Supporting Information for

High-Performance Aqueous Zinc-Manganese Battery with

Reversible Mn²⁺/Mn⁴⁺ Double Redox Achieved by Carbon Coated

MnO_x Nanoparticles

Jingdong Huang^{1, a}, Jing Zeng^{1, a}, Kunjie Zhu², Ruizhi Zhang^{3, *}, Jun Liu^{1, *}

¹School of Materials Science and Engineering, Central South University, Changsha 410083, People's Republic of China

²Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

³Hunan institute of technology, Hengyang 421002, People's Republic of China

^aJingdong Huang and Jing Zeng contributed equally to this work

* Corresponding authors.E-mail: <u>zhangruizhi@gmail.com</u> (Ruizhi Zhang); <u>liujun4982004@csu.edu.cn</u> (Jun Liu)

Supplementary Figures

Fig. S1 XRD patterns of a α-MnO₂ and b MnO

Fig. S2 XPS spectra showing the 2p core-level spectra of Mn in **a** MnO_x-1 and **b** MnO_x-3

Cathode material	Electrolytes	Capacity	Max Energy density	Max Power density	Capacity retention
α-MnO ₂ [S1]	1 _M ZnSO ₄	353 mAh g ⁻¹ at 16 mA g ⁻¹		_	63% after 50 cycles
α- MnO ₂ [S2]	0.1 _M Zn(NO ₃) ₂	210 mAh g ⁻¹ at 0.5C	_	_	100% after 100 cycles
α- MnO ₂ [S3]	1 _M ZnSO ₄	323 mAh g ⁻¹ at 16 mA g ⁻¹	—	—	46% after 75 cycles
α- MnO ₂ [S4]	2 _M ZnSO ₄ + 0.1 _M MnSO ₄	285 mAh g ⁻¹ at C/3	~170 Wh kg ⁻¹ (cathode, anode and	_	92% after 5000 cycles.
β- MnO ₂ [S5]	3 _M Zn(CF ₃ SO ₃) ₂ + 0.1 M Mn(CF ₃ S ₃) ₂	258 mAh $\mathrm{g}^{\text{-1}}$ at 0.65 C	254 Wh kg ⁻¹ (based on cathode)	5.9 kW kg ⁻¹ (based on cathode)	94% after 2000 cycles.
γ- MnO ₂ [S6]	$1 M ZnSO_4$	285 mAh g $^{\text{-1}}$ at 0.05 mA cm $^{\text{-2}}$	—	—	63% after 45 cycles
ε- MnO ₂ [S7]	2 _M ZnSO ₄ + 0.2 _M MnSO ₄	290 mAh g $^{-1}$ at 90 mA g $^{-1}$	_	_	99.3% after 10000 cycles.
δ- MnO ₂ [S8]	1 _M ZnSO ₄	252 mAh g ⁻¹ at 83 mA g ⁻¹	_	_	\sim 44% after 100 cycles
Graphene/α-MnO ₂ [S9]	2 _M ZnSO ₄ + 0.2 _M MnSO ₄	382 mAh g $^{-1}$ at 300 mA g $^{-1}$	406.6 Wh kg ⁻¹ (based on cathode)	9.5 kW kg ⁻¹ (based on cathode)	94% after 3000 cycles
MnO ₂ /PEDOT [S10]	PVA+3 M LiCl+2 _M ZnCl ₂ + 0.4 _M MnSO ₄	367 mA h g ⁻¹ at 0.74 A g ⁻¹	505 Wh kg ⁻¹ (based on cathode)	8.6 kW kg ⁻¹ (based on cathode)	83.7% after 300 cycles
Polyaniline-intercalated MnO ₂ [S11]	2 _M ZnSO ₄ + 0.1 _M MnSO ₄	280 mA h g $^{-1}$ at 200 mA g $^{-1}$	_	_	100% after 200 cycles
O _d - MnO ₂ [S12]	1 _M ZnSO ₄ + 0.2 _M MnSO ₄	345 mAh g ⁻¹ at 200 mA g ⁻¹	470 Wh kg ⁻¹ (based on cathode)	10 kW kg ⁻¹ (based on cathode)	84% after 2000 cycles
Mn ₂ O ₃ [S13]	2 _M ZnSO ₄ + 0.1 _M MnSO ₄	148 mAh g ⁻¹ at 100 mA g ⁻¹	_	—	∼68% after 2000 cycles
$Mn_3O_4[S14]$	2_{M} ZnSO ₄	239 mAh g ⁻¹ at 100 mA g ⁻¹	—	—	
MnO _x @N-C [S15]	2 _M ZnSO ₄ + 0.1 _M MnSO ₄	385 mAh g ⁻¹ at 100 mA g ⁻¹	_	—	100% after 1600 cycles
D-β-MnO ₂ [S16]	3 _M ZnSO ₄ + 0.1 _M MnSO ₄	276 mAh g ⁻¹ at 100 mA g ⁻¹	—	_	94 % after 300 cycles
MnO ₂ [S17]	6 M KOH + 0.2 M ZnO + 5 mM vanillin and 3 M H ₂ SO ₄ + 0.1	616 mAh g ⁻¹ at 100 mA g ⁻¹	1,621.7 Wh kg $^{-1}$ MnO2	_	96 % after 200 cycles

