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 HIGHLIGHTS

• Aqueous zinc-manganese batteries with reversible  Mn2+/Mn4+ double redox are achieved by carbon-coated  MnOx nanoparticles.

• Combined with  Mn2+-containing electrolyte, the  MnOx cathode achieves an ultrahigh energy density with a peak of 845.1 Wh  kg−1 
and an ultralong lifespan of 1500 cycles.

• The electrode behaviors and reaction mechanism are systematically discussed by combining electrochemical measurements and mate-
rial characterization.

ABSTRACT There is an urgent need for low-cost, high-energy-density, envi-
ronmentally friendly energy storage devices to fulfill the rapidly increasing 
need for electrical energy storage. Multi-electron redox is considerably crucial 
for the development of high-energy-density cathodes. Here we present high-
performance aqueous zinc–manganese batteries with reversible  Mn2+/Mn4+ 
double redox. The active  Mn4+ is generated in situ from the  Mn2+-containing 
 MnOx nanoparticles and electrolyte. Benefitting from the low crystallin-
ity of the birnessite-type  MnO2 as well as the electrolyte with  Mn2+ addi-
tive, the  MnOx cathode achieves an ultrahigh energy density with a peak of 
845.1 Wh kg−1 and an ultralong lifespan of 1500 cycles. The combination of 
electrochemical measurements and material characterization reveals the revers-
ible  Mn2+/Mn4+ double redox (birnessite-type  MnO2 ↔ monoclinic MnOOH 
and spinel  ZnMn2O4 ↔ Mn2+ ions). The reversible  Mn2+/Mn4+ double redox 
electrode reaction mechanism offers new opportunities for the design of low-cost, high-energy-density cathodes for advanced recharge-
able aqueous batteries.

KEYWORDS Aqueous zinc–manganese batteries; Mn-based cathode materials; High energy density; Mn2+/Mn4+ double redox

1200

1000

800

600

400

200

0
0 20 40 60 80 100 120

birnessite-type MnO2

Zn4(OH)6SO4·5H2O+Mn2+

discharge

di
sc

ha
rg

e

charge
ch

ar
ge500 mA g−1

E
ne

rg
y 

de
ns

ity
 (W

h 
kg

−1
)

Cycle number

birnessite type MnO2

Zn4(OH)6SO4·5H2O+Mn2+

discharge

di
sc

ha
rg

hh
e

charge
ch

ar
ge500 mA g−1

ZnMn2O4 + MnOOH

   ISSN 2311-6706
e-ISSN 2150-5551

      CN 31-2103/TB

ARTICLE

Cite as
Nano-Micro Lett. 
         (2020) 12:110 

Received: 29 February 2020 
Accepted: 11 April 2020 
© The Author(s) 2020

https://doi.org/10.1007/s40820-020-00445-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-020-00445-x&domain=pdf


 Nano-Micro Lett.          (2020) 12:110   110  Page 2 of 12

https://doi.org/10.1007/s40820-020-00445-x© The authors

1 Introduction

Considering the projected climatic deterioration, pollu-
tion, and inherent limit of fossil fuels, focus toward more 
environmentally friendly and sustainable energy sources 
continues to grow [1, 2]. Nevertheless, the utilization of 
sustainable energy sources such as solar, water, and wind 
requires a safe, efficient, and economic energy conversion 
system that can smoothen the intermittency of sustain-
able energy [3]. Although current lithium-ion batteries 
(LIBs) have dominated the portable energy market, their 
large-scale grid application is limited by the high cost and 
scarcity of Li resources and safety concerns associated 
with flammable organic electrolytes that lead to thermal 
runaway [4–6]. Recently, rechargeable aqueous zinc-based 
batteries have been considered candidates for stationary 
grid-level storage of the intermittent renewable energies 
due to their low cost, improved safety, simpler manufactur-
ing conditions, and greener operation [7, 8].

