bioreceptor such as glucose oxidase, glucose dehydroge-
nase, and quinoprotein glucose dehydrogenase onto the 
electrode surface [51, 52]. Furthermore, maintaining the 
enzyme stability under non-physiological conditions of 
observations is another major issue related to enzymatic 
glucose biosensing. Most of the biosensing measurements 
are based on cyclic voltammetry (CV) and amperometric 
analysis. Better biosensing behavior and electrochemical 
activity using  NiCo2O4 nano-/microstructure-modified 

electrodes are adjudged by broader redox peaks with 
larger area coverage in the CV curves. Since the spi-
nel  NiCo2O4 comprises binary intrinsic-state redox 
couples of  Ni3+/Ni2+ (0.58  V/0.49  V) and  Co3+/Co2+ 
(0.53 V/0.51 V), only a pair of redox peaks in the CV 
curves is generally observed due to almost similar redox 
potential values for NiO and  Co3O4 [142, 222, 223]. In 
alkaline medium,  NiCo2O4 is oxidized to Ni and Co per-
hydroxides which finally convert glucose into gluconol-
actone (Eqs. 21–26) [224].

(21)NiCO2O4 + OH− + H2O ↔ NiOOH + 2CoOOH + e−

(22)CoOOH + OH−
→ Co2O3 + H2O + e−

(23)NiOOH + Glucose → Ni(OH)2 + Gluconolactone

(24)CoOOH + Glucose → Co(OH)2 + Gluconolactone

Fig. 21  Morphologies of various  NiCo2O4 nanostructures a hollow nanosphere. Reproduced with permission from Ref. [215]. Copyright © 
2017 The Korean Society of Industrial and Engineering Chemistry, Published by Elsevier B.V. b hollow microspheres. Reproduced with permis-
sion from Ref. [216]. Copyright © 2019 Elsevier Ltd and Techna Group S.r.l. c yolk–shell microspheres. Reproduced with permission from Ref. 
[218]. Copyright © 2017 Elsevier Ltd. d nanoaggregates. Reproduced with permission from Ref. [219]. Copyright © 2015 Elsevier Inc. and e 
thin films with uniform particle distribution size 20–30 nm. Reproduced with permission from Ref. [220]. Copyright © 2016 Elsevier Ltd.
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Since the rates of oxidation of  Ni2+ and  Co2+ ions on 
the electrode surface during anodic scan determine the rate 
of sensing of glucose,  NiCo2O4 nano-/microstructures with 
versatile morphologies having large specific surface area, 
permeability, and most importantly short electron and ion 
diffusion pathways are synthesized.  Ni3+ and  Co3+ ions are 
reduced back to  Ni2+ and  Co2+ ions by the electrons lost by 
the oxidation of glucose to gluconolactone. According to 

(25)Ni2+ + Co2+ → Ni3+ + Co3+ + 2e−

(26)
Glucose

(

C6H12O6

)

→ Gluconolactone
(

C6H10O6

)

+ 2H+ + 2e−

Hussain et al. [225],  H2O2 is formed as one of the products 
along with gluconolactone if the electrochemical sensing is 
performed in the presence of oxygen. Glucose undergoes a 
spontaneous reaction with water and  O2 to form gluconol-
actone which is further oxidized into gluconic acid (Eqs. 27, 
28). In a slightly basic medium (pH = 7.4), gluconic acid 
ionizes to gluconate ions which act as mobile charge car-
riers on the surface of the  NiCo2O4 nanostructures produc-
ing a strong electrical signal (Eq. 29). Elakkiya et al. [226] 
reported highly porous flower-like  NiCo2O4 nanostructures 
synthesized via a facile hydrothermal method for excellent 
electrocatalytic activity in alkaline electrolyte for the oxida-
tion of glucose and lactic acid.
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The binary spinel  NiCo2O4 architecture exhibits better 
intrinsic electronic conductivity as compared to pure NiO 
and  Co3O4 which is attributed to the doping of  Ni3+ ions 
in the octahedral sites of the  Co3O4 crystal lattice which 
accelerates the electron hopping process [227]. Huang et al. 
[140] compared the electron transfer resistance (Ret) through 
electrochemical impedance spectroscopy for GCE modified 
with  NiCo2O4, NiO, and  Co3O4. Nyquist plots for all the 
modified GCE consisted of two portions; an inclined line 
at low frequencies and a semicircular portion at high fre-
quencies. However, the lowest Ret of  NiCo2O4/GCE was 
an indication of the enhanced conductivity for  NiCo2O4 
(Fig. 23a). Broader redox peaks  NiCo2O4/GCE as compared 
to NiO/GCE and  Co3O4/GCE confirmed the better biosens-
ing behavior of the  NiCo2O4 as compared to  Co3O4 and NiO 
(Fig. 23b).

Spinel  NiCo2O4 hollow nanocages were prepared by 
using Co-based zeolite imidazole frameworks (ZIF-67) as a 
template and precursor by Feng et al. [228]. Morphological 
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characterization revealed that the thickness of the cage shell 
was about 30 nm. The outer surface of the nanocages was 
covered with small nanosheets. A wide linear dynamic range 
0.18 μΜ–5.1 mM, high sensitivity 1306 μA mM−1 cm−2, a 
fast response time of 1 s, and limit of detection 27 nM were 
observed for  NiCo2O4 hollow nanocage-based modified 
GCE.