Table S1 Comparison for electrochemical performances of representative Mn-O cathode materials in Zinc ion battery and our present work

G-MnO ₂ [S18]	2_M ZnSO ₄ +	321 mAh g ⁻¹ at 240 mA g ⁻¹	—	—	91 % after 300
	0.1 M MnSO4				cycles
P-MnO _{2-x} @VMG [S19]	$2_{M}ZnSO_{4}+$	302.8 mAh g ⁻¹ at 500 mA g ⁻¹	_	—	90 % after 1000
	0.2 _M MnSO ₄				cycles
Mn_2O_3 [S20]	2_M ZnSO ₄ +	233 mAh g ⁻¹ at 300 mA g ⁻¹	_	—	89 % after 3000
	0.2 _M MnSO ₄				cycles
Birnessite MnO ₂ [S21]	2_M ZnSO ₄ +	279.7 mAh g ⁻¹ at 300 mA g ⁻¹	_	—	61 % after 1500
	0.5 _M MnSO ₄				cycles
Ca_2MnO_4 [S22]	2_M ZnSO ₄ +	250 mAh g ⁻¹ at 100 mA g ⁻¹	—	—	80 % after 1000
	0.1 M MnSO4				cycles
N-MnO _{2-x} [S23]	2_M ZnSO ₄ +	285 mAh g ⁻¹ at 200 mA g ⁻¹	—	—	85.7 % after 1000
	0.2 _M MnSO ₄				cycles
$MnO_{2}H_{0.16}(H_{2}O)_{0.27}$	1_M ZnSO ₄ +	275.6 mAh g ⁻¹ at 30.8 mA g ⁻¹	228.5 Wh kg ⁻¹	—	96 % after 500
[S24]	0.2 _M MnSO ₄				cycles
MnO _x	1_M ZnSO ₄ +	842.5 mAh g ⁻¹ at 200 mA g ⁻¹	1158 Wh kg-1 (based	1.2 kW kg ⁻¹ (based	80% after 1500
(our work)	0.3 M MnSO ₄		on initial cathode)	on initial cathode)	cycles

M MnSO₄)

Fig. S3 a CV curses at 0.1 mV s⁻¹ in the voltage range of 0.8-1.8 V vs. Zn^{2+}/Zn , **b** cycling performance at 0.2 A g⁻¹; **c** Cycling performance at 1 A g⁻¹ of MnO_x-1

Fig. S4 a CV curses at 0.1 mV s⁻¹ in the voltage range of 0.8-1.8 V vs. Zn^{2+}/Zn , **b** cycling performance at 0.2 A g⁻¹; **c** Cycling performance at 0.5 A g⁻¹ of MnO_x-3

Fig. S5 a CV curses at 0.1 mV s⁻¹ in the voltage range of 0.8-1.8 V vs. Zn^{2+}/Zn , **b** cycling performance at 0.2 A g⁻¹; **c** Cycling performance at 1 A g⁻¹ of MnO

Fig. S6 Voltage profile of MnO_x-2

Fig. S7 *ex*-situ SEM image and EDX elemental mapping images of MnO_x -2 when discharging to 1.28 V

Fig. S8 *ex*-situ SEM image and EDX elemental mapping images of MnO_x -2 when charging to 1.55 V