As for the low cost, non-toxicity, and high theoretical 
capacity, Mn-based materials are considered as ideal cath-
ode materials for aqueous zinc-ion batteries (AZIBs) [9, 
10]. Current studies focus on crystallographic tunnel-type 
structures  MnO2, including α-MnO2, β-MnO2, γ-MnO2, 
and other types [11–16]. Additionally, spinel-type  Mn3O4 
and  ZnMn2O4 show as viable cathode materials for AZIBs 
[17–20]. Recently, due to its larger capacity and higher 
metal ion diffusion rate, layered  MnO2 is considered to 
be a more promising cathode material [21]. However, 
most of the  MnO2 that has been reported only utilizes the 
electron during  Mn4+/Mn3+ conversion, therefore those 
cathode materials fall short of meeting the demands for 
portable and large-scale stationary energy storage systems. 
The  Mn2+/Mn4+ double redox is observed in the tunnel-
type γ-MnO2 [22]. During the discharge process, spinel-
type  ZnMn2O4, tunnel-type γ-ZnxMn2+O2, and layered-
type L-ZnyMn2+O2 are generated in sequence, and a high 
capacity of 285 mAh g−1 can be achieved. The structural 
variation is reversible, but the tunnel-type γ-MnO2 suffers 
from poor electrical and ionic conductivities [23]. There-
fore, it is still highly infusive to discover potential satisfac-
tory Mn-based cathode materials for energy storage.

Herein, we propose the use of carbon-coated  MnOx 
nanoparticles as a cathode material for zinc–manganese 
batteries. In these batteries, the active low-crystallinity 

birnessite-type  MnO2 is generated in  situ from the 
 Mn2+-containing  MnOx nanoparticles and electrolyte dur-
ing the charge process. Owing to the lower crystallinity, 
the active birnessite-type  MnO2 contains higher energy 
and possesses the ability to achieve  Mn2+/Mn4+ double 
redox [24]. In addition, the small particle size of  MnOx 
and the high conductivity of the carbon substrates provide 
good conditions for the oxidation reactions. Benefitting 
from the  Mn2+/Mn4+ double redox, the  MnOx cathode 
using  Mn2+-containing  ZnSO4 electrolyte exhibits an ultra-
high energy density with a peak of 845.1 Wh kg−1 and an 
ultralong lifespan of 1500 cycles. A detailed investigation 
is also performed to analyze the mechanism of the revers-
ible  Mn2+/Mn4+ double redox. This working principle of 
the zinc–manganese battery is illustrated in Fig. 1a. These 
findings may offer new opportunities to design low-cost 
and high-performance aqueous zinc–manganese batteries 
for large-scale energy storage.

2  Experimental Section

2.1  Synthesis of α‑MnO2

The α-MnhO2 was synthesized using a hydrothermal 
procedure [25]. Firstly,  KMnO4 (0.7 g) was dissolved in 
deionized water (70 mL); then, concentrated HCl (3.3 mL) 
was added into the solution under continuous vigorous 
stirring at room temperature for 10 min. The final solution 
was transferred into a Teflon-lined stainless-steel autoclave 
(100 mL) and maintained at 140 °C for 16 h. Next, the 
brown product was collected by centrifugation and washed 
with deionized water and ethanol for three times. Finally, 
the brown product was dried at 70 °C for 24 h.

2.2  Synthesis of  MnOx and MnO

In a typical procedure, α-MnO2 nanorods (0.04 g) were 
dispersed in ethanol (10 mL) with 2-methylimidazole (2 g) 
dissolved. The obtained suspension was dried in a drying 
oven at 80 °C for 24 h. Then the dried sample was care-
fully ground by agate mortar. After that, the powders were 
heated at 700 °C for 1, 2, or 3 h at a rate of 2 °C min−1 in 
a tube furnace under a flowing Ar atmosphere to obtain 
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 MnOx-1,  MnOx-2, or  MnOx-3. Besides, the MnO was 
obtained by heating the brown powders at 700 °C for 2 h 
at a rate of 2 °C  min−1 in a tube furnace under a flowing 
Ar/H2 atmosphere.

2.3  Materials Characterization

X-ray diffraction (XRD) measurements were performed on a 
Rigaku D/max 2500 powder diffractometer with monochro-
matic Cu-Kα radiation and the wavelength of 1.54178 Å. 

SEM and transmission electron microscope (TEM) images 
were taken using a FEI Helios Nanolab G3 UC and TEM 
JEOLJEM-2100 electron microscope, respectively. The ele-
mentary composition and valence state of samples were char-
acterized by X-ray photoelectron spectroscope (XPS, Thermo 
ESCALAB 250Xi, monochromatic Al-Kα radiation). Raman 
spectra were collected on an Invia Raman spectrometer, 
using an excitation laser of 514.5 nm. ICP-OES spectrometer 
(SPECTRO BLUE SOP) was carried out to determine the con-
centration of Mn and S elements.
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Fig. 1  a Working principle of Zn/MnOx battery. b XRD patterns of  MnOx. XPS spectra of  MnOx-2: c high resolution of Mn 2p and d high reso-
lution of C 1s. e Raman spectra of the  MnOx and α-MnO2
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2.4  Electrochemical Measurements