NiCo2O4 nanoplates interconnected through  MoS2 
nanosheets performed excellent electrocatalytic behavior 
toward glucose.  NiCo2O4 nanoplates and  MoS2 nanosheets 
illustrated a significance synergic effect. Though not an 
active catalyst for the oxidation of glucose, the highly 
active edge of vein-like  MoS2 nanosheets inhibited the 
agglomeration of  NiCo2O4 nanoplates and formed long 
conducting chains which provide an alternative pathway 
with lower electrical resistance [229] (Fig. 24a, b). The 
fabricated glucose biosensor exhibited a high sensitivity 
of 1748.58 μA mM−1 cm−2 and a very low detection limit 
of 0.152 μM.  MoS2 nanosheets have also been reported 



 Nano-Micro Lett.          (2020) 12:122   122  Page 26 of 52

https://doi.org/10.1007/s40820-020-00462-w© The authors

as support material for the fabrication of  NiCo2O4/MoS2 
nanocomposites through a simple ionothermal method in 
deep eutectic solvent (choline chloride (ChCl)-urea mixture) 
[230]. Deep eutectic solvents consist of simple eutectic-
based ionic liquids prepared by eutectic mixing of ChCl and 
some hydrogen bond donors like acids, amides, alcohols, etc. 
[231]. These solvents have excellent thermal stability, high 
surface tensions, negligible vapor pressure, and most impor-
tantly biodegradability [232–236]. The  NiCo2O4-MoS2/chi-
tosan/GCE-modified electrode was used as an electrochemi-
cal sensor for glucose in red wine and honey [230].

Analysis of non-enzymatic glucose sensing properties of 
 NiCo2O4 nanosheets showed linear response with respect 
to the change in glucose concentration varying from 5 to 
65 μM. The high sensitivity of 6.69 μA μM−1 cm−2 with 

a LOD value of 0.38 μM and liquid of quantification of 
1.27 μM was observed. During CV measurements, scan 
rates increased the oxidation and reduction peak currents 
as well as peak-to-peak separations [224]. The electro-
chemical kinetics of the  NiCo2O4 hollow nanorods grown 
on stainless steel via a sacrificial template showed similar 
trends during glucose sensing in 0.1 M NaOH solution 
with scan rates ranging from 5 to 100 mV s−1 (Fig. 25a). 
Amperometric studies revealed a steady-state current opti-
mization within 2 s of glucose addition. Calculated sen-
sitivity, linear detection range, and detection limit were 
1685.1  µA  mM−1  cm−2, 0.0003–1.0  mM, and 0.16  µM 
(S/N = 3), respectively (Fig. 25b) [142]. Cui et al. [237] 
prepared rectangular flake-like mesoporous  NiCo2O4 
via a facile hydrothermal method and observed glucose 
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biosensing sensitivity of 662.31 µA mM−1 cm−2 and very 
low detection limit of 0.3 nM at S/N = 3. The other opti-
mized operational parameters were: 0.2 M KOH, + 0.5 V 
applied potential and 1.0  mg  mL−1 loading of meso-
NiCo2O4 in the suspensions. Dry rod-like  NiCo2O4 syn-
thesized through a facile hydrothermal reaction followed 
by subsequently microwave treatment. The non-enzymatic 
glucose sensor fabricated using these rod-like features 
showed a high sensitivity of 431.29 µA mM−1 cm−2 [238]. 
The microwave treatment completely removed the water and 
made the material highly porous for exhibiting excellent 
biosensing applications. One-dimensional porous  NiCo2O4 
nanowires array grown on nickel foam  (NiCo2O4 NWs/NF) 

via a facile hydrothermal method exhibit highly efficient 
glucose sensitivity of 5916 μA mM−1 cm−2, a detection 
limit of 1 μM–3.987 mM and LOD of 0.94 μM (S/N  =  3) 
[239]. As conducting substrate, nickel foam not only pro-
vides the large electrochemically active surface area due to 
three-dimensional interconnected features, but also directs 
the growth of one-dimensional  NiCo2O4 porous nanow-
ires [240]. Besides, the one-dimensional porous  NiCo2O4 
nanowires array provided sufficient transport channels for 
ions and abundant active sites for redox reactions. Carbon 
cloth has also been used as a potential conducting surface 
for the growth of porous  NiCo2O4 nanowires. As fabricated 
enzyme-free  NiCo2O4 porous nanowire arrays supported on 
carbon cloth-based electrode for glucose sensing exhibited 
a linear dynamic range of 1 μM–0.63 mM, the sensitivity 
of 4.12 mA mM−1 cm−2, and low detection limit of 0.5 μM 
[241].

One of the main disadvantages of using bare  NiCo2O4 is 
its poor electrical conductivity. However, this limitation can 
be overcome by forming its composite/hybrid materials. It 
has been reported that the electrical conductivity and hence 
the electrochemical biosensing performance of  NiCo2O4 can 
be improved by making its composites with conducting car-
bonaceous materials like graphene, reduced graphene oxide, 
carbon nanotubes (single and multi-walled), carbon nanofib-
ers; conducting polymers like polypyrrole (PPy), polyaniline 
(PANI); metal oxides NiO,  Co3O4,  SnO2,  MnO2; and metals 
like Au, Pd, etc. Among these, the carbonaceous materials 
are considered to be potential candidates as compared to 
others due to their excellent electrical conductivities, good 
mechanical strength, thermal and chemical stabilities, and 
resistance to oxidation–reduction reactions. Besides, these 
carbonaceous materials provide a large specific surface area 
for better adsorption of analytes, which ultimately results in 
very high sensitivity and very low detection limits.

The two-dimensional one-atom-thick layered structure 
of graphene has been extensively used for making compos-
ites with  NiCo2O4 due to its high specific surface area of 
2670 m2 g−1 and excellent conductivity [242, 243]. Stud-
ies have revealed a higher specific surface area for the 
 NiCo2O4/reduced graphene oxide composites as compared 
to bare  NiCo2O4 nanoparticles (Fig. 26a) [244]. Even the 
pore width was less in the case of  NiCo2O4/reduced gra-
phene oxide composites. Various glucose-sensing scans 
are given in Fig. 26b–d. The enhanced redox peak current 
density for  NiCo2O4/reduced graphene oxide composites as 
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compared to pure  NiCo2O4 was attributed to the lesser extent 
of aggregation of graphene sheets due to the interception 
of the  NiCo2O4 nanoparticles on graphene surface causing 
weakening of π–π interaction between individual graphene 
sheets, faster diffusion rates and electron transfer between 
the glucose molecules and the electrode surface [245].