Supplementary References

- [S1] M.H. Alfaruqi, J. Gim, S.Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, Enhanced reversible divalent zinc storage in a structurally stable α-MnO₂ nanorod electrode. J. Power Sources 288, 320–327 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.140
- [S2] C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
- [S3] M.H. Alfaruqi, S. Islam, J. Gim, J. Song, S. Kim, D.T. Pham, J. Jo, Z. Xiu, V. Mathew, J. Kim, A high surface area tunnel-type α-MnO₂ nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 650, 64–68 (2016). https://doi.org/10.1016/j.cplett.2016.02.067
- [S4] H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- [S5] N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- [S6] M.H. Alfaruqi, V. Mathew, J. Gim, S Kim, J Song, J. Baboo, S. Choi, J Kim, Electrochemically induced structural transformation in a γ-MnO₂ cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- [S7] W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO₂ battery chemistry with H⁺ and Zn²⁺ coinsertion. J. Am. Chem. Soc. **139**, 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- [S8] M.H. Alfaruqi, J. Gim, S. Kim, J. Song, D.T. Pham et al., A layered δ-MnO₂ nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. **60**, 121–125 (2015). https://doi.org/10.1016/j.elecom.2015.08.019
- [S9] B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated α-MnO₂ nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14, 1703850 (2018). https://doi.org/10.1002/smll.201703850
- [S10] Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, Achieving ultrahigh energy density and long durability in a flexible rechargeable

quasi-solid-state Zn-MnO₂ battery. Adv. Mater. 29, 1700274 (2017).

https://doi.org/10.1002/adma.201700274

- [S11] J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- [S12] T. Xiong, Z. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9, 1803815 (2019). https://doi.org/10.1002/aenm.201803815
- [S13] B. Jianga, C. Xua, C. Wua, L. Dong, J. Lia, F. Kang, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
- [S14] J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn₃O₄ in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- [S15] Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnO_x nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018). https://doi.org/10.1002/aenm.201801445
- [S16] M. Han, J. Huang, S. Liang, L Shan, X. Xie, Z. Yi, Y. Wang, S. Guo, J. Zhou, Oxygen defects in β-MnO₂ enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. Iscience 23, 100797 (2020). https://doi.org/10.1016/j.isci.2019.100797
- [S17] C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 1-10 (2020). https://doi.org/10.1038/s41560-020-0584-y
- [S18] C. Wang, M. Wang, Z. He, L. Liu, Y. Huang, Rechargeable aqueous zinc-manganese dioxide/graphene batteries with high rate capability and large capacity. ACS Appl. Energy Mater. 3, 1742-1748 (2020). https://doi.org/10.1021/acsaem.9b02220
- [S19] Y. Zhang, S. Deng, G. Pan, H. Zhang, B. Liu et al., Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage. Small 1900828 (2020). https://doi.org/10.1002/smtd.201900828
- [S20] D. Feng, T. Gao, L. Zhang, B. Guo, S. Song, Z. Qiao, S. Dai, Boosting high-rate zinc-storage performance by the rational design of Mn₂O₃

nanoporous architecture cathode. Nano-Micro Lett. **12**, 14 (2020). https://doi.org/10.1007/s40820-019-0351-4

- [S21] G. Li, Z. Huang, J. Chen, F. Yao, J. Liu, O. Li, S. Sun, Z. Shi, Rechargeable Zn-ion batteries with high power and energy density: a two-electron reaction pathway in birnessite MnO₂ cathode materials. J. Mater. Chem. A 8, 1975-1985 (2020). https://doi.org/10.1039/C9TA11985J
- [S22] S. Guo, S. Liang, B. Zhang, G. Fang, D. Ma, J. Zhou, Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 13, 13456-13464 (2019). https://doi.org/10.1021/acsnano.9b07042
- [S23] Y. Zhang, S. Deng, M. Luo, G. Pan, Y. Zeng et al., Defect promoted capacity and durability of N-MnO_{2-x} branch arrays via low-temperature NH₃ treatment for advanced aqueous zinc ion batteries. Small **15**, 1905452 (2019). https://doi.org/10.1002/smll.201905452
- [S24] Q. Zhao, X. Chen, Z. Wang, L. Yang, R. Qin et al., Unravelling H⁺/Zn²⁺ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 15, 1904545 (2019). https://doi.org/10.1002/smll.201904545