The electrochemical measurements were tested by assembly 
of CR2032-type coin cells in air atmosphere. The working 
electrode film was prepared by coating the slurry on a Ti 
foil, and the slurry consisted with active materials, polyvi-
nylidene fluoride (PVDF) binder, super P additive (7: 2: 1). 
The mass loading of active materials is around 1.5 mg cm−2. 
Zn foil was used as the counter electrode. 1 M  ZnSO4 and 
0.3 M  MnSO4 solution were used as electrolyte. Cyclic vol-
tammetry (CV) curves were recorded on an electrochemical 
workstation (CHI660E). The galvanostatic discharge–charge 
tests were performed on a Land CT 2001A tester in a poten-
tial window of 0.8–1.8 V.

3  Results and Discussion

3.1  Structural Characterization

The crystallographic structure and the phase composition 
of the pre-reduced  MnOx are examined by XRD measure-
ment. As shown in Fig. 1b, the diffraction peaks of manga-
nese oxides indicate a crystalline hybrid, which match well 

with simulated  MnO2 (JCPDS Card No. 30-0820) and MnO 
(JCPDS Card No. 07-0230). The XRD results clearly show 
that the ratios of MnO to  MnO2 in the products calcined at 
different reaction time are completely different. The synthe-
sized manganese oxides are labeled  MnOx-1,  MnOx-2, and 
 MnOx-3, respectively. The XRD analysis of the α-MnO2 and 
MnO is also shown in Fig. S1a, b.

In order to further analyze the manganese valence states 
of  MnOx and α-MnO2, the samples were analyzed by X-ray 
photoelectron spectroscopy (XPS) (Figs. 1c, d, S2). The 
high-resolution XPS spectrum of Mn 2p for  MnOx compos-
ite displays four peaks with binding energies at 640.35 eV 
(651.92 eV) and 643.50 eV (654.92 eV), which correspond 
to  Mn2+ and  Mn4+, respectively [26]. This result further 
proves that the pre-reduced  MnOx is a composite of  MnO2 
and MnO. For  MnOx-1,  MnOx-2, and  MnOx-3, the fractions 
of  Mn2+ are ≈ 64.1%, 71.4%, and 79.3%, respectively. As 
shown in Fig. 1d, the high-resolution XPS spectrum of C 1 s 
for  MnOx composite can be fitted into four parts, including 
the peaks located at 288.4, 286.5, 285.5, and 284.5 eV, cor-
responding to C–O, C–O–C, N–sp2C, and sp3C–sp3C bonds, 
respectively [27]. The Raman spectrum is given in Fig. 1e. 
The broad peaks located at 1332 and 1586 cm−1 are related 
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Fig. 2  a TEM and b HRTEM images of α-MnO2. c TEM image, d, e HRTEM images, and f EDX elemental mapping images of  MnOx-2
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to the D band and G band of carbon, respectively. The high 
intensity of the D band indicates the presence of defects and 
non-graphitic carbon in the carbon coating [28].

The morphology of as-prepared α-MnO2 precursors is 
assessed by TEM, showing a nanorod shape for α-MnO2 
(Fig. 2a). The high-resolution (HR) TEM image (Fig. 2b) 
possesses regular lattice fringes with d-spacing of 0.49 nm, 
corresponding to the interplanar distance of (200) plane of 
α-MnO2. After the composite powder is calcined, the mor-
phology of α-MnO2 changes to smaller nanoparticles coated 
with carbon (Fig. 2c). The  MnOx nanoparticles are highly 
dispersed in the carbon substrate and form better contact 
with the electrolyte, thereby establishing a highly conductive 
network for the electrons and further providing good condi-
tions for the oxidation reaction of  MnOx and  Mn2+ ions [29]. 
HRTEM images (Fig. 2d, e) reveal that  MnOx possesses 
regular lattice fringes spacing of 0.24 and 0.22 nm, corre-
sponding to (100) plane of  MnO2, and (200) plane of MnO, 
respectively. The high-angle annular dark-field (HAADF)-
STEM image and energy-dispersive X-ray (EDX) elemental 
mapping images (Fig. 2f) of  MnOx confirm the dispersion of 
small  MnOx nanoparticles in the carbon coating.