Ma et al. [246] developed  NiCo2O4 nanowrinkles/reduced 
graphene oxide hybrid-based modified GCE for non-enzy-
matic glucose detection at the physiological level. As far as 
the concentration of the glucose is concerned, the oxidation 
potential of glucose decreased while oxidation peak cur-
rent increased proportionally to a greater extent for  NiCo2O4 
nanowrinkles/reduced graphene oxide hybrid-based modi-
fied GCE as compared to single component  Co3O4, NiO 
and bare  NiCo2O4 at a scan rate of 100 mV s−1 in 0.1 M 
NaOH (Fig. 27a–d). The results confirmed the crucial role 
of reduced graphene oxide in improving the electrocatalytic 

biosensing performance of the  NiCo2O4 spinel for different 
concentrations of glucose.

In addition to two-dimensional graphene, Wu et al. [245] 
reported the synthesis of three-dimensional graphene foam 
(3DGF) through a chemical vapor deposition technique. 
The 3DGF provides additional stability and large porous 
surface as well as high conductivity to the hierarchical 
 NiCo2O4 composites.  NiCo2O4 hierarchical nanoneedles 
were deposited onto the surface of 3DGF via a hydrother-
mal method. The synergism between hierarchical  NiCo2O4 
nanoneedles and 3DGF exhibited a high sensitivity of 
2524 μA mM−1 cm−2 and a limit of detection 0.38 μM 
(S/N = 3). Further, as fabricated electrode showed excellent 
selectivity for glucose even in the presence of interfering 
compounds like dopamine, ascorbic acid, lactose, d-Fruc-
tose, and urea as negligible current responses were observed 
on their additions as compared to glucose.  NiCo2O4 
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nanospheres/reduced graphene oxide composite prepared 
by a template-based method using the  Cu2O/GO template 
achieved a high sensitivity of 2082.57 μA mM−1 cm−2, the 
detection range of 0.04–1.28 mM, and low detection limit 
of 0.7 μM [137]. Ni et al. [247] reported a reduced graphene 
oxide supported  NiCo2O4 nanorods composite prepared 
via an ionothermal method using deep eutectic solvents. 
The modified GCE exhibited superior electrocatalytic bio-
sensing of glucose with a wide double-linear range from 
1 μM to 25 mM and a very low detection limit of 0.35 μM 
(S/N  =  3). The presence of a large number of small inter-
connected nanoparticles on the surface of the  NiCo2O4 
nanorods provided the dense electrocatalytic active site in 
coordination with reduced graphene oxide which provided 
large surface area and excellent electrical conductivity 
(Fig. 28a).

Another way of preventing the aggregation of graphene 
sheets, which reduces the specific surface area and inhibits 

the fast mass transfer, is the nitrogen doping. This nitrogen 
doping is not only supposed to facilitates the charge trans-
fers between adjacent carbon atoms but also suppresses the 
electrons and holes recombination necessary for better elec-
trical conductivity and electrocatalytic oxidation of glucose 
[248, 249]. Detailed characterization revealed that in the 
course of hydrothermal reactions, the graphene was reduced 
to nitrogen-doped reduced graphene oxide when glycine 
acted as a source of nitrogen. Further, the nitrogen-doped 
reduced graphene was self-assembled into hydrogels with 
interconnected 3D porous network structure resulted from an 
increased extent of π–π stacking interactions. This 3D form 
provides a sufficiently large surface area and active sites for 
the better adsorption of the analyte species. To ascertain 
this, Lu et al. [38] explored the interactions of flower-like 
 NiCo2O4 and 3D nitrogen-doped holey graphene hydrogel 
(NHGH)-modified GCE for electrochemical biosensing of 
glucose (Fig. 28b).
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Similar to graphene, carbon nanofibers also possess 
excellent dimensional, thermal and chemical stability as 
well as good electrical conductivity. Recently, these fib-
ers have attracted wide attention and have been widely 
explored in fields such as electrochemical cells, catalysis, 
adsorption, structure enhancement, biosensors, gas sen-
sors, and nanodevices [250, 251]. Among various syn-
thetic methods, electro-spinning is considered to be the 
most suitable low-cost and simple method for synthesiz-
ing carbon nanofibers [252, 253]. Liu et al. [39] explored 
the glucose-sensing behavior of  NiCo2O4 nanoneedle-
decorated electrospun carbon nanofiber nanohybrids. 
Faster electrocatalytic oxidation of glucose was reported 
for nanohybrids as compared to bare  NiCo2O4 nanonee-
dle and electrospun carbon nanofiber-modified GCEs. 
The fact was supported by a large increase in the anode 

peak current and a positive shift in the anode peak 
potential.

Novel metals such as Au, Ag, and Pd, have also been 
used to prepare  NiCo2O4 composites to improve the bio-
sensing capabilities. Recently, dealloying has been used 
as a convenient method for preparing nanoporous met-
als with a 3D bicontinuous structure, which is character-
ized by open nanopores with adjustable sizes [254–256]. 
These 3D nanoporous metals act as conductive surfaces 
for the deposition of biosensors electrocatalytic materi-
als such as  NiCo2O4 since they provide high conductiv-
ity and large surface area. Disposable needle-type hybrid 
electrode comprising a stainless steel core modified with 
a 3D nanoporous Au/NiCo2O4 nanowall hybrid structure-
modified electrochemical non-enzymatic glucose sensor 
showed a linear response of 0.01–21 mM glucose, high 
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sensitivity of 0.3871 μA μM−1 cm−2, detection limit of 
1 μM within a response time of < 1 s [257]. Naik et al. 
[258] compared the bare  NiCo2O4/Ni foam,  NiCo2O4–Ag/
Ni foam and  NiCo2O4–Au/Ni foam nanosheets elec-
trodes. The calculated sensitivity for pure  NiCo2O4, 
 NiCo2O4–Ag, and  NiCo2O4–Au nanosheets electrodes 
in the linear range 5–45 μM and 45–465 μM were 20.8, 
29.86, and 44.86  μA  μM−1  cm−2 and 6.2, 11.5, and 
13.96 μA μM−1 cm−2, respectively. The respective limits 
of detection were 9.33, 5.82, and 2.64 μM. DFT studies 
confirmed strong binding between Au and  NiCo2O4 as 
compared to Ag. Further, the binding energy of glucose 
was more for the  NiCo2O4–Au surface compared to the 
 NiCo2O4–Ag surface. The enhanced density of states 
near the Fermi level improved the conductivity of the 
 NiCo2O4–Au nanosheet than  NiCo2O4–Ag that caused 
superior glucose sensing performance. In a similar type of 
report, the sensitivities for pure  NiCo2O4 and  NiCo2O4–Pd 
nanosheets electrodes in the linear range 5–90 μM and 

70–450 μM were 27.5 and 40.03 μA μM−1 cm−2 and 8.53 
and 8.23 μA μM−1 cm−2, respectively [259].