3.2  Electrochemical Characterization

Figure 3a compares cycling performance between  MnOx-2 
and α-MnO2 cathodes at 0.2 A g−1. Drastic capacity fade 
can be clearly seen in the curves of α-MnO2, maintaining 
154.5 mAh g−1 after 75 cycles. With respect to  MnOx-2 
electrode, the initial charge capacity is 156.3 mAh g−1 due 
to the electrochemical oxidation of  Mn2+. After 75 cycles, 
the  MnOx-2 electrode achieves specific capacity up to 
714.7 mAh g−1 (based on the active material initial mass 
of cathode). The capacity of  MnOx-2 exceeding its theo-
retical capacity can be attributed to the addition of  Mn2+ 
in the electrolyte. The  Mn2+ added in the electrolyte can 
also participate in the reversible  Mn2+/Mn4+ double redox, 
so the capacity of  MnOx-2 tops its theoretical capacity. In 
addition,  MnOx-2 cathode displays a gradually increasing of 
specific capacity, possibly due to the following reason: The 
MnO in the  MnOx is gradually oxidized during each charg-
ing process. And the newly formed  MnO2 can also achieve 
reversible  Mn2+/Mn4+ double redox to increase the specific 
capacity. This phenomenon is commonly observed in transi-
tion metal oxides [30, 31]. The voltage profiles of  MnOx-2 

are shown in Fig. S6. As shown in Fig. S6, the voltage pro-
files of this electrode do not change significantly in the first 
50 cycles. During the capacity decay, however, there are 
some changes in the voltage profiles of the electrode, which 
may be due to changes of electrode materials.

As shown in Fig.  3b, the  MnOx-2 electrode using 
 Mn2+-containing electrolyte exhibits an ultrahigh energy 
density with a peak of 845.1 Wh kg−1 at 500 mA g−1. Fur-
thermore, the rate capabilities are compared at increased 
current densities (Fig. 3c). The  MnOx electrode exhibits 
capacities of 844.5 mAh  g−1 at 0.1 A  g−1 after 10 cycles. As 
currents increase from 0.1 to 1.5 A  g−1, for  MnOx electrode, 
capacities of 844.5, 783.6, 551.1, 226.8, 114.8, and 59.7 
mAh  g−1 are delivered. For comparison, the α-MnO2 elec-
trode fades drastically from 270.7 (0.1 A  g−1) to 27.2 mAh 
 g−1 (1.5 A  g−1). Upon rate recovery to 0.2 A  g−1, a reversible 
capacity of 863 mAh  g−1 is restored for  MnOx electrode. 
Moreover, the  MnOx electrode displays higher energy den-
sity (1158 Wh  kg−1) and power density (1212 W kg−1) in 
the Ragone plot in comparison with α-MnO2 cathode for 
aqueous ZIBs as shown in Fig. 3d. When the  MnOx is cycled 
1500 times at a high rate of 1 A  g−1, a capacity of 133.3 
mAh  g−1 is maintained (Fig. 3e). It is evident that  MnOx 
displays greater stability and reversibility than α-MnO2 dur-
ing charging/discharging. Under different current densities, 
the electrochemical properties of manganese oxides, such 
as initial specific capacity, maximum specific capacity, and 
activation process, are different. These phenomena may be 
due to the different polarizations of the electrodes at dif-
ferent current densities. As compared with most Mn-based 
Zn-ion batteries (Table S1), the carbon-coated  MnOx cath-
ode using  Mn2+-containing electrolyte delivers competi-
tive energy density. The electrochemical performances of 
 MnOx-1,  MnOx-3, and MnO are provided in Figs. S3–S5.

3.3  Reaction Mechanism

In order to understand the reasons for the superior electro-
chemical performance of carbon-coated  MnOx nanoparti-
cles, the ex situ SEM, ex situ XRD, ex situ XPS, and ex 
situ inductively coupled plasma optical emission spectros-
copy (ICP-OES) at different cycling states were conducted 
to reveal the morphology and crystal structure evolution of 
the  MnOx cathode. Figure 4 shows the ex situ SEM images 
of the  MnOx-2 cathode materials at different cycling stages. 
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As shown in Fig. 4a, the nanosheet array covers the electrode 
surface when discharging to 1.28 V. But the nanosheet array 
structure disappears and the electrode surface is covered 
by new flake-like compounds in the fully discharged stage 
(Fig. 4b). When charging to 1.55 V (Fig. 4c), the nanosheet 
arrays are regenerated. And thicker active materials with 
nanosheet structure are generated on the electrode surface 
in the fully charged stage (Fig. 4d). The nanosheet-like 

structure formed in situ during the charge process possesses 
a high specific surface area, which can facilitate electron 
transport and shorten the ion diffusion length. The EDX 
elemental (Mn, Zn, and O) mapping images at different 
charged/discharge states are shown in Figs. 4e, f, and S7, 
S8. At the fully charged state, the electrodes are covered 
with nanosheets, and Mn and O elements are distributed on 
the nanosheets, but there is almost no Zn element. On the 
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contrary, at the fully discharged state, Zn element is dis-
tributed on the flake-like substance, and Mn element is also 
present on the electrode, which is due to the presence of 
unoxidized MnO in the electrode.

Figure 5a displays the ex situ XRD patterns of  MnOx 
electrode at different charge and discharge states. First, in 
the fully discharged stage (0.80 V), the XRD peaks are in 
good agreement with  Zn4SO4(OH)6·5H2O (JCPDS No. 
39-0688) phase, proving that the flake-like compounds 
are  Zn4SO4(OH)6·5H2O. After charging to 1.55 V, phases 
of  ZnMn2O4 (JCPDS No. 24-1133) and MnOOH (JCPDS 
No. 74-1842) are observed. But in the fully charged stage 
(1.80 V), both intermediate phases,  ZnMn2O4 and MnOOH, 

evolve into low-crystallinity  MnO2 with birnessite structures 
[32]. During the subsequence discharge process,  ZnMn2O4 
and MnOOH diffraction peaks re-emerge when discharging 
to 1.28 V, indicating a good reversibility of electrode reac-
tion. Finally, at full depth of discharge, the regeneration of 
 Zn4SO4(OH)6·5H2O is seen in the ex situ XRD. Combined 
with the ex situ SEM results, the ex situ XRD patterns of 
 MnOx electrode reveal the reversible  Mn2+/Mn4+ double 
redox (birnessite-type  MnO2 ↔ monoclinic MnOOH and 
spinel  ZnMn2O4 ↔ Mn2+ ions).

The ex situ XPS spectra at different states are col-
lected to gain insight into the redox behaviour of  MnOx 
electrode. Due to the overlap of Zn 3p, it is difficult to 
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consistently resolve the average oxidation state of Mn 
at different states of charge [33]. However, it is appar-
ent that the peak intensities of both Mn–O bond (Fig. 5b) 
and Mn 3s (Fig. 5c) increase during the charge process, 

and the tendency reversed during the subsequent discharge 
process. As shown in Fig. 5d, the molar ratios of Mn/S 
in the electrolyte at different stages are also analyzed by 
ICP-OES to strongly demonstrate the reversible  Mn2+/
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Mn4+ double redox. In the fully discharged stage (0.8 V), 
the molar ratio of Mn/S is the highest. After charged to 
1.55 V, the molar ratio of Mn/S declines precipitously. 
When charged to the fully charged stage (1.8  V), the 
molar ratio of Mn/S decreases slightly. As the electrode 
is discharged to 1.28 V, the molar ratio of Mn/S shows a 
slight rebound. After fully discharged again, a significant 
recovery on the molar ratio of Mn/S is observed, and the 
ratio is slightly higher than that of the last fully discharged 
state. It further supports that most of the  Mn2+ ions in the 
electrolyte are consumed to form the monoclinic MnOOH 
and spinel  ZnMn2O4 phase due to the electro-oxidation 
process. During the following charge stages, the redox 
reactions between the  ZnMn2O4 spinel phase (MnOOH 
phase) and birnessite phases cause a slight decrease of the 
ratio. Subsequent recovery corresponded to the dissolution 
of  ZnMn2O4 phase and MnOOH phase into the electrolyte. 
Based on the above analysis, it is reasonable to conclude 

that manganese deposition and dissolution occurred during 
charge and discharge.