Similar to metals, conducting polymers also possess the 
electronic, electrical, and optical properties, easy synthesis, 
excellent mechanical stabilities and most importantly the 
low toxicity and biodegradability, the issues which are gen-
erally associated with metals. Moreover, the noble metals 
are easily poisoned by some intermediates produced dur-
ing the oxidation of glucose. Among various conducting 
polymers, polyaniline and polypyrrole have gained much 
attention due to their superior thermal and oxidative sta-
bilities [260, 261]. Constructing a core–shell nanostructure 
comprising conductive polymer coating as the outer walls 
of metal oxides is the most important strategy for enhanc-
ing the conductivities [262].  NiCo2O4@PANI nanoparticles 
with an average particle size 25 nm shortened the ion trans-
port pathway and the modified GCE exhibited a sensitivity 
of 4.55 mA mM−1  cm−2, a detection limit of 0.3833 μM and 
linear dynamic range of 0.0150–4.7350 mM (Fig. 29a, b) 
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[263]. The PANI core–shell provided more effective electri-
cal contact between redox-active centers and the electrolyte 
resulting in good contact and small diffusion distances for 
electron transports which subsequently improved the sensor 
activity.  NiCo2O4@Ppy nanowires grown on Ni foam were 
synthesized via hydrothermal growth and oxidant-induced 
polymerization process (Fig. 29c–e). The fabricated glucose 
sensor showed high sensitivity 3059 μA mM−1 cm−2, low 
detection limit 0.22 μM, and wide linear dynamic range 
0.001–20 mM. The excellent electrocatalytic behavior was 
attributed to the synergism due to bimetallic oxide, the sig-
nificant role of Ppy in transmitting charges among electrode 
material due to its excellent conductivity, non-collapsing and 
non-agglomeration of the  NiCo2O4 due to Ppy coating, and 
absence of any adhesive or conductive agent during elec-
trode fabrication [264].

NiCo2O4 nano-/microstructures combined with smarter 
nano-architectured metal oxides  (Co3O4,  SnO2, NiO, and 
 MnO2, etc.) have many synergistic multifunctional proper-
ties of nanostructured components including dense and eas-
ily accessible electroactive sites, altered bandgap energies, 
faster charge transfer processes, and reduced internal resist-
ance. The p-type semiconductor nanostructured  NiCo2O4 
[32],  Co3O4 [265], and n-type materials  SnO2 [266] and 
 MnO2 [267] have the bandgap energies of 2.1, 2.2, 3.6, 
and 1.3 eV, respectively. Due to slightly different bandgap 
energies, the semiconductor metal oxides introduce in situ 
impurity bands in  NiCo2O4 which increase the electron con-
ductivity to extract excellent electrocatalytic efficiencies 
[268]. Chen et al. [269] reported porous  Co3O4 nanosheets 
synthesized via a simple hydrothermal method. The  Co3O4 
nanosheets provided the growth sites for the hydrothermal 
synthesis of  NiCo2O4 nanorods. At the optimized conditions, 
porous  Co3O4–NiCo2O4 nanosheet-modified GCE exhib-
ited a preeminent sensitivity of 1463.13 μA mM−1 cm−2, a 
low detection limit of 0.112 μM and linear dynamic range 
0.001–2.1 mM with excellent selectivity and reproducibil-
ity. The amperometric current–time plot showed a succes-
sive increase in current with the concentration of glucose 
(1 μM–6.1 mM) at an applied voltage of + 0.55 V using 
porous  Co3O4–NiCo2O4 nanosheet-modified GCE. The 
current–concentration calibration plot displayed two lin-
ear portions with concentration ranges 1 μM–2.1 mM and 
2.1–6.1 mM. Further, the incorporation of graphene into 
 Co3O4/NiCo2O4 double-shelled nanocages was explored 
by Xue et al. [270]. The  Co3O4/NiCo2O4 double-shelled 

nanocages were prepared by using zeolite imidazole 
frameworks-67 as a template. The amperometric stud-
ies revealed a sensitivity of 0.196 mA mM−1 cm−2 with 
detection limit 0.744 μM in linearized concentration range 
0.01–3.52 mM, whereas, in linearized concentrations range 
of 0.01–3.52 mM, the sensitivity was 0.304 mA mM−1 cm−2 
with detection limit 0.384 μM.

The introduction of n-type semiconductors stuffs like 
 SnO2 in p-type  NiCo2O4 semiconductors results in the for-
mations of n–p junctions that facilitate the photo-induced 
electrochemical changes by altering the bandgap energies. 
Cai et al. [118] observed a prompt photocurrent reduction 
with the addition of the 100 µL–20 mM glucose solutions 
into the electrolyte solution. It was proposed that under sun-
light stimulation, electron–hole  (e−–h+) pairs are generated 
by the excitation of the electrons from the valence band 
of the n-type  SnO2 semiconductor after the absorption of 
light of suitable energy (more than bandgap energy). The 
 OH− of the solid electrolyte trap these  h+ holes and form 
OH⋅ radicals (Eq. 30). The OH⋅ radicals are then transferred 
to the counter electrode to oxidize  NiCo2O4 to NiOOH and 
CoOOH (Eq. 31). However, in the presence of glucose, posi-
tively charged  h+ causes oxidation of glucose to gluconol-
actone. The electrons released during the oxidation process 
are transferred back to the valence band, so the photocurrent 
is decreased.

Chen et al. [271] synthesized bionics-inspired streptococ-
cus-like mixed oxide  NiCo2O4 coated on needle-like  MnO2 
architectures. Initially,  MnO2 nanowires were synthesized 
via a quick precipitation method, while  NiCo2O4 were grown 
on pre-synthesized  MnO2 nanowires via a facile hydrother-
mal method.  MnO2 nanowires prevented the agglomeration 
of  NiCo2O4 by acting as nucleation sites and electrocatalytic 
centers for the uniform growth of  NiCo2O4. The synergism 
between  NiCo2O4 and  MnO2 was explored for the non-enzy-
matic electrochemical sensing of glucose.  NiCo2O4–MnO2/
GCE exhibited high sensitivity, wide concentration ranges, 
very low detection limit, and long-term stability as com-
pared to  NiCo2O4/GCE and  MnO2/GCE.

Numerous studies have been conducted to verify the 
selectivity of the  NiCo2O4-based modified sensors as 
ascorbic acid, dopamine, and uric acid coexist along with 

(30)OH− + h+ → OH⋅

(31)NiCo2O4 + OH⋅ + H2O → NiOOH + CoOOH
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glucose in human blood serum [272]. Therefore, for prac-
tical applications, these components should not affect the 
amperometric parameters and the positive results have been 
reported [230, 237, 238, 241, 247, 272, 273]. Additionally, 
reproducibility and stability of the modified  NiCo2O4-based 
electrodes have been analyzed. The results have shown 
acceptable reproducibility with a very low relative standard 
deviations in many studies [123, 142, 161, 193, 199, 200, 
227, 274]. The electrochemical sensing parameters such as 
sensitivity, linear dynamic range, and detection limits for 
various  NiCo2O4-based modified electrodes toward glucose 
are compared in Table 1.

In addition to electrochemical sensing of glucose using 
 NiCo2O4 nano-/microstructure-modified electrodes, colori-
metric sensing has also been reported by Huang et al. [274]. 
They explored the peroxidase-like activity of the hierarchical 
 NiCo2O4 hollow sphere which was directly dependent on the 

concentration of  H2O2 produced by the oxidation of glucose 
to gluconic acid in the presence of glucose oxidase  (Gox). 
Hence, a colorimetric method for the detection of glucose 
can be designed using  NiCo2O4. The higher the concentra-
tion of the glucose, the more was the production of  H2O2 
and hence the greater was the oxidation of the 3,3,5,5-tetra-
methylbenzidine (TMB) to oxidized TMB. Absorbance at 
λmax = 652 nm for oxidized TMB was increased linearly 
with the concentration of glucose. The linear range was 
observed between 0.1 and 4.5 mM with a low detection 
limit of 5.31 μM (Fig. 30a, b). The corresponding reaction 
mechanism is shown in Fig. 30c. Intrinsic peroxidase and 
oxidase-like activities of the  NiCo2O4 architectures were 
also confirmed by Su et al. [275] by analyzing the electron 
spin resonance spectra for the oxidation of TMB by  NiCo2O4 
mesoporous spheres. The oxidation was accompanied with-
out the production of 1O2 and  OH· radicals. Additionally, 

Table 1  Electrochemical sensing parameters for various  NiCo2O4-based modified electrodes toward glucose

a mA mM−1 cm−2 units
b nM units

Sensor material Sensitivity 
(μA mM−1 cm−2)

LDR (mM) LOD (μM) Refs.

3D nitrogen-doped holey graphene/NiCo2O4 nanoflowers 2072.0 0.005–10.95 0.39 [38]
NiCo2O4/ECF 1947.2 0.005–19.175 1.5 [39]
NiCo2O4/rGO 2082.6 0.04–1.28 0.7 [137]
Porous  NiCo2O4 hollow nanospheres 1917.0 0.01–2.24 0.6 [140]
Hollow  NiCo2O4 nanorod 1685.0 0.0003–1.0 0.16 [142]
NiCo2O4 nanosheet 6690.0 0.005–0.065 0.38 [224]
NiCo2O4 hollow nanocages 1306.0 0.00018–5.1 27b [228]
MoS2–NiCo2O4 architecture 1748.6 1.6–11.1 0.152 [229]
Mesoporous  NiCo2O4 662.3 – 0.3b [237]
Rod-like  NiCo2O4 431.3 – – [238]
NiCo2O4 NWs/NF 5916.0 0.001–3.987 0.94 [239]
NiCo2O4 NWAs/CC 4.12a 0.001–0.63 0.5 [241]
NiCo2O4 3DGF 2524.0 0.0005–0.59 0.38 [245]
NiCo2O4 NWs-rGO 548.9 5–8.6 2.0 [246]
RGO-NiCo2O4/Nafion/GCE 960.4 0.001–6.3 0.35 [247]

216.7 6.3–25
NiCo2O4 nanowalls/3D nanoporous gold/SS needle 387.1 0.01–21 1.0 [257]
NiCo2O4@PANI 4550.0 0.015–4.735 0.38 [263]
Co3O4–NiCo2O4 nanosheets 1463.13 0.001–2.1 0.112 [269]
Graphene/Co3O4/NiCo2O4 DS nanocages 304.0 0.01–3.52 0.384 [270]
NiCo2O4–MnO2 nanosheets 2887.6 0.001–2600 0.036 [271]
Mesoporous  NiCo2O4 nanowires 72.4 0.37–2.0 0.37 [273]
NiCo2O4 nanorods 4710.0 0.001–0.88 0.063 [276]
Dandelion-like  NiCo2O4 hierarchical microspheres 430.86 10–10480 – [277]
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these peroxidase-like activities were feasible even over a 
broad temperature range.