The cyclic voltammetry (CV) is used to further analyze 
the difference in electrochemical behavior between α-MnO2 
and  MnOx-2. For α-MnO2 (Fig. 6a), similar to most  MnO2 
cathodes, its open-circuit voltage is 1.36 V. The current 
response observed at 1.14 V is associated with the forma-
tion of monoclinic MnOOH or spinel  ZnMn2O4 in the initial 
cathodic polarization process [34, 35]. In the initial anodic 
sweep, the current response observed at 1.62 V is similar 
to the following three scans for α-MnO2 electrode, which 
is ascribed to the extraction process of  H+ or  Zn2+ [36, 37]. 
The reactions can be formulated as follows:

Interestingly, the  MnOx cathode has a low open-circuit 
voltage of 0.88 V. The currents are very strong at 1.53 

(1)MnOOH ↔ MnO2 + H+ + e−

(2)ZnMn2O4 ↔ Zn2+ + 2MnO2 + 2e−
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Fig. 6  CV curves of a α-MnO2 electrode at 0.1 mV s−1 and b  MnOx-2 electrode at 0.1 mV s−1. c Ex situ XRD patterns of the first cycle. d CV 
curves of the  MnOx-2 cathode at different sweep rates
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and 1.55 V in the initial anodic sweep (Fig. 6b), which are 
related to the consequent oxidations of  Mn2+ to  Mn3+ and 
 Mn4+. The XRD patterns of  MnOx electrode during the first 
charge process are shown in Fig. 6c. The patterns demon-
strate the emerge of low-crystallinity birnessite-type  MnO2. 
And we propose the following possible reaction pathways:

Combined with the ex situ XRD results, the two well-defined 
cathodic peaks at 1.23 and 1.38 V and anodic peaks near 
1.52 and 1.60 V correspond to the two-step electrochemical 
reaction between  Mn2+ and  Mn4+. Based on the above dis-
cussions, the energy storage mechanism of  MnOx electrode 
is described as follows:

Apparently, stronger peak intensity is observed in  MnOx-2 
electrode, indicating its higher electrochemical reactiv-
ity and higher capacity [38]. In addition, the overpotential 
gaps of  MnOx-2 electrode are smaller than that of α-MnO2 
electrode. The higher reactivity and smaller polarization of 
 MnOx-2 may be caused by the low crystallinity of in situ 
generated birnessite-type  MnO2.

As shown in Fig. 6d, the CV curves of the  MnOx at dif-
ferent scanning rates are further used to determine the elec-
trochemical behavior. In general, the peak current (i) obeys 
an empirical power-law relationship with the scan rate (v):

The parameter b determined by the plots of log (i) and log 
(ν) reflects the dominated diffusion modes [39, 40]. And 
the parameter b for both anodic and cathodic peaks is cal-
culated to be 0.71, 0.56, 0.68, and 0.62, respectively. The 
b-value of the four peaks is close to 0.5, demonstrating that 

(3)3MnO → Mn2O3 + Mn2+ + 2e−

(4)2Mn2O3 → 3MnO2 + Mn2+ + 2e−

(5)2MnO2 + Zn2+ + 2e− ↔ ZnMn2O4

(6)MnO2 + H+ + e− ↔ MnOOH

(7)

3ZnMn
2
O

4
+ 4SO

2−

4
+ 32H

2
O + 13Zn

2+ + 6e
−

↔ 6Mn
2+ + 4Zn

4
SO

4(OH)6 ⋅ 5H2
O

(8)

2MnOOH + SO
2−

4
+ 7H

2
O + 4Zn

2+ + 2e
−

↔ 2Mn
2+ + Zn

4
SO

4(OH)6 ⋅ 5H2
O

(9)i = av
b

(10)log (i) = b log (v) + log (a)

the conversion reaction and the insertion/extraction of  H+ 
and  Zn2+ are controlled by diffusion.

4  Conclusions

In summary, a rechargeable aqueous zinc–manganese battery 
with promising electrochemical performance is developed. 
The low-crystallinity birnessite-type  MnO2 generated in situ 
from carbon-coated  MnOx nanoparticles achieves the revers-
ible  Mn2+/Mn4+ double redox. The mechanism involves a 
reversible double redox between  Mn2+ and birnessite-type 
 MnO2. Benefitting from the reversible  Mn2+/Mn4+ double 
redox, the  MnOx cathode using  Mn2+-containing  ZnSO4 
electrolyte exhibits excellent electrochemical properties with 
superior cycling stability and high capacity in comparison 
with most of the reported cathodes for AZIBs. The analysis 
of electrochemical reaction mechanism will open a promis-
ing avenue to further enhance the energy density of aque-
ous batteries. The overall combination of low-cost  MnOx 
cathode materials, mild aqueous electrolytes, metal Zn 
anode, and simpler assembly parameters can allow aqueous 
zinc–manganese batteries meet the requirements of large-
scale storage applications.
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