4.2  H2O2 Biosensors

H2O2 is the most important byproduct produced from some 
enzyme-catalyzed biochemical reactions. In addition to its 
importance as a regulator of immune cell activation, vascu-
lar remodeling, and stomatal closure during metabolic pro-
cesses, it also has pharmaceutical, clinical, environmental, 
textile, and food manufacturing applications [278]. Further, 
the concentration of  H2O2 in urine is a direct indicator of the 
whole-body oxidative stress which is the common cause of 
renal failure, arteriosclerosis, myalgic, encephalomyelitis, 
Parkinson’s disease, diabetes mellitus, cancer and cardio-
vascular diseases [279]. Similar to glucose, the literature 

reports enzymatic as well as non-enzymatic biosensors for 
the detection of  H2O2. Horseradish peroxidase and heme 
protein-based enzymatic biosensor are the most researched 
 H2O2 biosensor due to their high sensitivity, selectivity, and 
biodegradability. In recent years, non-enzymatic/enzyme-
less  H2O2 biosensors based on metal oxides have become a 
new class of biosensors due to fast, low-cost, and easy-to-
fabrication processes [280].

In this section of the review, some non-enzymatic  H2O2 
biosensors based on  NiCo2O4 spinel nano-/microstructures 
are discussed. The current–time amperometric  H2O2 bio-
sensing using modified  Co3O4/NiCo2O4 nanosheets/GCE at 
an applied potential of − 0.35 V exhibited high sensitivity 
and low limit of detection of 303.42 μA mM−1 cm−2 and 
0.596 μM, respectively [269]. The  Co3+ ions of  Co3O4 were 
supposed to play an important role in the sensing of  H2O2. 
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In alkaline medium,  Co3+ ions reduce  H2O2 to  H2O (Eq. 32) 
[281].

The electro-reduction in  H2O2 by  NiCo2O4 spinel-based 
electrodes occurs according to Eqs. 33–36 [95, 282, 283].

(32)2Co3+ + H2O2 + 2OH−
→ 2H2O + O2 + 2Co2+

M2+ + H
2
O

2 

Adsorption
M2+               M2+ O O

H H

ads ads

(33)

M2+              M2+ O O

H H

ads ads
e– transfer M3+              M3+ O O

H H

ads ads. .
(34)

M
3+ 

                           M
3+ 

O O

H H

ads ads. .
2 M

3+ 
+ 2 OH

–
Homolytic cleavage

Desorption

(35)

which decide the electro-reduction and electro-oxidation 
behavior of the  NiCo2O4 toward  H2O2 are the pH and the 
concentration of the  H2O2 in the medium. At a scan rate 
of 10 mV s−1,  H2O2 electro-reduction and electro-oxidation 
were observed for 0.4 M  H2O2 in 3.0 M and 0.75 M  H2O2 in 

3.0 M KOH, respectively. Equation 37 represents the overall 
electro-oxidation of  H2O2 in an alkaline medium.

The electrons lost during the oxidation of  H2O2 reduce the 
trivalent cations  (Co3+ and  Ni3+) ions to their divalent states.

Xue et al. [290] grew ZnO nanowires on Ni foam via a 
galvanostatic electro-deposition technique. After that, the 
Ni foam-supported ZnO nanowires and  Co3O4/NiCo2O4 
double-shelled nanocages were prepared by coprecipita-
tion and annealing processes. The ZnO/Co3O4/NiCo2O4/Ni 
foam-based electrochemical  H2O2 sensor exhibited a high 
sensitivity of 388 μA mM−1 cm−2, the low detection limit 
of 0.163 μM, and a dynamic linear range concentration of 
0.2 μM–2.4 mM with a fast response time of 5 s. The fast 
and high response was attributed to the fast electron trans-
port and short electrical pathway provided by ZnO nanow-
ires. Additionally,  Co3O4/NiCo2O4 double-shelled nanoc-
ages provided sufficient mesopores and large specific surface 
area for improved  H2O2 sensing [290]. Sakthivel et al. [291] 
compared the electrochemical kinetics of modified  NiCo2O4/
GCE,  NiCo2S4/GCE, and  NiCoSe2/GCE toward  H2O2. The 
modified  NiCoSe2/GCE showed better electrochemical 

(37)H2O2 + 2OH−
→ O2 + 2H2O + 2e−

Since  H2O2 is reduced to  H2O  (O2− ions) or  OH− ions 
as opposed to oxidation of glucose to gluconolactone, it 
was found that the current response during electrochemi-
cal sensing of  H2O2 was reduced. Similar trends have been 
reported by other sensor materials such as  ZnFe2O4/reduced 
graphene oxide [284], nickel phosphide  (Ni2P) nanosheets 
array on titanium mesh [285], cobalt nitride  (Co3N) nanow-
ire array on Ti mesh [286], nanoporous carbon nanofibers/Pt 
nanoparticles [287], Ag decorated hierarchical  Sn3O4 [288] 
and many more for the electrochemical sensing of  H2O2 
amperometrically.

Xiao et al. [289] reported that  NiCo2O4 mixed oxide-
based electrodes in the alkaline medium can cause electro-
reduction as well as electro-oxidation toward  H2O2. The 
extraordinary variety of inter-convertible oxidation states 
of Co and Ni in spinel  NiCo2O4 is the key factor for its 
oxidizing and reducing nature. High valence  Co3+ and 
 Ni3+ ions of  NiCo2O4 can be reduced to lower + 2 oxida-
tion states, i.e., into  Co2+ and  Ni2+ ions. Similarly, lower 
+ 2 oxidation states can also be oxidized to higher valen-
cies including  Co3+,  Co4+, and  Ni3+ ions. Other factors 

(36)2M3+ + 2e− → 2M2+
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sensing behavior for  H2O2 than modified  NiCo2O4/GCE 
and  NiCo2S4/GCE. The greater electrocatalytic efficiency 
of modified  NiCoSe2/GCE was attributed to the large elec-
trochemically active surface area for hydrothermally syn-
thesized  NiCoSe2.

4.3  Urea Biosensors

Urea (carbamide or carbonyl diamide) is one of the main 
end products of protein metabolism in humans and animals. 
Urea is exclusively formed in the liver, and is transported by 
the bloodstream to the kidneys for excretion in the human 
body. The normal level of urea in human blood serum is 
2.5–7.5 mM [292–295]. Amount of urea above or below 
the permissible level in the serum results in chronic renal 
and hepatic failure, gastrointestinal bleeding, and nephritic 
syndrome [296]. Similar to other metabolically important 
biomolecules, the literature reports enzymatic as well as 
non-enzymatic biosensors for the selective and highly sen-
sitive urea sensors. Enzyme-based urea biosensors explore 
the use of urease enzyme which facilitates the hydrolysis of 
urea into ammonium ( NH+

4
 ) and bicarbonate ( HCO−

3
 ) ions 

(Eq. 38) [297].

However, in this section, some non-enzymatic-modified 
urea sensor electrodes based on spinel  NiCo2O4 nano-/
microstructures are reviewed. Research has proved that urea 
can be electrochemically oxidized by  NiCo2O4 nano-/micro-
structures (Eqs. 39–41).

The overall reaction can be written as:

Recently, Amin et al. [298] explored the urea sensing 
behavior of  NiCo2O4 nanoneedle-modified GCE which 
showed high sensitivity with a linear response concentra-
tion range of 0.01–5 mM and low detection limit of 1.0 µM. 
It was proposed that initially  Ni2+ ions are oxidized to  Ni3+ 
ions to form NiOOH in an alkaline medium which is reduced 

(38)NH2CONH2 + 3H2O
Urease
⟶ 2NH+

4
+ HCO−

3
+ OH−

(39)6M2+ + 18OH−
→ 6MOOH + 6H2O + 6e−

(40)
6MOOH + CO(NH2)2 + 2OH−

→ 6M(OH)2 + CO2−
3

+ N2

(41)6M2+ + CO(NH2)2 + 20OH−
→ 6M(OH)2 + 6H2O + CO2−

3
+ N2 + 6e−

back to give Ni(OH)2 at the time of urea electro-oxidation 
[299]. Mesoporous spinel  NiCo2O4 nanostructures pre-
pared via facile chemical deposition method showed higher 
catalytic activities, lower overpotential, and more tolerance 
toward urea electro-oxidation as compared to  Co3O4 [227]. 
 NiCo2O4/3D graphene/ITO exhibited high sensitivity of 
166 μA  mM−1  cm−2, a linear range of 0.06–0.30 mM, and 
a low detection limit of 5.0 µM with a very small response 
time of 1 s through non-enzymatic detection method [300]. 
Further, a higher oxidation peak for  NiCo2O4/3D graphene 
in the CV as compared to  NiCo2O4/CNT-modified electrode 
confirmed the superiority of 3D graphene as a matrix mate-
rial for electrode fabrication. The higher oxidation current 
potential was attributed to the highly porous nature and 
excellent conductivity of the interconnected 3D graphene 
matrix [301]. Since oxidation of urea is in alkaline medium, 
higher electrocatalytic oxidation of urea is recorded at higher 
pH conditions. However, beyond an optimum pH the electro-
oxidation decreases due to blockage of the active sites by 
 OH− ions [302].

4.4  Electrochemical Determination of Some Other 
Bioanalytes

Some other bioanalytes such as rutin, trypsin, ascorbic acid, 
dopamine, uric acid, and tryptophan have also been electro-
chemically analyzed using nano-/micro-structured hybrid 
 NiCo2O4-modified electrodes. Rutin, a flavonoid substance, 
is used as anti-bacterial, anti-viral, antiproliferative, antioxi-
dants, antagonists, and anti-inflammatory. It also controls the 
blood pressure and vascular fragility including hereditary 
hemorrhagic telangiectasia, haemangiomas, vitamin C defi-
ciency, etc. [303, 304]. Cui et al. [305] reported the fabrica-
tion of GCE modified with mesoporous  NiCo2O4-decorated 
reduced graphene oxide for the electrochemical sensing of 
rutin using differential pulse voltammetric (DPV) technique. 

Flake-like  NiCo2O4 sheets anchored on the wrinkled reduced 
graphene oxide sheets through electrostatic interaction pre-
vented the self-agglomerations. The wide linear range of 
0.1–150 μM and a low detection limit of 0.01 μM were 
observed along with excellent anti-interference capabili-
ties. The strong synergism between reduced graphene sheets 
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and mesoporous  NiCo2O4 resulted in increased redox peak 
current and decreased potential difference. During electro-
oxidation, rutin is converted into 3′,4′-diquinone with the 
release of two  H+ ions and two electrons (Eq. 42) [306, 307].

Trypsin, a serine protease secreted from the pancreas, 
has also been widely studied recently as it used for iden-
tifying and determining the amino acid sequence in pro-
tein and peptide, particularly at the C-terminus and as a 
specific biomarker for diseases like chronic cystic fibrosis, 
chronic pancreatitis, cancer, and many pathological changes 
[308, 309]. Lin et al. [310] reported a large and prompt 
rise in electrochemical signal in the presence of trypsin by 
 NiCo2O4- poly(amidoamine)/peptide@g-C3N4 nanocom-
posite-modified GCE. 3,4,9,10-perylene tetracarboxylic 
acid (PTCA) was used to connect the peptides and g-C3N4. 
The modified GCE exhibited increased DPVs peak currents 
when the trypsin concentration was increased from  10−10 to 
 10−4 mg mL−1. Kaur et al. [311] studied the simultaneous 
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electrochemical sensing of ascorbic acid, dopamine, uric 
acid, and tryptophan using  NiCo2O4/Nano-ZSM-5 nano-
composite-modified GCE. Wide linear ranges were 1–1200, 
0.6–900, 0.9–1000, and 0.9–1000 μM, while the correspond-

ing detection limits were 0.8, 0.5, 0.7, and 0.7 μM for ascor-
bic acid, dopamine, uric acid, and tryptophan, respectively. 
Simultaneous detection was possible as the anodic oxidative 
peak currents were observed at different applied potentials, 
i.e., 0.158, 0.394, 0.561, and 0.820 V, respectively, for ascor-
bic acid, dopamine, uric acid, and tryptophan in DVP plots 
at a scan rate of 20 mV s−1.

Detailed comparison from Tables 1 and 2 indicates that 
the morphology of the  NiCo2O4 nano-/microstructures and 
the presence of any other component along with  NiCo2O4 
significantly affect the biosensing efficiency. Comparative 
analysis revealed better electrochemical sensing of glucose 
by one-dimensional nanofibres and nanorods and two-
dimensional nanosheets like morphologies of  NiCo2O4 than 

Table 2  Electrochemical sensing parameters for various  NiCo2O4-based modified electrodes toward some bioanalytes

a Units in mg mL−1

Sensor material Analyte Sensitivity 
(μA mM−1 cm−2)

LDR (mM) LOD (μM) Refs.

3D nitrogen-doped holey graphene/NiCo2O4 nanoflowers H2O2 – 0.001–0.510 0.136 [38]
Co3O4–NiCo2O4 nanosheets H2O2 303.42 0.02–1.1 0.596 [269]
ZnO/Co3O4/NiCo2O4/Ni foam H2O2 388.0 0.0002–2.4 0.163 [290]
NiCo2O4 nanoneedles Urea 0.01–5 1.0 [298]
Nickel/cobalt oxide-decorated 3D graphene nanocomposite Urea 166.0 0.06–0.30 5.0 [300]
Mesoporous  NiCo2O4/rGO Rutin – 0.1–150  0.01 [305]
NiCo2O4 nanosheets/g-C3N4 nanocomposite Trypsina – 10−10–10−4 10−10 [310]
NiCo2O4/nano-ZSM-5 nanocomposite Ascorbic acid – 1–1200 0.8 [311]
NiCo2O4/nano-ZSM-5 nanocomposite Dopamine – 0.6–900 0.5 [311]
NiCo2O4/nano-ZSM-5 nanocomposite Uric acid – 0.9–1000 0.7 [311]
NiCo2O4/nano-ZSM-5 nanocomposite Tryptophan – 0.9–1000 0.7 [311]
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other morphologies. Doped and composites/hybrid  NiCo2O4 
nano-/microstructures exhibit superior sensing parameters 
that bare  NiCo2O4. In particular, graphenic nanomaterials 
due to their excellent conductivity and large surface area 
significantly elevate the I–V characteristics to many folds. 
These materials also accelerate the rate of heterogeneous 
electron transfer, i.e., the transfer of electrons from/to elec-
trode to/from bioanalyte molecules [312].

5  Conclusion

Herein, various strategies for the synthesis of spinel 
 NiCo2O4 nano-/microstructures with versatile morphologies 
and their subsequent use for the development of biosensors 
for efficient non-enzymatic sensing and detection of biomol-
ecules such as glucose,  H2O2 and urea are comprehensively 
reviewed. As compared to NiO and  Co3O4, the  NiCo2O4 
nanomaterials showed better electrochemical sensing as 
adjudged by broader redox peaks with larger area coverage 
in the CV curves. The biosensing efficiency of the  NiCo2O4 
nano-/microstructures can be improved by engineering the 
morphology, specific surface area, porosity, doping and by 
making composite/hybrids with various carbonaceous mate-
rials, conducting polymers, metal oxides, non-metals and 
metals. These materials not only improve the mechanical, 
thermal, and chemical stability but also modulate the band-
gap energies, electronic and ionic conductivities, dispersion 
behavior, avoid aggregation of the  NiCo2O4 nanomaterials 
and provide short electron and ion diffusion pathways. All 
these factors contribute to better electrocatalytic behavior 
with excellent sensitivity, selectivity, and long-term stability 
of the spinel  NiCo2O4 nano-/microstructure-based biosen-
sors. It is hoped that this review will provide basic ideas as 
well as new insights for future research and progress in this 
field.

6  Challenges and Future Perspectives

Despite extensive research in this area, many issues that 
impede the practical application of  NiCo2O4nano-/micro-
structures need to be addressed for further improvement. 
Some of these issues have been identified herein.

Structural features of the  NiCo2O4 nanomaterials are con-
trolled by factors like temperature, pH of the reaction solu-
tion, precursor concentration, solvent nature and quantity, 

presence of the growth directing agents and templates, etc. 
It is, therefore, one of the major challenges to design large-
scale and low-cost morphology controlled synthesis of the 
 NiCo2O4 nanomaterials for next-generation biosensors.

Rational combination of  NiCo2O4 nano-/microstructures 
with other hybrid materials or conductive substrates to 
designing  NiCo2O4 composite/hybrids is found to improve 
the intrinsic characteristics like low electronic conductiv-
ity and wide bandgap and hence the biosensing behavior 
of  NiCo2O4. However, still, more in-depth understanding is 
required to correlate the synergism between the components 
of the composite/hybrid materials.

Cost-effectiveness, easy to manufacture, recyclability, 
sensor disposal, and biocompatibility of  NiCo2O4 nano-/
microstructure-based biosensors are other issues that need 
to be addressed and solved. The high cost of electrochemical 
work stations restricts the practical applications of these sen-
sors. In this regard, portable and wearable sensing devices 
will be promising. The toxicity issues of the  NiCo2O4 nano-/
microstructures and other components are very rarely dis-
cussed in the literature. Future research thus should also 
focus on studying this important issue.

The biosensing behavior of the  NiCo2O4 nano-/micro-
structure-based sensors is affected by factors like working 
temperature, pH of the medium, scan rates, and applied 
potential. The optimization of these parameters is rarely 
addressed. Studying the specificity of  NiCo2O4-based sen-
sors from competitive assays requires an appropriate proto-
col because it is reported that the sensor can detect glucose, 
 H2O2, urea, trypsin, etc.

Due to complex structures of the biomolecules, the inter-
face and mechanistic studies at the surface of the nanoma-
terials are still undefined. The redox transformation of the 
molecules during electrocatalytic biosensing is also a debat-
able issue. Therefore, future work should focus on elucidat-
ing the interaction mechanism between nanomaterials and 
biomolecules on the electrode surface, to fabricate a new 
generation of biosensors.
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